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Abstract

Deep learning models like AlphaFold2 (Jumper et al., 2021) have revolutionized
protein structure prediction, achieving unprecedented accuracy. However, the
dependence on robust multiple sequence alignments (MSAs) continues to pose
a challenge, especially for proteins that lack a wealth of homologous sequences.
To overcome this limitation, we introduce MSA-Generator, a self-supervised gen-
erative protein language model. Trained on a sequence-to-sequence task using
an automatically constructed dataset, MSA-Generator employs protein-specific
attention mechanisms to harness large-scale protein databases, generating vir-
tual MSAs that enrich existing ones and boost prediction accuracy. Our experi-
ments on CASP14 and CASP15 benchmarks reveal significant improvements in
LDDT scores, particularly for complex and challenging sequences, enhancing
the performance of both AlphaFold2 and RoseTTAFold. The code is released at
https://github.com/lezhang7/MSAGen.

1 Introduction

The challenge of protein structure prediction (PSP), a central issue in structural biology, has under-
gone remarkable transformation thanks to advances in deep learning. Among these developments,
AlphaFold2 (AF2) stands out for its exceptional performance, primarily attributed to its effective use
of multiple sequence alignments (MSAs) (Jumper et al., 2021). MSAs are constructed by querying
a protein sequence against extensive databases using sophisticated search algorithms, resulting in
collections of homologous sequences that encapsulate evolutionary information. This information
serves as the cornerstone for many PSP models. However, not all protein sequences have a wealth of
homologous counterparts. In such cases, even the most advanced search algorithms may struggle to
construct high-quality MSAs, thereby limiting the performance of MSA-dependent models like AF2
(Jumper et al., 2021; Wang et al., 2022a), as illustrated in fig. 1.

Inspired by the generative capabilities of language models (Raffel et al., 2020; Touvron et al., 2023;
Chung et al., 2022; Chen et al., 2021), we recognize their potential to extend beyond textual data.
Viewing protein sequences through this lens, we propose an innovative approach to generating
virtual yet constructive MSAs, akin to generating text. These novel alignments provide supplemental
evolutionary information, thereby enhancing the efficacy of protein structure predictions. Within the
realm of PSP, tertiary structure prediction remains a critical challenge, occupying a central role in
molecular biology by revealing intricate protein functions and interactions. While secondary structure
predictions (Rost & Sander, 1993) offer valuable insights, it is the tertiary predictions that provide a
comprehensive understanding of a protein’s complex conformation.
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Figure 1: (Top Left) Certain protein sequences lack rich homologs, leading to poor MSA quality with conven-
tional search algorithms. (Top Right) We propose a generative model MSA-Generator to produce informative
MSA for these queries, offer a potential solution to such challenge.

For bio-tasks such as protein structure prediction, gene sequence alignment, RNA secondary structure
determination, microbial community analysis, and evolutionary tree construction, where enhancing
downstream performance necessitates multiple sequences, we introduce the sequences-to-sequences
(seqs2seqs) generation task. Unlike the conventional sequence-to-sequence (seq2seq) tasks—e.g.,
machine translation, which requires a strict one-to-one correspondence between a source sequence x
and a target sequence y—seqs2seqs is designed for flexibility. The task aims to generate multiple
coherent sequences from a given sequences. Each generated sequence preserves patterns from the
input, but there’s no strict correspondence between the input and output. Instead, we prioritize
maintaining interconnected patterns across them. This design endows the task with a self-supervised
nature due to its intrinsic adaptability.

In the context of protein, such flexibility enables easy extraction of a portion of the MSA as the source,
with the remainder acting as the target. Harnessing search algorithms, our framework adeptly extracts
source and target data from comprehensive protein databases, paving the way for self-supervised
pre-training. To our knowledge, this marks an initial step in tapping into self-supervised generative
pretraining to bolster protein structure prediction accuracy.

We introduce MSA-Generator, a protein language model pre-trained using the seqs2seqs as its pretext
task. Specialized in simultaneously generating multiple sequences, it effectively captures global
structural information from input MSAs. This approach facilitates rapid, de novo sequence creation,
improves inferior MSAs (see fig. 1), and boasts adaptability across various protein domains, adeptly
navigating computational challenges.

To summarize the main contribution of this article:

• Innovative unsupervised Seqs2Seqs Task Proposition: We propose the unsupervised
sequences-to-sequences (seqs2seqs) task, a promising approach for generating informative
protein sequences, with potential applications extending to other areas like RNA. Integrated
with search algorithms, this task streamlines generative pre-training by automating data
retrieval from expansive protein databases.

• Launch of MSA-Generator Model: MSA-Generator, our state-of-the-art generative protein
model, is uniquely devised to employ the seqs2seqs task on a self-curated dataset. It is
optimized for multi-sequence generation, skillfully extracting global MSA insights, and has
demonstrated adaptability across diverse protein domains.

• Robust Empirical Validation: We validate our approach’s potency, showcasing significant
improvements on AlphaFold2 and RoseTTAFold using CASP14 and CASP15 benchmarks.
This signifies a practical leap forward in tackling the intricate challenge of protein folding.
It also showcases the promise of seqs2seqs pretraining in the field of bioinformatics.
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2 Related Work

Protein Structure Prediction Proteins, despite their immense diversity, are composed of just
20 unique amino acids. Their physical structures, which dictate their functions and characteristics,
are fundamental to understanding the essence of life. While the field has witnessed significant
advancements like AF2 (Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021), challenges remain.
The success of AF2 can be ascribed to its adept utilization of MSAs, constructed by search algorithms
such as DeepMSA (Zhang et al., 2019), JackHMMER (Johnson et al., 2010) and MMseqs2 (Steinegger
& Söding, 2017) across vast databases including UniRef (Suzek et al., 2007) and BFD based on a
protein query sequence. Conversely, single-sequence prediction methodologies (Chowdhury et al.,
2021; Lin et al., 2022; Chowdhury et al., 2022; Wu et al., 2022b) often underperform in comparison.
However, for protein queries devoid of extensive family representations, obtaining quality MSAs is
challenging. Consequently, the proficiency of MSA-driven techniques diminishes. In this context,
our proposed method leverages generative techniques to combat the paucity of homologs in protein
sequences, presenting a solution when traditional techniques falter.

