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Abstract

We consider off-dynamics reinforcement learning (RL) where one needs to transfer
policies across different domains with dynamics mismatch. Despite the focus on
developing dynamics-aware algorithms, this field is hindered due to the lack of a
standard benchmark. To bridge this gap, we introduce ODRL, the first benchmark
tailored for evaluating off-dynamics RL methods. ODRL contains four experimen-
tal settings where the source and target domains can be either online or offline,
and provides diverse tasks and a broad spectrum of dynamics shifts, making it a
reliable platform to comprehensively evaluate the agent’s adaptation ability to the
target domain. Furthermore, ODRL includes recent off-dynamics RL algorithms in
a unified framework and introduces some extra baselines for different settings, all
implemented in a single-file manner. To unpack the true adaptation capability of
existing methods, we conduct extensive benchmarking experiments, which show
that no method has universal advantages across varied dynamics shifts. We hope
this benchmark can serve as a cornerstone for future research endeavors. Our code
is publicly available at https://github.com/OffDynamicsRL/off-dynamics-rl.

1 Introduction

Human beings are able to transfer the policies swiftly to a structurally similar task. This ability is
also expected in decision-making agents, especially embodied AI [62, 13, 53]. For instance, we may
train the robot in a simulated environment (i.e., source domain) and deploy the learned policy in
real-world tasks (i.e., target domain), where the dynamics gap may pertain between the simulation
and reality. It is anticipated that the robot is able to adapt itself to real-world dynamics quickly.

How to generalize policies across different domains with dynamics discrepancies efficiently remains
an open problem in reinforcement learning (RL). Such a problem setup is referred to as off-dynamics
RL in [16], but it is restricted in demanding the online source domain and target domain. We extend
its scope and formally define a general off-dynamics RL setting (Definition 1), where the source
domain and the target domain only differ in their transition dynamics. Existing researches realize
policy adaptation under dynamics mismatch via system identification [82, 10], domain randomization
[63, 66, 55], learning domain classifiers [16, 41], etc. However, we argue that this field lacks a
standard and unified benchmark. Upon checking the latest off-dynamics RL methods [16, 76, 41],
we found that they often manually construct their customized environments with dynamics shifts and
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conduct experiments on them. The superior performance reported in these papers does not necessarily
indicate that they are indeed state-of-the-arts, due to the lack of comprehensive evaluations and
comparison using a unified testbed. Eventually, the progress in off-dynamics RL can be impeded.

To mitigate this concern, we introduce ODRL, the first benchmark for off-dynamics RL. ODRL covers
numerous domain categories, including locomotion, navigation, and dexterous manipulation, and a
wide spectrum of varied dynamics shifts, e.g., kinematic and morphology mismatch, as depicted in
Figure 1. Our benchmark provides 4 types of experimental settings in a unified framework (see Figure
2), where the source and target domain can be either online or offline. Such versatility guarantees a
thorough and trustworthy assessment of off-dynamics RL algorithms under different conditions.

Furthermore, ODRL encompasses a variety of recent off-dynamics RL algorithms within diverse
experimental configurations, in conjunction with some baseline methods proposed on our own. All
algorithms share similar code styles and are implemented in separate single files, making it easier to
recognize core algorithmic designs and performance-relevant details. It also ensures consistency and
allows for a fair benchmarking comparison. Notably, only a limited budget of target domain data is
permitted in ODRL to better evaluate the policy adaptation efficiency of the agent.

To summarize, we have made the following efforts: (a) we give a formal definition of the general
off-dynamics RL setting; (b) we propose the first off-dynamics RL benchmark, which offers different
experimental settings, diverse task categories, and dynamics shift types under a unified framework;
(c) we isolate algorithm implementations into single files to facilitate a straightforward understanding
of the key algorithmic designs; (d) we conduct extensive experiments to investigate the performance
of existing methods under different dynamics shifts and experimental settings, and conclude some key
observations and insights. It is our hope that ODRL can aid researchers in developing dynamics-aware
methods and pave the way for adaptable algorithms in real-world applications.

Source domain
Target domain

Locomotion

AntMaze

Dexterous

Manipulation

Friction Gravity Kinematic Morphology 

Different map structures

Kinematic Morphology 

Figure 1: An overview of selected benchmark tasks. ODRL includes multiple domains with
various types of dynamics shifts, making it a reliable platform for evaluating policy adaptation ability.

2 Background

Reinforcement Learning (RL). We study sequential decision-making problems in a Markov Deci-
sion Process (MDP), which is specified by the tuple 〈S,A, P, r, ρ0, γ〉, where S,A are state space
and action space, respectively, P (s′|s, a) : S × A → ∆(S) is the transition probability, where ∆
is the probability simplex, r : S × A → R is the scalar reward signal, γ ∈ [0, 1) is the discount
factor, ρ0 is the initial state distribution. The goal of RL is to find a policy π(·|s) to maximize
J(π) = Eπ[

∑∞
t=0 γ

tr(st, at)].

Off-dynamics RL. In off-dynamics RL, we consider two infinite-horizon MDPs, the source domain
Msrc := 〈S,A, Psrc, r, ρ0, γ〉 and the target domainMtar := 〈S,A, Ptar, r, ρ0, γ〉. Note that the
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two domains only differ in their transition probabilities, and other components like state space, action
space, and reward functions are kept the same. Formally, we define our problem setting below.

Definition 1 (Off-dynamics RL setting). The agent has access to sufficient data from the source
domain Msrc and a limited budget of data from the target domain Mtar, where there exist
dynamics shifts betweenMsrc andMtar. The agent aims at getting better performance in the
target domainMtar by leveraging data from both domains.

3 Related Work

Generalizing policies across varied domains is a broad and critical topic in RL, where domains can
differ in transition dynamics [16, 69, 77, 12], observation spaces or action spaces [22, 6, 23, 83, 4,
79, 25], etc. As a benchmark paper, it is difficult to include all possible domain discrepancies. We set
our focus on the policy adaptation across domains with dynamics mismatch, because this kind of
problem often occurs in real-world applications [53, 36, 1, 85], e.g., enabling the quadruped robot
that previously trained under indoor scenes to adapt its policy to outdoor varied landscapes.

Previous studies mainly handle this challenge by domain randomization [63, 49, 70, 35], system
identification [10, 86, 15, 74, 17, 87, 11, 60], and meta learning approaches [50, 58, 2, 73]. These
methods often rely on a manipulable simulator [9], or require access to the distribution of training
environments. System identification can be expensive due to the need of calibrating the dynamics of
the source domain, and domain randomization relies on manually-specified randomized parameters
and nuanced randomization distributions. Another line of research tries to address the issue from the
perspective of designing dynamics-aware algorithms without changing the parameters of the training
environment. Typical methods include recognizing the dynamics change by training expressive
models [24, 31, 75], selectively sharing transitions from the source domain by contrastive learning
[71] or the proximity of paired value estimate targets across the two domains [76], learning domain
classifiers for measuring the dynamics gap to penalize source domain rewards [16, 41, 68] or per-
forming importance weighting [52, 51], capturing the representation mismatch between two domains
for reward modification [44], leveraging action transformation methods that utilizing the trained dy-
namics models of the two domains convert transitions from the source domain [27, 14]. Furthermore,
some studies close the dynamics gap between two domains by using the expert demonstration from
the target domain [37, 28, 18, 61]. Despite the success, existing papers often conduct experiments
within self-proposed environments, which is unhealthy for the advances of this field because it fails to
truly reveal the merits of the proposed method. Meanwhile, the constructed tasks often lack sufficient
diversity, and different papers set focus on distinct settings (e.g., whether the source domain is offline).
These motivate us to develop a unified and standard benchmark for off-dynamics RL.

Comparison against other benchmarks. There are numerous benchmarks that are related to ODRL,
including Gym-extensions [29], D4RL [19], DMC suite [65], Meta-World [81], RLBench [32], CARL
[5], Continual World [72]. We compare ODRL against these benchmarks below.

Table 1: A comparison between ODRL and other RL benchmarks.
Benchmark Offline Datasets Diverse Domains Multi-task Single-task Dynamics Shift

D4RL [19] " " % %

DMC suite [65] % " % %

Meta-World [81] % % " %

RLBench [32] " % " %

CARL [5] % " % "

Gym-extensions [29] % % " "

Continual World [72] % % " %

ODRL (this work) " " % "

Among shown in Table 1, D4RL only contains single-domain offline datasets and does not focus on
the off-dynamics RL. DMC suite contains a wide range of tasks, but it does not offer offline datasets
and does not handle the off-dynamics RL. Meta-world is designed for the multi-task RL setting.
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Off-Dynamics RL Benchmark

Online-Online setting:

online source domain

online target domain

Offline-Online setting:

offline source domain

online target domain

Online-Offline setting:

online source domain

offline target domain

Offline-Offline setting:

offline source domain

offline target domain

Algorithms:

SAC, DARC, VGDF, 

PAR, …

Algorithms:

BC_SAC, CQL_SAC, 

H2O, …

Algorithms:

SAC_BC, SAC_CQL, 

H2O, …

Algorithms:

IQL, BOSA, DARA, …

Figure 2: Benchmark setting and algorithmic implementations. Our benchmark involves 4 varied
experimental settings, where the source domain and the target domain can be designated as online or
offline. Numerous baselines and off-dynamics RL algorithms are implemented for each setting.

