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Abstract

We present PANORAMIA, a privacy leakage measurement framework for machine
learning models that relies on membership inference attacks using generated data as
non-members. By relying on generated non-member data, PANORAMIA eliminates
the common dependency of privacy measurement tools on in-distribution non-
member data. As a result, PANORAMIA does not modify the model, training data,
or training process, and only requires access to a subset of the training data. We
evaluate PANORAMIA on ML models for image and tabular data classification, as
well as on large-scale language models.

1 Introduction

Training Machine Learning (ML) models with Differential Privacy (DP) Dwork et al. (2006), such
as with DP-SGD Abadi et al. (2016), upper-bounds the worst-case privacy loss incurred by the
training data. In contrast, privacy auditing aims to empirically lower-bound the privacy loss of a
target ML model or algorithm. In practice, privacy audits usually rely on the link between DP and
the performance of membership inference attacks (MIA) Wasserman & Zhou (2010); Kairouz et al.
(2015); Dong et al. (2019). At a high level, DP implies an upper-bound on the performance of MIAs,
thus creating a high-performance MIA implies a lower-bound on the privacy loss. Auditing schemes
have proven valuable in many settings, such as to audit DP implementations Nasr et al. (2023), or
to study the tightness of DP algorithms Nasr et al. (2021); Lu et al. (2023); Steinke et al. (2023).
Typical privacy audits rely on retraining the model several times, each time guessing the membership
of one sample Jagielski et al. (2020); Carlini et al. (2022a); Zanella-Béguelin et al. (2022), which
is computationally prohibitive, requires access to the target model (entire) training data as well as
control over the training pipeline.

To circumvent these concerns, Steinke et al. (2023) proposed an auditing recipe (called O(1)) requiring
only one training run (which could be the same as the actual training) by randomly including/excluding
several samples (called auditing examples) into the training dataset of the target model. Later, the
membership of the auditing examples are guessed for privacy audit. However, O(1) faces a few
challenges in certain setups. First, canaries, which are datapoints specially crafted to be easy to
detect when added to the training set Nasr et al. (2023); Lu et al. (2023); Steinke et al. (2023), cannot
be employed as auditing examples when measuring the privacy leakage for data that a contributor
actually puts into the model, and not a worst case data point.
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This matches a setting in which individual data contributors (e.g., a hospital in a cross-site Federated
Learning (FL) setting or a user of a service that trains ML models on users’ data) measure the leakage
of their own (i.e., known) partial training data in the final trained model. Second, O(1) also relies
on the withdrawal of real data from the model to construct non-member in-distribution data. This is
problematic in situations in which ML model owners need to conduct post-hoc audits, in which case
it is too late for removal Negoescu et al. (2023). Moreover, in-distribution audits require much more
data, thus withholding many data points (typically more than the test set size) and reducing model
utility. This brings us to the question: Given an instance of a machine learning model as a target,
can we perform post-hoc estimation of the privacy loss with regards to a known member subset of the
target model training dataset?

Our contributions. We propose PANORAMIA, a new scheme for Privacy Auditing with NO Retraining
by using Artificial data for Membership Inference Attacks. More precisely, we consider an auditor
with access to a subset of the training data and introduce a new alternative for accessing non-members:
using synthetic datapoints from a generative model trained on the member data, unlocking the limit
on non-member data. PANORAMIA uses this generated data, together with known members, to train
and evaluate a MIA attack on the target model to audit (§3). We also adapt the theory of privacy
audits, and show how PANORAMIA can estimate the privacy loss (though not a lower-bound) of the
target model with regards to the known member subset (§4). An important benefit of PANORAMIA is
to perform privacy loss measurements with (1) no retraining the target ML model (i.e., we audit the
end-model, not the training algorithm), (2) no alteration of the model, dataset, or training procedure,
and (3) only partial knowledge of the training set. We evaluate PANORAMIA on CIFAR10 models and
observe that overfitted models, larger models, and models with larger DP parameters have higher
measured privacy leakage. We also demonstrate the applicability of our approach on the GPT-2 based
model (i.e., WikiText dataset) and CelebA models.

2 Background and Related Work

DP is the established privacy definition in the context of ML models, as well as for data analysis in
general. We focus on the pure DP definition to quantify privacy loss with well-understood semantics.
In a nutshell, DP is a property of a randomized mechanism (or computation) from datasets to an
output space O, noted M : D → O. It is defined over neighboring datasets D,D′, differing by one
element x ∈ X (we use the add/remove neighboring definition), which is D′ = D ∪ {x}. Formally:
Definition 1 (Differential Privacy Dwork et al. (2006)). A mechanism M : D → O is ϵ-DP if for any
two neighbouring datasets D, D′ ∈ D, and for any measurable output subset O ⊆ O it holds that:

P [M(D) ∈ O] ≤ eεP [M(D′) ∈ O].

Since the neighbouring definition is symmetric, so is the DP definition, and we also have that
P [M(D′) ∈ O] ≤ eεP [M(D) ∈ O]. Intuitively, ϵ upper-bounds the worst-case contribution of any
individual example to the distribution over outputs of the computation (i.e., the ML model learned).
More formally, ϵ is an upper-bound on the privacy loss incurred by observing an output o, defined
as

∣∣ ln( P[M(D)=o]
P[M(D′)=o]

) ∣∣, which quantifies how much an adversary can learn to distinguish D and D′

based on observing output o from M . A smaller ϵ hence means higher privacy.

DP, MIA and privacy audits. To audit a DP training algorithm M that outputs a model f , one
can perform a MIA on datapoint x, trying to distinguish between a neighboring training sets D and
D′ = D ∪ {x}. The MIA can be formalized as a hypothesis test to distinguish betweenH0 = D and
H1 = D′ using the output of the computation f . Wasserman & Zhou (2010); Kairouz et al. (2015);
Dong et al. (2019) show that any such test at significance level α (False Positive Rate or FPR) has
power (True Positive Rate or TPR) bounded by eϵα. In practice, one repeats the process of training
model f with and without x in the training set, and uses a MIA to guess whether x was included. If
the MIA has TPR > eϵFPR, the training procedure that outputs f is not ϵ-DP. This is the building
block of most privacy audits Jagielski et al. (2020); Nasr et al. (2021); Zanella-Béguelin et al. (2022);
Lu et al. (2023); Nasr et al. (2023). Appendix F provides further context, and discusses other related
work that is not directly relevant to our contribution.

Averaging over data instead of models with O(1). The above result bounds the success rate of
MIAs when performed over several retrained models, on two alternative datasets D and D′. Steinke
et al. (2023) show that it is possible to average over data when several data points independently
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Figure 1: PANORAMIA’s two-phase privacy audit. Phase 1 trains generative model G on member data. Phase 2
trains a MIA on a subset of member data and generated non-member data, using the loss of f on these data
points. The performance of the MIA is compared to a baseline classifier that does not have access to f . Notations
are summarized in Table 4 in Appendix A.

differ between D and D′. Let x1,m be the m data points independently included in the training set,
and s1,m ∈ {0, 1}m be the vector encoding inclusion. T0,m ∈ Rm represents any vector of guesses,
with positive values for inclusion in the training set (member), negative values for non-member, and
zero for abstaining. Then, if the training procedure is ϵ-DP, Proposition 5.1 in Steinke et al. (2023)
bounds the performance of guesses from T with:

P
[ m∑

i=1

max{0, Ti · Si} ≥ v | T = t
]
≤ P

S′∼Bernoulli( eϵ

1+eϵ
)m

[ m∑
i=1

|ti| · S′
i ≥ v

]
.

In other words, an audit (MIA) T that can guess membership better than a Bernoulli random variable
with probability eϵ

1+eϵ refutes an ϵ-DP claim. In this work we build on this result, extending the
algorithm (§3) and theoretical analysis (§4) to enable the use of generated data for non-members,
which breaks the independence between data points.

3 PANORAMIA

Figure 1 summarizes the end-to-end PANORAMIA privacy measurement. The measurement starts with
a target model f , and a subset of its training data Df from distribution D. For instance, D and Df

could be the distribution and dataset of one participant in an FL training procedure that outputs a final
model f . The privacy measurement then proceeds in two phases.

Phase 1: In the first phase, PANORAMIA uses a subset of the known training data DG ⊂ Df to train a
generative model G. The goal of the generative model G is to match the training data distribution D
as closely as possible, which is formalized in Definition 3 (§4). Using the generative model G, we
can synthesize non-member data, which corresponds to data that was not used in the training of target
model f . Hence, we now have access to an independent dataset of member data Din = Df\DG, and
a synthesized dataset of non-member data Dout ∼ G, of size m = |Din|.
Phase 2: In the second phase, we leverage Din and Dout to audit the privacy leakage of f using a
MIA. To this end, we split Din, Dout into training and testing sets, respectively called Dtr

in, D
tr
out and

Dte
in, D

te
out. We use the training set to train a MIA (called PANORAMIA in Figure 1), a binary classifier

that predicts whether a given datapoint is a member of Df , the training set of the target model f .
This MIA classifier makes its prediction based on both a training example x, as well as information
from applying the target model f to the input, such as the loss of the target model when applied to
this example loss(f(x)) (see §5, Appendix C for details). We use the test set to measure the MIA
performance, using the precision at different recall values.

Previous results linking the performance of a MIA on several data-points to ϵ-DP bounds rely on
independence between members and non-members. This intuitively means that there is no information
about membership in x itself. When the auditor controls the training process this independence is
enforced by construction, by adding data points to the training set based on an independent coin
flip. In PANORAMIA, we do not have independence between membership and x, as all non-members
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Algorithm 1 PANORAMIA

Input: Target ML model f , audit set size m, confidence 1− β
Phase 1:
1: Split Df in DG, D

tr
in, D

te
in, with |Dte

in| = m
2: Train generator G on DG

3: Generate Dtr
out, D

te
out of size |Dtr

in|, |Dte
in|

Phase 2:
Train the baseline and MIA:
1: Label Dtr

in as members, and Dtr
out as non-members

2: Train b to predict labels using x ∈ Dtr
in ∪Dtr

out
3: Train MIA to predict labels using x ∈ Dtr

in ∪Dtr
out and f(x)

Measure privacy leakage (see §4):
1: Sample s ∼ Bernoulli( 12 )

m ▷ Def.2
2: Create audit set X = s ·Dte

in + (1− s)Dte
out

3: Score each audit point for membership, creating tb ≜ b(X) ∈ Rm
+ and ta ≜ MIA(X) ∈ Rm

+

4: Set vbub(c, t) ≜ sup {v : βb(m, c, v, t) ≤ β
2 } ▷ Prop.1

5: clb = maxt,c 1{tb ≥ t} · s ≤ vbub(c,1{tb ≥ t})
6: Set vaub(c, ϵ, t) ≜ sup {v : βa(m, c, ϵ, v, t) ≤ β

2 } ▷ Prop.2
7: {c+ϵ}lb = maxt,c,ϵ 1{ta ≥ t} · s ≤ vaub(c, ϵ,1{ta ≥ t})
Return ϵ̃ ≜ {c+ϵ}lb − clb

come from the generator G ̸= D. As a result, there are two ways to guess membership and have high
MIA precision: either by using f to detect membership (i.e., symptomatic of privacy leakage) or by
detecting generated data (i.e., not a symptom of privacy leakage). To measure the privacy leakage,
we compare the results of the MIA to that of a baseline classifier b that guesses membership based
exclusively on x, without access to f . The stronger this baseline, the better the removal of the effect
of synthesized data detection. Algorithm 1 summarizes the entire procedure. In the next section, we
demonstrate how to relate the difference between the baseline b and the MIA performance to the
privacy loss ϵ.

4 Quantifying Privacy Leakage with PANORAMIA

We formalize a privacy game as follows: construct a sequence of auditing samples, in which si is
sampled independently to choose either the real (xin ∈ Xm training points from D if si = 1) or
generated (xgen ∈ Xm generated points from G if s1 = 0) data point at each index i.
Definition 2 (Privacy game).

s ∼ Bernoulli(
1

2
)m, with si ∈ {0, 1}, xi = (1− si)x

gen
i + six

in
i , ∀i ∈ {1, . . . ,m}.

The key difference between Definition 2 and the privacy game of Steinke et al. (2023) lies in how we
create the audit set. Instead of sampling non-members independently and removing them from the
training set (which requires modifyig the training set and the model), Definition 2 starts from a set of
known members (after the fact), and pairs each point with a non-member (generated i.i.d. from the
generator distribution). For each pair, we then flip a coin to decide which point in the pair will be
shown to the auditor for testing, thereby creating the test task of our privacy measurement.

The level of achievable success in this game quantifies the privacy leakage of the target model f .
More precisely, we follow an analysis inspired by that of Steinke et al. (2023), but require several key
technical changes to support auditing with no retraining using generated non-member data.

4.1 Formalizing the Privacy Measurements as a Hypothesis Test

We first need a notion of quality for our generator:
Definition 3 (c-closeness). For all c > 0, we say that a generative model G is c-close for data
distribution D if:

∀x ∈ X , e−cPD
[
x
]
≤ PG

[
x
]
.
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The smaller c, the better the generator, as G assigns a probability to real data that cannot be much
smaller than that of the real data distribution. We make three important remarks.
Remark 1: c-closeness is a strong requirement but it is achievable, at least for a large c. For instance,
a uniform random generator is c-close to any distribution D, with c <∞. Of course c would be very
large, and the challenge in PANORAMIA is to create a generator that empirically has a small enough c.
Remark 2: We show in Appendix E that we can relax this definition to hold only with high probability
(following the (ϵ, δ)-DP relaxation). Empirical results under this relaxation are very similar. We also
show how to measure (ϵ, δ)-DP, instead of ϵ-DP on which we focus here.
Remark 3: Our definition of closeness is very similar to that of DP. This is not a coincidence as
we will use this definition to be able to reject claims of both c-closeness for the generator and ϵ-DP
for the algorithm that gave the target model. We further note that, contrary to the DP definition,
c-closeness is one-sided as we only bound PG from below. Intuitively, this means that the generator
has to produce high-quality samples (i.e., samples likely under D) with high enough probability but it
does not require that all samples are good though. This one-sided measure of closeness is enabled by
our focus on detecting members (i.e., true positives) as opposed to members and non-members, and
puts less stringent requirements on the generator.

Using Definition 3, we can formulate the hypothesis test on the privacy game of Definition 2 that
underpins our approach:

H : generator G is c-close, and target model f is ϵ-DP.

Note that, in a small abuse of language, we will often refer to f as ϵ-DP to say that f is the output of
an ϵ-DP training mechanism. That is, B(s, x) = {b(x1), b(x2), . . . , b(xm)}.
We define two key mechanisms: B(s, x) : {0, 1}m ×Xm → Rm

+ outputs a (potentially randomized)
non-negative score for the membership of each datapoint xi, based on xi only; A(s, x, f) : {0, 1}m×
Xm ×F → Rm

+ outputs a (potentially randomized) non-negative score for the membership of each
datapoint, with the guess for index i depending on x≤i and target model f . We can construct a
statistical test for each part of the hypothesis separately.