Protein Language Models Language models, initially designed for language processing, have
found a expanding role in bioinformatics, primarily for protein sequence representation. This
improvement in performance largely stems from the adaptation of the masked language modeling
(MLM) strategy, a concept inspired by BERT (Devlin et al., 2019). The ProtTrans series, which
includes models such as ProtBert, ProtTXL, ProtXLNet, and ProtT5 (Elnaggar et al., 2021), along
with ProteinBERT (Brandes et al., 2022) and ESM models like ESM-1b (Rives et al., 2021) and
ESM-2 (Lin et al., 2022), exemplifies the transformative role of Transformer architectures in this
field. Further reinforcing the connection between language models and protein structure prediction,
research has demonstrated associations between protein representations learned by these models and
contact maps, revealing evolutionary patterns that are crucial to the success of AlphaFold2 (AF2) (Vig
et al., 2020; Rao et al., 2020). These findings have shifted research focus back towards leveraging
multiple sequence alignments (MSAs) rather than relying solely on single sequences. A notable
example is the MSA Transformer (Rao et al., 2021), which applies the MLM strategy specifically to
MSAs, thereby capturing rich evolutionary information and advancing the field of protein structure
prediction.

Protein Sequence Generation Beyond masked language modeling (MLM), a variety of generative
techniques exist, each with its distinct objectives and methodologies. For instance, Potts models
(Figliuzzi et al., 2018; Russ et al., 2020) are crafted specifically for individual MSA sets from which
they’re derived (Zhang et al., 2022). However, their shortcomings in adapting to different MSA sets
(Sgarbossa et al., 2022) have spurred the development of generative language models. An exemplar,
ESMPair (Chen et al., 2022), constructs MSAs of Interologs by classifying sequences based on their
taxonomic lineage. In contrast, both ProGen (Madani et al., 2020) and ProGen2 (Nijkamp et al.,
2022) focus on single-sequence generation, sidestepping the integral component of MSA. Another
research direction involves VAE-based models (Riesselman et al., 2018; McGee et al., 2021; Sinai
et al., 2017), originally developed for mutation evaluation. The challenge of efficiently sampling
from distributions to create diverse and long sequences limits their application to downstream tasks.
A study by Sgarbossa et al. (2022) utilized the MSA Transformer in a repetitive mask-and-reveal
methodology, which unfortunately led to a compromise in sequence diversity. Of notable mention
is EvoGen (Zhang et al., 2022), aiming parallelly at producing virtual MSAs for Protein Structure
Prediction. However, EvoGen uniquely operates as a meta-generative model, requiring guidance
from Alphafold2 to hone its MSA generation prowess.

Despite the lengthy context associated with MSA Generation, our work connects self-supervised
learning with MSA generation. We highlight generative MSA pretraining, introducing an unsuper-
vised sequences-to-sequences task specifically tailored for efficient MSA generation. To the best of
our understanding, this marks a significant stride in the realm of protein sequence generation.

3 Sequences-to-Sequences Generative Pretraining

We present the Sequences-to-Sequences generation task and the methodology for automatic dataset
construction in section 3.1. Details of the proposed MSA-Generator are provided in section 3.2.
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In section 3.3, we delve into the ensemble approach of MSA-Generator for optimizing the Protein
Structure Prediction (PSP) task.

3.1 Sequences-to-Sequences Generation For Protein Sequences

Addressing the challenge of sparse homologous matches in Multiple Sequence Alignments (MSA)
within real-world databases, we introduce the Sequences-to-Sequences (seqs2seqs) Task, designed
for creating virtual MSAs. This approach differs from the conventional sequence-to-sequence
frameworks used in machine translation, which typically enforce a strict one-to-one correspondence
between source sequence x and target sequence y. Instead, seqs2seqs allows for more flexibility,
focusing on identifying shared intrinsic patterns between source sequences X and target sequences
Y . For protein MSAs, this involves integrating extensive evolutionary data, both across and within
the sequences, to reveal co-evolutionary relationships.
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Figure 2: Difference between seq2seq and seqs2seqs
and Automated Data Collection Process.

The inherent adaptability of the seqs2seqs model
permits the self-supervised nature of the task
and seamless gathering of substantial quanti-
ties of source and target sequences from pro-
tein sequence databases. This is achieved by
deploying sequence searching algorithms like
JackHMMER (Johnson et al., 2010) and MM-
seqs2 (Steinegger & Söding, 2017). Our pro-
cess began with selecting sequences from the
UniRef90 database (Suzek et al., 2007) as initial
queries. Subsequently, the JackHMMER algo-
rithm (Johnson et al., 2010) was employed itera-
tively to identify homologous sequences within
the database, based on the query sequences fol-
lowing MSA dataset construction pipeline of
AlphaFold2. This process was iterated until no
additional sequences emerged, searching parameters are detailed in appendix C. For every batch of
sequences retrieved, a random selection was made, designating query with some as the source X
and the remainder as the target Y , as illustrated in fig. 2. Notably, the assurance of co-evolutionary
relationships is intrinsically facilitated by the search algorithm’s mechanism.

3.2 Sequences-to-Sequences Architecture

Figure 3: MSA-Generator Overview (Top) Overview of the architecture, processing pipeline, and module
attention operations. (Bottom) Illustration of the attention mechanism. A red star represents a single query
position, and the red boxes indicate keys and values utilized in attention processing and calculations.
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We pretrain a transformer-based model (Vaswani et al., 2017), denoted as MSA-Generator, via the
unsupervised Sequences-to-Sequences task. The MSA-Generator framework incorporates an encoder-
decoder structure. The encoder contextualizes the input MSA data, while an auto-aggressive decoder
produces sequences derived from this context (refer to section 3). To capture expansive evolutionary
information from the input MSA both horizontally and vertically, the encoder integrates the tied-row
and column attention mechanism (Rao et al., 2021). As the decoder concurrently generates multiple
sequences—interacting with each other and the input MSA—it is enhanced with two additional
modules beyond the conventional transformer. The Cross-Row Attention is designed to efficiently
acquire a global representation by amalgamating comprehensive states. Meanwhile, to emphasize the
vital conservative trait of amino acids (Dayhoff et al., 1978; Henikoff & Henikoff, 1992; Jones et al.,
1992), we introduce the Cross-Column Attention, which, during the generation of the token at time
step t, directs its attention to the t-th token of all input sequences.