RLBench provides demonstrations for numerous tasks but it does not involve the dynamics shift
in a single task. CARL focuses on the setting where the context of the environment (e.g., reward,
dynamics) can change between different episodes (i.e., it does not have a source domain or target
domain, but only one domain where the dynamics or rewards can change depending on the context).
CARL also does not provide offline datasets. Continual World is a benchmark for continual learning
in RL. It also supports multi-task learning and can be used for transfer RL policies. ODRL, instead,
focuses on the setting where the agent can leverage source domain data to facilitate the policy training
in the target domain, where the task in the source domain and the target domain remain identical.
Note that Gym-extension involves some tasks that are similar to some MuJoCo tasks in ODRL, but
Gym-extensions is intrinsically designed for multi-task scenarios and ODRL covers more diverse
task domains, dynamics shift types and also provides offline datasets for each task.

4 Benchmark Details

ODRL mainly contains three task categories, including locomotion, navigation, and dexterous hand
manipulation. Different domains are equipped with distinct and representative dynamics shift tasks.
We treat the vanilla environments within these domains as the source domain and environments with
dynamics shifts as the target domain. Both the source domain and the target domain in ODRL are
allowed to be either online or offline, resulting in four varied training paradigms as illustrated in
Figure 2, e.g., Online-Offline setting denotes that the source domain is online while the target domain
is offline. The goal is to learn policies that can achieve better performance in the target domain
by leveraging transition from the single source domain (with dynamics discrepancies) and single
target domain. ODRL offers a diverse collection of tasks and covers all possible single-task policy
adaptation settings, making it a reliable and unified benchmark for off-dynamics RL.

4.1 Benchmark Tasks

Locomotion. We adopt four tasks (Ant, Hopper, HalfCheetah, Walker2d) from the popular OpenAI
Gym library [7], simulated by MuJoCo [67]. We consider four kinds of dynamics shifts:

(a) Friction shift. In MuJoCo, friction is represented by three components: static, dynamic, and
rolling friction, where static friction means the frictional force that needs to be overcome
when the robot is stationary, while dynamic friction and rolling friction stand for the frictional
force between objects when they are in motion and rolling, respectively. Modifying the
friction attribute can significantly change the motion characteristics of the simulated robots.
We modify all friction components and consider shift levels {0.1, 0.5, 2.0, 5.0}, where the
friction components of the target domain are set to be 0.1, 0.5, 2.0, and 5.0 times the friction
components of the source domain to span across both slight shifts and serious shifts.

(b) Gravity shift. The gravity attribute corresponds to the gravitational force acting on objects
within the simulation. We only modify the strength of the gravity and keep its direction
unchanged. Similarly, we consider shift levels {0.1, 0.5, 2.0, 5.0} where the gravity in the
target domain is established at 0.1 times, 0.5 times, 2.0 times, and 5.0 times the gravity
within the source domain to cover both minor shift cases and extreme shift cases.
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(c) Kinematic shift. The kinematic discrepancies are realized by constraining the rotation angle
ranges of certain joints in the simulated robot, i.e., some joints are broken such that it
becomes infeasible to exhibit some motion characteristics in the target domain. We offer
two choices of broken joints for each robot, which occur at varied parts of their body and
are distinct across different robots since they possess varied structures and appearances, e.g.,
broken hips or broken ankles can occur in ant tasks, while the thigh joint or the foot joint
can be broken for the halfcheetah task. For a specific type of kinematic shift, one can choose
from three different shift levels (easy, medium, hard), where the joint’s rotation angle range
is restricted to distinct values.

(d) Morphology shift. We achieve the morphology shifts by modifying the size of specific
limbs or torsos of the simulated robot, without altering the state space space and action
space. We also provide two types of morphological change for each robot, along with three
different shift levels (easy, medium, hard) for each type, where the body part in the target
domain is revised to different sizes, depending on the specific task. For example, the leg size
in the ant task can be 1/2 of its leg size in the source domain given a medium shift level.

Generally, ODRL involves 4 friction shift tasks, 4 gravity shift tasks, 6 kinematic shift tasks, and 6
morphology shift tasks for a single robot, resulting in a total of 80 tasks with dynamics mismatch in
the locomotion domain. If one considers the source domain to be offline, different qualities of source
domain datasets can incur a substantial number of tasks, e.g., given a fixed target domain, the source
domain datasets can be medium or expert. We adopt the offline source domain datasets from D4RL
[19], which contains 6 different types of offline datasets (random, medium, medium-replay, medium-
expert, full-replay, expert), leading to 480 MuJoCo tasks for the Offline-Online setting in principle.
Similarly, abundant tasks can be used for evaluation under other settings like Online-Offline.

AntMaze. The AntMaze domain requires navigating an 8-DoF Ant quadruped robot to the goal
position within the maze. The morphologically sophisticated quadruped robot attempting to reach
goals can mimic real-world navigation tasks. Following D4RL [19], we use a sparse 0-1 reward and a
+1 reward is only assigned when the goal is reached. We employ three map sizes (small, medium,
large), and construct 6 different map layouts for each map size (please see some examples in Figure
1), leading to an aggregate of 18 tasks. Note that the embodied Ant robot is unchanged, and only the
map structures are modified, targeting examining the policy adaptation ability to varied landscapes
or potential obstacles. The starting position and the unique goal position in the revised target map
remain consistent with the original source domain map.

Dexterous Manipulation. We consider four tasks (pen, door, relocate, hammer) from Adroit [59]
that is tailored for dexterous hand manipulation. It demands controlling a 24 DoF shadow hand
robot to master tasks like opening a door, hammering a nail, etc. This domain is chosen because it
resembles real-world hand manipulation tasks. It is challenging since it expects fine-grained hand
operations, making it an ideal testbed for measuring the policy adaptation capability of the agent
when encountering high-dimensional, sparse reward tasks. We do not alter the operated objects (e.g.,
the hammer), but modify the robotic hand to comprise the following two kinds of dynamics shifts:

(a) Kinematic shift. Akin to MuJoCo tasks, we simulate broken joints by limiting the rotation
ranges of some hand joints, and there are numerous design choices to fulfill that due to
the complexity of the hand robot. We modify rotation ranges of all finger joints in the
index finger and the thumb, which should cause substantial troubles in completing tasks
like twirling a pen, since it becomes much harder for the dexterous hand to grasp an object.
ODRL involves three kinds of shift levels (easy, medium, hard) for individual tasks, where
the rotation angle ranges of the index finger and thumb are set to be 1/2, 1/4, and 1/8 the
rotation angle range of the paired source domain task, respectively.

(b) Morphology shift. We shrink the sizes of the proximal, intermediate, and distal phalanges in
the index, middle, ring, and little fingers to realize the morphological mismatch. Despite that
the thumb is unmodified, it is still very challenging to perform fine-grained manipulations
under such shifts. We also provide three shift levels (easy, medium, hard) for each task
where the phalanges sizes are configured as 1/2, 1/4, and 1/8 the phalanges sizes of the
source domain robot hand, respectively.

For each task in Adroit, we offer 3 environments with kinematic shifts and 3 environments with mor-
phology shifts, yielding a total of 24 tasks. Combined with the aforementioned tasks, it is evident that
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ODRL contains a wide spectrum of dynamics shift tasks. Note that we consider these three domains
because they are widely adopted in research-oriented RL papers [40, 43, 39, 20, 80, 47, 84, 78]. It is
friendly for newcomers to quickly get familiar with the benchmark, develop new algorithms, and run
experiments. The naming rule for benchmark tasks gives [domain]-[shift_type]-[shift_part
(optional)]-[shift_level], e.g., ant-friction-0.5 denotes that the target domain has 0.5 times
the friction components of the source domain, hopper-kinematic-footjnt-medium means that the foot
joint in hopper robot is broken and the shift level gives medium. We defer the full list of ODRL task
names, more task details, and visualization results to Appendix D.

4.2 Offline Datasets

Since ODRL allows the target domain with dynamics discrepancies to be offline, we provide target
domain offline datasets with distinct qualities (random, medium, expert) for locomotion and dexterous
manipulation tasks, where the medium datasets are gathered by an early-stopped RL algorithm2

that has approximately one third or one half the performance of the expert policy. For the AntMaze
domain, we only provide a mixing dataset for each map layout that contains both successful goal-
reaching trajectories and unsuccessful ones. It is worth noting that we constrain the target domain
offline dataset sizes (5000 transitions for locomotion and dexterous manipulation tasks, and 10000
samples for AntMaze tasks) owing to the fact that existing offline RL algorithms [39, 40, 21, 46, 20]
can learn effective policies if a large amount of target domain data is available, potentially obviating
the need of a source domain. It becomes difficult to train solely on the target domain dataset under
such a low data regime. This is also reasonable in real-world scenarios, where collecting offline
experiences can be expensive or time-consuming, and only limited data can be accessed, but sufficient
data from another domain is available, e.g., a possibly biased simulator.

