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Abstract

The visual medium (images and videos) naturally contains a large amount of infor-
mation redundancy, thereby providing a great opportunity for leveraging efficiency
in processing. While Vision Transformer (ViT) based models scale effectively to
large data regimes, they fail to capitalize on this inherent redundancy, leading to
higher computational costs. Mixture of Experts (MoE) networks demonstrate scal-
ability while maintaining same inference-time costs, but they come with a larger
parameter footprint. We present Mixture of Nested Experts (MoNE), which utilizes
a nested structure for experts, wherein individual experts fall on an increasing
compute-accuracy curve. Given a compute budget, MoNE learns to dynamically
choose tokens in a priority order, and thus redundant tokens are processed through
cheaper nested experts. Using this framework, we achieve equivalent performance
as the baseline models, while reducing inference time compute by over two-fold.
We validate our approach on standard image and video datasets - ImageNet-21K,
Kinetics400, and Something-Something-v2. We further highlight MoNE’s adapt-
ability by showcasing its ability to maintain strong performance across different
inference-time compute budgets on videos, using only a single trained model.

1 Introduction

Visual tokens, the fundamental building blocks of image and video representations, often exhibit
strong inter-dependencies, spatially in images and spatio-temporally in videos. This offers a potential
avenue for optimization in visual processing, as processing every token with equal emphasis may
not be necessary for achieving optimal results. Traditional Vision Transformer (ViT) [20] and Video
Vision Transformer (ViViT) [2] based models, however, process all tokens with equal emphasis,
disregarding this inherent codependency and leading to unnecessary computational burden. This be-
comes a major bottleneck when deploying these models in real-world scenarios, where computational
resources may be limited and real-time processing is required.

To this end, conditional computation has become a promising line of research to increase the capacity
of a network, while only conditionally activating a part of it during inference. Sparse Mixture of
Experts (MoEs) was initially popularized for Natural Language Processing (NLP) [42, 22],but it has
been gaining attention for furthering conditional computation ideas in vision [39, 1, 35, 50] as well.
While MoEs bring in improved performance at a given inference cost, they also increase the overall
parameter count, leading to increased storage requirements. Moreover, these works rely on experts
that have the same parameter count and compute, limiting their ability to reduce computational costs
without resorting to skipping tokens entirely.

*equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

58480 https://doi.org/10.52202/079017-1863



Original ec=09 ec=08 ec=06 ec=04 ec=02

Al £ s

ec=09
-

Original ec=08

Figure 1: MoNE’s learned token importance: From left fo right, fewer image tokens are processed
using the full model — to fit a compute budget — by an increasing threshold on MoNE’s router logits.

In this work, we devise the Mixture of Nested Experts (MoNE) framework, which provides a
scalable approach to conditional computation, bringing in significant reductions at inference time,
while working with the same parameter space as the baseline model. MoNE draws inspiration from
nested architectures [47, 31, 53], particularly MatFormer [19], that learns multiple representations
of the same data with varying levels of details, based on structured slices of the parameter space.
MoNE employs these structured nested models as experts in the MoE framework (without increasing
parameter count), and learns a network to route tokens to these experts. We explore various design
choices and present an effective recipe for allocating compute to experts, assigning tokens to experts,
and training the MoNE framework. For the assignment operation, we propose Expert Preferred
Routing (EPR), a routing algorithm that greedily assigns tokens to experts under capacity constraints
based on router predictions. Figure 1 shows token importance as perceived by MoNE. We propose
the following three primary contributions:

1. We introduce the novel Mixture of Nested Experts (MoNE) framework to dynamically allocate
computational resources for Vision Transformer (ViT) based models.

2. Given a fixed parameter count, MoNE offers the flexibility of learning networks at much lower
FLOPs (~ 2.3x on video datasets) and real-time latency (~ 2x), while being quality neutral.

3. Rigorous experiments show that MoNE works well for both image and video transformers, and
visualizations depict that tokens routed to larger experts correlate well with regions of interest.

2 Related Work

Transformers [45] have become the de-facto architecture for processing data across multiple modal-
ities spanning language [10, 36], images [20, 17], video [2, 49] and audio [23] and combinations
thereof [38]. Consequently, there have been numerous efforts to improve the efficiency of transform-
ers to make them more amenable for deployment in real-world applications [44]. These include
approaches like efficient approximations of attention [ 12, 48], local attention [32, 4, 13] and reducing
the number of tokens in the transformer [40, 29, 8] among others. Our work focuses on conditional
computation [5, 34], observing that some input tokens are easier to process than others, and therefore
require less computation during inference.

Mixtures-of-Experts (MoE) transformers learn to route tokens to one of multiple expert MLPs [42, 22].
Although such models conditionally process input tokens, each expert has the same parameter- and
FLOP-count, meaning that the total computation is constant for each input. More relevant to our
approach, Mixture of Depths [37] extends the routing logic of MoE to conditionally skip an expert
completely, thus total computation for each input varies dynamically. Completely skipping tokens
being a hard unretrievable decision, our work chooses from an array of nested network, which
effectively process information and help to stabilize training by getting rid of discontinuities.