Tied-Row Attention Building upon the foundation laid by the MSA Transformer (Rao et al., 2021),
we incorporate a shared-attention mechanism. This is achieved by aggregating the attention map
weights across each sequence from MSA ∈ RD×L prior to applying the softmax function. Notably,
each sequence utilizes the same attention weight matrix. For the d-th row, the associated query, key,
and value matrices are denoted as Qd, Kd, and Vd ∈ RL×h, respectively. These matrices are derived
via three distinct learned projection matrices. The computation of the shared attention weight matrix
is formulated as:

WTR = softmax

(
D∑

d=1

QdK
T
d

λ(D,h)

)
∈ RL×L (1)

In this context, λ(D,h) =
√
Dh serves as the square-root normalization. This normalization is

crucial in mitigating potential linear scaling of attention weights with the sequences. The resultant
representation for the d-th row is obtained through WTRVd.

It’s important to highlight that, in our decoder, we deliberately bypass the tied-row attention. This
decision aids in maintaining diversity in the generated sequences. Instead, we lean towards a
conventional self-attention mechanism.

Cross-Row Attention Contrary to tasks like machine translation, where the target attends only to a
single input during decoding, the essence of seqs2seqs lies in discerning intrisic patterns common to
both source and target sequences. This necessitates a holistic comprehension of the input, implying
that when generating a sequence, the decoder should attend to the entirety of the input. A naive
concatenation would yield a representation with dimensions RD·L×h, rendering it computationally
expensive and thus impractical.

To address this, we introduce an efficient strategy that calculates the depth-wise average pooling of
encoder hidden states Henc, represented as Hc =

1
D

∑D
d=1 H

d
enc ∈ RL×h. This serves as a global

representation of the input and is crucial for cross-attention during decoding. Here, Kc = HcWk

and Vc = HcWv signify the key and value matrices, while Q = XdecWq stands for query matrix
projected from decoder hidden states Xdec. The Cross-Row attention is:

CR-Attn(Q,Kc, Vc) = softmax(
QKT

c√
h

)Vc (2)

Each sequence generation process can access comprehensive information, attending to the same keys
and values, mirroring the co-evolutionary patterns of the input MSA simultaneously thus permitting
fast parallel generation of multiple sequences (middle at bottom in fig. 3).

Self/Cross -Column Attention In MSA, each column represents residues or nucleotides at a
specific position across sequences, revealing conserved regions essential for understanding biological
functions, structural stability, or evolutionary significance (Dayhoff et al., 1978; Jones et al., 1992;
Henikoff & Henikoff, 1992). Drawing inspiration from the vertical-direction attention proposed in Ho
et al. (2019), we introduce a self-column attention in encoder for a comprehensive representation akin
to Rao et al. (2021), and a cross-column attention in decoder to capture conservation characteristics.
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To facilitate both attention mechanisms, the representation matrix X ∈ RD×L×h needs to be
transposed prior to the execution of self and cross attention:

ColAtt(Qcol,Kcol, Vcol) =

(
softmax

(
QcolK

T
col√

h

)
Vcol

)T

(3)

For the self-column attention, projections from XT yield Qcol,Kcol, Vcol ∈ RL×D×h. In contrast,
for the cross-column attention, Qcol is determined from decoder hidden states as XT

decWq, whereas
Kcol and Vcol are projected from encoder hidden states as HT

enc (see fig. 3 bottom right).

Pre-training objective We employ the seqs2seqs task to pretrain MSA-Generator. For a given
source MSA X ∈ RD×L, the loss is computed with respect to the target MSA Y ∈ RD′×L as
follows:

Lseqs2seqs = − 1

D′ × L

D′∑
d=0

L∑
l=0

logP (ydl |yd<l, X) (4)

It’s crucial to note that each sequence y ∈ Y is generated referencing the entire source matrix X , and
this generation occurs in parallel owing to the thoughtful design of the architecture.

Pretrained MSA-Generator adopts 12 transformer encoders/decoders with 260M parameters, 768
embedding size, and 12 heads. It’s pretrained with ADAM-W at a 5e−5 rate, 0.01 linear warm-up,
and square root decay for 200k steps on 8 A100 GPUs, batch size of 64, using a dataset containing
2M MSAs constructed as described in section 3.1.

3.3 Generation and Ensemble Strategy

During inference, for every query sequence x, we initially use a search algorithm to assemble a
MSA denoted as X . This is subsequently inputted into MSA-Generator to produce MSA Y . The
concatenated MSA X ⊕ Y serves as input for the subsequent task. Nucleus sampling (Holtzman
et al., 2019), set with top-p=50 and top-k=10, is implemented to foster unique sequences and curtail
redundancy.

For the purpose of optimizing the PSP task and yielding informative sequences, we adopt pLDDT
as our selection criterion, leveraging our ability for swift MSA generation. pLDDT (Kryshtafovych
et al., 2019; Jumper et al., 2021) measures the accuracy of predicted inter-residue distances for each
residue in a protein, serves as a confidence indicator, with elevated scores hinting at potentially more
accurate predictions. Utilizing pLDDT, we enhance each MSA through multiple runs, computing
corresponding pLDDT scores for each. The MSA with the premier pLDDT score is subsequently
selected as the optimal ensemble result and employed to determine the prediction accuracy relative to
the ground truth.