4.3 Evaluation Protocol

In ODRL, we suggest two metrics for evaluating the performance of the learned policy, the achieved
return and its normalized score in the target domain. We do not care about the performance of the
agent in the source domain. The normalized score (NS) is calculated by: NS = Jπ−Jr

Je−Jr × 100, where
Jπ is the return acquired by the learned policy, Jr is the return by a random policy, and Je is the
return of an expert policy. We offer reference values of Jr and Je for all tasks.

4.4 Baseline Algorithms

We implement various off-dynamics RL algorithms and baselines in ODRL, categorized into 4
settings. Online-Online: DARC [16] that trains domain classifiers for penalizing source domain
rewards, VGDF [76] that performs source domain data filtering from a value estimate perspective,
PAR [44] that penalizes source domain data by measuring the representation mismatch between two
domains; Offline-Online: H2O [52] that leverages the domain classifier for importance weighting,
BC_VGDF [76] and BC_PAR [44] that incorporate the behavior cloning (BC) term for the source
domain data; Online-Offline: H2O and PAR_BC that introduces the BC term to the target domain
data; Offline-Offline: DARA [41], which is exactly the offline version of DARC and BOSA [42]
that employs two support-constrained objective for regularization.

Furthermore, we assemble the following baselines. Online-Online: SAC [26] that trains on data from
both domains, SAC_IW that adopts the domain classifier for importance weighting, SAC_tune that
first learns an SAC policy in the source domain and directly finetunes it in the target domain. Offline-
Online: BC_SAC, CQL_SAC, MCQ_SAC that apply SAC loss on target domain samples and adopts
BC loss, CQL [40] loss, MCQ [46] loss for source domain data, respectively, RLPD [3] that leverages
random ensemble distillation and layer normalization for efficient online learning. Online-Offline:
SAC_BC, SAC_CQL, SAC_MCQ where SAC loss is applied upon source domain data training
and BC loss, CQL loss and MCQ loss are integrated for target domain data. Offline-Offline: IQL
[39] and TD3_BC [20] that train on offline samples from both domains. Most of these methods are
proposed to examine whether it is feasible to train a good policy by treating the two domains as one
mixed domain (i.e., the transition is sampled from P̂mix = λPsrc + (1− λ)Ptar, λ ∈ {0, 1}).

2MuJoCo datasets are gathered using SAC [26] while Adroit datasets are collected with DARC [16] because
SAC fails to learn meaningful policies even after 5M environmental steps in the target domain.
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The algorithmic details can be found in Appendix B. We reproduce all methods by following their
official codes or respective papers within a single file. This is motivated by the CORL [64] and
CleanRL [30] projects, targeting at bringing together all core algorithm designs and making it “easy-
to-hack” for practitioners. The aforementioned baseline algorithms share similar code styles in ODRL
and are equipped with separate yaml configuration files for different tasks.

5 Experiments

In this section, we investigate the dynamics adaptation capability of the approaches involved in
ODRL. We run experiments across multiple experimental settings and examine how these methods
behave given different dataset qualities and domain gaps. For each task, we report the final mean
performance along with the standard deviations achieved in the target domain across 5 varied random
seeds. The empirical evaluations are accompanied by some critical observations (Obs) and insights.
Due to space limits, we defer wider experimental evaluations to Appendix E.

5.1 Benchmark Results

Considering the extensive array of tasks in our benchmark, it is costly to run algorithms on all of them.
To enable a comprehensive evaluation as much as possible, we opt for two locomotion tasks (ant,
walker2d), each featuring 4 types of dynamic shifts (friction, gravity, kinematic, morphology), with
each shift comprising two tasks (0.5/5.0 times friction/gravity, medium/hard shift levels for kinematic
and morphology tasks3). This allows us to examine the performance of existing methods under
varying dynamics discrepancies. Additionally, we consider AntMaze tasks with two distinct map
sizes (small, medium), each involving two maze structures (empty, centerblock for the small maze,
and map type 1, 2 for the medium-size maze), to reveal the transfer capabilities of these methods
across diverse landscapes and obstacles. Moreover, we include two dexterous manipulation tasks
(pen, door) with two dynamic shifts (broken-joint, shrink-finger) and the easy shift level to examine
whether off-dynamics RL methods are also effective in high-dimensional and sparse reward tasks. We
initially turn our attention to the Online-Online setting. Recall that we only have a limited budget
of data from the target domain. Hence, we run all algorithms for 1M environmental steps in the
source domain, and 0.1M steps in the target domain. The aggregated normalized score comparison of
baselines is depicted in Figure 3. Based on the results, we summarize the following key observations.

friction

gravitykinematic

morphology

map layout dexterous manipulation

friction20
40

60
80

100

SAC
SAC_IW
SAC_tune
DARC
VGDF
PAR

Figure 3: Radar chart comparison of different methods. We report the aggregated normalized
score of tasks within each category given the online source domain and target domain.

Obs 1. No single off-dynamics RL algorithm can exhibit advantages across all scenarios.

Obs 2. PAR achieves the best performance on locomotion tasks but fails on the Antmaze domain and
Adroit domain.

Obs 3. AntMaze tasks are extremely challenging and no algorithm can achieve meaningful returns,
indicating that adapting policies across barriers is hard for state-based methods.

3We use ant-kinematic-anklejnt, ant-morph-alllegs, walker2d-kinematic-footjnt, walker2d-morph-leg tasks.
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Obs 4. Off-dynamics RL methods often fail on dexterous hand manipulation tasks. Only DARC and
SAC_IW can achieve comparatively good performance on them.

These findings suggest that there is still a considerable distance to explore in developing a truly
general dynamics-aware RL algorithm. It appears that current methods excel at addressing specific
types of dynamics shifts. The lack of success with PAR in dexterous manipulation tasks can be
credited to the poor reward penalty terms on the source domain data. In fact, the severe value
overestimation phenomenon is often observed when running Adroit tasks with PAR. Importantly,
although VGDF performs on par with PAR in locomotion tasks, it also falls short in the Adroit domain.
This could be because VGDF requires training dynamics models of the target domain, which can be
challenging for complex tasks like dexterous manipulation [48, 34, 45]. The fact that SAC_IW often
results in inferior performance than DARC indicates that leveraging the learned domain classifiers
for importance sampling weighting is not preferred in the online setting.

Obs 5. Surprisingly, simply training the SAC agent using both the source domain data and target
domain samples can incur good performance on numerous kinds of dynamics shifts.

The last observation is quite intriguing, as it shows that merely considering the source and target
domains as a single mixed domain and training on data from both domains without introducing any
additional components can be effective in many tasks. The direct finetuning approach (i.e., SAC_tune)
has advantages in certain tasks, but it frequently results in suboptimal performance when faced with
morphology and gravity shifts.

5.2 Performance Comparison Given Offline Datasets

We then proceed to examine the performance of baseline methods when either the source domain or
the target domain is offline. This presents substantial challenges for the algorithm to learn transferable
policies because (a) if the source domain is offline, finding dynamics-consistent transitions in the
dataset may be difficult due to limited coverage; (b) if the target domain is offline, gathering high-
quality experiences that are closely aligned with the target domain may become challenging, and
poor samples from the source domain can negatively impact the learning process of the agent.

Offline Source Domain. We pick two tasks, ant-gravity with shift level 5.0, and walker2d-friction
with shift level 0.5. We run experiments by leveraging three varied qualities of source domain datasets
from D4RL (medium-replay, medium, expert). The agent undergoes training for 1M gradient steps
and is allowed to interact with the target domain every 10 gradient steps, i.e., 0.1M environmental
steps. We present the results in Figure 4 and have the corresponding observations.

CQL_SAC H2O
BC_VGDF

BC_SAC
MCQ_SAC

BC_PAR RLPD
0

20

40

60

80

No
rm
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d 
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ant-gravity-5.0

CQL_SAC H2O
BC_VGDF

BC_SAC
MCQ_SAC

BC_PAR RLPD
0
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40

60

80

100

120
walker2d-friction-0.5

medium-replay medium expert

Figure 4: Normalized score comparison of methods under distinct source domain datasets. We
report the final average normalized score in the target domain, along with the standard deviation.

Obs 6. A higher quality of the source domain dataset does not necessarily imply better performance
in the target domain, even when an expert source domain dataset is provided.

Obs 7. Baseline methods that treat two domains as one mixed domain can achieve good performance
on some tasks, sometimes even surpassing off-dynamics methods like BC_PAR, BC_VGDF, and H2O.

Obs 8. Methods that leverage the conservative value penalties (e.g., CQL_SAC) can outperform
methods that involve the BC term (e.g., BC_PAR), given expert source domain datasets.
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Figure 5: Normalized score comparison of baselines given varied qualities of target domain
datasets. The final mean performance and its standard deviation in the target domain are presented.