Proposition 1. Let G be c-close, S and X be the random variables for s and x from Definition 2,
and T b ≜ B(S,X) be the vector of guesses from the baseline. Then, for all v ∈ R and all t in the
support of T :

PS,X,T b

[ m∑
i=1

T b
i · Si ≥ v | T b = tb

]
≤ P

S′∼Bernoulli( ec

1+ec )
m

[ m∑
i=1

tbi · S′i ≥ v
]
≜ βb(m, c, v, tb)

Proof. In Appendix B.1.

Now that we have a test to reject a claim that the generator G is c-close for the data distribution D,
we turn our attention to the second part ofH which claims that the target model f is the result of an
ϵ-DP mechanism.

Proposition 2. Let G be c-close, S and X be the random variables for s and x from Definition 2, f
be ϵ-DP, and T a ≜ A(S,X, f) be the guesses from the membership audit. Then, for all v ∈ R and
all t in the support of T :

PS,X,Ta

[ m∑
i=1

T a
i · Si ≥ v | T a = ta

]
≤ P

S′∼Bernoulli( ec+ϵ

1+ec+ϵ )
m

[ m∑
i=1

tai · S′i ≥ v
]
≜ βa(m, c, ϵ, v, ta)

Proof. In Appendix B.2.

We can now provide a test for hypothesisH, by applying a union bound over Propositions 1 and 2:

Corollary 1. LetH be true, T b ≜ B(S,X), and T a ≜ A(S,X, f). Then:

P
[ m∑

i=1

T a
i · Si ≥ va,

m∑
i=1

T b
i · Si ≥ vb | T a = ta, T b = tb

]
≤ βa(m, c, ϵ, va, ta) + βb(m, c, vb, tb)
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To make things more concrete, let us instantiate Corollary 1 as we do in PANORAMIA. Our baseline
(B above) and MIA (A above) classifiers return a membership guesses T a,b ∈ {0, 1}m, with 1

corresponding to membership. Let us call ra,b ≜
∑

i t
a,b
i the total number of predictions, and

tpa,b ≜
∑

i t
a,b
i · si the number of correct membership guesses (true positives). We also call the

precision preca,b ≜ tpa,b

ra,b . Using the following tail bound on the sum of Bernoulli random variables
for simplicity and clarity (we use a tighter bound in practice, but this one is easier to read),

P
S′∼Bernoulli(p)r

[ r∑
i=1

S′i
r
≥ p+

√
log(1/β)

2r

]
≤ β, (1)

we can rejectH at confidence level β by setting βa = βb = β
2 and if either precb ≥ ec

1+ec +
√

log(2/β)
2rb

or preca ≥ ec+ϵ

1+ec+ϵ +
√

log(2/β)
2ra .

4.2 Quantifying Privacy Leakage and Interpretation

In an privacy measurement, we would like to quantify ϵ, not just reject a given ϵ claim. We use
the hypothesis test from Corollary 1 to compute a confidence interval on c and ϵ. To do this, we
first define an ordering between (c, ϵ) pairs, such that if (c1, ϵ1) ≤ (c2, ϵ2), the event (i.e., set of
observations for T a,b, S) for which we can rejectH(c2, ϵ2) is included in the event for which we can
rejectH(c1, ϵ1). That is, if we rejectH for values (c2, ϵ2) based on audit observations, we also reject
values (c1, ϵ1) based on the same observations.

We define the following order to fit this assumption, based on the hypothesis test from Corollary 1:

(c1, ϵ1) ≤ (c2, ϵ2) if either
{
c1 < c2, or
c1 = c2 and ϵ1 ≤ ϵ2

(2)

This lexicographic order over hypotheses ensures that, when using the joint hypothesis test from
Corollary 1 to construct confidence intervals, we always reject hypotheses with a low value of c
incompatible with the baseline performance. Formally, this yields the following confidence intervals:

Corollary 2. For all β ∈]0, 1], m, and observed ta, tb, call vaub(c, ϵ) ≜ sup {v : βa(m, c, ϵ, v, ta) ≤
β
2 } and vbub(c) ≜ sup {v : βb(m, c, v, tb) ≤ β

2 }. Then:

P
[
(c, ϵ) ≥ sup

{
(c′, ϵ′) : ta · s ≤ vaub(c

′, ϵ′) and tb · s ≤ vbub(c
′)
}]

≥ 1− β

Proof. Apply Lemma 4.7 from Steinke et al. (2023) with the ordering from Equation 2 and the test
from Corollary 1.

The lower confidence interval for (c, ϵ) at confidence 1− β is the largest (c, ϵ) pair that cannot be
rejected using Corollary 1 with false rejection probability at most β. Hence, for a given confidence
level 1− β, PANORAMIA computes (clb, ϵ̃), the largest value for (c, ϵ) that it cannot reject. Note that
Corollaries 1 and 2 rely on a union bound between two tests, one for c and one for c+ ϵ. We can thus
consider each test separately (at level β/2). In practice, we use the whole precision/recall curve to
achieve tighter bounds: each level of recall (i.e., threshold on ta,b to predict membership) corresponds
to a bound on the precision, which we can compare to the empirical value. Separately for each test,
we pick the level of recall yielding the highest lower-bound (Lines 4-7 in the last section of Algorithm
1). For all bounds to hold together, we apply a union bound over all tests at each level of recall.
Specially, if we have m test datapoints, we have at most m different values of recall, and the union
bound corresponds to β ← β/m (notice in Equation (1) that the bounds depend on

√
log(1/β), so

this is not too costly). We next discuss the semantics of returned measurement values (clb, ϵ̃).

Measurement semantics. Corollary 2 gives us a lower-bound for (c, ϵ), based on the ordering from
Equation (2). To understand the value ϵ̃ returned by PANORAMIA, we need to understand what the
hypothesis test rejects. Rejecting H means either rejecting the claim about c, or the claim about
c + ϵ (which is the reason for the ordering in Equation 2). With Corollary 2, we hence get both
a lower-bound clb on c, and {c+ϵ}lb on c + ϵ. Unfortunately, ϵ̃ ≜ max{0, {c+ϵ}lb − clb}, which
is the value PANORAMIA returns, does not imply a lower-bound on ϵ. Instead, we can claim that

6
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ML Model Dataset Training Epoch Test Accuracy Model Variants Names*
ResNet101 CIFAR10 20, 50, 100 91.61%, 90.18%, 87.93% ResNet101_E20, ResNet101_E50, ResNet101_E100,

WideResNet-28-10 CIFAR10 150, 300 95.67%, 94.23% WRN-28-10_E150, WRN-28-10_E300
ViT-small (pretrained) CIFAR10 35 96.38% ViT_E35

Multi-Label CNN CelebA 50, 100 81.77%, 78.12% CNN_E50, CNN_E100
GPT-2 WikiText 37, 75, 150 Refer to Appendix C.2 GPT-2_E37, GPT-2_E75, GPT-2_E150

Table 1: Train and Test Metrics for ML Models Audited. *"Model Variants" trained for different numbers of
epochs E. For ViT-small, we use a model pre-trained on imagenet and tune it on CIFAR10.

“PANORAMIA could not reject a claim of c-closeness for G, and if this claim is tight, then f cannot be
the output of a mechanism that is ϵ̃-DP”.

While this is not as strong a claim as typical lower-bounds on ϵ-DP from prior privacy auditing
works, we believe that this measure is useful in practice. Indeed, the ϵ̃ measured by PANORAMIA is a
quantitative privacy measurement, that is accurate (close to a lower-bound on ϵ-DP) when the baseline
performs well (and hence clb is tight). Thus, when the baseline is good, ϵ̃ can be interpreted as (close
to) a lower bound on (pure) DP. PANORAMIA opens a new capability, measuring privacy leakage of a
trained model f without access or control of the training pipeline, with a meaningful and practically
useful measurement, as we empirically show next.

5 Evaluation

We instantiate PANORAMIA on target models for four tasks from three data modalities1. For image
classification, we consider the CIFAR10 Krizhevsky (2009), and CelebA Liu et al. (2015) datasets,
with varied target models: a four-layers CNN O’Shea & Nash (2015), a ResNet101 He et al.
(2015), a Wide ResNet-28-10 Zagoruyko & Komodakis (2017b), a Vision Transformer (ViT)-small
Dosovitskiy et al. (2021), and a DP ResNet18 He et al. (2015) trained with DP-SGD (Abadi et al.,
2016) using Opacus (Yousefpour et al., 2021) at different values of ϵ. We use StyleGAN2 Karras
et al. (2020) for G. For language models, we fine-tune small GPT-2 Radford et al. (2019) on the
WikiText train dataset Merity et al. (2016) (we take a subset of the documents in WikiText-103).
G is again based on small GPT-2, and then fine-tuned on DG. We generate samples using top-k
sampling Holtzman et al. (2019) and a held-out prompt dataset Dprompt

G ⊂ DG. Finally, we conduct
experiments on classification on tabular data. However for this data modality, PANORAMIA did not
detect any meaningful leakage. More precisely, we have observed significant variance in the audit
values returned by PANORAMIA which make the results inconclusive. Nonetheless, we present the
results obtained for this task and discuss this issue further in Appendix D.6. Table 1 summarizes the
tasks, models, and performance. More details on the settings, the models used, and implementation
details are provided in Appendix C.

5.1 Baseline Design and Evaluation

Our MIA is a loss-based attack, which uses an ML model taking as input both
a datapoint x and the value of the loss of target model f on point x. Ap-
pendix C details the architectures used for the attack model for each data modality.

Baseline model clb
CIFAR-10 BaselineDtr

h = gen 2.44± 0.19
CIFAR-10 BaselineDtr

h = real 2.21± 0.17
CIFAR-10 Baselineno helper 1.25± 0.24
CelebA BaselineDtr

h = gen 2.05± 0.21
CelebA BaselineDtr

h = real 1.97± 0.22
CelebA Baselineno helper 0.947± 0.25
WikiText BaselineDtr

h = gen 3.31± 0.15
WikiText BaselineDtr

h = real 3.26± 0.14
WikiText Baselineno helper 3.11± 0.15

Table 2: Baseline evaluation
with different helper model sce-
narios.

500 5000 10000 15000 20000 25000 30000
Train Dataset Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

su
re

m
en

t o
f c

lb

Baseline-CIFAR10

Figure 2: CIFAR-10 base-
line on increasing training
size.

Recall from §4.2 the importance of having
a tight clb for our measure ϵ̃ to be close to a
lower-bound on ϵ-DP. To increase the per-
formance of our baseline b, we mimic the
role of the target model f ’s loss in the MIA
using a helper model h trained on synthetic
data, which adds a loss-based feature to b.

This new feature can be viewed as side in-
formation about the data distribution. Ta-
ble 2 shows the clb value for different de-
signs for h. The best performance is consis-
tently when h is trained on synthetic data
before being used as a feature to train the

1Code available here: https://github.com/ubc-systopia/panoramia-privacy-measurement.
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b. Indeed, such a design reaches a clb up to 1.19 larger that without any helper (CIFAR10) and 0.23
higher than when training on real non-member data, without requiring access to real non-member
data, a key requirement in PANORAMIA. We adopt this design in all the following experiments. In
Figure 2 we show that the baseline has enough training data (vertical dashed line) to reach its best
performance. Appendix D.1, shows similar results on GPT-2 as well as different architectures that we
tried for the helper model. All these pieces of evidence confirm the strength of our baseline.

5.2 Main Privacy Measurement Results

We run PANORAMIA on models with different degrees of over-fitting by varying the number of epochs,
(see the final accuracy on Table 1) for each data modality. More over-fitted models are known to leak
more information about their training data due to memorization (Yeom et al., 2018; Carlini et al.,
2019, 2022a). To show the privacy loss measurement power of PANORAMIA, we compare it with two
strong approaches to lower-bounding privacy loss. First, we compare PANORAMIA with the O(1)

(a) ResNet-101, CIFAR10 (b) CNN, CelebA
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Figure 3: Precision vs. recall comparison between PANORAMIA and the baseline b for our target models, based on
one experiment run. The maximum clb or {c+ϵ}lb values set an upper bound on the empirical precision values
across different recall levels, indicated by the dashed line.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

su
re

m
en

t f
or

 c
lb

 o
r {

c
+

} lb

clb

{c + }lb ResNet101-E100
{c + }lb ResNet101-E50
clb ResNet101-E20
Empirical maximum value

(a) ResNet101, CIFAR10 (b) CNN, CelebA

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

1

2

3

4

5

6

M
ea

su
re

m
en

t f
or

 c
lb

 o
r {

c
+

} lb

clb
{c + }lb GPT-2_E150 
{c + }lb GPT-2_E75 
{c + }lb GPT-2_E37 

(c) GPT-2, WikiText

Figure 4: {c+ ϵ}lb (or clb) vs recall, for our target models, reported over 5 independent experiment runs.

audit (Steinke et al., 2023) (in input space, without canaries in a black box setting), which uses a loss
threshold MIA to detect both members and non-members. Second, we use a hybrid between O(1) and
PANORAMIA, in which we use real non-member data instead of generated data with our ML-based
MIA (called RM;RN for Real Members; Real Non-members). In both cases clb = 0, but it requires
control over training data inclusion and a large set of non-member data. The privacy loss measured
by these techniques gives a target that we hope PANORAMIA to detect.