4 Empirical Validation

4.1 Setup

The tertiary structure of a protein is pivotal, directly determining its functionality. In structural
biology, the tertiary structure not only reveals the overall conformation of a protein but also inherently
includes insights from secondary structures (Rao et al., 2021; Jones, 1999), such as the arrangement
and orientation of α-helices and β-sheets, and from contact predictions (Wang et al., 2017), denoting
the spatial interactions between amino acid pairs. In essence, the tertiary structure offers a holistic
view, allowing direct inference of localized structural features and interactions between amino acids.
Leveraging tools like AlphaFold2 lets us directly obtain this comprehensive structural data, thereby
bypassing intermediary steps like secondary structure and contact prediction. Given the centrality of
tertiary structure prediction in protein functional studies, we have prioritized this task and adopted
Local Distance Difference Tests 2 (LDDT) (Mariani et al., 2013) and pLDDT as our metric for
evaluating prediction accuracy. We also adopt Template modeling score (TM-Score) and Global
distance test (GDT-TS) to measure global structure prediction accuracy. Specifically, we assess

2OpenStructure is used for LDDT calculation

6

57329https://doi.org/10.52202/079017-1827



MSA-Generator by comparing preotein tertiary structures predicted from PSP algorithm, namely
AlphaFold2 and RoseTTAFold, with various input MSAs. Demonstrating the usefulness of generated
MSAs and the efficacy of MSA-Generator.

Benchmark & Dataset We employ CASP14/15 as our test set, a prestigious dataset that encom-
passes proteins from a broad spectrum of biological families. The creation of a vast protein structure
prediction dataset is prohibitively expensive, and given that AF2 has already trained on all previously
available structures, this dataset emerges as the best evaluation benchmark. It’s important to highlight
that sequences from CASP14/15 aren’t part of our pretraining dataset, and our evaluations
precede the AF2 version updated with CASP14/15 information.

Our primary interest lies in challenging protein sequences devoid of homologues, rendering traditional
search algorithms ineffective. For every query in our test dataset, we use JackHMMER to search
within UniRef90, which contains 70 million sequences, in order to gather related homologues. We
define two scenarios: (1) artificial challenging MSAs , where we purposefully pick the top 15
homologues for each test set query as an artificial gold standard. From these, 5 homologues are
further sampled as the artificial baseline, offering a synthetic challenge. (2) real-world challenging
MSAs , which includes 20 sequences from test set, each with homologues less than 20, significantly
challenge PSP algorithms. All assessments are executed in a zero-shot setting.

4.2 Are Virtual MSAs as good as Real MSAs ?

Figure 4: Artificial Challenging Cases Results from AlphaFold2 (a) Violin plots of LDDT distribution. (b)
x-axis represents LDDT of artificial gold standard, and the y-axis represents LDDT of artificial baseline and
artificial augmentation. Dashed-line represents 95% confidence intervals (c) Pie chart of LDDT improvements
in intervals. The inner circle represents a comparison with the baseline, while the outer circle represents a
comparison with the real.

We employ Artificial challenging MSAs to thoroughly compare our generated virtual MSAs with
conventional searched real MSAs to demonstrate that virtual MSAs can closely approximate real ones
in downstream tasks. Specifically, for every Baseline MSA, we deploy MSA-Generator to produce a
Virtual MSA that poses the same depth of the Real MSA. For each MSA, we employ an ensemble of
three runs using the strategy outlined in section 3.3. Refer to fig. 4 for the results.

The fig. 4 (a) shows that the LDDT distribution of the baseline suffers a sharp decline when reduced
from 15 to 5 sequences. This underscores the importance of MSA quality for cutting-edge PSP
algorithms. Yet, when supplemented by MSA-Generator’s generative virtual MSA, the gap to the Real
narrows considerably, reflecting a LDDT enhancement of 12.8. This underscores the effectiveness of
our generated MSAs.

A more granular observation in fig. 4 (b) illustrates that the majority of baseline data points are below
the diagonal, while most Virtual points sit above it, some even considerably outpacing the Real. fig. 4
(c) illustrates the statistics on improvements in intervals. It’s evident that our generative virtual MSAs
effectively improve results for 72.8% of protein sequences (over Baseline). Remarkably, nearly
half of the generated virtual MSAs even outperform the real searched MSAs. This emphasizes the
importance of generative MSAs and the potential of the seqs2seqs task in uncovering co-evolutionary
patterns within bio-sequences. Among them, there are even 6 generative virtual MSA that surpass
real MSA by more than 30 LDDT, including most notable T1032-D1 (+46.02 LDDT), T1054-D1
(+46.8 LDDT), and T1070-D2 (+61.22 LDDT), suggesting that without generative virtual MSA,
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current PSA algorithm may fail on these queries. Comprehensive results for individual MSAs can be
found in the Appendix.

4.3 Real-World MSA Challenges

PSP Algorithm CASP14 (avg. Det. = 6.1) CASP15 (avg. Det. = 7.4)

pLDDT↑ LDDT↑ TM-Score ↑ GDT-TS ↑ pLDDT↑ LDDT↑ TM-Score↑ GDT-TS ↑
single-sequence-based

ESMFold 43.3 41.9 0.56 0.47 46.0 53.4 0.47 0.41
OmegaFold - 43.1 0.51 0.44 - 49.6 0.44 0.39

MSA-based
RoseTTAFold 63.5 51.3 0.56 0.51 62.6 52.1 0.53 0.46
RoseTTAFold+Potts Generation 63.2 48.9 0.56 0.50 94.4 51.0 0.52 0.46
RoseTTAFold+Iterative Unmasking 63.9 52.2 0.57 0.53 65.3 55.3 0.55 0.48
RoseTTAFold+MSA-Generator 68.9+5.4 56.3+5.0 0.61+5% 0.56+5% 69.0+6.4 58.4+6.3 0.58+5% 0.50+4%

AlphaFold2 65.1 53.2 0.59 0.54 65.1 55.6 0.55 0.49
AlphaFold2+Potts Generation 63.8 50.9 0.60 0.55 64.5 52.6 0.56 0.48
AlphaFold2+Iterative Unmasking 65.2 54.6 0.61 0.57 69.5 57.3 0.57 0.51
AlphaFold2+MSA-Generator 71.6+6.4 57.5+4.3 0.65+6% 0.60+6% 73.7+8.6 63.7+8.1 0.61+6% 0.53+4%

Table 1: Real-World MSA Challenges average pLDDT, LDDT and RMSD enhancement scores, averaged over
3 runs; avg. Det. represents average depth of MSA.