Nested architectures [47, 31, 53] on the other hand, learn hierarchical representations of the input,
where the first £ hidden dimensions encode the most relevant information. This allows to extract
multiple models with varying inference compute from a single trained model, similar to ‘Mix-n-Match’
in [19]. However, these models do not process tokens adaptively. Our model, in contrast, consists of a
learned router which dynamically routes tokens to experts of different hidden dimensions based on the
given compute constraints. Therefore, instead of requiring the user to select the hidden dimensions of
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each transformer layer, our model only needs a single compute constraint input. Moreover, we show
experimentally the superior accuracy-efficiency trade-offs achieved by our approach.

We note that other conditional computation approaches include “early exiting” [46, 41, 21, 28] such
that the processing of “easy inputs” terminates before passing through all layers of the transformer.
In addition, the ACT [25] algorithm was proposed for recurrent neural networks, and uses a “ponder
cost” to learn a “halting score” for when to stop processing a particular input. This has since been
extended to recurrent transformers [15], and also to each individual token in a transformer [52, 51],
thus adaptively determining which tokens in a transformer to process. In contrast, our approach
does not drop tokens, rather processes them with smaller nested models. This allows us to retain
most of the information, and hence dampen the effect of irrecoverable decisions. We experimentally
verify that our adaptive approach offers strong compute-performance trade-offs. Flextron [11] is a
concurrent work, which looks at elastic inference, specified by user latency needs, with a focus on
language modeling. Unlike Flextron, MoNE is guaranteed to learn models bounded by the specified
latency needs and is able to learn from a single training phase, without using a surrogate model.

3 Preliminaries

Here, we discuss the concept of nested models, on which we build Mixture of Nested Experts (MoNE),
followed by a discussion about Mixture of Nested Experts (MoE), and its differences from MoNE.

3.1 Nested Models

For the purposes of this work, we use the Vision Transformer (ViT) [20] as an example of a full
model, from which nested submodels can be derived. Inspired by MatFormer [19], we define these
submodels for every layer of the network, for both Self-Attention and MLP (see Appendix A.1). The
key idea is that in a feature projection operation Wx, where W = [W[: D 1 Wi D :]], and W, D)

denotes “‘slicing” the first % dimensions, we can extract a partial projection W[:%]x[ Dj. This
can be done for any projection in the transformer, and we can extract smaller models from it. We
refer to these as nested models, and D/m as the nested model dimension. This is shown in Figure
2a. The Extract operation extracts the first P/m features and applies the corresponding projection
sub-matrix to it, while the Pad operation pads it back to full dimension D before residual connections
and LayerNorm. While MatFormer applies the nested structure only to the hidden dimension of the
MLP layer, in our approach we extend it to the in- and out-projections of both the Self-Attention (SA)
and MLP layer. In the SA block, irrespective of the sub-model used in the in-projections, it is always
projected to the model dimension D for the (QK”)V operation. The same thing is performed in MLP,
where the hidden dimension is always 4D, as in ViT, irrespective of in/out-projection dimension.

We extract E' nested models with exponentially-spaced model dimensions. Therefore, for a typical
value of F = 4, the model dimension for the nested models are [%, %, %, D]. Note that while we
build upon the idea of nested models from MatFormer, we do not share their training strategy which
involves joint optimization through a weighted loss over these submodels. In contrast, we treat these
nested models as distinct experts with varying compute requirements. The Mixture of Nested Experts
(MoNE) framework (described in detail in Sec. 4.1) then dynamically routes input tokens to these
nested experts based on their information content, with the idea that more informative tokens should

be processed by larger (and thus more computationally expensive) nested models.

3.2 Mixture of Experts

A Mixture of Experts (MoE) layer in a transformer can be represented as MoE(x) = Y2 g(x),e;(x),
where F is the number of experts, ¢;() are the expert models each having their own parameters,
g :RP — RF is the routing/gating function, which decides the experts which should process x. Note
that g is sparse with only k << F non-zero terms. During inference, only those experts are active.

MOoE strictly increases the parameter count, but maintains the same inference FLOPs by setting k = 1.
However, it still needs to process all tokens with the same pre-defined compute. In contrast, in MoNE,
we do not extend the parameter count of the model, due to the nesting structure (see Sec. 3.1), and
dynamically choose a nested expert during inference. Unlike in MoE, where all experts have the same
capacity, in MoNE with k£ = 1 always, e; c e;,1, which allows us to dynamically allocate compute.
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Figure 2: (a) Nested model: Partial in- and out-projections in the SA and MLP layers create nested models. m
controls the parameter count and the FLOPs of nested models. The self-attention information exchange happens
at the full model dimension D, MLP dimension is set to 4D as in ViT. (b) Mixture of Nested Experts (MoNE):
Each token x is routed to a nested network, denoted by different model dimension in the diagram. Here x;
gets routed to a nested model with model dimension P/4, whereas x;+1 gets to the full model. The information
exchange between these tokens of different dimension happens in the self-attention block, where they are always
projected to the same dimension. The router weights are also multiplied with the features for proper flow of
gradients. A lighter color in the weight matrix indicate a sliced matrix to construct the nestedness.

