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Abstract

How to evaluate Large Language Models (LLMs) in code generation remains
an open question. Many benchmarks have been proposed, but they have two
limitations, i.e., data leakage and lack of domain-specific evaluation. The former
hurts the fairness of benchmarks, and the latter hinders practitioners from selecting
superior LLMs for specific programming domains.
To address these two limitations, we propose a new benchmark - EvoCodeBench,
which has the following advances: ❶ Evolving data. EvoCodeBench will be
dynamically updated every period (e.g., 6 months) to avoid data leakage. This
paper releases the first version - EvoCodeBench-2403, containing 275 samples
from 25 repositories. ❷ A domain taxonomy and domain labels. Based on
the statistics of open-source communities, we design a programming domain
taxonomy consisting of 10 popular domains. Based on the taxonomy, we annotate
each sample in EvoCodeBench with a domain label. EvoCodeBench provides a
broad platform for domain-specific evaluations. ❸ Domain-specific evaluations.
Besides the Pass@k, we compute the Domain-Specific Improvement (DSI) and
define LLMs’ comfort and strange domains. These evaluations help practitioners
select superior LLMs in specific domains and discover the shortcomings of existing
LLMs. Besides, EvoCodeBench is collected by a rigorous pipeline and aligns with
real-world repositories in multiple aspects (e.g., code distributions). We evaluate
8 popular LLMs (e.g., gpt-4, DeepSeek Coder, StarCoder 2) on EvoCodeBench
and summarize some insights. EvoCodeBench reveals the actual abilities of these
LLMs in real-world repositories. For example, the highest Pass@1 of gpt-4 on
EvoCodeBench-2403 is only 20.74%. Besides, we evaluate LLMs in different
domains and discover their comfort and strange domains. For example, gpt-4
performs best in most domains but falls behind others in the Internet domain.
StarCoder 2-15B unexpectedly performs well in the Database domain and even
outperforms 33B LLMs. We release EvoCodeBench, all prompts, and LLMs’
completions for further community analysis1.

1 Introduction

Large Language Models (LLMs) have shown impressive abilities in code generation [14, 15, 18].
As more and more LLMs emerge, a reliable code generation benchmark is crucial to evaluating and
selecting superior LLMs. Many benchmarks have been proposed, such as HumanEval [3], ClassEval
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[7], and DevEval [16]. Researchers spend lots of effort to annotate test data manually and construct
these benchmarks. For example, ClassEval and DevEval cost 500 and 674 person-hours, respectively.

Although promising, existing benchmarks have two limitations.

❶ Data leakage (aka data contamination). It means that test data is included in the training data.
The trained models perform much better on leaked benchmarks than on real-world tasks. Because
the training data of LLMs contains almost all open-source code repositories, existing benchmarks
probably have data leakages [6]. Researchers have to spend more effort to construct new benchmarks.

❷ Lack of domain-specific evaluation. Programming is highly domain-specific. Developers
typically focus on specific domains (e.g., database). Compared to comprehensive coding abilities,
developers are more concerned about the performance of LLMs in specific domains. However,
existing benchmarks lack domain labels or fall into narrow domains. Besides, they ignore domain-
specific evaluations and analyses. Thus, the performance of LLMs across domains is still unclear.

To alleviate the above limitations, we propose a new code generation benchmark named
EvoCodeBench. EvoCodeBench has three novelties. ❶ Evolving data. To avoid data leakages,
EvoCodeBench is an evolving benchmark and will be dynamically updated every period (e.g., 6
months). Specifically, we build an automatic collection pipeline, which constructs new versions of
EvoCodeBench from the latest repositories. More details about the pipeline are in Section 2.3. ❷ A
domain taxonomy and domain labels. PyPI [24] is a popular open-source community containing
code repositories from various domains. Based on the statistics of repositories on PyPI, we design a
programming domain taxonomy covering 10 popular domains. Based on the taxonomy, we annotate
each sample in EvoCodeBench with a domain label. In the future, we will refine the taxonomy
(e.g., adding emerging domains) and provide a broad platform for domain-specific evaluations. ❸
Domain-specific evaluations. Besides the Pass@k, we propose the Domain-Specific Improvement
(DSI), which reflects the position of an LLM in specific domains. Based on the DSI, we define the
comfort domains (e.g., DSI > 10%) and strange domains (e.g., DSI < -10%) of LLMs. These metrics
allow practitioners to effectively select superior LLMs in specific domains. Model trainers can also
discover which domains LLMs are weak to facilitate future iterations.

Besides the above advances, EvoCodeBench has an advantage in data quality. ❹ EvoCodeBench
is collected from high-quality open-source repositories. More importantly, EvoCodeBench aligns
with real-world repositories in multiple aspects, e.g., code distributions and dependency distributions.
This ensures that the performance of LLMs on EvoCodeBench reflects their abilities in real-world
development scenarios. ❺ EvoCodeBench offers comprehensive annotations, e.g., natural language
requirements, original repositories, reference code, reference dependencies, domain labels, and test
cases. EvoCodeBench computes Pass@k and Recall@k to measure the correctness of generated
programs in functionality and dependencies.

In this paper, we release the first version - EvoCodeBench-2403, which consists of 275 samples from
25 real-world repositories. Based on EvoCodeBench-2403, we evaluate 8 popular LLMs (i.e., gpt-4
[21], gpt-3.5 [20], DeepSeek Coder [10], StarCoder 2 [19], CodeLLaMa [26]). Based on extensive
experiments, we obtain the following insights. ❶ EvoCodeBench significantly alleviates the data
leakage and decreases the potential leak rate from 41.47% to 2.18%. ❷ EvoCodeBench provides
a reliable evaluation for repo-level code generation. We analyze these LLMs’ failed cases and
summarize future directions, e.g., long context modeling ❸ We evaluate LLMs in different domains
and discover their comfort domains and strange domains. For example, gpt-4 performs best in most
domains but performs worse than others in the Internet domain. StarCoder 2-15B unexpectedly
performs well in the Database domain and even outperforms 33B LLMs.

2 EvoCodeBench

In this section, we first show an overview of EvoCodeBench and then describe its tasks and evaluation
metrics. Then, we present the first version - EvoCodeBench-2403 and its statistics. Finally, we
describe the automatic pipeline for constructing EvoCodeBench.

2.1 Overview

Figure 1 shows a sample in EvoCodeBench. Each sample consists of seven components.
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import httpx
import platform
...
class BaseClient:
...

class Client(BaseClient):
...

class AsyncClient(…):
...

def _encode_image(…):
...

def _as_path(…):
...

(more 700 lines . . .)