Our ultimate goal is to produce high-quality MSAs for protein sequences with few homologues.
Current search algorithms often fail to construct quality MSAs for these, making PSP algorithms
similarly struggle with accurate predictions. The Real-world challenging MSAs evaluation is devised
to test the efficacy of the seqs2seqs generative pretraining approach in addressing this challenge.
For this, we curate sequences with fewer than 20 homologues using the search method detailed in
section 4.1. For every identified MSA, we employ MSA-Generator to generate an MSA of identical
depth across three independent runs. Subsequently, we measure the ensemble LDDT by inputting
them to the PSP algorithm following section 3.3. For comparison, our benchmarks include the strong
single-sequence folding technique, ESMFold (Lin et al., 2022) and OmegaFold (Wu et al., 2022a);
we apply the same evaluation set up for the iterative unmasking strategy highlighted in (Sgarbossa
et al., 2022); and generation with Potts models (Figliuzzi et al., 2018).

Table 1 presents the pLDDT, LDDT, TM-Score and GDT-TS improvements achieved through various
MSA generation techniques across different models. The single-sequence-based models lags behind
MSA-based strategies. AF2 consistently outperforms RoseTTAFold in both metrics. Potts models,
intriguingly, don’t demonstrate a pronounced ability to produce effective MSAs. This is evidenced
by their marginally reduced average performance in both metrics, echoing findings from (Sgarbossa
et al., 2022; Rao et al., 2020). While iterative unmasking with MSA Transformer (Sgarbossa et al.,
2022) can generate usable MSAs in certain scenarios, the MSAs it produces are often less diverse
due to the inherent unmasking process, thus limiting its enhancement potential.

In contrast, the method we propose demonstrates significant enhancements across all metrics in both
models. This suggests that the MSAs produced by our approach are predominantly informative. In
particular, 75% of the MSAs experienced substantial improvement, leading to an average increase
in LDDT scores of 4.3 for CASP14 and 8.1 for CASP15. Our observations reveal a consistent 6%
improvement in both TM-Score and GDT-TS for CASP14, alongside a 6% increase in TM-Score and
a 4% rise in GDT-TS for CASP15. These results underscore our method’s efficacy in enhancing both
local and global structure predictions.

Orphan25 pLDDT LDDT TM-Score GDT-TS
AlphaFold2 77.2 61.6 0.61 0.62
AlphaFold2+Potts Generation 68.9 49.3 0.49 0.43
AlphaFold2+Iterative Unmasking 78.9 62.5 0.64 0.63
AlphaFold2+MSA-Generator 81.8 66.4 0.69 0.67

Table 2: Comparison of AlphaFold2 variants on the Orphan25
dataset.

Remarkable LDDT enhancements
were observed in T1093-D1 (with 3
homologous), moving from 45.5 to
70.77, and in T1113 (with 10 homolo-
gous), rising from 32.6 to 80.6. How-
ever, in specific MSAs, like T1094-
D2 (7 homologous, pLDDT +2.8,
LDDT -0.1), T1099-D1 (8 homolo-
gous, pLDDT +1.11, LDDT -0.5), and
T1178 (15 homologous, pLDDT +2.2,
LDDT -12.3), an elevation in pLDDT was offset by a decline in LDDT. This suggests that pLDDT
might not always be a consistent indicator for selection strategy outlined in section 3.3. Detailed
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results for each individual MSA are available in the appendix E A more challenging aspect of our
study involves enhancing the prediction of structures for orphan protein sequences. To evaluate our
method in this context, we included results from an orphan protein family, Orphan25 Wang et al.
(2022b). We employed MMseqs2 to search against the UniRef30 and ColabFoldDB databases Mirdita
et al. (2022), with ColabFoldDB being an extension of BFD/MGnify, enriched with metagenomic
sequences from diverse environments. By selecting sequences without homologues, we identified
a test set comprising 10 proteins (6WKY, 6WL0, 6XA1, 6XN9, 6XYI, 7A5P, 7AL0, 7JJV). The
outcomes, summarized in table 2, indicate that our approach demonstrates substantial benefits for
orphan protein sequences. This suggests that our method is particularly advantageous for challenging
inputs.

4.4 Re-Evaluating pLDDT as a Selection Metric

Figure 5: (Left) LDDT improvement selected by different criteria; (Right) Protein structure visualization with
pLDDT and LDDT selected by Best-pLDDT.

We sought to examine the effectiveness of pLDDT as a criterion. As previously highlighted, for
specific proteins, improvements in pLDDT do not necessarily correlate with increases in LDDT. To
delve deeper, we conducted an experiment where LDDT was directly calculated for each enhanced
MSA in section 4.3. We then selected the highest LDDT as the output, bypassing the use of pLDDT
as an intermediary metric.

(a) (Left) Results of Ensemble Runs (Right) Results of
Augmentation Factor

(b) (Left) Box Plot of Averaged Shannon Entropy
(Right) Violin Plot of Pearson correlation coefficient
between Searched Real PSSM and Generated Virtual
PSSM

Figure 6: Ablation and MSA feature.