4 Methodology

In this section, we describe the details of our Mixture of Nested Experts (MoNE) framework for
efficient inference. We assume a Vision Transformer (ViT) [20] based architecture for our approach,
and then extend it to Video ViT (ViViT) [2] as well.

4.1 Mixture of Nested Experts (MoNE)

Tokenization: In this paper, as our primary focus is images and videos, the model input is in
RIW>3xT “\where T = 1 for images and T' > 1 for videos. After tokenization, the input to the
transformer is X € RP*YN where N is the number of tokens, and D their model dimension. For
images, we have N = H/p;, - W /[p,,, and for video, N = T'/p; - H[py, - W [p,, where H, W, T are
the input height, width and duration respectively. pp, p,, and p; are the patch sizes along these
respective dimensions. We use the ViT [20] and ViViT [2] architectures to tokenize images and
videos respectively, obtaining a list of tokens X = {x; } ;.

MOoNE Block: The Mixture of Nested Experts (MoNE) framework is a dynamic routing mechanism
that processes visual tokens using nested models with varying computational capacities, instead
of processing all tokens with the full model. A pictorial repsentation of the model is presented
in Figure 2b. Let B! = {B, ..., BfE} denote the nested blocks at a certain layer [ with increasing
parameter sizes, B%() being the full model block. A router network decides the appropriate nested
block to use for every token. Hence information from tokens of different model dimension interact
with each other. This is enabled by performing self-attention at the full model dimension D as
discussed before. For each token x;, a router produces a probability distribution over the F nested
experts, r; = softmax(W,x; + b, ), where W, and b,. denote the router weights and bias respectively.

These router predictions are sent to an assignment algorithm, which assigns every token to a single
appropriate nested expert. Based on the assignments, we update the features for the i*" token in the
1" layer as follows -

xitt =gl (aréj + 1) -B?FN’l(zé) 7l =xl + B?A’l(xé) (D
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where the j* nested expert is chosen by the Expert Preferred Router [EPR(.)] algorithm for the "
token as per Eq. 2:

7 =EPR(i; {ri}}%,) )

Note that the multiplication of the router predictions with the model output in Eq. 1 allows gradient
propagation through the router weights. We also introduce a learnable parameter « € [0, 1), initialized
to 0, which ensures proper gradient flow during the initial training stages, specifically during finetuning
from a pre-trained MatFormer model. Without scaling, a low initial router prediction would dampen
the block output, whereas the initial multiplicative factor being 1 ensures a stable starting point.

Features and Loss: The feature of the last layer xiL is used for downstream applications. For
classification tasks, we apply global average pooling on all the token features and apply a linear
classifier layer to predict the categories.

4.2 Token to Nested Expert Assignments

Within the MoNE framework, the routing strategy is crucial for achieving an optimal balance between
performance and computational efficiency. Traditionally there are two primary routing strategies —
token choice [42] and expert choice [39] . In token-choice routing, the router predicts the probability
distribution over the available experts, and picks the expert with the highest probability. However,
this can suffer from load balancing issues, with most of the tokens being routed to one or few experts.
Hence, inference time compute is only bounded by the compute of the full model. On the other hand,
in expert choice routing, each expert selects the top-k tokens with the highest preference for that
expert. This guarantees perfect bounds on computation. Potential conflicts due to token selection by
multiple experts are resolved by prioritizing based on model size.

Formally, we consider a given distribution of nested models applied to the tokens, represented as
c={c1,...,cg},st,>,; ¢; = 1, which we call the capacity distribution over the nested models. The
method for obtaining a suitable capacity distribution, given the inference time compute requirements,
will be discussed in Sec. 4.3. Given router probabilities r; for /V tokens across E experts, we employ
an Expert Preferred Routing algorithm (Algorithm 1). This is a greedy assignment approach that
gives higher preference to larger nested models, aiming to identify the most important tokens first. We
begin by examining the router predictions for the biggest to the smallest model, assigning k; = |¢; NV |
of the remaining tokens to j*" nested model. Any remaining tokens, arising from integer packing
constraints, are assigned to the smallest model. Algorithm 1 presents the proposed Expert Preferred
Routing (EPR) algorithm.