Figure 3 shows the precision of b and PANORAMIA at different levels of recall, and Figure 4 the
corresponding value of {c+ ϵ}lb (or clb for b). Dashed lines show the maximum value of {c+ ϵ}lb (or
clb) achieved (Fig. 4) (returned by PANORAMIA), and the precision implying these values at different
recalls (Fig. 3). Table 3 summarizes those {c + ϵ}lb (or clb) values, as well as the ϵ measured by
existing approaches. We make two key observations.
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Target model f Audit clb {ϵ+ c}lb ϵ̃ ϵ
PANORAMIA 2.44± 0.190 2.76± 0.250 0.33± 0.21 -

ResNet101_E20 PANORAMIA RM;RN 0.00 0.421± 0.19 - 0.421± 0.19
O (1) RM;RN - - - 0.450± 0.150
PANORAMIA 2.44± 0.190 3.11± 0.18 0.67± 0.17 -

ResNet101_E50 PANORAMIA RM;RN 0.00 0.71± 0.21 - 0.71± 0.21
O (1) RM;RN - - - 0.79± 0.23
PANORAMIA 2.44± 0.190 3.60± 0.21 1.16± 0.19 -

ResNet101_E100 PANORAMIA RM;RN 0.00 1.22± 0.190 - 1.22± 0.19
O (1) RM;RN - - - 1.41± 0.180
PANORAMIA 2.44± 0.190 5.01± 0.25 2.57± 0.23 -

WRN-28-10_E150 PANORAMIA RM;RN 0.00 2.87± 0.20 - 2.87± 0.20
O (1) RM;RN - - - 2.96± 0.19
PANORAMIA 2.44± 0.190 5.98± 0.23 3.54± 0.23 -

WRN-28-10_E300 PANORAMIA RM;RN 0.00 3.65± 0.22 - 3.65± 0.22
O (1) RM;RN - - - 3.73± 0.19
PANORAMIA 2.44± 0.190 5.03± 0.24 2.59± 0.22 -

ViT_E35 PANORAMIA RM;RN 0.00 2.77± 0.21 - 2.77± 0.21
O (1) RM;RN - - - 2.86± 0.19
PANORAMIA 2.05± 0.21 2.81± 0.24 0.76± 0.23 -

CNN_E50 PANORAMIA RM;RN 0.00 0.91± 0.22 - 0.91± 0.22
O (1) RM;RN - - - 1.01± 0.18
PANORAMIA 2.05± 0.21 3.38± 0.24 1.33± 0.22 -

CNN_E100 PANORAMIA RM;RN 0.00 1.38± 0.21 - 1.38± 0.21
O (1) RM;RN - - - 1.46± 0.16
PANORAMIA 3.62± 0.32 3.85± 0.46 0.22± 0.37 -

GPT2_E37 PANORAMIA RM;RN 0.00 1.04± 0.42 - 1.04± 0.42
O (1) RM;RN - - - 2.82± 0.31
PANORAMIA 3.62± 0.32 5.20± 0.34 1.57± 0.45 -

GPT2_E75 PANORAMIA RM;RN 0.00 2.52± 0.36 - 2.52± 0.36
O (1) RM;RN - - - 4.71± 0.34
PANORAMIA 3.62± 0.32 6.02± 0.34 2.40± 0.53 -

GPT2_E150 PANORAMIA RM;RN 0.00 3.60± 0.41 - 3.60± 0.41
O (1) RM;RN - - - 5.73± 0.08

ResNet18 ϵ =∞ PANORAMIA 2.44± 0.190 3.87± 0.20 1.43± 0.21 -
O (1) RM;RN - - - 1.471± 0.13

ResNet18 ϵ = 15 PANORAMIA 2.44± 0.190 3.57± 0.19 1.13± 0.19 -
O (1) RM;RN - - - 1.20± 0.18

ResNet18 ϵ = 10 PANORAMIA 2.44± 0.190 2.70± 0.25 0.26± 0.22 -
O (1) RM;RN - - - 0.28± 0.14

ResNet18 ϵ = 2 PANORAMIA 2.44± 0.190 1.709± 0.23 0.00 -
O (1) RM;RN - - - 0.05± 0.12

ResNet18 ϵ = 1 PANORAMIA 2.44± 0.190 1.412± 0.12 0.00 -
O (1) RM;RN - - - 0.00

Table 3: Privacy measurements on different target models (m =
10k). O(1) RM;RN with our ML-based attack for ϵ-DP models
shown in Figure 6(c).

First, the best prior method (whether
RM;RN or O(1)) measures a larger pri-
vacy loss (ϵ̃ ≤ ϵ). Overall, these results
empirically confirm the strength of b, as
we do not seem to spuriously assign dif-
ferences between G and D to our privacy
loss proxy ϵ̃. We also note that O(1) tends
to perform better, due to its ability to
rely on non-member detection, which im-
proves the power of the statistical test at
equal data sizes. Such tests are not avail-
able in PANORAMIA given our one-sided
closeness definition for G (see §4), and
we keep that same one-sided design for
RM;RN for the sake of comparison.

Second, the values of ϵ̃ measured by
PANORAMIA are close to those of the
methods against which we compared. In
particular, despite a more restrictive ad-
versary model (i.e., no non-member data,
no control over the training process, and
no shadow model training), PANORAMIA
is able to detect meaningful amounts of
privacy loss, comparable to that of state-
of-the-art methods.

For instance, on a non-overfitted CIFAR-
10 ResNet101 model (E20), PANORAMIA detects a privacy loss of 0.33, while using real non-member
(RM;RN) data yields 0.42, and controlling the training process O(1) gets 0.45. The relative gap gets
even closer on models that reveal more about their training data. Indeed, for the most over-fitted
model (E100), ϵ̃ = 1.16 is very close to RM;RN (ϵ = 1.22) and O(1) (ϵ = 1.41). This also confirms
that the leakage detected by PANORAMIA on increasingly overfitted models does augment, which is
confirmed by prior state-of-the-art methods. For instance, NLP models’ ϵ̃ goes from 0.22 to 2.40
(2.82 to 5.73 for O(1)). Appendix D.6 details results on tabular data, in which PANORAMIA is not able
to detect significant privacy loss.

Privacy Measurement of ϵ-DP Models:

Figure 5: ResNet18, CIFAR-10, ϵ-DP
for various ϵ values.

Another avenue to varying privacy leakage is by training
Differentially-Private (DP) models with different values of
ϵ. We evaluate PANORAMIA on DP ResNet-18 models on CI-
FAR10, with ϵ values shown on Table 3 and Figure 5. The
hyper-parameters were tuned independently for the highest
train accuracy (see Appendix D.9 for more results and discus-
sion). As the results show, neither PANORAMIA nor O(1) detect
privacy loss on the most private models (ϵ = 1, 2). At higher
values of ϵ = 10, 15 (i.e., less private models) and ϵ =∞ (i.e.,
non-private model) PANORAMIA does detect an increasing level
of privacy leakage with ϵ̃ϵ=10 < ϵ̃ϵ=15 < ϵ̃ϵ=∞. In this regime,
the O(1) approach detects a larger, though comparable, amount
of privacy loss.

We also evaluate PANORAMIA on DP (fine-tuned) large language
models (see Appendix D.9 and Table 9 for details). We fine-tune GPT2-Small target models with
DP-SGD on the WikiText dataset, with various values of ϵ. Neither PANORAMIA nor O(1) are able to
measure a positive privacy loss.
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5.3 Leveraging More Data to Improve Privacy Measurements

PANORAMIA can leverage much more data for its measurement (up to the whole training set size
for training and testing the MIA), while in our setting O(1) is limited by the size of the test set
(for non-members). As we have seen in Figure 6(b), PANORAMIA can leverage larger test set size to
measure higher privacy loss values than O(1), up to 2.62 on the ResNet101 trained for 100 epochs,
versus 2.23 for O(1). It is also important to note that at small amounts of data O(1) measures a larger
privacy loss (ϵ̃ ≤ ϵ). These findings provide additional empirical evidence for the robustness of b,
indicating that we are not erroneously attributing differences between G and D to our privacy loss
proxy ϵ̃. However, in the case of text data (on the GPT-2 trained for 150 epochs), Figure 6(d), we hit
an upper-bound on the power of the hypothesis test which estimates {c+ϵ}lb using 20k test samples.
The maximum measurement for ϵ̃ we can achieve is around 2.59 with a 20k test set, as opposed to
O(1), which reaches 5.73 with 10k test set size.
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Figure 6: Effect of increasing test set size on PANORAMIA’s privacy measurement for our target models. In the
case of the image dataset, increasing the number of auditing examples allows us to achieve tighter empirical
measurements for privacy leakage despite a restricted adversary. For the case of the language modeling task,
when increasing test set size m, we hit an upper bound on the power of the hypothesis test due to test dataset
size, and do not see significant improvement in privacy measurement in this case.

Increasing Test Set Size for DP models: With an increase in the test set size m, we demonstrate that
we can achieve tighter bounds on the privacy measurement ϵ̃. Figure 6(c) shows that as m increases,
PANORAMIA (solid lines) can measure higher privacy leakage for various ϵ-DP ResNet18 models. The
reason for this is that PANORAMIA can leverage a much higher test set size (up to the whole training
set size for training and testing the MIA), in comparison to O(1) in our setting (due to being limited
by the number of real non-member data points available).

6 Impact, Limitations and Future Directions

We have introduced a new approach to quantify the privacy leakage from ML models, in settings
in which individual data contributors (such as a hospital in a cross-site FL setting or a user of a
text auto-complete service) measure the leakage of their own, known partial training data in the
final trained model. Our approach does not introduce new attack capabilities (it would likely benefit
from future progress on MIA performance though), but can help model providers and data owners
assess the privacy leakage incurred by their data, due to inclusion in ML models training datasets.
Consequently, we believe that any impact from our proposed work is likely to be positive.

However, PANORAMIA suffers from a major limitation: its privacy measurement is not a lower-bound
on the privacy loss (see details in Section 4.2). Providing a proper lower-bound ϵlb on privacy leakage
in this setting is an important avenue for future work. A promising direction is to devise a way
to measure or enforce an upper-bound on c, thereby yielding ϵlb via {c + ϵ}lb − cub. Despite this
shortcoming, we believe that the new measurement setting we introduce in this work is important.
Indeed, recent work has shown that MIA evaluation on foundation models suffers from a similar lack
of non-member data (since all in distribution data is included in the model) Das et al. (2024); Duan
et al. (2024); Meeus et al. (2024). The theory we develop in this paper provides a meaningful step
towards addressing privacy measurements in this setting, and provides a more rigorous approach to
privacy benchmarks for such models. We also demonstrate that PANORAMIA’s privacy measurements
can also be empirically valuable for instance for providing improved measurements with more data
(Figure 6).
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A Notations

Table 4 summarizes the main notations used in the paper.

Notation Description
f the target model to be audited.
G the generative model
D distribution over auditor samples
Df (subset of the) training set of the target model f from D
DG training set of the generative model G, with DG ⊂ Df

Din member auditing set, with Din ⊂ Df and Din ∩DG = {}
Dout non-member auditing set, with Dout ∼ G
D
{tr,te}
{in,out} training and testing splits of Din and Dout

m |Din| = |Dout| ≜ m
b baseline classifier for Din vs. Dout

Table 4: Summary of notations

B Proofs

For both Proposition 1 and Proposition 2, we state the proposition again for convenience before
proving it.

B.1 Proof of Proposition 1

Proposition 1. Let G be c-close, and T b ≜ B(S,X) be the guess from the baseline. Then, for all
v ∈ R and all t in the support of T :

PS,X,T b

[ m∑
i=1

T b
i · Si ≥ v | T b = tb

]
≤ P

S′∼Bernoulli( ec

1+ec )
m

[ m∑
i=1

tbi · S′i ≥ v
]
≜ βb(m, c, v, tb)

Proof. Notice that under our baseline model B(s, x) = {b(x1), b(x2), . . . , b(xm)}, and given that
the Xi are i.i.d., we have that: S<i ⊥⊥ T b

<i | X<i, since T b
i = B(S,X)i’s distribution is entirely

determined by Xi; and S≤i ⊥⊥ T b
>i | X<i since the Xi are sampled independently from the past.

We study the distribution of S given a fixed prediction vector tb, one element i ∈ [m] at a time:

P
[
Si = 1 | T b = tb, S<i = s<i, X≤i = x≤i

]
= P

[
Si = 1 | S<i = s<i, X≤i = x≤i

]
= P

[
Xi | Si = 1, S<i = s<i, X<i = x<i

]P[Si = 1 | S<i = s<i, X<i = x<i

]
P
[
Xi | S<i = s<i, X<i = x<i

]
=

P
[
Xi | Si = 1, S<i = s<i, X<i = x<i

]
P
[
Si = 1

]
P
[
Xi | S<i = s<i, X<i = x<i

]
=

P
[
Xi | Si = 1

]
1
2

P
[
Xi | Si = 1

]
1
2 + P

[
Xi | Si = 0

]
1
2

=
1

1 +
P
[
Xi | Si=0

]
P
[
Xi | Si=1

] =
1

1 +
PG

[
Xi

]
PD

[
Xi

] ≤
1

1 + e−c
=

ec

1 + ec

The first equality uses the independence remarks at the beginning of the proof, the second relies
Bayes’ rule, while the third and fourth that Si is sampled i.i.d from a Bernoulli with probability half,
and Xi i.i.d. conditioned on Si. The last inequality uses Definition 3 for c-closeness.
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Using this result and the law of total probability to introduce conditioning on X≤i, we get that:

P
[
Si = 1 | T b = tb, S<i = s<i

]
=

∑
x≤i

P
[
Si = 1 | T b = tb, S<i = s<i, X≤i = x≤i

]
P
[
X≤i = x≤i | T b = tb, S<i = s<i

]
≤

∑
x≤i

ec

1 + ec
P
[
X≤i = x≤i | T b = tb, S<i = s<i

]
,

and hence that:
P
[
Si = 1 | T b = tb, S<i = s<i

]
≤ ec

1 + ec
(3)

We can now proceed by induction: assume inductively that Wm−1 ≜
∑m−1

i=1 T b
i · Si is stochastically

dominated (see Definition 4.8 in Steinke et al. (2023)) by W ′m−1 ≜
∑m−1

i=1 T b
i · S′i, in which S′ ∼

Bernoulli( ec

1+ec )
m−1. Setting W1 = W ′1 = 0 makes it true for m = 1. Then, conditioned on Wm−1

and using Eq. 3, T b
m · Sm = Tm · 1{Sm = 1} is stochastically dominated by T b

m · Bernoulli( ec

1+ec ).
Applying Lemma 4.9 from Steinke et al. (2023) shows that Wm is stochastically dominated by W ′m,
which proves the induction and implies the proposition’s statement.