The disparity between pLDDT-based and LDDT-
based predictions shown in fig. 5 suggests that
pLDDT may not always be the best criterion.
A noticeable gap exists between the two crite-
ria (evident in the blue and red regions). For
example, proteins T1064-D1 (depth=9) and
T1122 (depth=1) exhibit significant gaps be-
tween scores chosen by LDDT versus pLDDT,
highlighted in red boxes. Interestingly, for
T1178 (depth=15), the highest pLDDT selec-
tion scores -12.3 against the baseline, while
LDDT selection results in a +2.7. This implies
that some generated MSAs, even with lower
pLDDT scores, can enhance the LDDT. This
indicates that our approach has untapped po-
tential that could benefit from more nuanced
selection criteria. The ideal situation would be
for both predictions to produce the same signif-
icant improvement, as emphasized by the green
boxes and visualized in fig. 5 (Right). Notably,
MSA-Generator shows notable improvements
for protein sequences with few homologs, em-
phasizing its utility in real-world protein folding
challenges.
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4.5 MSA Diversity & Conservation

We directly evaluated the generated MSAs based on two key characteristics: diversity and con-
servation. All experiments setup are consist with section 4.3. To measure diversity, we analyzed
the average Shannon Entropy across MSA columns. Compared to the Iterative Unmask method
(Sgarbossa et al., 2022), our technique, as illustrated in fig. 6b (left), consistently yields higher
Entropy, suggesting increased diversity. For conservation, we examined the Position-Specific

Scoring Matrix (PSSM) (Altschul et al., 1997) of both original and MSA-Generator-generated MSAs.
The PSSM gauges conservation of specific amino acids. The Pearson correlation coefficient between
the searched real and generated virtual PSSMs, shown in fig. 6b (right), highlights the retention of
amino acid conservation in generative virtual MSAs (see fig. 7 for visualization of conversation).
The outcomes highlight MSA-Generator’s effectiveness as an MSA generator and demonstrate the
broader capabilities of the seqs2seqs framework.

4.6 Ablation Study

Following section 4.3 setup, we investigated the impact of Ensemble Runs and Sequence Augmenta-
tion Factor on PSP outcomes, as shown in fig. 6a. While additional ensemble runs lead to improved
pLDDT scores, gains in LDDT plateau after three runs, even with higher computational expenses.
Hence, we chose 3 runs to optimize performance and efficiency. Furthermore, a higher augmentation
factor does not always yield better results; the identical input MSA might lack new insights, and extra
sequences risk introducing noise.

5 Conclusion

We present an unsupervised seqs2seqs task, accompanied by an automated dataset construction
pipeline, designed to pre-train MSA-Generator for simultaneous multi-sequence generation. Rigorous
experimentation underscore the effectiveness, diversity, and conservation feature of generated virtual
MSAs, amplifying the prowess of stalwarts like AlphaFold2 in scenarios where conventional methods
come up short. Furthermore, our approach demonstrates generalization across a wide array of
protein sequence families in a zero-shot fashion. Our findings highlight the immense promise of
the unsupervised seqs2seqs task, pointing towards its prospective utility in a broader spectrum of
bio-sequences, thereby amplifying its benefits.

Limitation

While MSA-Generator demonstrates promising improvements in protein structure prediction, there
are several limitations to consider.

First, we did not conduct scale-up experiments to explore the effects of increasing model size and
expanding the pre-training dataset. It is possible that larger models and more comprehensive training
data could further enhance the generative capabilities for sequence prediction, potentially improving
structure prediction accuracy. Second, our current approach relies on selecting the maximum pLDDT
score from multiple runs, which may not be the most optimal method and introduces inefficiency due
to the need for repeated predictions. Developing a more refined metric to assess MSA quality or better
predict the reliability of the final structure could significantly improve efficiency and consistency
in future work. Lastly, although our model effectively handles proteins with limited homologous
sequences, the generated MSAs typically do not achieve substantial depth. Increasing the depth of
these generated MSAs would require higher computational resources, as the complexity scales with
MSA depth. Addressing this challenge will be crucial for extending the applicability of our approach
to a broader range of protein sequences.
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A Pretraining Details

We have compiled a pretraining dataset containing 2M MSAs from four databases: Uniref90
v.2022 04 using pipeline discussed in section 3.1. Specifically, for each MSA we randomly se-
lect 10-30 sequences and query as source X and another 10-30 sequences as target Y .

B MSA Visualization

Our goal is to explore the variations in MSA sequences using MSA-Generator. Accordingly, we
depict the MSA’s colored distribution in Fig 7 using Jalview3. Observing the columnar distribution,
it’s evident that the produced MSA bears resemblances to the original sequences but introduces
unique variations that encapsulate the external insights derived from MSA-Generator. This show the
conservative feature reserved by the MSA and enhanced diversity as well.

Figure 7: colored-distribution MSA, different colors represent different amino acids in protein
sequence, from top to bottom is T1060s2-D1, T1093-D1, T1096-D1. since MSA-Generator augment
one times more sequences, the top half of each diagram represents original MSA, and bottom half
represent generated MSA

C Search Parameter

We use JackHMMER to build pretraining MSA dataset. We adopt default parameters, including: -E
= 0.001, -N=5, -Z=1000, –incE=0.01.

D Relation between MSA depth, quality, and downstream performance

The relationship between Multiple Sequence Alignment (MSA) depth, its quality, and the consequent
impact on downstream performance is a critical factor in our analysis. For an in-depth discussion on
how MSA depth influences quality and downstream tasks, we refer the reader to Figure 5 (a) in the
AlphaFold2 paper by Jumper et al. Jumper et al. (2021), where the authors illustrate that a reduction
in MSA depth can lead to decreased quality and hinder performance in downstream applications.

In support of this, our Figure 4, which presents a violin plot, shows that a baseline MSA depth
of 5 tends to underperform when compared to real and virtual depths of 15. This observation is
particularly evident from the distribution of scores, where the baseline depth of 5, represented in blue,
is more concentrated towards lower scores, unlike the distributions for real and virtual depths of 15,
depicted in yellow and red respectively.