Offline Target Domain. We choose two tasks (ant-kinematic-anklejnt with a hard shift level, and
walker2d-morph-leg with a medium shift level) and three types of target domain dataset qualities
(random, medium, expert). We execute the implemented algorithms in the Online-Offline setting
category for 500K gradient steps, allowing the agent to interact with the source domain at each step.
We do not run for 1M steps since the offline dataset sizes of these tasks are limited (5000 transitions),
and the agent may suffer from the overfitting issue if a large amount of gradient steps is employed.
The results can be found in Figure 5, where we find that Obs 7 and Obs 8 still hold when the target
domain is offline. We also conclude some new observations below.

Obs 9. The agent’s performance can also be inferior given expert target domain datasets (e.g.,
SAC_BC) and it is challenging to achieve a meaningful score using random target domain datasets.

Obs 10. A larger dynamics gap from the source domain does not indicate that it becomes harder for
the agent to learn effective policies, e.g., almost all methods can achieve quite good performance in
the ant-kinematic-anklejnt task with a shift level hard.

5.3 Connections Between Source Domain Performance and Target Domain Performance

We investigate if there is a positive relationship between the agent’s performance in the source domain
and the target domain. We select the ant-friction-0.5 task in the Online-Online setting, and walker2d-
kinematic-footjnt-medium task in the Online-Offline setting with a medium-quality target domain
dataset. We conduct experiments on these tasks using the respective algorithms within each category.
We chart the learning curves in both the source domain and the target domain, and display the results
in Figure 6. We observe that VGDF demonstrates strong performance in the target domain for the ant
task, but its policy performance in the source domain is considerably weak. Conversely, DARC and
SAC_IW learn relatively effective policies in the source domain, but they typically struggle to achieve
good performance in the target domain. For other methods, they generally exhibit good performance
in both domains. It is then interesting to conclude the following observation.

Obs 11. There is no definitive correlation between the policy’s performance in the source domain
and the target domain (it depends on the specific algorithm).

This observation is vital because it conveys that the performance in the source domain is not a reliable
indicator for estimating the policy’s performance in the target domain.
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Figure 6: Return comparison across two domains on selected tasks. The solid lines represent the
mean return and the shaded region captures the standard deviation. Kine denotes kinematic.
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6 Conclusion and Limitations

In this paper, we propose ODRL, the first benchmark for off-dynamics RL. ODRL allows the source
or target domain to be either online or offline, and introduces a wide spectrum of dynamics shift
tasks to facilitate a comprehensive and persuasive evaluation. We implement many off-dynamics RL
algorithms within a single file to bring together core algorithm designs, and additionally propose
some baselines for each experimental setting. Our empirical results show that no existing method can
lead all types of dynamics shifts. We conclude some critical empirical observations, which can serve
as valuable takeaways for readers. Our benchmark is promised to be actively maintained. We hope
our benchmark can pave the way for developing general dynamics-aware RL algorithms.

Limitations. ODRL primarily supports sim-to-sim policy adaptation tasks. Adapting the policy to
real-world scenarios may be more complicated (e.g., a combination of various dynamics shifts can
occur). However, the proposed dynamics shifts in our study are common, and our benchmark should
serve as a valuable testbed for developing more advanced off-dynamics RL algorithms.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] This work primarily introduces the first benchmark
for off-dynamics RL problems, and the abstract and introduction sections effectively
highlight the main contributions of this paper.

(b) Did you describe the limitations of your work? [Yes] We have honestly stated the
limitations of our work in Section 6. Our benchmark primarily focuses on the sim-to-
sim policy adaptation setting, where only one specific dynamics shift may occur in the
target domain. However, in real-world scenarios, numerous dynamics shifts may take
place. As we have argued, the dynamics shifts we introduced are common in practice,
and our benchmark can act as a dependable testbed for off-dynamics RL methods.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Yes, we
include the discussions on the potential societal impacts of our work in Appendix G.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read the ethics review guidelines and ensure that our paper
conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] This is a

benchmark paper and we do not introduce new theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A] This paper does not

contain theories.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Our code
is publicly accessible at https://github.com/OffDynamicsRL/off-dynamics-rl. We of-
fer comprehensive descriptions of our benchmark in the appendix. Additionally, we
include detailed instructions on the GitHub page to ensure the reproducibility of our
reported results.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specify the task names and shift levels of the adopted tasks in
the main text. We also provide more details in Appendix B and hyperparameter setup
in Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Most of our experiments report the average performance
of the agent along with standard deviations or error bars, as depicted in Figure 4, 5, 6.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We include the descriptions on the
compute resources in Appendix F.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We have carefully

cited the creators of the assets that we use in this work.
(b) Did you mention the license of the assets? [Yes] We mention the license of the assets

in the appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include new assets (xml files for dynamics shift tasks and the corresponding offline
target domain datasets) in the provided site.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Our work mainly adopts the D4RL datasets which are publicly
available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Our work mainly presents a new benchmark
for the off-dynamics RL problems, and we believe no offensive contents are included.

5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] Our work does not involve any human participants.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] Our work proposes a new benchmark for
off-dynamics RL, and this question is not applicable.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Our work does not involve any human
participants.
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A Benchmark Summary

In this section, we offer a brief overview of our benchmark, as shown in Table 2. ODRL primarily
consists of three domain categories: locomotion, navigation, and dexterous hand manipulation.
Different domains feature various types of dynamics shifts and are designed to explore specific
challenges. For each domain:

Locomotion: We consider four tasks (ant, halfcheetah, hopper, walker2d), each with four kinds of
dynamics shifts (friction shift, gravity shift, kinematic shift, morphology shift). We have 4 shift levels
(0.1, 0.5, 2.0, 5.0) for friction and gravity shift tasks, and 3 shift levels (easy, medium, hard) for
kinematic and morphology tasks. ODRL provides 4 tasks for friction mismatch, 4 tasks for gravity
mismatch, 6 tasks for kinematic mismatch, and 6 tasks for morphology mismatch, resulting in 20
dynamics shift tasks for a single robot and a total of 80 tasks for the locomotion domain. As both
the source and target domains can be offline, our benchmark can offer a vast number of tasks to
facilitate a comprehensive evaluation of the agent’s policy adaptation capability. We collect offline
datasets for the target domain by training the SAC [26] agent solely in the target domain. We provide
three types of target domain datasets (random, medium, expert), where the medium-quality datasets
have approximately half the return of the expert trajectories. The offline target domain dataset size is
limited to 5,000 transitions. The locomotion tasks aim to address the following open problem:

Open problem: How can we develop a general enough algorithm that can handle various
kinds of dynamics shifts?

Navigation (AntMaze): The AntMaze navigation task consists of three different maze sizes (small,
medium, large). For each map structure, we provide 6 distinct types of maze layouts, resulting in
a total of 18 tasks for the AntMaze domain. The target domain offline datasets are collected by
training a goal-reaching policy and using it in conjunction with the high-level waypoint generator
from Maze2D, which provides sub-goals to guide the agent towards the goal. We do not use SAC
for locomotion tasks since it fails to reach goals after 5 million environmental steps in the target
domain. We only provide one mixed offline target domain dataset for each map layout, where the
offline dataset contains both unsuccessful and successful trajectories. The dataset size is limited to
10,000. Note that the embodied ant robot in the maze remains unmodified, and only the underlying
maze layout changes to address the following open problem:

Open problem: How can we enable the agent to transfer across different landscapes and
map layouts given limited data from the target domain?

Dexterous Manipulation: We adopt four tasks from Adroit (pen, door, relocate, hammer) and
primarily focus on two dynamics shift problems: kinematic shifts and morphology shifts, each with
three shift levels (easy, medium, hard). This results in a total of 24 tasks for the dexterous hand
manipulation domain. For the target domain offline datasets, we provide three types of dataset
qualities (random, medium, expert), where the medium-quality and expert-quality datasets are
collected using the DARC [16] algorithm because we find that the SAC agent cannot learn any
meaningful performance even after 5 million environmental steps of training in the target domain.
The medium-quality datasets have approximately half the return of the expert datasets. The dataset
size is limited to 5,000 transitions. By designing this domain, we aim to explore the following open
problem:

Open problem: How can we achieve efficient policy adaptation in complex, high-
dimensional, and sparse reward dexterous hand manipulation tasks?

B Off-Dynamics RL Algorithms and Baselines

In this section, we provide detailed descriptions of the implemented off-dynamics RL algorithms and
the additional baselines that we introduce ourselves. We primarily introduce a fine-tuning method
for the Online-Online setting (i.e., SAC_tune) and the rest of the methods that train on data from
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Table 2: An overview of Benchmark tasks. We mainly include three distinct domains and equip
each domain with varied dynamics shift tasks. Offline target domain datasets are available for all
tasks to facilitate the Online-Offline setting and Offline-Offline setting evaluations.