Intra-class Dependency:
ollama._client.Client._parse_modelfile
ollama._client.Client._request_stream

Intra-file Dependency:
ollama._client._as_path

Cross-file Dependency:
ollama._types.RequestError

def test_client_create_path_relative(httpserver: HTTPServer): . . .
def test_client_create_modelfile(httpserver: HTTPServer): . . .
def test_client_create_from_library(httpserver: HTTPServer): . . .

def create(self, model: str,
path: Optional[Union[str, PathLike]] = None,
modelfile: Optional[str] = None,
stream: bool = False,

) -> Union[Mapping[str, Any],Iterator[Mapping[str, Any]]]:

if (realpath := _as_path(path)) and realpath.exists():
modelfile = self._parse_modelfile(realpath.read_text())

elif modelfile:
modelfile = self._parse_modelfile(modelfile)

else:
raise RequestError('must provide path or modelfile‘)

return self._request_stream(…)

EvoCodeBench
Stats: An evoloving code generation benchmark
Evaluation Task: Repo-level code generation:①②③→④
Evaluation Metrics: Pass@k (functional correctness, label:⑦), Recall@k (recall of reference dependencies, label:⑤)

① Signature

② Requirement

④ Reference Code

③ Repository

⑤ Reference
Dependency

⑦ Test Cases

Initiate a request to create a model based on the provided 
path. Handle the request either as a single response or as 
a stream of responses, depending on the `stream` parameter.

:param self: Client. An instance of Client class.
:param model: str, The model to be created.
:param path: Optional[…], . . .
:param modelfile: Optional[str], . . .
:param steam, bool, . . .
:return Union[…], . . .

Domain: Software Development ⑥ Domain Label

Figure 1: An overview of EvoCodeBench. Each sample consists of seven components.

❶ Function Signature: The signature of the target code. ❷ Requirement: An English description
detailing the functionality of the target code. ❸ Repository: The current repository contains hundreds
of code files. ❹ Reference Code: A developer-written implementation of the target code. This
code may invoke dependencies defined in the current repository. ❺ Reference Dependency: The
dependencies invoked in the reference code include intra-class, intra-file, and cross-file dependencies.
❻ Domain Label: The domain of the target code. ❼ Test Cases: Test cases are used to check the
functional correctness of the code.

2.2 Task and Metrics

EvoCodeBench evaluates LLMs in repo-level code generation. This task simulates the developers’
coding process in a working repository. Given a requirement and a repository, LLMs are tasked to
generate the code for the repository. Following previous work [16], EvoCodeBench contains two
evaluation metrics, i.e., Pass@k and Recall@k.

Pass@k (Functional Correctness). Following previous studies [3, 1, 29], we assess the functional
correctness of programs by executing test cases and compute the unbiased Pass@k. Specifically, we
generate n ≥ k programs per requirement, count the number of correct programs c ≤ n that pass test
cases, and calculate the Pass@k:

Pass@k := E
Requirements

1−
(

n− c
k

)
(

n
k

)
 (1)

Recall@k (Recall of Reference Dependency). We expect that generated programs can invoke
relevant dependencies defined in contexts. Following previous work [16], we report Recall@k, which
computes the recall of reference dependencies in generated programs.
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Specifically, LLMs generate k programs per requirement. The dependencies invoked by the i-th
generated program are denoted as Pi. We compare Pi with reference dependencies R and compute
the Recall@k:

Recall@k := E
Requirements

[
max
i∈[1,k]

|R ∩ Pi|
|R|

]
(2)

where | · | means the number of elements of a set.

2.3 Benchmark Collection Pipeline

We build an automatic pipeline for collecting EvoCodeBench from the latest repositories. The
pipeline consists of four stages as follows.

Stage I: Repository selection and function scraping. We crawl high-quality repositories from
GitHub, satisfying the following criteria: open-source Python repositories with permissive licenses,
created within the last six months, non-fork and non-malicious projects, more than 50 stars, and
having explicit unit tests. Then, we extract candidate functions from repositories and exclude trivial
functions (e.g., empty or initialization functions).

Stage II: Execution-based filtering. For each candidate function, we extract test cases invoking it
from current repositories. We use pip [22] to install execution environments and leverage Pytest
[25] to run test cases. Candidate functions without executable test cases are excluded.

Stage III: Automatic annotations. We leverage a static analysis-based parser [23] to extract each
candidate function’s signature, function body (i.e., reference code), and invoked dependencies (i.e.,
reference dependencies). Because manually writing requirements is laborious, we use LLMs to
generate requirements. Specifically, we craft a one-shot prompt, which teaches LLMs to write
requirements in a specific format (i.e., functional descriptions and input-output parameters). The
prompt template is in Appendix E.2.

Next, we annotate each sample’s domain label. To standardize the domains, we manually design a
domain taxonomy. Specifically, we collect the statistics (e.g., stars and domains) of repositories in a
popular software community - PyPI [24]. Based on the statistics, we determine the top 10 domains
with the most high-star repositories and construct the taxonomy. The 10 domains cover most of the
repositories on PyPI and are shown in Table 1. In the future, we will continuously refine the taxonomy
(e.g., adding emerging domains). Finally, we make a prompt and leverage LLMs to automatically
annotate domain labels based on candidate functions and our taxonomy. Functions that do not satisfy
any of the domains in our taxonomy are excluded. The prompt template is in Appendix E.2.

In Section 4, we conduct a human evaluation to assess auto-generated annotations. The results
show that auto-generated annotations are comparable to human-written ones in most cases (i.e.,
requirement: 96.7% samples and domain label: 98.5% samples).

Table 1: The domain distribu-
tion of EvoCodeBench-2403.

Domain Count

Scientific Engineering 120
Software Development 50
Multimedia 32
Database 18
System 17
Internet 15
Text Processing 12
Communications 8
Utilities 2
Security 1

Stage IV: Benchmark Construction. Finally, we randomly select
several candidate functions to construct EvoCodeBench. Following
the related work [16], we strive to make EvoCodeBench satisfy the
following goals: consistent with the code distribution observed in
500 real-world repositories, close to the average number of depen-
dencies in 500 real-world repositories, including as many samples
as possible. We have anonymized all personal information in the
benchmark.

2.4 EvoCodeBench-2403

Through the above pipeline, we collect and release the first version
- EvoCodeBench-2403. The statistics of EvoCodeBench-2403 are
shown in Table 2. We discuss its features as follows.

❶ Latest repositories to avoid data leakage. Considering that most code LLM’s [19, 10] training
data is up to September 2023, existing benchmarks might have been leaked. For example, all
repositories in CoderEval were created before September 2023. In contrast, the 25 repositories in
EvoCodeBench-2403 were created between October 2023 and March 2024 and are not included in
the training data. The details of 25 repositories is in Appendix D.2.
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Table 2: The comparison between existing benchmarks and EvoCodeBench-2403. SA and Depend
are the abbreviations of “standalone” and “dependency”, respectively.