Algorithm 1 Expert Preferred Routing (EPR)

Require: r € RE*Y (router predictions), ¢ (capacity distribution, s.t., ¢7'1 = 1),
Ensure: M ¢ {1,..., E}" (nested model index)
M« 1y Default assignments to the smallest model
: for j= FEtoldo
kj < |cj-NJ
I < Top-k-Index(r[j,...], k;) Returns value and indices of Top-K
r[;,1] <0 Null out assigned ones
end for
return M/

PRIDHERN

4.3 Capacity Distribution Across Experts

The Expert Preferred Routing (EPR) as described in Section 4.2 needs the individual expert’s capacity
bounds ¢; to be specified. To get this, we define a metric called the effective capacity : e, = LiZ1 cidi/D,
where d; = D[22 is the model dimension of the i** nested model. Given a certain inference FLOP
requirement, we can translate that to an equivalent effective capacity e.. Since every token gets
processed through exactly one nested expert, this along with the given budget imposes two constraints
on the unknown capacity distribution c. However, since the individual expert capacities vary log-

linearly, multiple distributions ¢ can lead to the same e. for £ > 2 and it is non-trivial to choose
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one over the other. MoEs generally use auxilliary loss functions [39, 42] to promote equal usage of
experts. But in MoNE, that would render a certain fixed capacity, missing out on the flexibility that
the framework provides to function with any capacity (as depicted later in Figure 5b). Hence, we
invoke intuitive constraints to solve for c. Specifically, we incentivize the usage of larger models,
while also adding an entropy term to ensure uniformity of capacities across experts. Given these
constraints, we solve the following optimization problem:

B . B
maximize Y —— -8 ci-logc;
i

L5l
. E E ) 3)
subject to Zcizl ZzE_i = e 0<ei<l Vie{l,..,E}
i=1 i=1

given O<e.<1, E,6>1, >0

In practice, we set (3,9) to (10,2) and use a Sequential Least SQuares Programming (SLSQP)
optimizer to solve Eq. 3 for the capacity distribution ¢, which is then used by EPR (Algorithm 1) to
get token to expert mappings. We empirically verify these choices in Section 6.

4.4 Videos

MOoNE can be seamlessly adapted for video-based tasks. In videos, there exists another dimension
— time — which adds to the significant redundancy in the tokens. Given the large number of tokens
that can be obtained from a video, the computational costs grow drastically. To tackle this problem,
works in literature factorize computation along space and time [2, 6], perform local windowed
computation [33], etc. MoNE being a token based approach, directly extends to video encoders.

For video processing, we leverage the Factorized Encoder architecture of ViViT [2]. This architecture
employs two distinct transformers: spatial and temporal. After tokenization, each temporal index
yields a set of tokens representing information from local spatio-temporal neighborhoods. These
spatial tokens interact within their temporal index for L layers, culminating in a single global token
per index. Subsequently, a temporal transformer processes these global tokens across L; layers. Given
that the spatial transformer significantly dominates computational costs in this model, we integrate
MOoNE into the spatial component while maintaining full capacity for the temporal transformer. The
router predicts expert assignments for all temporal frames independently, which are then consumed
by the EPR(.) algorithm to produce frame-wise expert assignments.

5 Results

In this section, we empirically evaluate MoNE on multiple datasets spanning images and videos
for different model sizes, assess its adaptability to stringent FLOP constraints, and depict real-time
latency gains achieved by MoNE during inference.

Implementation details: We empirically evaluate MoNE on image and video classification. For
image classification, we train the network with random initialization. As for video classification,
we follow previous literature and start from a pre-trained MatViT [19] model due to the inherent
nested structure required in MoNE. We follow the joint training strategy of MatViT, with separate
losses an all model granularities. We implement MoNE on JAX [9] using BigVision [7] for image
classification and Scenic [ 6] for video classification. We follow the AugReg [43] training strategy to
train all our image classification models. For video classification tasks, we inherit all augmentations
and hyperparameter values directly from the ViViT [2] paper.

For all experiments in this section, we place a single router at the first transformer layer, and propagate
the router decisions to all the layers. We also multiply the router predictions (Eqn 1) to all layers,
which ensures differentiable paths through the router network in all layers and allows the more
evolved features from later layers to influence router learning. We also perform analysis of router
placement in Section 6.

Baselines: We first compare with MatViT’s nested models. As mentioned in the paper [19], we

perform joint training over all four nested models that we consider in this work - {%7 %, g, D}.

MatViT is equivalent to MoNE, with a deterministic router to pass all tokens to the same nested
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Figure 3: Image classification: Performance comparison of MoNE with baselines on ImageNet-21k
for different model sizes. MoNE performs significantly better than MatViT and Mixture-of-Depth
(MoD) and even benefits from isoFLOPs training (see fig a).

model. We show that adaptively mixing tokens with different model dimensions performs much
better across datasets and tasks. We also compare with Mixture of Depths (MoD) [37], which is also
a token routing algorithm, but proposed for language tasks. MoD takes the extreme decision of either
processing or skipping for every token in a layer. MoNE, on the other hand, makes fuzzy decisions to
choose intermediate-sized models, instead of skipping, which helps to retain significant information
at the expense of low compute. We adopt the best reported MoD configuration: processing 12.5% of
tokens every other layer while processing all tokens in the remaining layers.