Additionally, an intuitive approach would be introduction of random protein sequences to the MSA,
our implementation of ‘Iterative Unmasking’ baseline already employed a similar concept which

3This figure is intended solely for the visualization of the generated Multiple Sequence Alignments, and does
not contribute to the analytical evaluations of our study.
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Method CSAP14-plddt CSAP14-lddt CSAP15-plddt CSAP15-lddt
AlphaFold2 65.1 53.2 65.1 55.6
AlphaFold2+5% random 64.3 50.6 62.3 50.9
AlphaFold2+10% random 60.5 49.5 59.6 43.2
AlphaFold2+15% random 55.6 44.3 53.8 39.6
AlphaFold2+Ours 71.6 57.5 73.7 63.7

Table 3: Comparison of different methods on CSAP14 and CSAP15 datasets.

randomly unmasked tokens using the MSA Transformer. Despite this strategy, as shown in our Table
1, the improvement in results was not significant. To address further concerns, we explored the
introduction of random sequences by substituting 5%, 10%, and 15% of the tokens within the MSA,
thereby artificially increasing its depth as documented in Table 3. This modification, however, led to
a decline in downstream performance, thereby affirming the effectiveness of our original method.

E Detailed Results

Real-Word Difficult and Challenging Results Detailed results for Section 4.3 and 4.4 are pre-
sented in Table 4.

ID Depth pLDDT LDDT
Org Run1 Run2 Run3 Org Run1 Run2 Run3

T1037-D1 4 36.04 40.68 36.04 36.04 24.09 26.08 24.09 24.09
T1042-D1 2 41.99 42.25 45.45 47.86 32.42 32.19 32.43 32.84
T1064-D1 9 60.34 66.93 63.1 65 31.25 37.48 31.34 51.36
T1074-D1 9 85.96 85.96 85.96 85.96 81.14 81.14 81.14 81.14
T1082-D1 10 92.31 92.79 92.31 92.31 87.37 88.49 87.37 87.37
T1093-D1 3 62.1 81.26 62.1 62.1 45.5 70.77 45.5 45.5
T1094-D2 7 90.54 90.54 93.34 91.47 77.12 77.12 77.02 76.47
T1096-D1 7 70.28 73.06 86.25 83.28 61.92 62.83 71.19 69.23
T1096-D2 2 45.55 50.01 54.55 50.24 34.07 36.56 36.98 34.66
T1099-D1 8 89.27 89.99 89.27 90.38 75.12 74.27 75.12 74.62
T1100-D2 2 42.16 47.27 42.16 42.16 34.93 35.87 34.93 34.93

T1113 10 43.5 82.4 76.4 77.0 32.6 80.6 78.9 78.0
T1119 2 93.4 94.5 92.4 93.6 91.1 90.8 90.4 90.0
1122 1 65.9 80.2 78.6 79.8 43.3 73.4 70.2 83.2
1125 15 49.6 54.4 54.8 53.2 38.2 45.0 45.0 43.2
1130 1 50.6 60.2 60.0 58.9 39.4 46.0 46.9 45.8
1131 1 40.6 46.0 45.4 46.2 32.6 48.6 38.2 38.6
1178 15 79.2 80.6 81.4 80.3 58.2 60.9 45.9 58.9
1194 14 93.4 94.1 93.4 93.4 90.2 91.7 90.5 91.7

Table 4: pLDDT (left) and LDDT (right) improvement over difficult MSA (depth≤20) of 3 runs.

Artificial Extreme Challenging Results Results for section 4.2 are shown in table 5 and table 6.
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MSA-ID Gold Original Aug1 Aug2 Aug3 ENs over original over gold
T1024-D1 87.10 81.56 77.25 81.62 81.62 81.62 0.06 -5.48
T1024-D2 84.44 86.66 79.67 82.84 82.84 82.84 -3.82 -1.60
T1025-D1 83.81 82.04 78.92 76.61 76.61 78.92 -3.12 -4.89
T1026-D1 82.27 48.72 22.59 79.82 79.82 79.82 31.10 -2.45
T1027-D1 48.81 39.15 37.31 46.38 46.38 46.38 7.23 -2.43
T1028-D1 75.57 32.35 52.62 52.09 52.09 52.62 20.27 -22.95
T1029-D1 47.62 47.43 47.76 47.44 47.44 47.76 0.33 0.14
T1030-D1 86.85 64.92 86.68 86.56 86.56 86.68 21.76 -0.17
T1030-D2 82.25 80.99 81.76 82.06 82.06 82.06 1.07 -0.19
T1031-D1 65.65 43.58 30.75 37.99 37.99 37.99 -5.59 -27.66
T1032-D1 22.48 19.90 68.50 62.11 62.11 68.50 48.60 46.02
T1034-D1 86.75 83.15 83.65 84.05 84.05 84.05 0.90 -2.70
T1035-D1 32.52 33.78 34.56 36.32 36.32 36.32 2.54 3.80
T1036s1-D1 67.02 26.11 79.99 79.13 79.13 79.99 53.88 12.97
T1038-D1 55.80 26.03 38.04 27.61 27.61 38.04 12.01 -17.76
T1038-D2 80.60 76.37 61.02 58.57 53.99 61.02 -15.35 -19.58
T1041-D1 62.13 45.60 32.14 0.00 34.74 34.74 -10.86 -27.39
T1045s1-D1 56.74 33.67 89.22 83.99 88.47 89.22 55.55 32.48
T1045s2-D1 27.65 24.44 22.81 24.89 21.61 24.89 0.45 -2.76
T1046s1-D1 87.67 72.65 87.33 0.00 87.98 87.98 15.33 0.31
T1046s2-D1 63.88 25.42 51.58 52.44 36.05 52.44 27.02 -11.44
T1047s1-D1 58.76 60.01 59.75 61.65 61.23 61.65 1.64 2.89
T1047s2-D1 40.65 39.12 69.07 70.64 71.69 71.69 32.57 31.04
T1047s2-D2 58.59 59.58 64.60 64.30 67.72 67.72 8.14 9.13
T1047s2-D3 58.12 51.61 57.63 58.18 57.53 58.18 6.57 0.06
T1048-D1 70.60 72.34 71.81 71.75 71.82 71.82 -0.52 1.22
T1049-D1 72.85 33.01 80.28 81.03 72.12 81.03 48.02 8.18
T1050-D1 89.66 88.46 73.27 72.51 72.97 73.27 -15.19 -16.39
T1050-D2 81.05 76.84 76.81 78.93 0.00 78.93 2.09 -2.12
T1050-D3 71.11 70.25 48.28 51.18 49.74 51.18 -19.07 -19.93
T1052-D1 77.26 68.84 82.18 83.82 83.08 83.82 14.98 6.56
T1052-D2 48.22 34.95 57.37 59.27 30.91 59.27 24.32 11.05
T1052-D3 90.81 82.12 89.62 85.22 0.00 89.62 7.50 -1.19
T1053-D1 72.86 30.58 73.75 74.09 65.32 74.09 43.51 1.23
T1053-D2 75.75 75.61 77.31 76.25 0.00 77.31 1.70 1.56
T1054-D1 34.64 31.68 70.68 81.44 0.00 81.44 49.76 46.80
T1055-D1 67.90 55.88 19.03 25.46 21.62 25.46 -30.42 -42.44