Benchmark Code Distribution Dependency Distribution Annotation#Repo. #Sample SA Non-SA #Type #Avg.

CoNaLa [28] – 500 100% 0% 0 0 NL, Code
HumanEval [3] – 164 100% 0% 0 0 NL, Code
MBPP [1] – 974 100% 0% 0 0 NL, Code
APPS [11] – 5,000 100% 0% 0 0 NL, Code
PandasEval [30] – 101 100% 0% 0 0 NL, Code
NumpyEval [30] – 101 100% 0% 0 0 NL, Code
AixBench [17] – 175 100% 0% 0 0 NL, Code
ClassEval [7] – 100 100% 0% 0 0 NL, Code, Depend. Name

Concode [12] – 2,000 20% 80% 1 1.23 NL, Code
CoderEval [29] 43 230 36% 64% 3 1.73 NL, Code, Depend. Name
DevEval [16] 117 1,874 27% 73% 3 3.41 NL, Code, Depend, Repo

EvoCodeBench-2403 25 275 27% 73% 3 3.46 NL, Code, Depend
Repo, Domain

500 Real Repositories 500 1M+ 27% 73% 3 3.22 –

❷ Diverse domains. EvoCodeBench-2403 covers all programming domains in our taxonomy. The
domain distribution of EvoCodeBench-2403 is shown in Table 1. It provides a broad platform to
evaluate and analyze the performance of LLMs across domains. Because that EvoCodeBench-2403
is our first version, the domain distribution may be unbalanced. In the future, we will collect new
samples from the latest repositories and expand the data sizes in different domains.

❸ High data quality. EvoCodeBench-2403 is collected by a rigorous pipeline and contains high-
quality test data. First, as shown in Table 2, EvoCodeBench-2403 aligns with real-world repositories in
multiple aspects. For example, the code distribution of EvoCodeBench-2403 is consistent with that of
500 real-world repositories2. Second, EvoCodeBench-2403 provides comprehensive annotations (e.g.,
requirements, reference code, reference dependency, and the original repository). These annotations
offer a broad arena to explore repo-level code generation. Third, each sample in EvoCodeBench-
2403 is equipped with an average of 6 test cases rigorously validated through human reviews. In
comparison, each sample in a popular benchmark - MBPP [1] has three test cases on average.

3 Experiments

3.1 Studied LLMs

We select 8 popular LLMs and evaluate them in EvoCodeBench. They cover general LLMs (i.e., gpt-
4-turbo-1106 [21] and gpt-3.5-turbo-1106 [20]) and Code LLMs (i.e., StarCoder 2-{15B, 7B} [19],
DeepSeek Coder-{33B, 6.7B} [10], and CodeLLaMa-{13B, 7B} [26]). We use official interfaces or
implementations to reproduce these LLMs. We run these LLMs on 4 NVIDI A100-40GB GPUs.

3.2 Data Leakage Detetion
Table 3: The results of data leakage detection.

Benchmark LLMs Leak Ratio (%) ↓
HumanEval gpt-3.5 41.47

EvoCodeBench-2403

gpt-4 2.18
gpt-3.5 1.75
DeepSeek Coder-33B 1.88
DeepSeek Coder-7B 1.82
StarCoder 2-15B 1.45
StarCoder 2-7B 1.09
CodeLLaMa-13B 0.82
CodeLLaMa-7B 0.73

As stated in Section 2, an advantage of
EvoCodeBench is to alleviate data leakage
significantly. To validate this point, we use
the latest data leakage detection approach
- CDD [6] to check EvoCodeBench-2403.
CDD can detect whether LLMs have been
trained on specific benchmarks and their
variants. The detection results are shown in
Table 3. Compared to a mainstream benchmark - HumanEval [3], the leakage rate of EvoCodeBench-
2403 drops significantly to less than 3%. Besides, since different repositories typically contain similar
programs (e.g., logging functions), it is almost impossible to achieve a 0% leakage rate.

Thus, we think that EvoCodeBench-2403 is leakage-free and can provide trustworthy evaluations in
repo-level code generation.

2We reuse the statistics of 500 real-world repositories reported in related work [16].
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Table 4: Pass@k and Recall@k of LLMs on EvoCodeBench-2403. Bold and underlined data indicate
top-1 and top-2 results, respectively.

LLMs Size Pass@1 Pass@3 Pass@5 Pass@10 Recall@1 Recall@3 Recall@5 Recall@10

Local File (Infilling)

gpt-4 N/A 20.73 23.03 24.11 25.34 68.24 70.63 72.05 73.52
gpt-3.5 N/A 17.82 21.78 23.06 24.46 61.94 68.13 69.69 70.85
DeepSeek Coder 33B 19.64 22.78 24.29 26.01 71.46 79.93 82.11 86.25
DeepSeek Coder 6.7B 17.82 21.02 22.40 23.97 69.58 74.04 78.00 83.22
StarCoder 2 15B 15.27 17.54 18.63 20.09 50.90 53.29 55.89 61.76
StarCoder 2 7B 14.91 17.29 18.63 19.86 56.35 60.59 63.74 74.20

Local File (Completion)

gpt-4 N/A 17.45 19.65 20.80 22.41 63.49 68.67 70.00 72.07
gpt-3.5 N/A 15.64 17.29 18.21 19.36 61.44 66.25 66.82 69.89
DeepSeek Coder 33B 14.18 17.57 18.66 19.95 66.90 72.83 74.40 80.02
DeepSeek Coder 6.7B 13.45 17.10 18.81 21.07 65.76 72.32 75.61 78.45
StarCoder 2 15B 13.82 15.44 17.84 19.59 68.55 71.37 74.76 77.70
StarCoder 2 7B 13.45 15.15 16.18 17.65 62.93 69.85 73.54 78.40
CodeLLaMa 13B 12.73 15.78 16.86 18.19 63.34 71.26 76.43 80.11
CodeLLaMa 7B 12.73 15.33 16.00 16.93 63.33 69.79 71.91 76.50