We also emphasize that MoNE acts as a complementary framework to traditional MoEs like Sparse
VMOoE [39], and inference-time optimization techniques like Token Merging (ToMe) [8]. We present
an extended discussion and further results in Appendix A.2, comparing with other adaptive baselines
and validating the compounded savings by applying ToMe on MoNE.

Images: First, we evaluate MoNE on ImageNet-21k [ 18] classification using ViT. We experiment
with S, B, and L models to showcase the efficacy of MoNE across model sizes. As ImageNet-21k can
have multiple labels for an image, we report the commonly used precision@ 1 metric. Figure 3 shows
the results for all the models on ImageNet-21k. MoNE performs much better than MatViT’s nested
models and MoD, specifically in the low FLOPs regimes. MoNE achieves comparable performance
to baselines with around 2x reduction in FLOPs.

Following the literature on language models [37, 27], we experimented with iSOFLOPs training,
which involves training for the same number of FLOPs as the baseline models. Since MoNE models
have fewer FLOPs compared to their ViT counterparts, they require more training epochs to achieve
the same total training FLOPs. We conducted this experiment on the S/16 model (see Figure 3a) and
observed additional improvements in MoNE’s performance, particularly for the lower FLOPs models.

Videos: Since video models rely on heavy pre-training [2], we first train a baseline model with nested
structure on the benchmark datasets - Kinetics-400 [31] and Something-Something-v2 (SSv2) [24].
We use the ViViT Factorized Encoder B/16 model [2] for our experiments and consistently report
the 8x1 test accuracy, averaging predictions over 8 temporal clips [2]. Figure 4 illustrates the results
of the MoNE framework, significantly outperforming the individual nested models. MoNE offers
2 — 3x reduction in FLOPs compared to the ViViT baseline, without any accuracy drop (On SSv2, the

=" * L a---a *
74 - 64 -5
73 S S B SR lo
L 72 I e . 63
PPt S S s st A R R R A .
gn » g62 -
5 4 s
g g 61 L 48
< 69 <
60
68 ~e- MatViviT ~e- MatViviT
671 ¢ H ViviT 59 H ViviT

=~ MoNE (Ours)

40

Figure 4: Video classification: MoNE vs. baselines on video datasets. Finetuning with the isoFLOPs
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training regime leads to matching baseline with > 2x FLOP improvement.
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Figure 5: Capacity adaptation during inference: Performance changes when a model trained at a
certain capacity (denoted as ) is evaluated at other capacities. The “Train Adaptive” plot for SSv2
denotes a single model evaluated at different inference-time budgets.

FLOPs for MoNE are 162.8 vs 376.3, with similar accuracy — 64.6 vs 64.4). We always do isoFLOPs
training while fine-tuning these models. We attribute the higher compute gains compared to images
due to the greater (spatial and temporal) redundancy in videos, which MoNE exploits well.

Inference time capacity adaptation: Capacity adaptation during inference is crucial, as the infer-
ence time budget is often dynamic, changing based on user needs. Ideally, a model should adjust
with little to no retraining. To evaluate this ability, we test how MoNE, trained at a specific effective
capacity (e.) performs when evaluated at other capacities. Fig. 5 presents the results for image
and video classification. We observe that the model adapts well to nearby capacities. However, as
expected, its ability declines with extreme shifts in the capacity budget between train and eval. The
performance degradation is steeper while adapting a model trained at high capacity to low capacity.
We also note that the performance degrades more gracefully in videos than on images, presumably
due to the larger temporal redundancy.

To enhance model adaptability, we train a model with the capacity sampled uniformly at random
from {0.15,0.25,...,0.95} at each training step. The results on SS-v2 (Figure 5b) demonstrate
our framework’s strong capability to adapt to any inference-time budget using a single model. It is
interesting to note that the training FLOPs of this adaptively trained model are equal to those of a
baseline model (isoFLOPs training). The model adapts extremely well even to capacities that are
significantly different ({0.2, 0.3, ...}) from those sampled during training.

Real Time Latency Gains: In addition to the theoretical FLOP gains, Table 1 presents the real-time
latency/throughput gains of MoNE-based ViViT model as compared to its baseline variant. The
absolute wall clock times and throughput are compared on a single V100 GPU, achieving nearly
two-fold improvement in both FLOPs as well as runtime, whilst maintaining accuracy.