Task Domain Friction Gravity Kinematic Morphology Map Structure Offline datasets

Locomotion " " " " % "

Navigation % % % % " "

Dexterous Manipulation % % " " % "

both the source and target domains by treating the two domains as one mixed domain. Denote
Psrc, Ptar as the transition dynamics of the source domain and the target domain, respectively, then
the transition dynamics of the mixed domain gives P̂mix = λPsrc + (1− λ)Ptar, where λ ∈ {0, 1} is
a random variable. That is, we suppose that the samples in the two domains are sampled from P̂mix

and hence can simply train a single model on data from the two domains. For clarity, we name the
algorithm by what objectives are adopted in the source domain and the target domain. For example,
BC_VGDF is an Offline-Online algorithm where the BC term is applied to the source domain data,
while the vanilla VGDF objectives are used for the target domain data. Similarly, CQL_SAC is also
an Offline-Online algorithm where the CQL loss is adopted for source domain training, while the
vanilla SAC loss is used for target domain data training. Conversely, SAC_CQL is an Online-Offline
algorithm where the SAC loss is used for source domain data and the CQL loss is adopted for target
domain data.

B.1 Online-Online setting

We implement the following off-dynamics RL methods for this setting:

DARC: We follow the original paper and train two domain classifiers qθSAS
(target|st, at, st+1),

qθSA
(target|st, at) parameterized by θSAS and θSA, respectively. These domain classifiers are trained

using the following losses:
L(θSAS) = EDtar

[log qθSAS
(target|st, at, st+1)] + EDsrc

[log(1− qθSAS
(target|st, at, st+1))] ,

L(θSA) = EDtar
[log qθSA

(target|st, at)] + EDsrc
[log(1− qθSA(target|st, at))] ,

where Dsrc,Dtar are replay buffers of the source domain and the target domain, respectively. We set
the Gaussian standard deviation σ = 1 when training these domain classifiers, which is recommended
by the authors. DARC compensates the source domain rewards by estimating the dynamics gap:
log

PMtar (st+1|st,at)
PMsrc (st+1|st,at) . DARC approximates this term by leveraging the trained domain classifiers.

Formally, its reward penalty term, δr, gives

δr(st, at) = − log
qθSAS

(target|st, at, st+1)qθSA(source|st, at)
qθSAS

(source|st, at, st+1)qθSA(target|st, at)
. (1)

The source domain rewards are modified accordingly via:
r̂DARC
src = rsrc(st, at)− δr. (2)

We implement DARC by following its official code repository4.

VGDF: The core idea of VGDF is to filter source domain data that share similar value estimates as
those in the target domain. To fulfill that, it trains an ensemble of dynamics model [33, 54, 57, 8, 56]
in the raw state-action space of the target domain to predict the next state that follows the transition
dynamics of the target domain given source domain data (ssrc, asrc). Then it measures the mean
and variance of the value ensemble {Q(s′i, a

′
i)}Mi=1 to build a Gaussian distribution, where s′i is the

predicted next state, a′i is sampled from the policy, and M is the ensemble size. Subsequently, the
rejection sampling approach is employed to select a fixed percentage (ξ%, ξ ∈ [0, 100]) of source
domain data with the highest likelihood estimation and share them with the target domain, i.e., VGDF
optimizes the following objective:

Lcritic = E(s,a,r,s′)∼Dtar

[
(Qθi(s, a)− y)

2
]

+ E(s,a,r,s′)∼Dsrc

[
1(Λ(s, a, s′) > Λξ%) (Qθi(s, a)− y)

2
]
, i ∈ {1, 2},

(3)

4https://github.com/google-research/google-research/tree/master/darc
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where 1(·) is the indicator function, Λ(s, a, s′) is the fictitious value proximity (FVP) representing
the likelihood of the source domain state value, Λξ% denotes the top ξ-quantile likelihood estimation
of the source domain batch data, y is the target value. VGDF also trains an additional exploration
policy for improved exploration. We reproduce VGDF by following its official implementation 5. We
train VGDF in the source domain for 1M environmental steps and allow the agent to interact with the
target domain every 10 steps.

PAR: PAR detects the dynamics mismatch by capturing the representation mismatch, i.e., the
representation deviation between the source domain state-action pair and its subsequent next state
using the state encoder f and state-action encoder g trained only in the target domain. Note that PAR
only trains one single state encoder along with one single state-action encoder. The encoders are
updated via the following objective:

L(ψ, ξ) = E(s,a,s′)∼Dtar

[
(gξ(fψ(s), a)− SG(fψ(s′)))2

]
, (4)

where SG denotes the stop gradient operator. Then PAR modifies the source domain reward by using
the deviations between the representations:

r̂PAR = rsrc − β × [gξ(fψ(ssrc), asrc)− fψ(s′src)]
2
, (5)

where β is the penalty coefficient that controls the strengths of the penalty. Afterwards, the critic and
the actor are optimized by leveraging data from both domains. We reproduce PAR by following its
official implementation6. We train PAR for 1M environmental steps in the source domain, and let the
policy interact with the target domain every 10 steps.

We also include the following baselines proposed by ourselves:

SAC: The vanilla SAC policy [26] that simply train on both the source domain and the target domain
data with the following critic loss:

Lcritic = E(s,a,r,s′)∼Dsrc∪Dtar

[
(Qθi(s, a)− y)

2
]
, i ∈ {1, 2}, (6)

and the policy loss gives,

Lactor = Es∼Dsrc∪Dtar,a∼πφ(·|s)

[
min
i=1,2

Qθi(s, a)− α log πφ(·|s)
]
. (7)

Similarly, we train the agent for 1M environmental steps in the source domain, and collect experiences
in the target domain every 10 steps.

SAC_IW: This approach denotes SAC with importance sampling weights. It generally resembles
vanilla DARC, except that it does not perform reward correction for the source domain data, but
utilizes that estimated dynamics gap as an importance sampling term for critic updates, i.e.,

Lcritic = E(s,a,r,s′)∼Dsrc

[
ω(s, a, s′) (Qθi(s, a)− y)

2
]
, i ∈ {1, 2}, (8)

where

ω(s, a, s′) =
qθSAS

(target|s, a, s′)qθSA(source|s, a)

qθSAS(source|s, a, s′)qθSA(target|s, a)
. (9)

To ensure training stability, we clip the value of the importance sampling weight ω(s, a, s′) to lie in
the range of [10−4, 1]. We train SAC_IW agent in the source domain for 1M environmental steps and
let it interact with the target domain every 10 steps.

SAC_tune: This method simply first trains the SAC agent in the source domain for 1M environmental
steps, and then directly finetunes the learned policy in the target domain for 0.1M environmental
steps without sampling source domain data. This baseline is designed to investigate the effectiveness
of a direct fine-tuning of the learned policy.

5https://github.com/Kavka1/VGDF
6https://github.com/dmksjfl/PAR
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B.2 Offline-Online setting

We implement the following dynamics-aware algorithms:

H2O: H2O also trains domain classifiers to estimate the dynamics gap, while using it as importance
sampling weights for critic optimization. It additionally combines CQL loss to inject conservatism.
Note that the vanilla H2O is designed for Online-Offline setting, i.e., the source domain is online,
while the target domain is offline. To match the Offline-Online setting, we slightly modify the
objective functions of H2O. To be specific, its critic objective function is formulated as:

Lcritic = EDtar

[
(Qθi(s, a)− y)2

]
+ EDsrc

[
ω(s, a, s′)(Qθi(s, a)− y)2

]
+ βCQL

(
Es∼Dsrc,ã∼πφ(·|s)[ω(s, a, s′)Qθi(s, ã)]− EDsrc [ω(s, a, s′)Qθi(s, a)]

)
, i ∈ {1, 2},

(10)

where ω(s, a, s′) is the importance sampling weights specified by the dynamics gap estimation term
in Equation 9, βCQL is the penalty coefficient. We set βCQL = 10.0 instead of βCQL = 0.01 that
is recommended in the H2O paper because we find βCQL = 10.0 incurs a better performance. We
reproduce H2O by using the official codebase7. We train H2O for 106 gradient steps, and allow the
policy to gather data in the target domain every 10 steps.

BC_VGDF: This variant has the same critic objective function as VGDF (Equation 3). What makes
it different is that we incorporate a behavior cloning (BC) term into its policy training to realize
conservatism injection, i.e.,

Lactor = λ · Es∼Dsrc∪Dtar,
a∼πφ(·|s)

[
min
i=1,2

Qθi(s, a)− α log πφ(·|s)
]

+ E(s,a)∼Dsrc,
â∼πφ(·|s)

[(a− â)2], (11)

where λ =
ν

1
N

∑
(sj ,aj)

mini=1,2Qθi(sj , aj)
, and ν ∈ R+ is the normalization coefficient. We train

BC_VGDF for 106 gradient steps, with 105 interactions with the target domain.

BC_PAR: Akin to BC_VGDF, an additional behavior cloning term is involved for the source domain
data in the PAR algorithm to give birth to BC_PAR. The reward modification term and the critic
optimization objective are kept unchanged and the policy network is updated via:

Lactor = λ · Es∼Dsrc∪Dtar,
a∼πφ(·|s)

[
min
i=1,2

Qθi(s, a)− α log πφ(·|s)
]

+ E(s,a)∼Dsrc,
â∼πφ(·|s)

[(a− â)2], (12)

where λ =
ν

1
N

∑
(sj ,aj)

mini=1,2Qθi(sj , aj)
and ν ∈ R+ is the normalization coefficient. We train

BC_PAR for 106 gradient steps, and let it interact with the target domain every 10 gradient steps.