Without Context

gpt-4 N/A 7.27 10.05 10.70 11.49 21.58 23.93 25.69 26.23
gpt-3.5 N/A 6.55 7.85 8.28 8.73 21.66 24.31 24.77 25.40
DeepSeek Coder 33B 6.91 8.92 9.79 11.03 27.67 32.73 34.92 37.76
DeepSeek Coder 6.7B 5.82 8.56 9.67 11.26 25.89 32.06 35.59 38.33
StarCoder 2 15B 6.18 8.77 9.95 11.53 24.03 29.86 33.62 36.91
StarCoder 2 7B 5.82 6.72 7.43 8.62 27.39 32.60 34.88 36.81
CodeLLaMa 13B 5.45 7.38 8.37 9.95 25.52 31.28 33.66 36.36
CodeLLaMa 7B 5.45 6.94 7.75 9.03 26.97 31.17 34.08 36.82

3.3 Performance in Repo-level Code Generation

Experimental Settings. Repo-level code generation takes a requirement and a repository as inputs.
Typically, a repository is very long and surpasses the context windows of existing LLMs. Following
previous work [16, 5], we extract parts of code contexts from the repository as inputs and design the
following experimental settings. ❶ Without context. We ignore contexts and directly generate the
code based on requirements and signatures. ❷ Local File (Completion). The local file denotes the
code file where the reference code is in. This setting simulates the scenario where developers continue
to write code at the end of a file. Besides the requirements and signatures, LLMs can access code
contexts above the reference code in the local file. ❸ Local File (Infilling). This setting simulates
the scenario where developers infill code in the middle of a file. Besides requirements and signatures,
LLMs can see the code contexts above and below the reference code in the local file.

We use Pass@k and Recall@k (see Section 2.2) to assess generated programs. In this paper,
k ∈ [1, 3, 5, 10]. When k = 1, we use the greedy search and generate a single program per
requirement. When k > 1, we use the nucleus sampling with a temperature 0.4 and sample 20
programs per requirement. We set the top-p to 0.95 and the max generation length to 500. Because
EvoCodeBench is an evolving benchmark, this paper evaluates LLMs upon EvoCodeBench-2403.
Note that the Pass@k and Recall@k between different versions of EvoCodeBench are not comparable.

Results. The Pass@k and Recall@k of studied LLMs are shown in Table 4.

Compared to previous benchmarks, these LLMs’ performance in EvoCodeBench-2403 drops
dramatically. For example, the highest Pass@1 scores of gpt-4 on the latest repo-level benchmark
[16] is 53.04. In contrast, gpt-4 only achieves 20.73 on Pass@1 upon EvoCodeBench-2403. The
decreases demonstrate that EvoCodeBench is more challenging, and previous benchmarks might
have been leaked.

LLMs benefit from more code contexts in repo-level code generation. As shown in Table 4, after
introducing the contexts, the Pass@k and Recall@k of LLMs obviously increase. For example, the
Pass@1 of gpt-4 is improved by 104% and 152% in two settings, respectively. Similar phenomena
occur in previous studies [16]. We attribute the improvements to the domain knowledge contained in
contexts. Figure 2 shows a uniquely successful case in the Local File (Completion) setting. Without
context, gpt-4 fabricated a non-existent field as cache directories, generating the incorrect code. In
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Code Contexts (above):
import concurrent
import json
def _get_num_nodes() -> int:

. . .
def _get_cache_dir(name: Optional[str] = None):

. . .
def _get_cache_data_dir(name: Optional[str] = None):

. . .

Input Code:

def _cleanup_cache(self) -> None:
""" Clean up cache directories by removing them if 

they exist to prevent issues from corrupted files 
from previous runs, and then recreates these 
directories to ensure they are available for use.
:param self: DataProcessor. ...
:return: No return values.
"""

gpt-4-turbo-1106 (local completion):
# Define the cache directories
cache_data_dir = _get_cache_data_dir()
if os.path.exists(cache_data_dir):
. . .

gpt-4-turbo-1106 (without context):

for cache_dir in self.cache_directories:
# Check if the cache directory exists
if os.path.exists(cache_dir):
. . .

Non-existent
attribute

APIs defined
in contexts

Figure 2: A uniquely successful case in Local File (Completion) setting.

Table 6: The Pass@1 of studied LLMs in different domains upon EvoCodeBench-2403.

Domain gpt-4 gpt-3.5 DeepSeek Coder StarCoder 2 CodeLLaMa
33B 6.7B 15B 7B 13B 7B

Database 38.89 38.89 33.33 33.33 38.89 33.33 33.33 33.33
System 35.29 35.29 35.29 35.29 29.41 29.41 23.53 35.29
Software Development 12.00 12.00 8.00 12.00 10.00 6.00 8.00 8.00
Internet 20.00 26.67 26.67 26.67 20.00 26.67 26.67 26.67
Scientific Engineering 11.67 10.00 10.00 6.67 8.33 9.17 7.50 8.33
Multimedia 25.00 18.75 15.63 15.63 18.75 18.75 18.75 12.50
Text Processing 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00

All Domains 17.45 15.64 14.18 13.45 13.82 13.45 12.73 12.73

fact, two functions for returning the cache directories are available in the local file. After introducing
the local file, gpt-4 successfully invokes relevant functions and generates the correct code.

Table 5: Performance of RAG.
LLMs Setting Pass@1 Recall@1

gpt-4 Without Context 8.31 21.08
Similar Functions 12.29 45.14

gpt-3.5 Without Context 6.64 21.16
Similar Functions 11.62 41.93

Retrieval-Augmented Generation (RAG).
RAG enhances generative models with retrieved
information and has achieved promising results
in code generation [17, 18]. We apply RAG to
repo-level code generation and consider the cur-
rent repository a retrieval corpus. Because most
programs in repositories are not equipped with
documentation, we retrieve top-k (i.e., k = 5 in
this paper) functions with similar names to the target function. Specifically, we split names into
tokens based on underscore or camelcase formatting and then match the tokens of names. Finally,
we use similar functions as contexts in prompts. The results are shown in Table 5. The performance
of both LLMs is improved after introducing similar functions. We attribute the improvements to
relevant algorithms and dependencies in similar functions. It inspired researchers to explore more
advanced RAG techniques to improve repo-level code generation.

Error Analyses. The Pass@k of existing LLMs in repo-level code generation is still low. To
determine LLMs’ shortcomings, we manually analyze 50 error cases of gpt-4 in the Local File
(Infilling) setting. We found the most cases (29 cases) are caused by implementation logic errors. 20
cases failed since the necessary contexts were missing, e.g., APIs defined in other files. Besides, one
case failed because of the vague requirement. It shows that existing LLMs’ reasoning and coding
abilities need to be improved. Meanwhile, how to utilize more contexts is necessary to explore.

3.4 Performance in Different Domains

We divide EvoCodeBench into multiple subsets according to the domain labels and then calculate the
Pass@1 of LLMs in different domains. The results are shown in Table 6. We ignore three domains
with less than 10 samples and leave them for future work.