Table 1: Real Time Latency and Throughput gains for MoNE on a single V100 GPU

Method | FLOPs (G)  Throughput (clips/sec) ~ Latency (ms)  Top-1 Accuracy
ViViT-FE-B/16 376 15.8 129.2 64.4
MOoNE (e. = 0.3) 162 30.7 65.5 64.6

Additionally, the variation of latency and throughput with FLOPs for varying model capacities of
MOoNE is depicted in Figure 6a to 6d. The plots show that latency and throughput gains scales
linearly with FLOPs reductions. It is important to note that inference gains depend heavily on
implementation and while a simple high-level efficient implementation of our framework yields gains
of this scale, we believe that further improvements can be obtained by optimizing a low-level GPU
kernel implementation for MoNE.

In addition, it is worth noting that the proposed Expert Preferred Routing (EPR) in Algorithm 1 loops
only over the number of experts, which is typically a small number and fixed to 4 in our framework.
While the nature of the EPR algorithm does not allow parallelization of the computation any further,
the time taken by the algorithm is negligibly small as compared to the total time taken by the model.
For comparison, on a V100 GPU, the EPR algorithm adds just 0.5 ms to the forward propagation
time of a ViT-B/16 model (190 ms), accounting for < 0.3% of the total computation time.
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Figure 6: Wallclock realization of MoNE’s computational savings with varying effective capacities,
depicted on the Something-Something-v2 dataset.

6 Router Analysis

In this section, we discuss, analyse and visualise the design choices in implementing the router
network. We choose the SSv2 dataset for this analysis. We further provide an extended discussion in
A3, detailing on the choice of number of routers, associating router outputs with Task Difficulty, and
understanding the implications of having of learnable router.

Router Position: As discussed before, we use a single router at the first layer, and propagate
its decisions for all layers. While a delayed router might benefit from a more processed feature
representation as input, this also diminishes the compute gains, as the initial layers operate at full
capacity. We reason this choice by monitoring performance while placing the router at different
layers in the network. As Figure 7a suggests, the gains through richer features from the later layers is
outweighed by the shift in the curve to the right, and an equivalent capacity with our default router
produces higher points on the curve.

Number of Routers: We vary the number of routers, placing them at different regular intervals in
the network in Figure 7b. The decision from one router is carried out until the next router block is
encountered. We notice a clear downtrend in performance with increase in number of routers from
being present in the first layer to being present in all layers. Intuitively, more routers demand learning
more decisions, and the network has to adapt to these decisions, making optimization harder.
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Figure 7: Router Analysis: Effect of router placement and learning on Something-Something v2.
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(b) Video frames from SomethingSomethingv2

Figure 8: Tokens routed to the full model: Highlighted regions are the tokens sent to the full model,
while rest of the tokens are sent to the smaller nested models. (a) shows examples on images and
(b) shows an example on a video at multiple temporal indices. As we can see, the necessary and
important tokens are sent to the full model.

Comparison with Random Router: We compare our learned router approach to a random router,
which maps tokens to nested experts randomly, while still maintaining the capacity limits of each
expert (c;), as computed in Section 4.3. Results in Figure 7c suggests that with lower effective capac-
ities, the random router performance degrades while the learned router still manages to understand
relevant patterns from the input, thus upholding performance.

Visualizing Important Tokens: The above claim is further backed by visualizing the token impor-
tance during inference at a low effective capacity (e.). We highlight the tokens selected by the largest
expert, i.e., the full model on a few images in Figure 8a. It can be easily observed that the tokens sent
to the largest model correlate well with the regions of interest in the images. On videos (Figure 8b)
as well, the highlighted regions across temporal stamps consistently track the regions of motion.

Capacity Allotment: Given a fixed input capacity e., we demonstrate the superior performance
of our heuristic-based allocation method (Section 4.3) compared to other approaches, as shown in
Table 2. While the Proportionate allocation (assigning capacity inversely proportional to expert
compute cost) and Uniform allocation (assigning equal capacity to all experts) show promising
results, they lack the flexibility to adapt to varying budgets. Additionally, greedy approaches, such as
allocating the entire budget to the largest expert and dropping other tokens (MoD style), or a greedy
approach where the largest expert is assigned capacity such that all the remaining tokens are routed
through the smallest expert, exhibit inferior performance.

Table 2: SSv2 Performance of different capacity distribution methods

Static budget Dynamic budget
Distribution Proportionate ~ Uniform | MoD Greedy [37] Greedy MoNE MoNE
Effective Capacity (e.) 0.27 0.47 0.4 0.4 0.3 0.4
Accuracy 64.3 64.6 63.9 64.2 64.2 64.6

7 Conclusion

In this work, we presented Mixture of Nested Experts (MoNE), a novel framework for adaptive
processing of visual tokens by dynamically allocating computational resources to different tokens.
Through a nested structure with shared parameters and the proposed expert-choice routing algorithm,
MOoNE achieves significant reductions in inference time (over two-fold) without sacrificing accuracy
on benchmark image and video datasets. Future works can be centered around extending MoNE to
denser tasks like object detection, captioning, etc.