Furthermore, we introduce the following additional baseline for this setting. These baselines are
proposed to examine whether it is feasible to directly treat the two domains with dynamics discrep-
ancies as one mixed domain and simply train on data from both domains without introducing extra
techniques such as reward correction.

BC_SAC: This baseline leverages both offline source domain data and online target domain transi-
tions for learning a policy. Since learning from offline data requires conservatism, while learning
from online samples does not, we simply incorporate a behavior cloning term in the policy update
objective of the SAC algorithm, i.e., the critics are updated via Equation 6 and the actor is updated
via:

Lactor = λ · Es∼Dsrc∪Dtar,
a∼πφ(·|s)

[
min
i=1,2

Qθi(s, a)− α log πφ(·|s)
]

+ E(s,a)∼Dsrc,
â∼πφ(·|s)

[(a− â)2], (13)

where λ =
ν

1
N

∑
(sj ,aj)

mini=1,2Qθi(sj , aj)
and ν ∈ R+ is the normalization coefficient. We train

BC_SAC for 1M gradient steps and let it interact with the target domain every 10 steps.

CQL_SAC: We introduce a different conservative objective against BC_SAC by leveraging the
conservative Q-learning (CQL [40]) approach to facilitate offline source domain data training. That is,

7https://github.com/t6-thu/H2O
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the conservatism is realized by penalizing the learned value functions instead of the policy constraint.
We train critics by updating source domain data with the CQL loss while the online target domain
data with the SAC loss, i.e.,

Lcritic = EDsrc∪Dtar

[
(Qθi(s, a)− y)2

]
+ βCQL

(
Es∼Dsrc,ã∼πφ(·|s)[Qθi(s, ã)]− EDsrc [Qθi(s, a)]

)
, i ∈ {1, 2},

(14)

where βCQL is the CQL penalty coefficient. We generally follows the official implementation of
CQL8. We train CQL_SAC for 106 gradient steps, with 105 interactions with the target domain.

MCQ_SAC: This baseline explores another value-based conservative approach, mildly conservative
Q-learning (MCQ) [46], due to its good performance in the offline D4RL benchmark tasks and
offline-to-online tasks. MCQ actively trains the OOD actions by assigning them pseudo target values.
Similar to CQL_SAC, we train the source domain offline data with the MCQ loss and the target
domain online data with the SAC loss, and the critic objective function gives,

Lcritic = EDtar

[
(Qθi(s, a)− y)2

]
+ λEDsrc

[
(Qθi(s, a)− y)2

]
+ (1− λ)Es∼Dsrc,ã∼πφ(·|s)[(Qθi(s, ã)− y′)2], i ∈ {1, 2},

(15)

where y′ = minj=1,2 E{a′i}N∼µ̂
[
maxa′∼{a′i}N Qθj (s, a

′)
]

is the pseudo target value measured by
MCQ, µ̂ is the learned behavior policy, N is the number of sampled actions, λ is the weighting
coefficient tha that balances the in-distribution training and OOD data training. We follow the MCQ
paper and set N = 10 by default. The policy objective is the same as SAC. We implement MCQ by
following the official codebase9. We train MCQ_SAC for 1M gradient steps, and allow the policy to
interact with the target domain every 10 steps.

RLPD: RLPD [3] is a method that is carefully designed for learning online with offline data. It
leverages random ensemble distillation and layer normalization for mitigating overestimation bias and
fulfilling sample efficient online training. To be specific, it learns an ensemble of critics, and sample a
subset from the ensemble to calculate the target value. It does not introduce any explicit conservative
terms like CQL or policy regularization methods, but resorts to the layer normalization technique for
alleviating the overestimation issue. We implement this method by following the official codebase10.
We set the update-to-data ratio as 1 here to make it a fair comparison between different algorithms.

B.3 Online-Offline setting

We provide the following off-dynamics RL approaches in this category.

H2O: H2O is initially designed for the Online-Offline setting. Its core idea is to leverage the biased
online source domain to facilitate the training of the target domain, which is offline and contain a
limited coverage of trajectories. Since simply combining the source domain data and target domain
data may incur a potential distribution shift issue, H2O addresses this problem by estimating the
dynamics gap between the source domain and the target domain, PMtar (st+1|st,at)

PMsrc (st+1|st,at) , and leverages this
dynamics gap term for correcting the biased online samples. To that end, it trains domain classifiers
and estimate the dynamics gap. The critics in H2O are optimized by:

Lcritic = EDtar

[
(Qθi(s, a)− y)2

]
+ EDsrc

[
ω(s, a, s′)(Qθi(s, a)− y)2

]
+ βCQL

(
Es∼Dsrc,ã∼πφ(·|s)[ω̃(s, a)Qθi(s, ã)]− EDtar

[Qθi(s, a)]
)
, i ∈ {1, 2},

(16)

where ω(s, a, s′) is estimated via Equation 9, βCQL is the penalty coefficient, and ω̃(s, a) gives:

ω̃(s, a) :=
u(s, a)∑
s̄,ā u(s̄, ā)

, u(s, a) := Es′∼Ptar

[
log

Ptar(s
′|s, a)

Psrc(s′|s, a)

]
. (17)

Note that the objective here (Equation 16) is quite different from H2O in the Offline-Online setting
(Equation 10). We train H2O for 500K gradient steps, where the agent is also allowed to interact with
the source domain for 500K environmental steps.

8https://github.com/aviralkumar2907/CQL
9https://github.com/dmksjfl/MCQ

10https://github.com/ikostrikov/rlpd
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PAR_BC: This baseline generally follows the same way of calculating the reward modification term
as vanilla PAR and BC_PAR, but it adds the behavior cloning term to the target domain data since
they are offline. The policy is then updated via:

Lactor = λ · Es∼Dsrc∪Dtar,
a∼πφ(·|s)

[
min
i=1,2

Qθi(s, a)− α log πφ(·|s)
]

+ E(s,a)∼Dtar,
â∼πφ(·|s)

[(a− â)2], (18)

where λ =
ν

1
N

∑
(sj ,aj)

mini=1,2Qθi(sj , aj)
and ν ∈ R+ is the normalization coefficient. We train

PAR_BC for 5× 105 gradient steps, and let it interact with the source domain for 500K steps.

We further provide the following baseline methods that treat the source domain and the target domain
as one mixed domain.

SAC_BC: This baseline introduces an additional behavior cloning term to the target domain data and
uses the SAC as the base algorithm. Its policy is optimized by:

Lactor = λ · Es∼Dsrc∪Dtar,
a∼πφ(·|s)

[
min
i=1,2

Qθi(s, a)− α log πφ(·|s)
]

+ E(s,a)∼Dtar,
â∼πφ(·|s)

[(a− â)2], (19)

where λ =
ν

1
N

∑
(sj ,aj)

mini=1,2Qθi(sj , aj)
and ν ∈ R+ is the normalization coefficient. We train

SAC_BC for 500K gradient steps and let it gather experiences in the source domain for 500K steps.

SAC_CQL: This baseline introduces the CQL loss to the target domain offline data and apply the
SAC loss to the online source domain data. Its critic optimization formula is given by:

Lcritic = EDsrc∪Dtar

[
(Qθi(s, a)− y)2

]
+ βCQL

(
Es∼Dtar,ã∼πφ(·|s)[Qθi(s, ã)]− EDtar

[Qθi(s, a)]
)
, i ∈ {1, 2},

(20)

where βCQL is the CQL penalty coefficient. Similarly, this method is trained for 500K gradient steps
and can interact with the source domain for 500K environmental steps.

SAC_MCQ: This method introduces the MCQ loss to the offline target domain samples and adopts
the vanilla SAC loss for the online source domain transitions, i.e.,

Lcritic = EDsrc

[
(Qθi(s, a)− y)2

]
+ λEDtar

[
(Qθi(s, a)− y)2

]
+ (1− λ)Es∼Dtar,ã∼πφ(·|s)[(Qθi(s, ã)− y′)2], i ∈ {1, 2},

(21)

where y′ = minj=1,2 E{a′i}N∼µ̂
[
maxa′∼{a′i}N Qθj (s, a

′)
]

is the pseudo target value given by MCQ.
We train SAC_MCQ for 500K gradient steps and allow it to collect transitions in the source domain
for 500K environmental steps.

B.4 Offline-Offline setting

DARA: DARA [41] is exactly the offline version of DARC. It also trains the domain classifiers to
calculate the reward penalty term δr in Equation 1 and corrects the rewards in the source domain
dataset via:

r̂DARA = r − λ× δr, (22)
where λ is the reward penalty coefficient that controls the strengths of the penalty, which is set to be
0.1 by default. After that, DARA is trained on data from both domains for 500K gradient steps. We
implement DARA by following the original paper and clip the reward penalty term to lie in [−10, 10].
We use IQL [39] as the base algorithm for DARA.