EvoCodeBench shows superior LLMs in specific domains. The Pass@1 scores in overall bench-
marks demonstrate the comprehensive coding abilities of LLMs. Because developers typically focus
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Table 7: The Domain-Specific Improvements (%) of LLMs in different domains. The comfort
domains and strange domains are marked in bleu and red, respectively.

DeepSeek Coder StarCoder 2 CodeLLaMaDomain gpt-4 gpt-3.5 33B 6.7B 15B 7B 13B 7B

Database 10.21 10.21 -7.14 -7.14 -7.14 10.21 -7.15 -7.15
System 9.51 9.52 9.51 9.51 -11.42 -11.42 -42.84 9.52
Software Development 23.81 23.81 -21.43 23.81 -66.67 5.71 -21.43 -21.43
Internet -28.59 7.15 7.15 7.15 7.15 -28.59 7.15 7.15
Scientific Engineering 26.55 11.90 11.90 -39.22 2.63 -8.63 -22.23 -8.63
Multimedia 32.14 4.75 -17.11 -17.11 4.75 4.75 4.75 -50.01
Text Processing 100.00 -100 -100 -100 -100 -100 -100 -100

on specific programming domains, they are more concerned about the performance of LLMs in
specific domains. Imagine we are developers focused on internet-related programming tasks. Based
on the overall Pass@1, we would think StarCoder 2-7B is stronger than DeepSeek Coder-6.7B, i.e.,
13.82 > 13.45. However, according to Table 6, DeepSeek Coder-6.7B performs better than StarCoder
2-7B in the Internet domain. This result can help us to select more suitable models.

EvoCodeBench uncovers the comfort domains and strange domains of specific LLMs. For ease
of observation, we compute the Domain-Specific Improvement (DSI) of LLMs in different domains.
The DSI refers to the average relative improvement of Pass@1 of an LLM in a domain compared
to other LLMs. Suppose we evaluate N LLMs on a specific domain, and their Pass@1 scores are
represented as P. Then, the DSI (%) of i-th LLM in this domain is computed as:

DSIi =
1

N − 1

∑
j

Pi − Pj

Pi
∗ 100 (i ̸= j) (3)

The larger the DSI, the better an LLM is at that domain. If an LLM’s DSI in a domain exceeds a
threshold T, we consider it a comfort domain. If an LLM’s DSI in a domain is less than −T, it is
considered a strange domain. T is a hyper-parameter and is set to 10% in this paper. Practitioners
can further tune this parameter.

Table 7 shows the DSIs of studied LLMs across domains. The comfort domains and strange domains
are marked in bleu and red, respectively. We can see that gpt-4 has the most comfort domains.
Especially in the Text Processing domain, among all LLMs, only gpt-4 successfully solves some
programming tasks. However, gpt-4 performs worse than others in the Internet domain. Besides,
we discover that StarCoder 2-15B unexpectedly performs well in the Database domain and even is
comparable to gpt-4. The potential reason for comfort and strange domains is that the pre-training
data mix of LLMs is different. For example, gpt-4’s training data contains fewer repositories in the
Internet domain, resulting in weak performance. These findings can help model trainers analyze the
shortcomings of existing LLMs and build more powerful code LLMs.

4 Discussion

Evaluation of auto-generated annotations. We leverage an LLM (i.e., gpt-4 in this paper) to
annotate natural language requirements and domain labels for functions. To assess the quality of
auto-generated annotations, We hire five developers to write requirements and domain labels for
EvoCodeBench-2403. Then, we hire another five developers to compare annotations from gpt-4 and
developers. All of these developers have at least 3 years of Python development experience. All
developers are paid according to the relevant policies3 (i.e., $7.5 per hour). The details of human
evaluation are in Appendix E.3. Table 8: Human evaluation of auto-generated annotations.

Annotator Win / Tie / Lose Cost (Time) Cost (Money)Requirement Domain

gpt-4-turbo-1106 30 / 236 / 9 3 / 268 / 4 1h9m $3.11
Human 9 / 236 / 30 4 / 268 / 3 23h $172.5

The evaluation results are shown in Ta-
ble 8. The Cohen’s Kappa coefficient
between all evaluators is 0.9. The Tie
means both requirements are satisfy-
ing. We can see that gpt-4 produces high-quality annotations comparable to human-written annota-
tions in most cases (e.g., requirement: 96.7% = (30+236)/275, domain labels: 98.5% = (3+268)/275).
We also inspect failed cases of gpt-4 and summarize two main reasons. First, gpt-4 may miss some

3https://www.worker.gov/
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details (e.g., hyper-parameters) that are necessary for requirements. Second, gpt-4 may be mistaken
by specific APIs and output inaccurate domain labels. In the future, we will explore new techniques
to solve this problem, e.g., controllable text generation [4]. Besides, gpt-4 shows advantages in costs.
As shown in Table 8, gpt-4 costs less time and money to annotate requirements. Thus, it is a feasible
and efficient approach for us to use gpt-4 to annotate requirements for EvoCodeBench.

Limitations. There are two main limitations in EvoCodeBench. First, EvoCodeBench is a monolin-
gual (i.e., Python) benchmark and ignores other programming languages (e.g., Java, C++). Because
building repo-level benchmarks faces many language-specific challenges (e.g., how to install execu-
tion environments, how to run test cases), we chose to start with Python, a mainstream programming
language in existing benchmarks [28, 3, 7, 29]. We plan to support other programming languages
in the future gradually. Second, the size of EvoCodeBench is currently smaller than some existing
benchmarks. The reason is that EvoCodeBench-2403 only collects samples from recent repositories
(i.e., Oct. 2023 - Mar. 2024). In the future, we will continue to collect new samples from the latest
repositories and expand the scale of EvoCodeBench.

5 Related Work

Code Generation Benchmarks. Nowadays, prevalent code generation benchmarks can be divided
into two groups: ❶ Snippet-level benchmarks [3, 1, 11, 7]. They comprise human-written or
competitive programming problems, which ask LLMs to generate standalone code snippets. ❷ Repo-
level benchmarks [29, 16]. They ask LLMs to generate new programs based on requirements and
contexts from current repositories. Compared to snippet-level benchmarks, repo-level benchmarks
are more challenging and closer to real-world software development scenarios.

This paper proposes a new benchmark - EvoCodeBench, to alleviate two limitations of previous
benchmarks (i.e., data leakage and lack of domain-specific evaluations). We notice that some recent
benchmarks focus on similar limitations. We further clarify the differences between EvoCodeBench
and existing benchmarks.