Limitations: Extending this to auto-regressive decoding in LLMs is non-trivial, as this is designed
primarily with an encoder architecture in mind. We leave this further exploration for future work.
Societal Impact: The MoNE framework dynamically allocates computational resources with a given
budget, thereby significantly minimizing energy usage and carbon emissions during inference of
vision models. MoNE can also play a role in democratization of Al, allowing broader access to
trained models without the need for large resources.
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A Appendix

A.1 MatFormer Structure on Model Dimension

Following MatFormer convention, we define F ViT blocks B;, such that B; c B;,; forall i € [E],
meaning that the parameters of B; are contained in those of B;,;. With d; denoting the hidden
dimension corresponding to nested model B; such that d; < ds < ...dg = D, the block operation for
a nesting B; on an input token set X = {x;} ¥, for x; e R” is given by:

B,(X) £ B(x,d;) = B"™(Z,d;), Z=B*(X,di)+X, di=(di,d;,...,d;) (4
N———
N times

|

[ Scaled Dot-Product Attention Hh

@av @~ @

X X;
Figure 9: MatFormer Structure on Model Dimension

The modified Self-Attention B and Feed-Forward BN subroutines are shown below.

B (X,d) = LN[(U ( (X ©q WQ)QCE_X ©d WK)T) (X ©4 WV)) oh WSAO] (5)

BFFN(X, d) =LN [O’(X ®4q WFF,) Eg WFFO] (6)

where ®4 and @4 respectively denote the sliced in and out projection operators, such that:

(X©a W), =(x)rar] Wpas (X@a W), =x; - (Wpa)" (7

In the general Mixture of Nested Experts (MoNE) setting discussed in Section 4.1, the overall block
computation for the set of tokens X requires knowledge of the expert assignments for each token

beforehand. Given these assignments m € R, such that m, € {1,2,..., E}, the computation for
the i token processed by the j*" expert can be represented as:
Bj(xi) = [B(X’d)]w d= (dmL ﬁ\:ll ®)

In Eq. 8, the block update for token x; is dependent on the complete input set X and their respective
expert assignments m, but we omit these in the definition B; for notational convenience. Additionally,
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Table 3: MoNE Comparison on ImageNet-1K with other Adaptive Baselines

Method | FLOPs (G)  Throughput (clips/sec) ~ Top-1 Accuracy
ViT [20] 1.3 3410 71.3
PonderNet [3, 21] 1.0 - 66.2
DepthAdapt [21] 1.1 - 69.4
ACT [25] 1.0 - 71.0
A-ViT [52] 0.8 - 71.0
MOoNE (Ours) 0.8 4333 71.4

this definition directly extends to the sub-routines B and BN, as presented in Eq. 1. Here, the
weight matrices of SA are Wq, Wi, Wy, Wga, € RP*((P/n1)xnn) and the weight matrices of
FFN are Wgr,, Wgr, € RDPxdss, ignoring bias terms for simplicity. W.;) denotes the first k rows
of W. Here, nj, denote the number of heads in the attention mechanism, ds s denotes the feed forward
dimension, and o denotes a non-linearity, typically set to GeLU [26].

A.2 Comparing MoNE with Other Adaptive Baselines

Firstly, we establish that MoNE, complements rather than competes, with the traditional Mixture of
Experts framework. Traditional MoEs like Sparse VMoE [39] route inputs in each layer to one out
of k independent experts (typically the FFN block), each having the same parameter footprint, thus
increasing the parameter space k-fold for the expert blocks. On the other hand, independent MoNE
do not increase the parameter space, and thus MoNE blocks can potentially be used as experts in the
MoE framework.

MOoNE acts as an in-place replacement for a dense model like ViT, hence all our comparisons
maintain the same parameter space. VMoE frameworks show cross-scale results at the expense of
increased parameter space (e.g., equivalent performance of VMoE-L/16 to ViT-H/14 in Table 2 in
[39], and similar cross-scale comparisons in Figs. 4 to 8 in [1]). MoNE, in contrast, matches baseline
performance with limited inference compute while working with the same parameter space.

While generally MoE architectures are designed with the expectation of specialization of experts
to certain tasks, this is not always the case. In Mixtral of Experts [30], the authors do not observe
patterns in the assignment of experts based on the topic. In Sparse VMOoE [39], the authors observe
very weak correlation of router decisions to categories. In MoNE, overlap between experts allows the
largest expert to utilize the full parameter space, meaning complete representation power as enjoyed
by the equally-sized vanilla model. Additionally, as shown in Table 5 of [19], joint optimization of
shared experts leads to better performance than having independent experts of the same size.

In Table 3, we compare MoNE with
other baselines, particularly with adap-
tive computation of dense models. We
perform this experiment on ImageNet- 01
1K with a Ti/16 sized model. ACT [25],
PonderNet [3], DepthAdapt [21], A-ViT
[52] are works with similar motivation
of input adaptivity as MoNE, and MoNE
shows superior performance. Latency
gains on bigger models e.g., ViT-B are
even higher, as also observed in literature

[5].