B.2 Proof of Proposition 2

Proposition 2. Let G be c-close, f be ϵ-DP, and T a ≜ A(S,X, f) be the guess from the membership
audit. Then, for all v ∈ R and all t in the support of T :

PS,X,Ta

[ m∑
i=1

T a
i · Si ≥ v | T a = ta

]
≤ P

S′∼Bernoulli( ec+ϵ

1+ec+ϵ )
m

[ m∑
i=1

tai · S′i ≥ v
]
≜ βa(m, c, ϵ, v, ta)

Proof. Fix some ta ∈ Rm
+ . We study the distribution of S one element i ∈ [m] at a time:

P
[
Si = 1 | T a = ta, S<i = s<i, X≤i = x≤i

]
= P

[
T a = ta | Si = 1, S<i = s<i, X≤i = x≤i

] P
[
Si = 1 | S<i = s<i, X≤i = x≤i

]
P
[
T a = ta | S<i = s<i, X≤i = x≤i

]
≤ 1

1 + e−ϵ
P
[
Si=0 | S<i=s<i,X≤i=x≤i

]
P
[
Si=1 | S<i=s<i,X≤i=x≤i

]
≤ 1

1 + e−ϵe−c
=

ec+ϵ

1 + ec+ϵ

The first equality uses Bayes’ rule. The first inequality uses the decomposition:

P
[
T a = ta | S<i = s<i, X≤i = x≤i

]
= P

[
T a = ta | Si = 1, S<i = s<i, X≤i = x≤i

]
· P

[
Si = 1 | S<i = s<i, X≤i = x≤i

]
+ P

[
T a = ta | Si = 0, S<i = s<i, X≤i = x≤i

]
· P

[
Si = 0 | S<i = s<i, X≤i = x≤i

]
,

and the fact that A(s, x, f) is ϵ-DP w.r.t. s and hence that:

P
[
T a = ta | Si = 0, S<i = s<i, X≤i = x≤i

]
P
[
T a = ta | Si = 1, S<i = s<i, X≤i = x≤i

] ≥ e−ϵ. (4)

This inequality might seem surprising at first, as we know from the privacy game (Definition 2) that S
is independent of f , that is S ⊥⊥ f . However, these two quantities are not conditionally independent
when conditioning on X (where X is the test set for the MIA/baseline), (i.e., S ̸⊥⊥ f |X). This is
because Xi is either a member or non-member based on Si. So when Si = 1, then f was trained on
Xi, which makes f and Si dependent if membership can be detected through f . If f is ϵ-DP, we can
bound this dependency using DP properties, which is what we do in Equation (4).
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The second inequality uses that:

P
[
Si = 0 | S<i = s<i, X≤i = x≤i

]
P
[
Si = 1 | S<i = s<i, X≤i = x≤i

]
=

P
[
Xi = xi | Si = 0, S<i = s<i, X<i = x<i

]
P
[
Xi = xi | Si = 1, S<i = s<i, X<i = x<i

] · P[Si = 0 | S<i = s<i, X<i = x<i

]
P
[
Si = 1 | S<i = s<i, X<i = x<i

]
=

P
[
Xi = xi | Si = 0, S<i = s<i, X<i = x<i

]
P
[
Xi = xi | Si = 1, S<i = s<i, X<i = x<i

] · 1/2
1/2

=
PG

[
Xi

]
PD

[
Xi

] ≥ e−c

As in Proposition 1, applying the law of total probability to introduce conditioning on X≤i yields:

P
[
Si = 1 | T a = ta, S<i = s<i

]
≤ ec+ϵ

1 + ec+ϵ
, (5)

and we can proceed by induction. Assume inductively that Wm−1 ≜
∑m−1

i=1 T a
i · Si is stochastically

dominated (see Definition 4.8 in Steinke et al. (2023)) by W ′m−1 ≜
∑m−1

i=1 T a
i · S′i, in which S′ ∼

Bernoulli( ec+ϵ

1+ec+ϵ )
m−1. Setting W1 = W ′1 = 0 makes it true for m = 1. Then, conditioned on Wm−1

and using Eq. 5, T a
m ·Sm = T a

m ·1{Sm = 1} is stochastically dominated by T a
m ·Bernoulli( ec+ϵ

1+ec+ϵ ).
Applying Lemma 4.9 from Steinke et al. (2023) shows that Wm is stochastically dominated by W ′m,
which proves the induction and implies the proposition’s statement.

C Experimental Details

Hereafter, we provide the details about the datasets and models trained in our experiments.

C.1 Image data

Target models. We audit target models with the following architectures: a Multi-Label Convolutional
Neural Network (CNN) with four layers O’Shea & Nash (2015), and the ResNet101 He et al. (2015)
as well as a Wide ResNet-28-10 Zagoruyko & Komodakis (2017b), and a Vision Transformer
(ViT)-small Dosovitskiy et al. (2021). We also include in our analysis, differentially-private models
for ResNet18 He et al. (2015) and WideResNet-16-4 Zagoruyko & Komodakis (2017a) models as
targets, with ϵ = 1, 2, 4, 6, 10, 15, 20. The ResNet-based models are trained on CIFAR10 using 50k
images Krizhevsky (2009) of 32x32 resolution. For ResNet101 CIFAR10-based classification models,
we use a training batch size of 32; for WideResNet-28-10, we use batch size 128. The details for
training DP models are given in D.9. The associated test accuracies and epochs are mentioned in
Table 1. The Multi-Label CNN is trained on 200k images of CelebA Liu et al. (2015) of 128x128
resolution, training batch-size 32, to predict 40 attributes associated with each image.

Generator. For both image datasets, we use StyleGAN2 Karras et al. (2020) to train the generative
model G from scratch on DG, and produce non-member images. For CIFAR10 dataset, we use
a 10, 000 out of 50, 000 images from the training data of the target model to train the generative
model. For the CelebA dataset, we select 35, 000 out of 200, 000 images from the training data of
the target model to train the generative model. Generated images will in turn serve as non-members
for performing the MIAs. Figure 7 shows examples of member and non-member images used in
our experiments. In the case of CelebA, we also introduce a vanilla CNN as a classifier or filter to
distinguish between fake and real images, and remove any poor-quality images that the classifier
detects with high confidence. The data used to train this classifier was the same data used to train
StyleGAN2, which ensures that the generated high-resolution images are of high quality.

MIA and Baseline training. For the MIA, we follow a loss-based attack approach: PANORAMIA
takes as input raw member and non-member data points for training along with the loss values the
target model f attributes to these data points. More precisely, the training set of PANORAMIA is:

(Dtr
in, f(D

tr
in)) ∪ (Dtr

out, f(D
tr
out))
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In §4.2, we discussed the importance of having a tight clb so that our measure, ϵ̃, becomes close to a
lower-bound on ϵ-DP, which requires a strong baseline. To strengthen our baseline, we introduce the
helper model h, which helps the baseline model b by supplying additional features (i.e., embeddings)
that can be viewed as side information about the data distribution. The motivation is that h’s features
might differ between samples from D and D′, enhancing the performance of the baseline classifier.
This embedding model h is similar in design to f (same task and architecture) but is trained on
synthetic data that is close in distribution to the real member data distribution.

The helper model has the same classification task and architecture as the target model. To train it,
we generate separate sets of training and validation data using our generator. For image data, the
synthetic samples do not have a label. We thus train a labeler model, also a classifier with the same
task, on the same dataset used to train the generator. We use the labeler model to provide labels for
our synthetic samples (training and validation sets above). We train the helper model on the resulting
training set, and select hyperparameters on the validation set.

Whether for the baseline or MIA, we use side information models (h and f , respectively) by
concatenating the loss of h(x) and f(x) to the final feature representation (more details are provided
later) before a last layer of the MIA/Baseline makes the membership the prediction. Since we
need labels to compute the loss, we label synthetic images with a Wide ResNet-28-2 in the case of
CIFAR10, and a Multi-Label CNN of similar architecture as the target model in the case of CelebA
labeling. For both instances, we used a subset of the data, that was used to train the respective
generative models, to train the “labeler” classifiers as well. The labeler used to train the helper model
for image data has 80.4% test accuracy on the CIFAR10 real data test set. The rationale for this
approach is to augment the baseline with a model providing good features (here for generated data)
to balance the good features provided to the MIA by f outside of the membership information. In
practice, the labeled generated data seems enough to provide such good features, despite the fact
that the labeler is not extremely accurate. We studied alternative designs (e.g., a model trained on
non-member data, no helper model) in Appendix D.1, Table 5, and the helper model trained on the
synthetic data task performs best (while not requiring non-member data, which is a key point).

We use two different modules for each MIA and Baseline training. More precisely, the first module
optimizes image classification using a built-in Pytorch ResNet101 classifier. The second module, in
the form of a multi-layer perceptron, focuses on classifying member and non-member labels via loss
values attributed to these data points by f as input for the loss module of MIA and losses of e to
the baseline b respectively. We then stack the scores of both image and loss modules into a logistic
regression task (as a form of meta-learning) to get the final outputs for member and non-member data
points by MIA and baseline b. When training the baseline and MIA models, we use a validation set
to select hyper-parameters and training stopping time that maximize the lower bounds (effectively
maximizing the clb or ϵ̃lb for the Baseline and MIA respectively) on the validation set. The MIA and
baseline are trained on 4500 data samples (half members and half generated non-members). The test
dataset consists of 10000 samples, again half members and half generated non-members. The actual
and final number of members and non-members that ended up in the test set depends on the Bernoulli
samples in our auditing game. We repeat the training process over 5 times, each time independently
resampling the training dataset for the MIA and baseline (keeping the train dataset size fixed). We
report all our results over a 95% confidence interval and report the standard deviation for our results
in Table 3. The compute resources used for MIA and Baseline training were mainly running all
experiments on cloud-hosted VMs, using 1 v100l GPU, 4 nodes per task, and 32G memory requested
for each job on the cloud cluster. The time to run the MIA and baseline attack pipeline was around 10
hours including hyperparameter tuning on ϵlb and clb respectively.

C.2 Language Modeling

Target model. The target model (a small GPT-2 Radford et al. (2019)) task is causal language
modeling (CLM), a self-supervised task in which the model predicts the next word in a given
sequence of words (i.e., context), which is done on a subset of WikiText-103 dataset Merity et al.
(2016), a collection of Wikipedia articles. While the GPT-2 training dataset is undisclosed, Radford
et al. (2019) do state that they did not include any Wikipedia document.

One common standard pre-processing in CLM is to break the tokenized training dataset into chunks
of equal sizes to avoid padding of the sequences. To achieve this, the entire training dataset is split
into token sequences of fixed length, specifically 64 tokens per sequence, refer hereafter as “chunks”.
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(a) Real (b) Synthetic (c) Real (d) Synthetic

Figure 7: Member and Non-Member datasets used in our experiments for CelebA at 128 x 128 resolution (7(a),
7(b)) and CIFAR10 (7(c), 7(d)) image data at 32 x 32 resolution.

Each of these chunks serves as an individual sample within our training dataset. Therefore, in the
experiments, the membership inference will be performed for a chunk. In other words, we adopt
an example-level differential privacy (DP) viewpoint, where an example is considered a sequence
of tokens that constitute a row in a batch of samples. This chunk-based strategy offers additional
benefits in synthetic sample generation. By maintaining uniformity in the length of these synthetic
samples, which also consists of 64 tokens, it is possible to effectively mitigate any distinguishability
between synthetic and real samples based solely on their length. We also consider the possibility of
weak correlations between chunks (e.g., being from the same article). To mitigate this, we perform a
form of stratified sampling as a pre-processing step. From each document, we include only the first
50 chunks and discard the rest. We select 2,113 documents in total, resulting in 105,650 chunks in
our dataset.

We split the dataset into train and test with a 90:10 ratio for the target model (We insist on following
the typical training pipelines in machine learning, since we plan to conduct post-hoc audits with
PANORAMIA). The test dataset provides real non-member samples, allowing comparison to the O(1)
auditor and another version of our approach which uses real non-member data. The training dataset
(Df ) contains 95,085 samples, while the test dataset consists of 10,565 samples.

We train the target model for 200 epochs in total. Figure 8 displays how the training and validation
cross-entropy loss changes throughout the training, when we audit models from epochs 37 (best
generalization), 75, and 150. To check how well the target model generalizes, we look at the cross-
entropy loss (on a validation set), which is the only metric in a causal language model task to report
(or the perplexity Radford et al. (2019) which conveys the same information).

0 25 50 75 100 125 150 175 200
Epoch

0

1

2

3

4

Lo
ss

Train Loss
Validation Loss

Figure 8: Target model (GPT-2) loss during overtraining on WikiText dataset. We pick GPT-2_E37, GPT-2_E75,
GPT-2_E150 as target models to audit corresponding to the gray dashed lines.

The compute resources used for training the target models are 4 V100-32gb GPUs, running on
cloud-hosted VMs. Using this setup, fine-tuning the target model for 200 epochs required about 13
hours.

Generator. The G is a GPT-2 fine-tuned using a CLM task on dataset DG, a subset of Df . To create
synthetic samples with G, we use top-k sampling Holtzman et al. (2019) method in an auto-regressive
manner while keeping the generated sequence length fixed at 64 tokens. To make G generate samples
less like the real members it learned from (and hopefully, more like real non-members), we introduce
more randomness in the generation process in the following manner. We choose a top_k value of
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200, controlling the number of available tokens for sampling. In addition, we balance the value of
top_k, making it not too small to avoid repetitive generated texts but also not too large to maintain
the quality. Finally, we fix the temperature parameter that controls the randomness in the softmax
function at one. Indeed, a larger value increases the entropy of the distribution over tokens resulting
in a more diverse generated text.

However, the quality of synthetic text depends on the prompts used. To mitigate this issue, we split the
DG dataset into two parts: Dtrain

G and Dprompt
G . G is fine-tuned on Dtrain

G , while Dprompt
G is used

for generating prompts. Numerically, the size of the Dtrain
G is 35% of the Df and the size of Dprompt

G

is 15% of Df . During generation, we sample from Dprompt
G , which is a sequence of length 64. We

feed the prompt into the generator and request the generator to generate a suffix of equivalent length.
In our experiments, for each prompt, we make 8 synthetic samples, supplying a sufficient number of
synthetic non-member samples for different parts of the pipeline of PANORAMIA, including training
the helper model, and constructing Dtr

out, D
te
out. Overall, we generate 92276 synthetic samples out of

which we use 53502 of them for training the helper model and keep the rest for audit purposes. Note
that this generation approach does not inherently favor our audit scheme, and shows how PANORAMIA
can leverage existing, public generative models with fine tuning to access high-quality generators at
reasonable training cost.

We also perform a sanity check on the quality of the generated data. We visualize the loss distribution
of in-distribution members, in-distribution non-members, and synthetic data under both the target and
helper models, aiming for synthetic data that behaves similarly to in-distribution non-member data.
Figure 14 visualizes these distributions for our target and helper models.

The compute resources used for fine-tuning the generator model, and synthetic text generation are
4 V100-32gb GPUs, running on cloud-hosted VMs. Using this setup, fine-tuning the GPT2-small
model took approximately 1.5 hours, and generating the synthetic samples required about 1 hour.

Baseline & MIA. For both the baseline and PANORAMIA classifiers, we employ a GPT-2 based
sequence classification model. In this setup, GPT-2 extracts features (i.e., hidden vectors) directly
from the samples. We concatenate a vector of features extracted using the helper h (for the baseline)
or target model f (for the MIA) to this representation. This vector of features is the loss sequence
produced in a CLM task for the respective model. These two sets of extracted features are then
concatenated before being processed through a feed-forward layer to generate the logit values required
for binary classification (distinguishing between members and non-members).

In the main results in Table 3, for both the baseline and PANORAMIA classifiers, the training and
validation sets consist of 20000 and 2000 samples, respectively, with equal member non-member
distribution. The test set consists of 10000 samples, in which the actual number of members and
non-members that ended up in the test set depends on the Bernoulli samples in the auditing game.
The helper model is fine-tuned for 60 epochs on synthetic samples and we pick the model that has the
lowest validation loss throughout training, generalizing well.