Data leakage. LiveCodeBench [13] collects the latest competitive programming problems. EvoEval
[27] leverages LLMs to mutate HumanEval and obtain new benchmarks. They are both snippet-level
benchmarks, while EvoCodeBench is a more practical repo-level benchmark. The collection pipelines
in LiveCodeBench and EvoEval can not be applied to repo-level benchmarks, which involve many
new challenges (e.g., repository selection, test construction, and requirement annotation). We fill this
knowledge gap by building a new collection pipeline and release EvoCodeBench.

Domain-specific evaluations. Existing benchmarks typically fall into narrow domains (e.g., Pan-
dasEval [30]) or lack domain labels (e.g., DevEval [16]). ClassEval [7] contains 100 standalone
programming tasks from seven domains. However, these domains are manually designed based on
human experiences and may ignore important domains (e.g., Internet and Multimedia). Besides,
ClassEval ignores repo-level benchmarks and may be leaked in the future. In contrast, we consider
the statistics of a mainstream open-source community and identify the top 10 popular programming
domains. Besides, EvoCodeBench is free of data leakage and continually expands domains.

6 Conclusion and Future Work

We introduce EvoCodeBench, an evolving code generation benchmark. EvoCodeBench is designed to
address two limitations (i.e., data leakage and lack of domain-specific evaluations). EvoCodeBench is
an evolving benchmark and will be dynamically updated every period (e.g., six months), to avoid data
leakage. This paper releases the first version - EvoCodeBench-2403, which contains 275 samples.
Besides, we design a programming domain taxonomy consisting of ten popular domains and annotate
samples with domain labels. We conduct extensive experiments on EvoCodeBench and reveal the
actual abilities of LLMs in real-world repositories. We also evaluate LLMs in different domains and
discover their comfort and strange domains. These insights can help practitioners evaluate LLMs
comprehensively.

In the future, we will continuously release new versions of EvoCodeBench and extend EvoCodeBench
into other programming languages (e.g., Java and C++).
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(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We provide a URL to our collected benchmark in the supplemental material (Appendix
A).

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We only consider code repositories with open-source licenses.
More details can be found in Section 2.3.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We exclude malicious code repositories. ore
details can be found in Section 2.3.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] We show instructions given to participants. Please see Appendix E.3
in the supplemental material.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] All developers are paid according to the
relevant policies (i.e., $7.5 per hour). More details can be found in Line 255.

13

57631 https://doi.org/10.52202/079017-1837



Appendix

Table of Contents

• Appendix A: Details of hosting, licensing, and maintenance

• Appendix B: Author responsibility statement

• Appendix C: Dataset datasheet

• Appendix D: The details of our collection pipeline

• Appendix E: The details of experiments

A Hosting, Licensing, and Maintenance

Our EvoCodeBench and experimental results (e.g., code, prompts, and models’ predictions) are
available on the following platforms.

• GitHub: https://github.com/seketeam/EvoCodeBench

• HuggingFace: https://huggingface.co/datasets/LJ0815/EvoCodeBench

• Croissant metadata: https://github.com/seketeam/EvoCodeBench/blob/main/
croissant_metadata.json

EvoCodeBench is available for download under a CC-4.0 license, and our code is available under a
BSD 3-Clause license. We ensure the long-term availability and maintenance of the data by hosting it
on the GitHub4 platform.

B Author Responsibility Statement

The authors confirm that they bear all responsibility in case of any rights violation during the data
collection or other work and will take appropriate action when needed, e.g., to remove data with such
issues. The authors also confirm the licenses provided with the data and code associated with this
work.

C Datasheet for EvoCodeBench

Questions from Datasheet for Datasets (v8) [9].

C.1 Motivation

Q: For what purpose was the dataset created?

Large Language Models (LLMs) have shown impressive abilities in code generation. This dataset
was created to evaluate LLMs in code generation. It specifically fills in two knowledge gaps in
previous benchmarks, i.e., data leakage and lack of domain-specific evaluations. The former hurts the
fairness of benchmarks, and the latter hinders practitioners from selecting superior LLMs for specific
domains.

Q: Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)?

This dataset’s authors are from the School of Computer Science at Peking University and the
Conversational AI team at Alibaba DAMO Academy.

Q: Who funded the creation of the dataset?

This dataset is funded by Peking University and the Alibaba DAMO Academy.

4https://github.com/
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C.2 Composition

Q: What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)?

An instance in the dataset represents a unique programming task. Each instance consists of the fol-
lowing seven components. (1) Function Signature: The signature of the target code. (2) Requirement:
An English description detailing the functionality of the target code. (3) Repository: The current
repository contains hundreds of code files. (4) Reference Code: A developer-written implementation
of the target code. This code may invoke dependencies defined in the current repository. (5) Reference
Dependency: The dependencies invoked in the reference code include intra-class, intra-file, and
cross-file dependencies. (6) Domain Label: The domain of the target code. (7) Test Cases: Test cases
are used to check the functional correctness of the code.

Q: How many instances are there in total (of each type, if appropriate)?

Our dataset is evolving and will be dynamically updated every period (e.g., six months). In this paper,
we release its first version - EvoCodeBench-2403, which contains 275 instances.

Q: Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set?

Our dataset - EvoCodeBench is evolving and contains a series of versions. In this paper, we release its
first version - EvoCodeBench-2403. In the future, we will release new versions, e.g., EvoCodeBench-
2409. The data formats of different versions are the same.

Q: What data does each instance consist of?

Figure 1 shows an instance in our dataset. Each instance consists of the following seven components.
(1) Function Signature: The signature of the target code. (2) Requirement: An English description
detailing the functionality of the target code. (3) Repository: The current repository contains hundreds
of code files. (4) Reference Code: A developer-written implementation of the target code. This
code may invoke dependencies defined in the current repository. (5) Reference Dependency: The
dependencies invoked in the reference code include intra-class, intra-file, and cross-file dependencies.
(6) Domain Label: The domain of the target code. (7) Test Cases: Test cases are used to check the
functional correctness of the code.

Q: Is any information missing from individual instances?

No.

Q: Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)?

No.

Q: Are there recommended data splits (e.g., training, development/validation, testing)?

Our dataset is a benchmark for code generation, which only contains test data.

Q: Are there any errors, sources of noise, or redundancies in the dataset?

As discussed in Section 4, we leverage LLMs to annotate requirements and domain labels of instances
automatically. We conduct a human evaluation to assess the auto-generated annotations. The
evaluation results (Table 8) show that auto-generated annotations are comparable to human-written
annotations in most instances (i.e., 96.7% requirements and 98.5% domain labels). In a small number
of instances, auto-generated annotations may not be exactly correct, e.g., missing necessary details in
requirements. We think that these noises have a slight impact on our datasets. In the future, we will
explore more techniques to address these noises.

Q: Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?