Table 5: artificial challenging MSAs results (1/2).

17

57340 https://doi.org/10.52202/079017-1827



MSA-ID Gold Original Aug1 Aug2 Aug3 ENs over original over gold
T1056-D1 75.61 76.11 64.62 65.39 62.93 65.39 -10.72 -10.22
T1057-D1 86.18 52.96 81.38 80.30 81.04 81.38 28.42 -4.80
T1058-D1 45.72 38.10 37.47 41.31 39.76 41.31 3.21 -4.41
T1058-D2 51.18 29.59 61.13 60.41 60.73 61.13 31.54 9.95

T1060s2-D1 75.25 38.44 72.84 74.01 0.00 74.01 35.57 -1.24
T1060s3-D1 80.69 69.93 78.72 78.31 78.89 78.89 8.96 -1.80
T1061-D0 60.24 57.51 54.74 0.00 58.36 58.36 0.85 0.85
T1061-D1 37.50 24.28 51.45 46.94 50.60 51.45 27.17 13.95
T1061-D2 53.34 31.82 58.05 50.32 55.92 58.05 26.23 4.71
T1061-D3 81.92 42.92 77.44 77.34 76.29 77.44 34.52 -4.48
T1062-D1 59.10 72.66 72.61 59.58 0.00 72.61 -0.05 13.51

T1065s1-D1 88.59 44.32 90.31 91.00 0.00 91.00 46.68 2.41
T1065s2-D1 70.46 63.90 80.77 87.09 83.49 87.09 23.19 16.63
T1067-D1 78.55 27.33 79.05 75.29 77.91 79.05 51.72 0.50
T1068-D1 85.05 35.20 89.55 88.93 89.92 89.92 54.72 4.87
T1070-D1 53.44 49.68 55.69 52.55 52.73 55.69 6.01 2.25
T1070-D2 29.16 35.04 87.50 86.84 90.38 90.38 55.34 61.22
T1070-D3 74.12 73.32 73.56 73.50 0.00 73.56 0.24 -0.56
T1070-D4 73.83 30.62 74.39 84.71 85.07 85.07 54.45 11.24
T1073-D1 76.17 76.19 76.79 0.00 76.11 76.79 0.60 0.62
T1076-D1 83.10 65.52 71.31 68.61 68.35 71.31 5.79 -11.79
T1078-D1 77.22 54.56 0.00 64.61 72.25 72.25 17.69 -4.97
T1079-D1 84.51 63.88 79.44 69.34 68.08 79.44 15.56 -5.07
T1080-D1 63.68 59.76 67.91 67.67 68.08 68.08 8.32 4.40
T1083-D1 78.49 78.26 78.02 77.48 77.72 78.02 -0.24 -0.47
T1084-D1 86.64 86.47 49.09 86.03 86.25 86.25 -0.22 -0.39
T1087-D1 80.76 77.32 37.14 39.73 69.27 69.27 -8.05 -11.49
T1088-D1 26.48 24.00 33.92 34.10 54.40 54.40 30.40 27.92
T1089-D1 83.99 77.55 64.70 64.30 67.15 67.15 -10.40 -16.84
T1090-D1 76.73 55.34 57.65 0.00 56.06 57.65 2.31 -19.08
T1091-D1 43.89 43.26 70.35 71.45 76.76 76.76 33.50 32.87
T1091-D2 81.76 40.56 50.57 0.00 47.30 50.57 10.01 -31.19
T1091-D3 71.58 52.00 75.93 0.00 75.98 75.98 23.98 4.40
T1091-D4 79.76 56.64 83.20 0.00 78.01 83.20 26.56 3.44
T1092-D1 63.77 56.56 33.97 38.95 40.48 40.48 -16.08 -23.29
T1092-D2 70.61 53.20 43.76 26.54 43.80 43.80 -9.40 -26.81
T1093-D2 29.91 34.69 28.20 28.12 31.08 31.08 -3.61 1.17
T1094-D1 28.74 26.73 21.89 21.63 20.72 21.89 -4.84 -6.85
T1095-D1 60.06 55.57 35.95 36.50 32.78 36.50 -19.07 -23.56
T1098-D1 57.45 29.82 49.36 45.94 36.76 49.36 19.54 -8.09
T1098-D2 37.88 31.58 45.70 45.89 45.36 45.89 14.31 8.01
T1100-D1 57.78 65.70 60.39 60.01 61.10 61.10 -4.60 3.32
T1101-D1 88.14 87.57 87.95 87.64 86.52 87.95 0.38 -0.19
T1101-D2 78.74 77.81 43.27 42.09 74.91 74.91 -2.90 -3.83
Average 66.47 53.45 61.77 57.14 56.43 66.32 12.87 -0.11

Table 6: artificial challenging MSAs results (2/2).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract is summary of the content of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the last paragraph of Conclusion section.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of training and inference in section 3 and 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We released the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: yes, provided in section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We didn’t provide statical results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We perform the task with one gpu, and we provide training details for pretrain-
ing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we do.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No relevant.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No relevant.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow protocol.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide codebase.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: Not relevant.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not relevant.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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