We also highlight that MoNE can be uti-
lized as a baseline for further inference-
time optimizations for improving latency.
To this end, we apply Token Merging
(ToMe) [8] on top of the MoNE style
ViT-Ti/16 model trained on ImageNet-
1K. For this experiment, we train a model
with full capacity till the third layer and

I | |
w N =
L
(]
[ ]
o
o
[ ]

Drop in Top-1 Acc
°
°

|
IS
f

e ToMe+ViT
e ToMe+MoNE

09 10 11 12

GFLOPs
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Figure 10: Latency gains by using ToMe on top of MoNE,
compared against ToMe over vanilla ViT. We use a ViT-

Ti/16 model trained on ImageNet-1K for this comparison.
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then place a router that optimizes for latency for all subsequent layers. ToMe is applied only on the
first 3 layers.

For fair comparison, we compare the performance drop and quote the same from a ViT-Ti model
from the ToMe paper in Figure 10. Our preliminary results demonstrate that this implementation
improves performance compared to ToMe on ViT, and this can be further extended to all MoNE
layers, applying it to distinct sets of nested tokens, indicating that ToMe is complementary to MoNE.

A.3 Understanding the Router Behaviour

Number of Routers: It is important to note that the number of routers in MoNE do not have the
same implications as in traditional MoE frameworks. In MoEs, the parameter count increases with
the number of layers on which the expert router is placed, and hence we typically see performance
gains. Even then, as depicted by Tables 2 and 8 in Sparse VMOoE [39], significantly increasing the
parameter count with more routers only marginally improves performance. On the other hand, in
MOoNE, the parameter size remains fixed irrespective of the number of routers: the only change a
router brings is re-assignment of tokens to nested experts while keeping the total compute per layer
fixed. We hypothesize that increasing the number of routers leads to slight decrease in performance,
as seen in Table 7a due to two reasons:

* It brings in additional optimization challenges (also prevalent in the MoE literature [39])

» Reassignment of a token from smaller to larger nested expert limits its information content
to the representation power of the smaller expert, therefore not improving performance. The
converse case occurs while reassigning from bigger to smaller nested experts, thus losing
information.

Since MoNE allows flexibility in the placement of routers, an interesting future direction would be
to extend MoNE to more challenging task settings, where a higher number of routers might lead to
better results.

Task Difficulty: To further analyse the decisions made by the MoNE router, we study the visual
inputs from the ImageNet-21K dataset deemed most and least compute intensive with respect to the
router logits. This analysis experiment is performed in a setting without capacity constraints, in order
to understand if the router decisions correlate with task difficulty (i.e. harder to understand inputs are
sent to larger experts). Therefore, instead of using the greedy EPR Algorithm 1, we take an argmax
over the router logits to make decisions. The results presented in Fig. 11 depict two sets of images,
the top-3 images that demand the lowest and the highest compute respectively, according to the router
decisions. It can be intuitively observed that the images demanding less compute are visually simple,
while the ones demanding highest compute are relatively complex.

2o BY

Lowest compute Highest compute

Figure 11: A few images, which have been predicted by the router to require lowest and highest
computation, from over 2000 randomly selected images in the ImageNet21k dataset.

Learned vs Random Router: Figure 7c shows the performance of the model with a learned vs
a random router at different capacities. While for higher capacities, the learned router performs
marginally better than the random one, the gap significantly widens as we go to lower capacities,
from 0.1% at e, = 0.6 to 1.3% at e, = 0.2. This makes sense: with ample capacity, many tokens can
be heavily processed, reducing the need for smart routing. Conversely, in low-capacity scenarios,
routing decisions become crucial as only a few tokens can utilize the heavy experts. Interestingly,
ViTs inherently shuffle information [14], potentially even in the "Random" router setting as well,
acting as an intrinsic information router. We note that a model trained with a learned router when
evaluated with a random router, performs significantly worse (~ 6% drop in Top1 Accuracy on Ti/16
trained on ImageNet-1K).
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, we verify our claims experimentally in Sec. 5.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Please check Sec 7 for more details.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
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Answer: [NA]
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. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We mention all the codebase used in this work, along and use their default
hyper-parameters for the respective networks. We also present our work in great detail,
which we believe should be enough to reproduce results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets and codebase on top of which we build our algorithm are open-
sourced, we will open-source the code for this paper upon acceptance.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See "Implementation Details" for more details.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The experiments are extremely compute intensive barring us from running
each of them multiple times. However, the datasets we work on are standardized and the
gains are stable across multiple runs.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes. We do not have anything in conflict with the NeurIPS code of ethics.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 7 for a short overview on how MoNE can help democratize large
image and video models in practice.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not work on generative media.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA|

Justification: We use popular public research datasets and models which are under permissive
license for research and fair use. We shall open source our code and models.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: No datasets are introduced in this work.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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