It is self-contained.

Q: Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the content
of individuals’ non-public communications)?
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No.

Q: Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety?

No.

Q: Does the dataset relate to people?

No.

C.3 Collection Process

Q: How was the data associated with each instance acquired?

Our dataset is collected by a four-stage pipeline, which includes (1) Repo selection and function
scraping, (2) Execution-based filtering, (3) Automatic annotations, and (4) Benchmark construction.
The pipeline details are in Section 2.3.

Q: What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)?

Our collection pipeline involves the following four existing software tools or APIs.

• GitHub APIs5. We use this API to crawl open-source repositories from GitHub.

• Pip6. We use this software tool to install required packages for each repository automatically.

• Pytest7. We use this software tool to execute test cases.

• OpenAI API8. Through this API, we invoke gpt-4 to generate requirements and domain
labels for instances.

Q: If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

N/A

Q: Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?

N/A

Q: Over what timeframe was the data collected?

The first version - EvoCodeBench-2403 is collected from repositories that were created between
October 2023 and March 2024.

Q: Were any ethical review processes conducted (e.g., by an institutional review board)?

Yes. Our EvoCodeBench is a code-related benchmark. It is collected from high-quality open-source
repositories and excludes malicious or offensive repositories.

C.4 Preprocessing/cleaning/labeling

Q: Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)?

Yes. We filter out instances satisfying the following criteria: empty functions, initialization functions,
and functions without executable test cases. Besides, we use a static analysis parser and an LLM to
annotate these instances. Specifically, we use a static analysis parser to extract function signatures,
reference code, and reference dependencies. Then, we use an LLM (gpt-4 in this paper) to annotate
requirements and domain labels.

5https://docs.github.com/en/rest?apiVersion=2022-11-28
6https://pip.pypa.io/en/stable/installation/
7https://docs.pytest.org/en/8.2.x/
8https://platform.openai.com/docs/introduction
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Q: Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?

No. Our dataset’s raw data contains many large-scale code repositories, which are not conducive to
downloading the dataset. We release the URLs of these raw repositories to support unanticipated
future uses.

Q: Is the software used to preprocess/clean/label the instances available?

Yes. The used source code is available in https://github.com/seketeam/EvoCodeBench.

C.5 Uses

Q: Has the dataset been used for any tasks already?

Our dataset is designed for the code generation task. In this paper, we have evaluated eight popular
code LLMs in this dataset.

Q: Is there a repository that links to any or all papers or systems that use the dataset?

No.

Q: What (other) tasks could the dataset be used for?

Besides code generation, our dataset can support the following code intelligence tasks, including
code completion, test cases generation, and code summarization.

Q: Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?

No.

Q: Are there tasks for which the dataset should not be used?

No.

C.6 Distribution

Q: Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?

No.

Q: How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?

It will be publicly available for download on GitHub (https://github.com/seketeam/
EvoCodeBench).

Q: Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

CC-4.0.

Q: Have any third parties imposed IP-based or other restrictions on the data associated with
the instances?

No.

Q: Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?

No.

C.7 Maintenance

Q: Who is supporting/hosting/maintaining the dataset?

The SEKE team from Peking University will continuously maintain this dataset.

Q: How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
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Please write natural language comments for the given Python function.

The template of natural language comments is shown as follows:
1. [Required] What does this function do.
2. [Required] Input-Output parameters

:param arg1: data type [optional], what it is [required], how it is used [optional].
:param arg2: ....
:return: data type [optional], what it is [required]. Or No return values.

Here is an example:
Input Code:
```Python
{example code}
```
Requirement:
```
{example requirement}
```

Input Code:
```Python
{input code}
```
Requirement:

Figure 3: The prompt template for generating requirements with gpt-4.

Please contact the first author - Jia Li (email: lijia@stu.pku.edu.cn).

Q: Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?

Yes. We will continuously update EvoCodeBench and release new versions every period (e.g., six
months).

Q: Will older versions of the dataset continue to be supported/hosted/maintained?

Yes, older versions will remain available on GitHub.

Q: If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so?

Not officially, but our benchmark code is open source and pull requests are welcome.

D Collection Pipeline Details

D.1 Details of Automatic Annotation

As stated in Section 2.3, we leverage an LLM to annotate requirements and domain labels for
candidate functions.

Figure 3 and Figure 4 show the prompt templates for generating requirements and domain labels,
respectively. The parts highlighted in yellow in the figures are placeholders. {example_code} and
{example_requirement} are a human-written function and its requirements, respectively. We fill
{input_code} with candidate functions and leverage gpt-4 to generate requirements. We use the
greedy search and generate a requirement for each function. The settings for generating domain
labels are similar.
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Please analyze the given Python code and select its domain keyword from a candidate list. You should 
directly output the most relevant domain and do not generate other explanations.

Candidate domains and their explanations:
- Communications: It includes Email, Chat, Fax, File Sharing, and Telephony.
- Database: It includes Database Engines, Database Servers, and Database Management.
- Internet: It involves FTP, HTTP, and Web Services.
- Multimedia: It typically processes Audio, Graphics, Video, and 3D Objects.
- Scientific Engineering: It includes Artificial Intelligence, Machine Learning, and Scientific Computing.
- Security: It includes Cryptography, Digital Signatures, and Secure Communication.
- Software Development: It includes Build Tools, Compilers, Debuggers, and IDEs.
- System: It includes File Systems, Operating Systems, and System Administration.
- Text Processing: It includes Markup Languages, Regular Expressions, and Text Analysis.
- Utilities: It includes Compression, Configuration, Logging, and Testing.

Input Code:
```Python
{input code}
```

Domain:

Figure 4: The prompt template for generating domain labels with gpt-4.

Table 9: The statistics of 25 repositories on EvoCodeBench-2403.
Repository Created Stars Py Files Py Lines Samples

Test-Agent 2023-10-20 440 85 15278 1
skfolio 2023-12-14 813 158 33852 13
camp_zipnerf 2024-01-19 523 53 18973 54
microagents 2023-12-11 674 45 2918 18
open-iris 2023-12-09 161 140 13933 14
litdata 2024-02-15 114 56 11713 59
nlm-ingestor 2024-01-17 643 56 16674 4
AutoRAG 2024-01-10 259 115 7735 13
XAgent 2023-10-16 7054 148 17623 3
tanuki_py 2023-10-16 606 108 10146 9
UHGEval 2023-11-06 148 34 2938 3
Generalizable-BEV 2023-10-30 136 570 132407 8
EasyVolcap 2023-12-07 442 308 51723 20
UniRef 2023-12-22 208 382 70042 23
contrastors 2024-01-30 346 62 13774 1
gaussian-splatting-lightning 2023-10-06 168 76 9935 1
scepter 2023-12-21 190 244 41519 1
microsearch 2024-02-05 336 5 231 2
ollama-python 2023-12-09 898 13 2089 12
Python-Type-Challenges 2023-10-23 343 121 3208 1
stable-fast 2023-10-17 871 82 11948 2
stable-diffusion-webui-forge 2024-01-14 2537 1112 210946 3
openlogprobs 2023-11-22 174 6 524 1
searcharray 2023-11-03 133 25 4217 6
deluder 2023-12-01 115 34 1894 3

D.2 Repositories in EvoCodeBench-2403

Table 9 shows the statistics of 25 repositories in EvoCodeBench-2403.