As the GPT-2 component of the classifiers can effectively minimize training loss without achieving
strong generalization, regularization is applied to the classifier using weight decay. Additionally,
the optimization process is broken into two phases. In the first phase, we exclusively update the
parameters associated with the target (in PANORAMIA) or helper model (in the baseline) to ensure that
this classifier has the opportunity to focus on these specific features. In the second phase, we optimize
the entire model as usual. We train both the baseline and Membership Inference Attack (MIA) models
with 5 different seeds. The randomness is over: 1. The data split into train/validation/test sets for both
the baseline and MIA classifiers. Each classifier is retrained for every seed. 2. The coin flips in our
auditing game (see Definition 2). For a fixed seed mentioned above, we employ an additional set of 5
seeds to account for the randomness in the training algorithm (such as initialization of the model, and
batch sampling). We then train a classifier for each of these seeds. From the 5 models generated for
each latter seed, we select the one with the largest clb value (for the baseline) or {c+ϵ}lb (for MIA),
determined over the validation set. We calculate the 95% confidence interval of our measurements
using the t-score.

The compute resources used for MIA and Baseline training were 1 GPU with 32gb memory, running
on cloud-hosted VMs. The compute time depends on the training set size, for the largest training size,
it took about 3 hours to train the baseline or MIA.
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The compute resources used for fine-tuning the helper model are 4 V100-32gb GPUs, running on
cloud-hosted VMs. Using this setup, it took about 4 hours to fine-tune the helper model.

C.3 Tabular data

Target f and the helper model h. The Target f and the helper h model are both Multi-Layer
Perceptron with four hidden layers containing 150, 100, 50, and 10 neurons respectively. Both models
are trained using a learning rate of 0.0005 over 100 training epochs. In the generalized case and to
obtain the embedding, we retain the model’s parameters that yield the lowest loss on a validation set,
which typically occurs at epoch 10 (MLPE_10). For the overfitted scenario, we keep the model’s
state after the 100 training epochs (MLP_E100). The non overfitted model and the overfitted one
achieved an accuracy of 86% and 82% respectively.

Generator. We use the MST method McKenna et al. (2021) which is a differentialy-private method
to generate synthetic data. However, as we do not need Differential Privacy for data generation we
simply set the value for ε to 1000. Synthetic data generators can sometimes produce bad-quality
samples. Those out-of-distribution samples can affect our audit process (the detection between real
and synthetic data being due to bad quality samples rather than privacy leakage). To circumvent
this issue, we train an additional classifier to distinguish between real data from DG and additional
synthetic data (not used in the audit). We use this classifier to remove from the audit data synthetic
data synthetic samples predicted as synthetic with high confidence.

Baseline and MIA. To distinguish between real and synthetic data, we use the Gradient Boosting
model and conduct a grid search to find the best hyperparameters.

C.4 Comparison with Privacy Auditing with One (1) Training Run: Experimental Details

We implement the black-box auditor version of O(1) approach Steinke et al. (2023). This method
assigns a membership score to a sample based on its loss value under the target model. They also
subtract the sample’s loss under the initial state (or generally, a randomly initialized model) of the
target model, helping to distinguish members from non-members even more. In our instantiation
of the O(1) approach, we only consider the loss of samples on the final state of the target model.
Moreover, in their audit, they choose not to guess the membership of every sample. This abstention
has an advantage over making wrong predictions as it does not increase their baseline. Roughly
speaking, their baseline is the total number of correct guesses achieved by employing a randomized
response (ϵ, 0) mechanism, for those samples that O(1) auditor opts to predict. We incorporate this
abstention approach in our implementation by using two thresholds, t+ and t−. More precisely,
samples with scores below t+ are predicted as members, those above t− as non-members, and the
rest are abstained from prediction. We check for different combinations of t+ and t− and report
the highest ϵ among them. This involves performing multiple tests on the same evidence, each with
a separate confidence level of 95%. To ensure that these tests hold collectively, we apply a union
bound and adjust the significance level accordingly. The total number of separate tests depends on
the different number of guesses that O(1) can make. We also set δ to 0 and use a confidence interval
of 0.05 in their test. In PANORAMIA, for each hypothesis test (whether for clb or {c+ϵ}lb), we stick to
a 0.025 confidence interval for each one, adding up to an overall confidence level of 0.05.

D Results: Additional Experiments and Detailed Discussion

D.1 Baseline Strength Evaluation on Text and Tabular datasets

The basis of our privacy measurement directly depends on how well our baseline classifier distin-
guishes between real member data samples and synthetic non-member data samples generated by
our generative model. As mentioned in Section 5.1 and Appendix C.1, in order to increase the
performance of our baseline b, we mimic the role of the target model f ’s loss in the MIA using a
helper model h, which adds a loss-based feature to b. To assess the strength of the baseline classifier,
we train the baseline’s helper model h on two datasets, synthetic data, and real non-members. We
also train a baseline without any helper model. This enables us to identify which setup allows the
baseline classifier to distinguish the member and non-member data the best in terms of the highest clb
value (clb is reported for each case in table 5). For initial analysis, we keep a sub-set of real data as
non-members to train a helper model with them, for conducting this ablation study on the baseline.
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Baseline model clb
CIFAR-10 BaselineDtr

h = gen, WRN 2.44± 0.19
CIFAR-10 BaselineDtr

h = real, WRN 2.21± 0.17
CIFAR-10 BaselineDtr

h = real, resnet101 2.01± 0.15
CIFAR-10 BaselineDtr

h = imgnet 1.12± 0.19
CIFAR-10 Baselineno helper 1.25± 0.24
WikiText BaselineDtr

h = gen 3.31± 0.15
WikiText BaselineDtr

h = real 3.26± 0.14
WikiText Baselineno helper 3.11± 0.15

Table 5: Baseline evaluation with different helper model scenarios, where WRN is Wide-ResNet-28-2 helper
model architecture (in the case of CIFAR10 baseline).

Our experiments confirm that the baseline with loss values from a helper model trained on synthetic
data performs better compared to a helper model trained on real non-member data. This confirms the
strength of our framework in terms of not having a dependency of using real non-members. Therefore,
we choose this setting for our baseline helper model. In addition, we also experiment with different
helper model architectures in the case of CIFAR10, looking for the best baseline performance among
them. For the WikiText dataset, the clb reported in Table 5 differs from that in Table 3 because we
had less data available for this experiment. We withheld half of the real samples to train the helper
model with real samples in its training set.

For each data modality setting, we also train the baseline classifier on an increasing dataset size of
real member and synthetic non-member data points to gauge the trend of the baseline performance as
the training dataset size increases (see Figure 2 and Figure 9). This experiment allows us to aim for a
worst-case empirical lower bound on how close the generated non-member data is to the real member
data distribution, i.e. what would be the largest clb we can reach as we increase the training set size.
Subsequently, we can compare the clb reported in table 3 (corresponding to the vertical dashed lines
in Figure 2 and Figure 9) to the largest clb we can achieve in this experiment. In the following, we
explain why we chose that number of training samples for our baseline in the main results.

On the WikiText dataset, we increase the baseline’s training set size up to 50k, while fixing the
validation and test sets sizes to 2000 and 10000, respectively). Figure 9 shows the changes of clb
while varying the training set size. The vertical dashed line specified the number of training samples
we chose for our main auditing results reported in Table 3.

Now, let us discuss why we don’t choose the largest training set size available for the baseline. The
measurement for clb depends not only on the training set size but also on the test set size. Therefore,
we need to balance the sizes of the train and test sets. We conducted another experiment where we
varied the train set size and, instead of fixing the test set size, allocated the remaining available data
to the test set (keeping in mind that our data for the audit is limited by the number of real members
allocated for audit purposes).Figure 9(b) depicts the trend of changes. As expected, we observed an
initial increase in clb as the training set size increased (and the number of test data is sufficient to
capture that). However, it decreased toward the end because of the smaller test set size. For a train set
size of 40k, we found the best trade-off between train and test set sizes, which justifies our choice of
40k for the training set size in the main results. The same argument applies for other data modalities.

Let us make one last point. It is also important to note that the MIA is expected to show similar behav-
ior if we use a larger train set size or test set size. Hence, the gap between the performance of MIA
and baseline (which is our privacy measurement) is not expected to be affected (see Appendix D.4).

The experiments are repeated five times, and we provide a 95% confidence interval. For the image
data modality, the randomness lies in the training data provided to the classifiers, while the test set
remains fixed throughout. For the text data modality, both the train and test sets change across the
five runs (the test set size is fixed to 10k).

D.2 Further Analysis on General Privacy Measurement Results

The value of ϵ̃ for each target model is the gap between its corresponding dashed line and the baseline
one in Figure 4. This allows us to compute values of ϵ̃ reported in Table 3. It is also interesting to note
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Figure 9: Baseline Strength Evaluation on WikiText dataset as the train set size increases. In Figure 9(a), the test
set size is fixed, while in Figure 9(b) it varies as well. See Appendix D.1 for more details.
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Figure 10: Comparison of the number of true positives and predictions on different datasets

that the maximum value of {c+ϵ}lb typically occurs at low recall. Even if we do not use the same
metric (precision-recall as opposed to TPR at low FPR) this is coherent with the findings from Carlini
et al. (2022b). We can detect more privacy leakage (higher {c+ϵ}lb which leads to higher ϵ̃) when
making a few confident guesses about membership rather than trying to maximize the number of
members found (i.e., recall). Figure 10, decomposes the precision in terms of the number of true
positives and the number of predictions for a direct mapping to the propositions 1 and 2. These are
non-negligible values of privacy leakage, even though the true value is likely much higher.

D.3 PANORAMIA performance with increasing Test and Train Size m

PANORAMIA: Increasing Test Set Size: We compare PANORAMIA with the O(1) audit (Steinke et al.,
2023) (in input space, without canaries), which uses a loss threshold MIA. As shown in Figure 6(b)
and Figure 6(c) in the CIFAR10 image dataset case, both for non-private and Differentially Private
(DP) models, PANORAMIA can leverage much more data for its measurement (up to the whole training
set size for training and testing the MIA), while in our setting O(1) is limited by the size of the test
set (for non-members). We vary test size from m = 500, up to 35k. The experiment is repeated 10
times with resampling of the test set each time to produce the average. Unless otherwise stated, all
results are produced at a 95% confidence.

22

57283https://doi.org/10.52202/079017-1825



D.4 PANORAMIA with Increasing Train Dataset Size

We also conduct experiments to show the effect of increasing training dataset size on the performance
of PANORAMIA (as well as the baseline). In the CIFAR10 image dataset case, Figure 11, we see
PANORAMIA performance slowly increase as the train dataset size increases. It reaches its max
performance at dataset sizes 4500− 5000, 10k, 20k− 30k and slowly begins to stabilize at the higher
dataset sizes. We vary train size from m = 500, up to 30k. The experiment is repeated 5 times with
resampling of the train set each time to produce the average. Unless otherwise stated, all results are
produced at a 95% confidence.
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Figure 11: Effect on PANORAMIA and baseline with increasing train set size for CIFAR10, ResNet101 target
model (trained for 100 epochs) (with union bound correction).

D.5 PANORAMIA in cases of no privacy leakage

As illustrated in Figure 4(c) and Table 3, there exist instances in which the clb is as large as {c+ϵ}lb.
For instance, for GPT-2_E37, the upper bound in the confidence interval measured for clb is larger
than the lower bound of the measurement for {c+ϵ}lb. Although the measured ϵ̃ is positive on
average, but the lower bound of the interval is negative. For such cases, we don’t claim any detection
of privacy leakage. This implies that, under certain conditions, the baseline could outperform the
MIA in PANORAMIA. We can see three possible reasons for this behavior. (1) The synthetic data
might not be of high enough quality. If there is an evident distinction between real and synthetic
samples, the baseline cannot be fooled reducing the power of our audit. (2) The MIA in PANORAMIA
is not powerful enough. (3) The target model’s privacy leakage is indeed low. For GPT-2_E150 and
GPT-2_E75 in Figure 4(c), we can claim that given the target model’s leakage level, the synthetic
data and the MIA can perform the audit to a non-negligible power. For GPT-2_37, we need to
examine the possible reasons more closely. Focusing on generated data, in the ideal case we would
like the synthetic data to behave just like real non-member data on Figure 14(a). If this was the
case, {c+ϵ}lb would go up (since the MIA uses this loss to separate members and non-members).
Nonetheless, predicting changes in clb remains challenging, as analogous loss distributions do not
guarantee indistinguishability between data points themselves (also, we cannot necessarily predict
how the loss distribution changes under the helper model h in Figure 14(d)). Hence, reason (1)
which corresponds to low generative data quality, seems to be a factor in the under-performance of
PANORAMIA. Moreover, in the case GPT-2_37, we observe that real members and non-members have
very similar loss distributions. Hence, factor (2) also seems to be at play, and a stronger MIA that
does not rely exclusively on the plot may increase auditing power. Finally, the helper model h seems
to have a more distinct loss distribution when compared to GPT-2_37 (see Figure 14(d)).

D.6 PANORAMIA with Tabular data

As we can see in Table 6, our proposed method PANORAMIA cannot detect any meaningful privacy
leakage in the case of a small MLP classifier trained on tabular data.
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PANORAMIA ε̃ O(1) ε
MLP_E10 0 ± 0.142 0.655 ± 0.014
MLP_E100 0.062 ± 0.156 0.648 ± 0.015

Table 6: Privacy measurement with PANORAMIA and O(1) for models trained on tabular Adult dataset.

As shown in Figure 12(b) there is no significant difference between the values(c+ ε)lb clb returned
by PANORAMIA. As a result we get ε̃ = 0

(a) precision vs recall, for tabular one instance of the
tabular data classification audit.

(b) Average {c+ ϵ}lb (or clb) vs recall with 95% con-
fidence, for tabular data classification. Randomness
comes from resampling of the MIA’s train and test
set as well as retraining the MIA

Figure 12: PANORAMIA on tabular Adult dataset, MLP target model.

The high precision at low recall in the baseline as can be seen in Figure 12(a) illustrates the fact
that some real data can easily be distinguished from the synthetic ones. Instead of poor quality
synthetic data , we are dealing with real observation that are actually “looking to real”. Investigating
those observations reveals that they have extreme or rare values in one of their features. Indeed,
the Adult dataset contains some extreme values (e.g., in the capital_gain column), such extreme
values are rarely reproduced by the generative model. This leads to the baseline accurately predicting
such observations as real with high confidence that translates into a high clb. Moreover, the audit
values maximum values (c + ε)lb and clb being achieved for a relatively small number of guesses
corresponding to extreme values, the audits results vary a lot depending on the sampling or not of
such extreme values in the audit test set. We believe this is part of the reason why we observe an high
variance in the audit results leading to no significant privacy leakage detected by PANORAMIA.

This is a potential drawback of our auditing scheme, while the presence of extreme or rare values in
the dataset usually allows for good auditing results it can have a negative impact on PANORAMIA’s
success.

D.7 Privacy Auditing of Overfitted ML Models

Methodology. Varying the number of training epochs for the target model to induce overfitting
is known to be a factor in privacy loss Yeom et al. (2018); Carlini et al. (2022a). As discussed in
Section 5.2, since these different variants of target models share the same dataset and task, PANORAMIA
can compare them in terms of privacy leaking.