BOSA: BOSA [42] identifies that there may exist the distribution shift issue when learning policies
based on datasets from two domains with dynamics mismatch. It handles the OOD state actions
problem through a supported policy optimization and addresses the OOD dynamics issue through a
supported value optimization. To be specific, the critics in BOSA are updated via:

Lcritic = E(s,a)∼Dsrc
[Qθi(s, a)]

+ E(s,a,r,s′)∼Dsrc∪Dtar,a′∼πφ(·|s)

[
1(P̂tar(s

′|s, a)) > ε)(Qθi(s, a)− y)2
]
,

(23)
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where 1(·) is the indicator function, P̂tar(s
′|s, a) = arg maxE(s,a,s′)∼Dtar

[log P̂tar(s
′|s, a)] is the

estimated target domain transition dynamics, ε is the selection threshold, i ∈ {1, 2}. The policy in
BOSA is updated via another supported optimization objective:

Lactor = Es∼Dsrc∪Dtar,a∼πφ(s)[Qθi(s, a)], s.t. Es∼Dsrc∪Dtar [π̂φmix(πφ(s)|s)] > ε′ (24)

where ε′ is the policy selection threshold, π̂φmix
is the learned behavior policy of the mixed dataset

Dsrc ∪Dtar. The above objective is transformed to a relaxed Lagrangian form for optimization. Both
the behavior policy and the dynamics models are modeled by the CVAE. We implement BOSA by
following the instructions in the original paper. BOSA is trained for 500K gradient steps in practice
by drawing samples from both the source domain dataset and the target domain dataset.

Moreover, we provide the following two baselines.

IQL: IQL [39] is a popular offline RL algorithm that learns the policy completely within the span of
the offline datasets. It learns the state value function and state-action value function simultaneously
by expectile regression:

LV = E(s,a)∼Dsrc∪Dtar
[Lτ2(Qθ′(s, a)− Vψ(s))], (25)

where Lτ2(u) = |τ − 1(u < 0)|u2, 1(·) is the indicator function, θ′ is the target network parameter.
The state-action value function is then updated by:

LQ = E(s,a,r,s′)∼Dsrc∪Dtar
[(r(s, a) + γVψ(s′)−Qθ(s, a))2]. (26)

We then can obtain the advantage function A(s, a) = Q(s, a)− V (s). The policy is optimized by
the advantage-weighted behavior cloning:

Lactor = E(s,a)∼Dsrc∪Dtar
[exp(β ×A(s, a)) log πφ(a|s)] , (27)

where β is the inverse temperature coefficient. We implement IQL by following its official codebase11

and also train the IQL agent on offline datasets from both domains for 500K gradient steps.

TD3_BC: TD3_BC [20] is a simple but effective offline RL approach that incorporates an additional
behavior cloning term to the objective function of the vanilla TD3, which gives:

Lactor = λ · Es∼Dsrc∪Dtar

[
min
i=1,2

Qθi(s, a)

]
+ E(s,a)∼Dsrc∪Dtar

[(a− πφ(s))2], (28)

where λ =
ν

1
N

∑
(sj ,aj)

mini=1,2Qθi(sj , aj)
and ν ∈ R+ is the normalization coefficient. We

implement TD3_BC by following its official codebase12. Similarly, TD3_BC is trained for 500K
gradient steps by leveraging offline datasets from both domains.

C Hyperparameters

In this section, we elaborate on the specific hyperparameter configurations for our implemented
algorithms. Table 3 outlines the hyperparameters for algorithms under the Online-Online setting,
Table 4 for the Offline-Online setting, Table 5 for the Online-Offline setting, and Table 6 for the
Offline-Offline setting.

To ensure a fair and consistent comparison, most of the algorithms utilize similar hyperparameters,
such as the actor learning rate and neural network structures. While these settings may slightly deviate
from those in the original papers, our preliminary experiments on selected tasks have indicated that
these modifications have a negligible impact on performance. Generally, we employ a batch size of
256. For the fine-tuning method, SAC_tune, we use a batch size of 256 for both the source and target
domain training. For other methods, we use a batch size of 128 each for the source and target domain
data, since these methods concurrently sample from the replay buffers of both domains for policy
training. This symmetric sampling technique has also been adopted in previous studies [3, 44, 76].

11https://github.com/ikostrikov/implicit_q_learning
12https://github.com/sfujim/TD3_BC
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Table 3: Hyperparameter setup for Online-Online algorithms. For consistency, most of these
methods share many hyperparameter setup.

Hyperparameter Value
Shared (SAC)

Actor network (256, 256)
Critic network (256, 256)
Learning rate 3× 10−4

Optimizer Adam [38]
Discount factor 0.99
Replay buffer size 106

Warmup steps 256
Nonlinearity ReLU
Target update rate 5× 10−3

Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20

SAC_tune
Source domain Batch size 256
Target domain Batch size 256

DARC and SAC_IW
Classifier Network (256, 256)
Source domain Batch size 256
Target domain Batch size 256
Target domain interaction interval 10

VGDF
Dynamics model network (200, 200, 200, 200, 200)
Ensemble size 7
Data selection ratio 25%
Source domain Batch size 128
Target domain Batch size 128
Exploration policy network (256, 256)
Target domain interaction interval 10

PAR
Encoder Network (256, 256)
Representation dimension 256
Reward penalty coefficient β 0.1
Source domain Batch size 128
Target domain Batch size 128
Target domain interaction interval 10
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Table 4: Hyperparameter setup for Offline-Online algorithms.

Hyperparameter Value
Shared

Actor network (256, 256)
Critic network (256, 256)
Learning rate 3× 10−4

Optimizer Adam [38]
Discount factor 0.99
Replay buffer size 106

Warmup steps 256
Nonlinearity ReLU
Target update rate 5× 10−3

Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Source domain Batch size 128
Target domain Batch size 128
Target domain interaction interval 10

H2O
Classifier Network (256, 256)
CQL penalty coefficient βCQL 10.0

BC_VGDF
Dynamics model network (200, 200, 200, 200, 200)
Ensemble size 7
Data selection ratio 25%
Normalization coefficient ν 5.0

BC_PAR
Encoder Network (256, 256)
Representation dimension 256
Reward penalty coefficient β 0.1
Normalization coefficient ν 5.0

CQL_SAC
CQL penalty coefficient βCQL 10.0

BC_SAC
Normalization coefficient ν 5.0

MCQ_SAC
CVAE encoder hidden dimension 750
CVAE decoder hidden dimension 750
CVAE hidden layers 3
CVAE learning rate 1× 10−3

CVAE latent dimension 2× |A|
Number of sampled actions 10
weighting coefficient λ 0.8

RLPD
Critic ensemble size 10
Update-to-data ratio 1
Entropy backup True for locomotion tasks and False otherwise
Clipped double Q-learning False for AntMaze tasks and True otherwise
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Table 5: Hyperparameter setup for Online-Offline algorithms.

Hyperparameter Value
Shared

Actor network (256, 256)
Critic network (256, 256)
Learning rate 3× 10−4

Optimizer Adam [38]
Discount factor 0.99
Replay buffer size 106

Warmup steps 256
Nonlinearity ReLU
Target update rate 5× 10−3

Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Source domain Batch size 128
Target domain Batch size 128
Source domain interaction interval 1

H2O
Classifier Network (256, 256)
CQL penalty coefficient βCQL 0.01
Number of sampled states 10

PAR_BC
Encoder Network (256, 256)
Representation dimension 256
Reward penalty coefficient β 0.1
Normalization coefficient ν 5.0

SAC_CQL
CQL penalty coefficient βCQL 10.0

SAC_BC
Normalization coefficient ν 5.0

SAC_MCQ
CVAE encoder hidden dimension 750
CVAE decoder hidden dimension 750
CVAE hidden layers 3
CVAE learning rate 1× 10−3

CVAE latent dimension 2× |A|
Number of sampled actions 10
weighting coefficient λ 0.8
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Table 6: Hyperparameter setup for Offline-Offline algorithms.