E Experimental Details

E.1 Base LLMs

In this paper, we select five popular LLMs as base LLMs and evaluate them on EvoCodeBench-2403.
The details of these LLMs are described as follows.
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• gpt-4 [21], released by OpenAI on March 14, 2023, marks another milestone in the field of
natural language processing. gpt-4 demonstrates superior performance compared to previous
gpt models [2]. In our experiments, we use the version - gpt-4-1106. Its training data up to
April 2023. It continues the auto-regressive prediction of the next token training objective
inherited from the GPT series models. It incorporates reinforcement learning with human
feedback (RLHF) and red-teaming [8] techniques. However, the pre-training data scope and
scale, model size, and parameters remain closed-source at present.

• gpt-3.5-turbo [20] is an improved gpt-3 model enhanced by a three-stage reinforcement
learning with human feedback (RLHF) algorithm. Apart from improving instruction-
following capabilities, the RLHF algorithm proves highly effective in mitigating the gener-
ation of harmful or toxic content, which is crucial for the practical deployment of LLMs
in security-sensitive contexts. we utilized the released versions of gpt-3.5, namely gpt-3.5-
turbo-1106, with training data up to September 2021. However, similar to gpt-4, the training
details, training data, and model weights are currently closed-source.

• CodeLLaMa [26], based on the LLama2 architecture by Meta-AI9, was fine-tuned and
open-sourced by the company on August 25, 2023, with versions of 7B, 13B, and 34B. A
70B version was released on January 30, 2024 [26]. CodeLLama is primarily trained on
nearly deduplicated publicly available code datasets. The first three models were trained on
500 billion tokenized code, while the latest 70B model was trained on 1T tokens. Similar
to the LLaMa series, CodeLLaMa also follows a decoder-only architecture. We evaluated
CodeLLaMa-Python-{7B, 13B} upon our EvoCodeBench.

• DeepSeek Coder [10] is a large language model for programming tasks released by
DeepSeek-AI10 in November 2, 2023. DeepSeek Coder consists of a series of code language
models, each trained from scratch on 2T tokens, containing 87% code and 13% natural
language. DeepSeek Coder provides code models with 1.3B, 6.7B and 33B parameter
sizes. In terms of model architecture, each model integrates a decoder-only Transformer,
incorporating Rotary Position Embedding and FlashAttention v2. We evaluated DeepSeek
Coder-{6.7B, 33B} on our EvoCodeBench.

• StarCoder 2 [19] was released by BigCode11 on December 8, 2023 with 3 different
parameters, 3B, 7B and 15B. StarCoder2 is trained on The Stack v2, a new large-scale,
high-quality code dataset. All models were trained using Grouped Query Attention, a
contextual window of 16,384 tokens with a sliding window attention of 4,096 tokens, using
the Fill-in-the-Middle objective. Following DeepseekCoder [10] and Code LLaMA [26],
StarCoder2 use Rotary Positional Encodings. We evaluated StarCoder2-{7B, 15B} on our
EvoCodeBench, which was trained on over 3.5 trillion tokens in 17 programming languages
from Stack v2.

E.2 Prompt Templates

The prompt templates used for instruction-tuning models (i.e., gpt-4 and gpt-3.5) are shown in Figure
5, 6, 7, and 8. {function name}, {contexts above}, {contexts below}, {signature}, and
{requirement} are placeholders.

For other standard language models, the prompt templates are shown as follows:

• Without context: [signature; requirement]

• Local file (completion): [context_above; signature; requirement]

• Local file (infilling): [prefix_id; context_above; signature; requirement;
suffix_id; context_below; middle_id]

Where [;] denotes the concatenation operation of strings. {prefix_id}, {suffix_id},
{middle_id} are special tokens used in code infilling. For different LLMs, we reuse their offi-
cial special tokens to make prompts.

9https://ai.meta.com/
10https://www.deepseek.com/
11https://www.bigcode-project.org/
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Please complete the {function name} function in the given Python 
code.

Input Code:
```Python
{signature}
{requirement}
```
Completed Code:

Figure 5: The prompt template in the without context setting.

Please complete the {function name} function based on the 
contexts above the function.

The contexts above the function are:
```Python
{contexts above}
```

The code to be completed is:
```Python
{signature}
{requirement}
```
Completed code:

Figure 6: The prompt template in the local file (completion) setting.

E.3 Details of Human Evaluation

Figure 9 and Figure 10 show the questionnaire templates for evaluating requirements and domain
labels, respectively. The parts highlighted in yellow in the figures are placeholders. Taking Figure 9
as an example, we randomly arrange auto-generated requirements and human-written requirements
and then fill them into the placeholders. The setup for evaluating domain labels is similar.
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Please complete the {function name} function in the middle of a file.

The contexts above the function are:
```Python
{contexts above}
```
The contexts below the function are:
```Python
{contexts below}
```

The code to be completed is:
```Python
{signature}
{requirement}
```
Completed code:

Figure 7: The prompt template in the local file (infilling) setting.

Please complete the {function name} function based on some 
functions with similar names.

The functions with similar names are:
```Python
{similar functions}
```

The code to be completed is:
```Python
{signature}
{requirement}
```
Completed code:

Figure 8: The prompt template in the similar function setting.
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Based on the code, please choose which requirement is better based on the following two perspectives:
(1) Completeness (the requirements cover the main purpose of the code and necessary details); (2)
Clarity (requirements are clear and user-friendly). If you think both requirements are good, select "Tie".

Code:
{input code}

Requirement #1:
{requirement_1}

Requirement #2:
{requirement_2}

Requirement #1 Requirement #2 Tie

Figure 9: The questionnaire template for evaluating requirements.

Based on the code, please choose which domain label is better. If you think both domain labels are 
reasonable, select "Tie".

Code:
{input code}

Domain Label #1:
{requirement_1}

Domain Label #2:
{requirement_2}

Domain Label #1 Domain Label #2 Tie

Figure 10: The questionnaire template for evaluating domain labels.
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