To verify if PANORAMIA will indeed attribute a higher value of ϵ̃ to more overfitted models, we train
our target models for varying numbers of training epochs. The final train and test accuracies are
reported in Table 1. For GPT-2 (as a target model), we report the train and validation loss as a
measure of overfitting in Figure 8. Figures 13 and 14 show how the gap between member data
points (i.e., data used to train the target models) and non-member data points (both real as well as
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generated non-members) increases as the degree of overfitting increases, in terms of loss distributions.
We study the distribution of losses since these are the features extracted from the target model f
or helper model h, to pass respectively to PANORAMIA and the baseline classifier. The fact that the
loss distributions of member data become more separable from non-member data for more overfitted
models is a sign that the corresponding target model could leak more information about its training
data. We thus run PANORAMIA on each model, hereafter presenting the results obtained.
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(a) CelebA Multi-Label CNN_E30.
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(b) CelebA Multi-Label CNN_E100; an overfit model.

Figure 13: CelebA Multi-Label CNN Loss Comparisons for a generalized vs overfitted model.

Results. In Figure 3, we observe that more training epochs (i.e., more overfitting) lead to better
precision-recall trade-offs and higher maximum precision values. Our results are further confirmed
by Figure 10 with PANORAMIA being able to capture the number of member data points (positive
predictions) better than the baseline b.

In Table 3, we further demonstrate that our audit output ϵ̃ orders the target models in terms of
privacy leakage: higher the degree of overfitting, more memorization and hence a higher ϵ̃ returned by
PANORAMIA. From our experiments, we consistently found that as the number of epochs increased, the
value of ϵ̃ also increased. For instance, in the WikiText dataset, since we observe {c+ϵ}GPT-2_E150

lb >

{c+ϵ}GPT-2_E75
lb > {c+ϵ}GPT-2_E37

lb , we would have {c+ϵ}GPT-2_E150
lb − clb > {c+ϵ}GPT-2_E75

lb − clb >

{c+ϵ}GPT-2_E37
lb −clb, which leads to ϵ̃GPT-2_E150 > ϵ̃GPT-2_E75 > ϵ̃GPT-2_E37. Our experiment is coherent

with the intuition that more training epochs lead to more over-fitting, leading to more privacy leakage
measured with a higher value of ϵ̃.

Figure 15: CIFAR-10, {c + ϵ}lb when varying privacy leakage with increasing model parameters over one
experiment run.
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(c) GPT-2_E150
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Figure 14: Comparison of the loss distributions of real members, real non-members, and synthetic non-members
under three target models while varying the degree of over-training on the WikiText dataset. Figure 14(d)
compares the loss distributions under the helper model, the model providing side information to our baseline. We
train the helper with some other synthetic samples, which effectively mimic real non-members’ loss distributions
under the target models. However, they are distinguishable to some extent from real non-members under the
helper model, thus increasing our clb.

D.8 Models of varying complexity:

Carlini et al. (2021) have shown that larger models tend to have bigger privacy losses. To confirm this,
we also audit ML models with varying numbers of parameters, from a≈ 4M parameters Wide ResNet-
28-2, to a 25.5M parameters ResNet-50, and a 44.5M parameters ResNet-101. Figure 15 shows that
PANORAMIA does detect increasing privacy leakage, with ϵ̃wide−resnet ≤ ϵ̃resnet50 ≤ ϵ̃resnet101.

D.9 Privacy Auditing of Differentially-Private ML Models

Methodology.

For the image data modality, we evaluate the performance of PANORAMIA on differentially-private
ResNet-18 and Wide-ResNet-16-4 models on the CIFAR10 dataset under different target privacy
budgets (ϵ) with δ = 10−5 and the non-private (ϵ = ∞) cases. The models are trained using the
DP-SGD algorithm (Abadi et al., 2016) using Opacus (Yousefpour et al., 2021), which we tune for
the highest train accuracy on learning rate lr, number of epochs e, batch size bs and maximum ℓ2
clipping norm (C) for the largest final accuracy.

For the text data modality, we evaluate the performance of PANORAMIA on the differentially private
GPT-2-Small model, which has been fine-tuned on the WikiText dataset (the preprocessing steps
are identical to those in Appendix C.2). As with the image modality, we use various target privacy
budgets (ϵ) with δ = 10−5, as well as non-private settings (ϵ =∞). We train the models using the
DP-SGD algorithm Abadi et al. (2016), incorporating Ghost clipping Li et al. (2021) for calculating
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the per-example gradient. We minimize the validation loss by tuning hyperparameters such as
the learning rate (lr), number of epochs (e), batch size (bs), and clipping norm (C). The lowest
validation loss values obtained are 3.79, 3.7, and 3.65 for ϵ values of 1, 3, and 10, respectively. For
the non-private GPT-2-Small model, the lowest validation loss achieved is 3.341.

The noise multiplier σ is computed given ϵ, number of epochs and batch size. We use both PANORAMIA
and O(1) (Steinke et al., 2023) privacy loss measurements under the pure ϵ-DP analysis.

Results. For the image data modality, tables 7 and 8 summarizes the auditing results of PANORAMIA
on different DP models. For ResNet-18, we observe that at ϵ = 1, 2, 4, 6 (more private models)
PANORAMIA detects no privacy loss, whereas at higher values of ϵ = 10, 15, 20 (less private models)
and ϵ = ∞ (a non-private model) PANORAMIA detects an increasing level of privacy loss with
ϵ̃ϵ=10 < ϵ̃ϵ=15 < ϵ̃ϵ=20 < ϵ̃ϵ=∞, suggesting a higher value of ϵ correspond to higher ϵ̃. We observe
a similar pattern with Wide-ResNet-16-4, in which no privacy loss is detected at ϵ = 1, 2 and
higher privacy loss is detected at ϵ = 10, 15, 20,∞. We also compare the auditing performance of
PANORAMIA with that of O(1) (Steinke et al., 2023), with the conclusion drawn by these two methods
being comparable. For both ResNet-18 and Wide-ResNet-16-4, O(1) reports values close to 0 (almost
a random guess between members and non-members) for ϵ < 10 DP models, and higher values for
ϵ = 10, 15, 20,∞ DP models. The results suggest that PANORAMIA is potentially an effective auditing
tool for DP models that has comparable performance with O(1) and can generalize to different model
structures.

For the text data modality, Table 9 summarizes the auditing results of PANORAMIA on differentially
private (fine-tuned) Large Language Models. In all cases, neither PANORAMIA not O(1) Steinke et al.
(2023) do not detect any privacy loss.

Target model Audit clb ε+ clb ε̃ ε
ResNet18 ϵ =∞ PANORAMIA RM;GN 2.44 3.87 1.43 -

O (1) RM;RN - - - 1.471
ResNet18 ϵ = 20 PANORAMIA RM;GN 2.44 3.6331 1.19 -

O (1) RM;RN - - - 1.34
ResNet18 ϵ = 15 PANORAMIA RM;GN 2.44 3.57 1.13 -

O (1) RM;RN - - - 1.22
ResNet18 ϵ = 10 PANORAMIA RM;GN 2.44 2.70 0.26 -

O (1) RM;RN - - - 0.28
ResNet18 ϵ = 6 PANORAMIA RM;GN 2.44 2.478 0.038 -

O (1) RM;RN - - - 0.049
ResNet18 ϵ = 4 PANORAMIA RM;GN 2.44 1.99 0 -

O (1) RM;RN - - - 0
ResNet18 ϵ = 2 PANORAMIA RM;GN 2.44 1.709 0 -

O (1) RM;RN - - - 0.05
ResNet18 ϵ = 1 PANORAMIA RM;GN 2.44 1.412 0 -

O (1) RM;RN - - - 0

Table 7: Privacy audit of ResNet18 under different values of ϵ-Differential Privacy using PANORAMIA and
O(1) auditing frameworks, in which RM is for real member, RN for real non-member and GN for generated
(synthetic) non-members.

Target model Audit clb {ε+ c}lb ε̃ ε
WRN-16-4 ϵ =∞ PANORAMIA RM;GN 2.44 3.02 0.58 -

O (1) RM;RN - - - 0.6408
WRN-16-4 ϵ = 20 PANORAMIA RM;GN 2.44 2.926 0.486 -

O (1) RM;RN - - - 0.5961
WRN-16-4 ϵ = 15 PANORAMIA RM;GN 2.44 2.912 0.472 -

O (1) RM;RN - - - 0.5774
WRN-16-4 ϵ = 10 PANORAMIA RM;GN 2.44 2.783 0.343 -

O (1) RM;RN - - - 0.171
WRN-16-4 ϵ = 2 PANORAMIA RM;GN 2.44 2.36 0 -

O (1) RM;RN - - - 0
WRN-16-4 ϵ = 1 PANORAMIA RM;GN 2.44 1.84 0 -

O (1) RM;RN - - - 0

Table 8: Privacy audit of Wide ResNet16-4 under different values of ϵ-Differential Privacy (DP) using PANORAMIA
and O(1) auditing frameworks, where RM is for real member, RN for real non-member and GN for generated
(synthetic) non-members.
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Target model f Audit Generator G ϵ̃ ϵ
∞-DP GPT2-Small (GPT2_E37) PANORAMIA GPT2-Small 0.22± 0.37 -

O (1) RM;RN - - 2.82± 0.31
1-DP GPT2-Small PANORAMIA GPT-2-Small 0 -

O (1) RM;RN - - 0
3-DP GPT2-Small PANORAMIA GPT-2-Small 0 -

O (1) RM;RN - - 0
10-DP GPT2-Small PANORAMIA GPT-2-Small 0 -

O (1) RM;RN - - 0

Table 9: Privacy audits on GPT-2-Small target models with varying privacy guarantees.

Discussion. In the image data modality, we observe that the auditing outcome (ϵ̃ values for
PANORAMIA and ϵ for O(1)) can be different for DP models with the same ϵ values (Table 10).
We hypothesize that the auditing results may relate more to level of overfitting than the target ϵ values
in trained DP models. The difference between train and test accuracies could be a possible indicator
that has a stronger relationship with the auditing outcome. We also observe that O(1) shows a faster
increase in ϵ for DP models with higher targeted ϵ values. We believe it depends on the actual ratio of
the correct and total number of predicted samples, since O(1) considers both true positives and true
negatives while PANORAMIA considers true positives only. We leave these questions for future work.

In the text data modality, the membership inference attacks (MIAs) relying on loss thresholds in
privacy audits, without retraining or access to canaries, may not be sufficiently strong to effectively
classify members and non-members.

Target model Audit clb ε+ clb ε̃ ε Train Acc Test Acc Diff(Train-Test Acc)

ResNet18-eps-20

PANORAMIA RM;GN 2.508 3.63 1.06 - 71.82 67.12 4.70
O (1) RM;RN - - - 1.22 - - -
PANORAMIA

RM;GN 2.508 2.28 0 - 71.78 68.08 3.70

O (1) RM;RN - - - 0.09 - - -

ResNet18-eps-15

PANORAMIA RM;GN 2.508 3.63 1.13 - 69.01 65.7 3.31
O (1) RM;RN - - - 1.34 - - -

PANORAMIA RM;GN 2.508 1.61 0 66.68 69.30 2.62
O (1) RM;RN - - - 0.08 - - -

Table 10: DP models with the same ϵ values can have different auditing outcomes (the above numbers are
reported here without union-bound correction).

E Generator Closeness γ-relaxation

Definition 4 ((c, γ)-closeness). Let the γ-approximate maximum divergence between generative
model G and data distribution D be,

Dγ
∞(D∥G) := max

S⊆Supp(D):P(D∈S)≥γ

[
ln

P(D ∈ S)− γ

P(G ∈ S)

]
.

For all c > 0 we say G is (c, γ)-close to D if Dγ
∞(D∥G) ≤ c, i.e.

∀x ∈ X ,PD[x] ≤ ecPG [x] + γ or e−c(PD[x]− γ) ≤ PG [x].

E.1 Pure DP case

First we prove a similar result as Lemma 5.5 (Steinke et al., 2023) but with the one-sided inequality
of (c, γ)-closeness and the case when we additionally observe output from a pure-DP mechanism.
Lemma 1. Let G,D be probability distributions over Y , fix c, γ ≥ 0. Suppose for all measurable
S ⊂ Y we have e−c(D(S) − γ) ≤ G(S). Then ∃γ′ ∈ [0, γ] and D′,D′′,G′,G′′ such that the
following properties are satisfied.

(1) D,G can be expressed as a convex combination D = (1− γ′)D′ + γ′D′′,G = (1− γ′)G′ +
γ′G′′;

(2) for all measurable S ⊂ Y , we have e−cD′(S) ≤ G′(S);

(3) there exists measurable S ⊂ Y such that D′′(S) = 1, ∀S′ ⊂ S,D(S′) ≥ G(S′).
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Let M denote an arbitrary ϵ-DP mechanism which takes input Y sampled from distribution G or
D and outputs f . Let P,Q be probability distributions over Z which are distributions of M(Y )
when Y is sampled from D and G respectively. Fix ϵ ≥ 0, suppose for all measurable T ⊂ Z we
have P(T ) ≤ eϵQ(T ) and Q(T ) ≤ eϵP(T ). When additionally observing the output from a DP
mechanism we have the following properties. Let (D,P), (G,Q) be the joint distribution over (Y,Z)
which we assume D ⊥⊥ P , G ⊥⊥ Q.

(4) (D,P), (G,Q) can be expressed as a convex combination DP = ((1 − γ′)D′ +
γ′D′′)P,GQ = ((1− γ′)G′ + γ′G′′)Q;

(5) for all measurable S ⊂ Y , T ⊂ Z , we have e−ce−ϵD′(S)P(T ) ≤ G′(S)Q(T );

(6) there exists measurable S ⊂ Y , T ⊂ Z such that D′′(S)P(T ) = 1, ∀S′ ⊂ S, T ′ ⊂
T,D(S′)P(T ) ≥ G(S′)P(T ).

Proof. For the edge cases of γ = 0, the results hold with γ′ = 0,D′ = D,G′ = G; similarly when
γ = 1, the results hold with γ′ = 1,D′′ = D,G′′ = G,D′ = G′. Let c′ ∈ [0, c], γ1, γ2 ∈ (0, 1),
define distribution G′,G′′,D′,D′′ as follows. For all points y ∈ Y ,

D′(y) = min{D(y), ec′G(y)}
1− γ1

,

D′′(y) = D(y)− (1− γ1)D′(y)
γ1

=
max{0,D(y)− ec

′G(y)}
γ1

,

G′(y) = G(y)
1− γ2

,

G′′(y) = G(y)− (1− γ2)G′(y)
γ2

= 0.

By construction (1− γ1)D′ + γ1D′′ = D, (1− γ2)G′ + γ2G′′ = G, so the first property is satisfied,
and D′′(y) is supported on S = {y ∈ Y : D(y) > ec

′G(y)} so the third property is implied. If
0 < γ1 = γ2 = γ′ ≤ γ, for all y ∈ Y we have,

G′(y)
D′(y)

=
G(y)

min{D(y), ec′G(y)}
≥ e−c

′
≥ e−c,

as required for the second property. Following the same as in Lemma 5.5 (Steinke et al., 2023),
we can ensure 0 < γ1 = γ2 ≤ γ by appropriately setting ϵ1, ϵ2 ∈ [0, ϵ]. We can use the same
decomposition of D,G to prove the second part of the Lemma. If assuming D ⊥⊥ P and G ⊥⊥ Q,
the joint distributions can be decomposed as fD,P = fP · fD and fG,Q = fQ · fG . Therefore by
construction, DP = ((1 − γ′)D′ + γ′D′′)P,GQ = ((1 − γ′)G′ + γ′G′′)Q. D′′P is supported on
(S, T ) = {y ∈ Y,M(y) ∈ Z : D(y)P(M(y)) > ec

′G(y)P(M(y))}. For all y ∈ Y , M(y) ∈ Z we
have,

G′(y)
D′(y)

· Q(M(y))

P(M(y))
=

G(y)
min{D(y), ec′G(y)}

· Q(M(y))

P(M(y))
≥ e−c

′
e−ϵ ≥ e−ce−ϵ,

where Q(M(y))
P(M(y)) ≥ e−ϵ since M is an ϵ-DP mechanism.

Similar to Lemma 5.6 (Steinke et al., 2023), next we prove a Bayesian version of Lemma 1 which is
used to prove the main result afterwards.
Lemma 2. Let G,D be probability distributions over Y , fix c, γ ≥ 0, suppose for all measurable
S ⊂ Y we have e−c(D(S)−γ) ≤ G(S). Then there exists a randomized function ED,G : Y → {0, 1}
with the following properties. Suppose X ∼ Bernoulli( 12 ), if X = 1 sample Y ∼ D, and if X = 0
sample Y ∼ G. Then for all y ∈ Y we have,

P
X∼Bernoulli( 1

2 )
Y←XD+(1−X)G

[X = 1, ED,G(Y ) = 1|Y = y] ≤ ec

1 + ec
,

EY∼D[ED,G(Y )] ≥ 1− γ, EY∼G [ED,G(Y )] ≥ 1− γ.
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Let M denote an arbitrary ϵ-DP mechanism which takes input Y sampled from distribution G or
D and outputs f . Let P,Q be probability distributions over Z which are distributions of M(Y )
when Y is sampled from D and G respectively. Fix ϵ ≥ 0, suppose for all measurable T ⊂ Z we
have P(T ) ≤ eϵQ(T ) and Q(T ) ≤ eϵP(T ). Let (D,P), (G,Q) denote the joint distributions over
(Y,Z) which we assume D ⊥⊥ P , G ⊥⊥ Q. Then there exists a randomized function E(D,P),(G,Q) :
(Y,Z)→ {0, 1} such that for all y ∈ Y , M(y) ∈ Z we have,

P
X∼Bernoulli( 1

2 )
Y←XD+(1−X)G

M(Y )←M(XD+(1−X)G)

[X = 1, E(D,P),(G,Q)(Y,M(Y )) = 1|Y = y,M(Y ) = f ] ≤ ec+ϵ

1 + ec+ϵ
,

EY∼D,M(Y )∼P [E(D,P),(G,Q)(Y,M(Y ))] ≥ 1− γ,

EY∼G,M(Y )∼Q[E(D,P),(G,Q)(Y,M(Y ))] ≥ 1− γ.

Proof. We apply the decomposition from Lemma 1 and denote D′,D′′,G′,G′′, γ′ as is. We define
ED,G : Y → {0, 1} by,

P[ED,G(y) = 1] = (1− γ′)
D′(y)
D(y)

= 1− γ′D′′(y)
D(y)

.

For any y ∈ Y we have,

P[X = 1, ED,G(Y ) = 1|Y = y]

= P[X = 1|Y = y,ED,G(Y ) = 1]P[ED,G(Y ) = 1|Y = y]

= P[X = 1|Y = y]P[ED,G(y) = 1]

=
P[Y = y|X = 1]P[X = 1]

P[Y = y]
P[ED,G(y) = 1]

=
D(y)

D(y) + G(y)
P[ED,G(y) = 1]

=
(1− γ′)D′(y) + γ′D′′(y)

(1− γ′)D′(y) + γ′D′′(y) + (1− γ′)G′(y)
P[EG,D(y) = 1]

=
1 + γ′D′′(y)

(1−γ′)D′(y)

1 + γ′D′′(y)
(1−γ′)D′(y) +

G′(y)
D′(y)

P[EG,D(y) = 1]

≤
1 + γ′D′′(y)

(1−γ′)D′(y)

1 + 0 + e−c
P[EG,D(y) = 1]

=
1

1 + e−c
·
(
(1− γ′)D′(y) + γ′D′′(y)

(1− γ′)D′(y)

)
· P[EG,D(y) = 1]

=
1

1 + e−c
·
(

D(y)
(1− γ′)D′(y)

)
· P[EG,D(y) = 1]

=
1

1 + e−c
=

ec

1 + ec
.

The first equality uses that P[A,B|C] = P[A|B,C]P[B|C]. The second equality holds since we
assume the internal randomness of E is independent of everything else. The third equality uses
the Bayes’ rule. The fourth equality uses the definition of the randomized function E. The fifth
equality uses the decomposition of Lemma 1. After rearranging and use the properties from Lemma
1 we obtain the first inequality, then the rest follows from simplifications. Furthermore we have the
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following,

EY∼D[ED,G ] =

∫
Y
D(y)P[ED,G = 1]dy

=

∫
Y
(1− γ′)D′(y)dy = 1− γ′ ≥ 1− γ,

EY∼G [ED,G ] = 1− γ′EY∼G

[
D′′(y)
D(y)

]
= 1− γ′

∫
Y

G(y)
D(y)

· D′′(y)dy

≥ 1− γ′
∫
Y
D′′(y)dy

= 1− γ′ ≥ 1− γ.

We follow a similar procedure to prove the second part of the Lemma. We define E(D,P),(G,Q) :
(Y,Z)→ {0, 1} by,

P[E(D,P),(G,Q)(y,M(y)) = 1] = P[ED,G(y) = 1]

With similar reasoning, for any y ∈ Y , M(y) ∈ Z we have,
P[X = 1, E(D,P),(G,Q)(Y,M(Y )) = 1|Y = y,M(Y ) = f ]

=
P[Y = y,M(Y ) = f |X = 1]P[X = 1]

P[Y = y,M(Y ) = f ]
P[E(D,P),(G,Q)(y,M(y)) = 1]

=
D(y)P(M(y))

D(y)P(M(y)) + G(y)Q(M(y))
P[E(D,P),(G,Q)(y,M(y)) = 1]

=
((1− γ′)D′(y) + γ′D′′(y))P(M(y))

((1− γ′)D′(y) + γ′D′′(y))P(M(y)) + (1− γ′)G′(y)Q(M(y))
P[E(D,P),(G,Q)(y,M(y)) = 1]

=
1 + γ′D′′(y)P(M(y))

(1−γ′)D′(y)P(M(y))

1 + γ′D′′(y)P(M(y))
(1−γ′)D′(y)P(M(y)) +

G′(y)Q(M(y))
D′(y)P(M(y))

P[E(D,P),(G,Q)(y,M(y)) = 1]

≤
1 + γ′D′′(y)

(1−γ′)D′(y)

1 + 0 + e−ce−ϵ
P[E(D,P),(G,Q)(y,M(y)) = 1]

=
1

1 + e−ce−ϵ
·
(

D(y)
(1− γ′)D′(y)

)
· P[E(D,P),(G,Q)(y,M(y)) = 1]

=
1

1 + e−ce−ϵ
=

ec+ϵ

1 + ec+ϵ
.

Since we define the success probability with the same expression, the expected success of the
randomized function directly follows,

EY∼D,M(Y )∼P [E(D,P),(G,Q)(Y,M(Y ))] = EY∼D[ED,G(Y )] ≥ 1− γ,

EY∼G,M(Y )∼Q[E(D,P),(G,Q)(Y,M(Y ))] = EY∼G [ED,G(Y )] ≥ 1− γ.

Next we use Lemma 2 to prove the following Proposition which is used to form statistical tests on
hypothesisH.
Proposition 3. Let G be (c, γ)-close, f be output of an ϵ-DP mechanism, T b ≜ B(S,X) be the guess
from the baseline, T a ≜ A(S,X, f) be the guess from the membership audit. Let Tb, Ta ∈ [0, 1]m be
bounded. Then, for all v ∈ R and all t in the support of T :

PS,X,T b

[ m∑
i=1

T b
i · Si ≥ v | T b = tb

]
≤ P

S′∼Bernoulli( ec

1+ec )
m,F

[
F (tb) +

m∑
i=1

tbi · S′i ≥ v
]
,

PS,X,Ta

[ m∑
i=1

T a
i · Si ≥ v | T a = ta

]
≤ P

S′∼Bernoulli( ec+ϵ

1+ec+ϵ )
m,F

[
F (ta) +

m∑
i=1

tai · S′i ≥ v
]
,
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where F is independent from S′, F (T b), F (T a) is supported on {0, 1, . . . ,m} and ET b,F [F (T b)] =
ETa,F [F (T a)] ≤ 2mγ.

Proof. Let B(s≤i) denote the distribution on [0, 1]m obtained by conditioning B on past S<i = s<i

and X≤i = x≤i. By Lemma 2, for all tb ∈ [0, 1]m we have

P[Si = 1, EB(s<i,1),B(s<i,0)(T
b) = 1|T b = tb, S<i = s<i, X≤i = x≤i] ≤

ec

1 + ec
,

E[EB(s≤i,1),B(s≤i,0)(T
b) = 1|S<i = s<i, Si = 0] ≥ 1− γ,

E[EB(s≤i,1),B(s≤i,0)(T
b) = 1|S<i = s<i, Si = 1] ≥ 1− γ.

Using the law of total probability we get,

P[Si = 1, EB(s<i,1),B(s<i,0)(T
b) = 1|T b = tb, S<i = s<i]

=
∑
x≤i

P[Si = 1, EB(s<i,1),B(s<i,0)(T
b) = 1|T b = tb, S<i = s<i, X≤i = x≤i]

P[X≤i = x≤i|T b = tb, S<i = s<i]

≤ ec

1 + ec

∑
x≤i

P[X≤i = x≤i|T b = tb, S<i = s<i] =
ec

1 + ec
.

Applying the union bound on Si we can bound the expectation of success events by,

E[EB(s≤i,1),B(s≤i,0)(T
b)|S<i = s<i, Si = si] ≥ 1− 2γ.

By induction, for k ∈ [m] define W̃k(s, t
b) :=

∑k
i=1 t

b
i · si · EB(s<i,1),B(s<i,0)(t

b), then W̃k(S, t
b)

is stochastically dominated by W̌k(t
b) :=

∑k
i=1 t

b
i · Ši(t) where Ši(t) ∼ Bernoulli( ec

1+ec ). Let the
failing events F be,

F (s, tb) :=

m∑
i=1

1{EB(s≤i,1),B(s≤i,0)(t
b) = 0},

then we have Wm(s, tb) :=
∑m

i=1 t
b
i · si = W̃m(s, tb) + F (s, tb) is stochastically dominated by

W̌m(T b) + F (S, T b), where the expectation of the failing events is bounded by,

E[F (S, T b)] =

m∑
i=1

P[EB(s≤i,1),B(s≤i,0)(t
b) = 0] ≤ m(2γ).

Similar to Lemma 5.5 in Steinke et al. (2023) since E[F (S, T b)] is independent of S we could have
F (T b) = F (S, T b) for S drawn from an appropriate distribution. The proof of the second part of the
Proposition is essentially the same except with the following result from Lemma 2,

P[Si = 1, EA(s<i,1),A(s<i,0)(T
a) = 1|T a = ta, S<i = s<i, X≤i = x≤i] ≤

ec+ϵ

1 + ec+ϵ
,

E[EA(s≤i,1),A(s≤i,0)(T
a) = 1|S<i = s<i, Si = 0] ≥ 1− γ,

E[EA(s≤i,1),A(s≤i,0)(T
a) = 1|S<i = s<i, Si = 1] ≥ 1− γ.

Similar to Theorem 5.2 (Steinke et al., 2023) we could compute for the optimal distribution F (tb) and
F (ta) by formulating it into a linear programming problem. Similar to Corollary 1, to test Hypothesis
H together we would apply Union bound on the two parts of the hypothesis as in Proposition 3.

E.2 Approximate DP case

In this section we consider the case where we have a (c, γ)-close generator and audit for an ap-
proximate DP mechanism. We modify the results to account for the failing events from these two
sources of randomness. We start by proving a similar version of Lemma 2 where we use both the
decomposition of G,D from Lemma 1 and the decomposition of P,Q from Lemma 5.5 (Steinke
et al., 2023).
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Lemma 3. Let G,D be probability distributions over Y , fix c, γ ≥ 0, suppose for all measurable
S ⊂ Y we have e−c(D(S) − γ) ≤ G(S). Let M denote an arbitrary (ϵ, δ)-DP mechanism which
takes input Y sampled from distribution G or D and outputs f . Let P,Q be probability distributions
over Z which are distributions of M(Y ) when Y is sampled from D and G respectively. Fix ϵ, δ ≥ 0,
suppose for all measurable T ⊂ Z we have P(T ) ≤ eϵQ(T ) + δ and Q(T ) ≤ eϵP(T ) + δ.
Let (D,P), (G,Q) denote the joint distributions over (Y,Z) which we assume D ⊥⊥ P , G ⊥⊥ Q.
Then there exists a randomized function E(D,P),(G,Q) : (Y,Z) → {0, 1} such that for all y ∈ Y ,
M(y) ∈ Z we have,

P
X∼Bernoulli( 1

2 )
Y←XD+(1−X)G

M(Y )←M(XD+(1−X)G)

[X = 1, E(D,P),(G,Q)(Y,M(Y )) = 1|Y = y,M(Y ) = f ] ≤ ec+ϵ

1 + ec+ϵ
,

EY∼D,M(Y )∼P [E(D,P),(G,Q)(Y,M(Y ))] ≥ (1− γ)(1− δ),

EY∼G,M(Y )∼Q[E(D,P),(G,Q)(Y,M(Y ))] ≥ (1− γ)(1− δ).

Proof. For ease of notation we shorthand F = M(Y ), E = E(D,P),(G,Q), D′ = D′(y), G′ = G′(y),
D′′ = D′′(y), G′′ = G′′(y), P ′ = P ′(f), Q′ = Q′(f), P ′′ = P ′′(f), Q′′ = Q′′(f) below. We
define E : (Y,Z)→ {0, 1} by,

P[E(y, f) = 1] =
(1− γ′)(1− δ′)D′P ′

DP
.

For any y ∈ Y , M(y) ∈ Z we have,

P[X = 1, E(Y, F ) = 1|Y = y, F = f ]

=
P[Y = y, F = f |X = 1]P[X = 1]

P[Y = y, F = f ]
P[E(y, f) = 1]

=
D(y)P(f)

D(y)P(f) + G(y)Q(f)
P[E(y, f) = 1]

=
((1− γ′)D′ + γ′D′′)((1− δ′)P ′ + δ′P ′′)

((1− γ′)D′ + γ′D′′)((1− δ′)P ′ + δ′P ′′) + (1− γ′)G′((1− δ′)Q′ + δ′Q′′)
P[E(y, f) = 1]

=
1 + δ′D′P′′

(1−δ′)D′P′ +
γ′D′′P′

(1−γ′)D′P′ +
γ′δ′D′′P′′

(1−γ′)(1−δ′)D′P′

1 + δ′D′P′′

(1−δ′)D′P′ +
γ′D′′P′

(1−γ′)D′P′ +
γ′δ′D′′P′′

(1−γ′)(1−δ′)D′P′ +
G′Q′

D′P′ +
δ′G′Q′′

(1−δ′)D′P′

P[E(y, f) = 1]

≤
1 + δ′D′P′′

(1−δ′)D′P′ +
γ′D′′P′

(1−γ′)D′P′ +
γ′δ′D′′P′′

(1−γ′)(1−δ′)D′P′

1 + e−ce−ϵ
P[E(y, f) = 1]

=
1

1 + e−ce−ϵ

(
(1− δ′)(1− γ′)D′P ′ + δ′(1− γ′)D′P ′′ + γ′(1− δ′)D′′P ′ + γ′δ′D′′P ′′

(1− γ′)(1− δ′)D′P ′

)
· P[E(y, f) = 1]

=
1

1 + e−ce−ϵ

(
DP

(1− γ′)(1− δ′)D′P ′

)
P[E(y, f) = 1]

=
1

1 + e−ce−ϵ
=

ec+ϵ

1 + ec+ϵ
.

Using the assumption that D ⊥⊥ P , G ⊥⊥ Q, we account for the expectation of success events as
follows,

EY∼D,M(Y )∼P [E(Y, F )] =

∫∫
D(y)P(f)P[E = 1]dydf

=

∫∫
D(y)P(f) (1− γ′)(1− δ′)D′(y)P ′(f)

D(y)P(f)
dydf

= (1− γ′)(1− δ′)

∫
D′(y)dy

∫
P ′(f)df

= (1− γ′)(1− δ′) ≥ (1− γ)(1− δ).
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Note that we can rewrite the success probability as,

P[E(y, f) = 1] = 1− γ′(1− δ′)D′′P ′

DP
− (1− γ′)δ′D′P ′′

DP
− γ′δ′D′′P ′′

DP
.

Then we have,

EY∼G,M(Y )∼Q[E(Y, F )]

= 1− γ′(1− δ′)E
[
D′′(y)P ′(f)
D(y)P(f)

]
− (1− γ′)δ′E

[
D′(y)P ′′(f)
D(y)P(f)

]
− γ′δ′E

[
D′′(y)P ′′(f)
D(y)P(f)

]
= 1− γ′(1− δ′)

∫
G(y)Q(f)

[
D′′(y)P ′(f)
D(y)P(f)

]
dydf

− (1− γ′)δ′
∫
G(y)Q(f)

[
D′(y)P ′′(f)
D(y)P(f)

]
dydf

− γ′δ′
∫
G(y)Q(f)

[
D′′(y)P ′′(f)
D(y)P(f)

]
dydf

≥ 1− γ′(1− δ′)

∫
D′′(y)P ′(f)dydf − (1− γ′)δ′

∫
D′(y)P ′′(f)dydf

− γ′δ′
∫
D′′(y)P ′′(f)dydf

= 1− γ′(1− δ′)− (1− γ′)δ′ − γ′δ′

= 1− γ′ − δ′ + γ′δ′

= (1− γ′)(1− δ′) ≥ (1− γ)(1− δ).

Next we use Lemma 3 to prove the following Proposition to form the statistical tests on hypothesisH
for the (ϵ, δ)-DP version.

Proposition 4. Let G be (c, γ)-close, f be output of an (ϵ, δ)-DP mechanism, T b ≜ B(S,X)

be the guess from the baseline, T a ≜ A(S,X, f) be the guess from the membership audit. Let
Tb, Ta ∈ [0, 1]m be bounded. Then, for all v ∈ R and all t in the support of T :

PS,X,T b

[ m∑
i=1

T b
i · Si ≥ v | T b = tb

]
≤ P

S′∼Bernoulli( ec

1+ec )
m,F

[
F (tb) +

m∑
i=1

tbi · S′i ≥ v
]
,

PS,X,Ta

[ m∑
i=1

T a
i · Si ≥ v | T a = ta

]
≤ P

S′∼Bernoulli( ec+ϵ

1+ec+ϵ )
m,F

[
F (ta) +

m∑
i=1

tai · S′i ≥ v
]
,

where F is independent from S′, F (T b), F (T a) is supported on {0, 1, . . . ,m} and ET b,F [F (T b)] ≤
2mδ, ETa,F [F (T a)] ≤ 2m(γ + δ − γδ).

Proof. The first part of the result (baseline test) exactly follows the proof of Proposition 3. For the
approximate DP case, the proof of the auditor test follows similar steps except for the bound on the
expectation of the failing events,

E[F (S, T b)] =

m∑
i=1

P[EB(s≤i,1),B(s≤i,0)(t
b) = 0] ≤ m(2(1− (1− γ)(1− δ)))

= 2m(γ + δ − γδ).

Similar to the pure DP case we could optimize for the optimal distribution of F (tb) and F (ta) by
solving a linear program (Theorem 5.2 in Steinke et al. (2023)) and apply Union bound as in Corollary
1 to test for HypothesisH.
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E.3 Evaluations

We empirically evaluate the auditing performance of PANORAMIA under different relaxed level of the
generator for both the pure and approximate DP cases. We observe that the overall performance is
similar to that of no relaxation. We observe smaller ε̃ (which is analogous to a looser lower bound) as
we increase the relaxation level, and in the more extreme cases where we allow many failing events
(e.g. when relaxation > 1e-3) we would fail to detect meaningful privacy leakage as ε̃ = 0.

Model Generator Relaxation (γ) clb {ε+ c}lb ε̃

ResNet18 ϵ = 2

0 (no relaxation) 2.508 2.066 0
1e-5 2.507 2.065 0
1e-4 2.499 2.059 0
1e-3 2.365 1.989 0

ResNet18 ϵ = 10

0 (no relaxation) 2.508 2.833 0.325
1e-5 2.507 2.801 0.294
1e-4 2.499 2.570 0.071
1e-3 2.365 1.280 0

ResNet18 ϵ = 15

0 (no relaxation) 2.508 3.661 1.153
1e-5 2.507 3.658 1.151
1e-4 2.499 3.628 1.129
1e-3 2.365 3.312 0.947

ResNet18 ϵ = 2, δ =1e-5
1e-5 2.035 2.064 0.029
1e-4 2.029 2.059 0.030
1e-3 1.904 1.988 0.084

ResNet18 ϵ = 10, δ =1e-5
1e-5 2.035 2.765 0.730
1e-4 2.029 2.541 0.512
1e-3 1.904 1.271 0

ResNet18 ϵ = 15, δ =1e-5
1e-5 2.035 3.654 1.619
1e-4 2.029 3.625 1.596
1e-3 1.904 3.308 1.404

Table 11: Privacy audit of ResNet18 under different values of ϵ-DP and (ϵ, δ)-DP, using PANORAMIA with
different level of generator relaxations (γ), testing over range of recall from 0 to 0.5 without applying a union
bound.

F Extended Related Work

Most related privacy auditing works measure the privacy of an ML model by lower-bounding its
privacy loss. This usually requires altering the training pipeline of the ML model, either by injecting
canaries that act as outliers Carlini et al. (2019) or by using data poisoning attack mechanisms to search
for worst-case memorization Jagielski et al. (2020); Nasr et al. (2021). MIAs are also increasingly
used in privacy auditing, to estimate the degree of memorization of member data by an ML algorithm
by resampling the target algorithmM to bound P (M |in)

P (M |out) Jayaraman & Evans (2019). The auditing
procedure usually involves searching for optimal neighboring datasets D,D′ and sampling the
DP outputs M(D),M(D′), to get a Monte Carlo estimate of ϵ. This approach raises important
challenges. First, existing search methods for neighboring inputs, involving enumeration or symbolic
search, are impossible to scale to large datasets, making it difficult to find optimal dataset pairs. In
addition, Monte Carlo estimation requires up to thousands of costly model retrainings to bound ϵ with
high confidence. Consequently, existing approaches for auditing ML models predominantly require
the re-training of ML models for every (batch of) audit queries, which is computationally expensive
in large-scale systems Jagielski et al. (2020); Zanella-Béguelin et al. (2022); Lu et al. (2023). This
makes privacy auditing computationally expensive and gives an estimate by averaging over models,
which might not reflect the true guarantee of a specific pipeline deployed in practice.

Nonetheless, improvements to auditing have been made in a variety of directions. For example, Nasr
et al. (2023) and Maddock et al. (2023) have taken advantage of the iterative nature of DP-SGD,
auditing individual steps to understand the privacy of the end-to-end algorithm. Andrew et al. (2023)
leverage the fact that analyzing MIAs for non-member data does not require re-running the algorithm.
Instead, it is possible to re-sample the non-member data point: if the data points are i.i.d. from an
asymptotically Gaussian distribution with mean zero and variance 1/d, this enables a closed-form
analysis of the non-member case.

Recently, Steinke et al. (2023) proposed a novel scheme for auditing differential privacy with O(1)
training rounds. This approach enables privacy audits using multiple training examples from the
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same model training, if examples are included in training independently (which requires control
over the training phase, and altering the target model). They demonstrate the effectiveness of this
new approach on DP-SGD, in which they achieve meaningful empirical privacy lower bounds by
training only one model (the strongest results are achieved by including canaries in the training
set though, which is not possible in our setting), whereas standard methods would require training
hundreds of models. Our work builds closely on the theory from Steinke et al. (2023), but introduces
a baseline model to account for distribution shifts. The key difference that enables our work to
account for member/non-member distribution shifts lies in how we create the audit set in our privacy
game (Definition 2). In Steinke et al. (2023), the audit set is fixed, and data points are randomly
assigned to member or non-member by a Bernoulli random variable S. Members are actually used
in training the target model f , while non-members are not (so assignment happens before training).
In our framework, we take a set of known members (after the fact), and pair each point with a
non-member(generated i.i.d. from the generator distribution). We then flip S to sample which data
point of each pair will be shown to the “auditor” (MIA/baseline) for testing, thereby creating the
test task of our privacy measurement. When we replace our generated data with in-distribution
independent non-members (PANORAMIA RM;RN), we exactly enforce the same independence as
Steinke et al. (2023) (and as a result have c = 0, and ϵ̃ is a lower-bound on ϵ), except that we “waste”
some member data by drawing our auditing game after the fact. The difference in analysis accounts
for distribution shifts when our non-members are generated.

The field of MIA without direct connections to privacy leakage measurement has also seen a lot of
recent activity, with new proposals to improve the strength of MIAs in various settings (Carlini et al.,
2022b; Nasr et al., 2019; Suri et al.; Zarifzadeh et al., 2023). While it is not the focus of this paper,
an interesting avenue for future work is to port ideas from these new MIAs to improve PANORAMIA’s
MIA and baseline. Such transfer of MIA progress could lead to more powerful measurements with
PANORAMIA. More closely related to our proposal, a recent set of works on Das et al. (2024); Duan
et al. (2024); Meeus et al. (2024) MIAs on foundation models has observed that current evaluations
are limited due a lack of availability of non-member data. Indeed, foundation models typical include
all known data at the time of their training, and there is no well known public set of in-distribution
non-member data. Evaluation tasks typical rely on more recent data, which is known to consist in
non-members, but suffers from distribution shifts. Das et al. (2024); Duan et al. (2024); Meeus et al.
(2024) all show that such a shift invalidates MIA evaluations by showing that “blind attacks” (i.e.,
our baselines) perform better than proposed MIAs. One could apply our proposed framework to such
a setting: when the baseline in our framework performs better than the MIA, PANORAMIA returns a
privacy loss measurement of zero instead of misleading measurements of MIA performance. We thus
believe that PANORAMIA is an important step towards a theory for rigorous evaluations of membership
inference for MIA models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Introduction sections highlight the motivation and contribu-
tions we make; We provide, to the best of our ability, comprehensive experimental results in
Section 5 to justify our claims and contributions. Section 4 provides the theory behind our
experiments, whilst Appendix B details proofs.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss these in Section 4.2 and Section 6 of the paper.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we present sections assumptions, theory, and formal proofs in 3, 4 and
Appendix B, E provides respectively.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We attach the code as supplementary material in a zip file and also include the
main experimental details in Section 5 as well as a detailed experimental setup, hyperpa-
rameters, compute details, and model architecture details along with other full necessary
information in Appendix C to ensure reproducibility. Section 3 also includes the algorithm
as well as the system design diagram detailing our privacy measurement framework.
We also updated the paper and experiments according to the reviewers’ helpful feedback.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We specify the details of the code we release in the zip file we attach. The
code is primarily the PANORAMIA privacy measurement pipeline. We include structured files
specifying run instructions, licenses etc. Training details are within the code itself and also
highlighted in Appendix C.
Now we also updated the paper with an open source github code link given under the
experimental section of the main paper.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 and Table 1 give key experimental details, whilst the full experimental
setup is highlighted in Appendix C, as well as the zip file of code attached.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeated all experiments that involved training data resampling 5 times,
and repeated experiments that involved test data resampling over 10 times. All our figures
and plots in the core body of the paper report results with error bars, with all results reported
at a 95% confidence interval. We also report the standard deviation in the tables in Section 5.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on compute resources for each modality in Appendix
C. We also updated compute times to run the PANORAMIA pipeline in C for each data
modality.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and conform to them in every
respect.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: We discuss these in Section 6; overall, our approach can only help model
providers and owners to assess the privacy of risk of their data and is not applicable as a
privacy attack. As a consequence, we believe that any impact from our proposed work is
likely to be positive.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA] .
Justification: Our paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: All papers, code, and asset owners and authors have been properly cited to the
best of our knowledge.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: We specify the details of the code we release in the zip file we attach. The
code is primarily the PANORAMIA privacy measurement pipeline. We include structured files
specifying run instructions, licenses, etc. Training details are within the code itself and also
highlighted in Appendix C.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing, nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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