Hyperparameter Value
Shared

Actor network (256, 256)
Critic network (256, 256)
Learning rate 3× 10−4

Optimizer Adam [38]
Discount factor 0.99
Replay buffer size 106

Nonlinearity ReLU
Target update rate 5× 10−3

Source domain Batch size 128
Target domain Batch size 128

DARA
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Classifier Network (256, 256)
Reward penalty coefficient λ 0.1

BOSA
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Policy regularization coefficient λpolicy 0.1
Transition coefficient λtransition 0.1
Threshold parameter ε, ε′ log(0.01)
Value wight ω 0.1
CVAE ensemble size 1 for the behavior policy, 5 for the dynamics model

IQL
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Inverse temperature parameter β 10.0 (AntMaze), 3.0 (locomotion), 0.5 (Adroit)
Expectile parameter τ 0.9 for AntMaze tasks and 0.7 otherwise

TD3_BC
Normalization coefficient ν 2.5

D Benchmark Task Implementation Details

In this section, we offer a comprehensive explanation of the modifications made to the xml files to
create our benchmark tasks. Additionally, we present a complete list of supported benchmark tasks,
along with their visualization results. We restate our naming convention for the benchmark tasks as fol-
lows: [domain]-[shift_type]-[shift_part (optional)]-[shift_level], where domain
can be one of ant, halfcheetah, hopper, walker2d, and shift_type can be one of friction, gravity,
kinematic, morph (with morph representing morphology shifts) for locomotion tasks. For AntMaze
tasks, the shift_type can be one of small, medium, large, and for dexterous hand manipulation
tasks, the shift_type can be broken-joint or shrink-finger. The optional shift_part indicates
the specific body part affected by the shift, and shift_level can be one of {0.1, 0.5, 2.0, 5.0} for
friction and gravity shift tasks, or easy, medium, hard for the remaining locomotion and manipulation
tasks. For AntMaze tasks, the shift_level can be centerblock, empty, lshape, zshape, reversel,
reverseu for the small-size maze, and 1, 2, 3, 4, 5, 6 for medium-size and large-size mazes. For
example, halfcheetah-gravity-2.0 signifies that the target domain has twice the gravity of the source
domain, while ant-kinematic-hipjnt-hard indicates that the hip joint in the ant robot is severely broken
(hard level).
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Table 7: Full list of supported task names in the locomotion domain.

friction

ant-friction-0.1

gravity

ant-gravity-0.1
ant-friction-0.5 ant-gravity-0.5
ant-friction-2.0 ant-gravity-2.0
ant-friction-5.0 ant-gravity-5.0
halfcheetah-friction-0.1 halfcheetah-gravity-0.1
halfcheetah-friction-0.5 halfcheetah-gravity-0.5
halfcheetah-friction-2.0 halfcheetah-gravity-2.0
halfcheetah-friction-5.0 halfcheetah-gravity-5.0
hopper-friction-0.1 hopper-gravity-0.1
hopper-friction-0.5 hopper-gravity-0.5
hopper-friction-2.0 hopper-gravity-2.0
hopper-friction-5.0 hopper-gravity-5.0
walker2d-friction-0.1 walker2d-gravity-0.1
walker2d-friction-0.5 walker2d-gravity-0.5
walker2d-friction-2.0 walker2d-gravity-2.0
walker2d-friction-5.0 walker2d-gravity-5.0

kinematic

ant-kinematic-hipjnt-easy

morphology

ant-morph-halflegs-easy
ant-kinematic-hipjnt-medium ant-morph-halflegs-medium
ant-kinematic-hipjnt-hard ant-morph-halflegs-hard
ant-kinematic-anklejnt-easy ant-morph-alllegs-easy
ant-kinematic-anklejnt-medium ant-morph-alllegs-medium
ant-kinematic-anklejnt-hard ant-morph-alllegs-hard
halfcheetah-kinematic-footjnt-easy halfcheetah-morph-thigh-easy
halfcheetah-kinematic-footjnt-medium halfcheetah-morph-thigh-medium
halfcheetah-kinematic-footjnt-hard halfcheetah-morph-thigh-hard
halfcheetah-kinematic-thighjnt-easy halfcheetah-morph-torso-easy
halfcheetah-kinematic-thighjnt-medium halfcheetah-morph-torso-medium
halfcheetah-kinematic-thighjnt-hard halfcheetah-morph-torso-hard
hopper-kinematic-footjnt-easy hopper-morph-foot-easy
hopper-kinematic-footjnt-medium hopper-morph-foot-medium
hopper-kinematic-footjnt-hard hopper-morph-foot-hard
hopper-kinematic-legjnt-easy hopper-morph-torso-easy
hopper-kinematic-legjnt-medium hopper-morph-torso-medium
hopper-kinematic-legjnt-hard hopper-morph-torso-hard
walker2d-kinematic-footjnt-easy walker2d-morph-leg-easy
walker2d-kinematic-footjnt-medium walker2d-morph-leg-medium
walker2d-kinematic-footjnt-hard walker2d-morph-leg-hard
walker2d-kinematic-thighjnt-easy walker2d-morph-torso-easy
walker2d-kinematic-thighjnt-medium walker2d-morph-torso-medium
walker2d-kinematic-thighjnt-hard walker2d-morph-torso-hard

D.1 Locomotion Tasks

Locomotion tasks consist of four dynamic shift categories: friction, gravity, kinematic, and morphol-
ogy shifts. ODRL supports friction and gravity shift tasks with four shift levels {0.1, 0.5, 2.0, 5.0},
as well as kinematic and morphology shift tasks with three shift levels (easy, medium, hard). For
each kinematic and morphology task, we provide two options that involve different body parts being
broken or having altered shapes. This results in a total of 80 tasks, with the full list of names available
in Table 7.

D.1.1 Friction shift

The friction shift is implemented by altering the friction attribute in the geom elements. The
frictional components are adjusted to 0.1, 0.5, 2.0, and 5.0 times the frictional components in the
source domain, respectively. For instance, to achieve a 5.0x friction for the hopper robot, we make
the following modifications. Please refer to our provided xml files for more details on other tasks. It

28

59886https://doi.org/10.52202/079017-1912



Source domain Friction Gravity Kinematic

Figure 7: Visualization results of locomotion tasks. We present the simulated robot under friction
shift, gravity shift and kinematic shift. The simulated robots remain identical with the robots in the
source domain in appearance.

is important to note that the simulated robots under the friction shift, as visualized in Figure 7, appear
identical to the original robots since only the frictional force components are modified.

# torso
<geom friction="4.5" fromto="0 0 1.45 0 0 1.05" name="torso_geom" size="0.05" type="

capsule"/>
# thigh
<geom friction="4.5" fromto="0 0 1.05 0 0 0.6" name="thigh_geom" size="0.05" type="

capsule"/>
# leg
<geom friction="4.5" fromto="0 0 0.6 0 0 0.1" name="leg_geom" size="0.04" type="

capsule"/>
# foot
<geom friction="10.0" fromto="-0.13 0 0.1 0.26 0 0.1" name="foot_geom" size="0.06"

type="capsule"/>

D.1.2 Gravity shift

We modify the gravity of the simulated robots by revising the gravity attribute in the option
element. Note that some simulated robots do not contain the <option gravity="0 0 -9.81" />
code, and we manually add it. For example, the gravity of the halfcheetah robot in the target domain
is revised to 0.5 times the gravity in the source domain with the following code.

# gravity
<option gravity="0 0 -4.905" timestep="0.01"/>

We also present the visualization results of robots under the gravity shifts in Figure 7.

D.1.3 Kinematic shift

As for the kinematic shifts, one can see the visualization results of locomotion tasks in Figure 7. The
simulated robot remains identical as that in the source domain, and the limbs, foot or some other
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body parts are broken. It is worth noting that the rotation range of the specified joint is modified to
different values under different shift levels. For each task,

• ant-kinematic-hipjnt-easy: the rotation range of the hip joint is modified from [−30, 30] to
[−24, 24]:

<joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-24 24" type="
hinge"/>

<joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-24 24" type="
hinge"/>

<joint axis="0 0 1" name="hip_3" pos="0.0 0.0 0.0" range="-24 24" type="
hinge"/>

<joint axis="0 0 1" name="hip_4" pos="0.0 0.0 0.0" range="-24 24" type="
hinge"/>

• ant-kinematic-hipjnt-medium: the rotation range of the hip joint is modified from [−30, 30]
to [−15, 15]:

<joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-15 15" type="
hinge"/>

<joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-15 15" type="
hinge"/>

<joint axis="0 0 1" name="hip_3" pos="0.0 0.0 0.0" range="-15 15" type="
hinge"/>

<joint axis="0 0 1" name="hip_4" pos="0.0 0.0 0.0" range="-15 15" type="
hinge"/>

• ant-kinematic-hipjnt-hard: the rotation range of the hip joint is modified from [−30, 30] to
[−6, 6]:

<joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-6 6" type="
hinge"/>

<joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-6 6" type="
hinge"/>

<joint axis="0 0 1" name="hip_3" pos="0.0 0.0 0.0" range="-6 6" type="
hinge"/>

<joint axis="0 0 1" name="hip_4" pos="0.0 0.0 0.0" range="-6 6" type="
hinge"/>

• ant-kinematic-anklejnt-easy: the the rotation range of the ankle joint is modified from
[30, 70] to [30, 62]:

<joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 62" type
="hinge"/>

<joint axis="1 1 0" name="ankle_2" pos="0.0 0.0 0.0" range="-62 -30"
type="hinge"/>

<joint axis="-1 1 0" name="ankle_3" pos="0.0 0.0 0.0" range="-62 -30"
type="hinge"/>

<joint axis="1 1 0" name="ankle_4" pos="0.0 0.0 0.0" range="30 62" type=
"hinge"/>

• ant-kinematic-anklejnt-medium: the the rotation range of the ankle joint is modified from
[30, 70] to [30, 50]:

<joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 50" type
="hinge"/>

<joint axis="1 1 0" name="ankle_2" pos="0.0 0.0 0.0" range="-50 -30"
type="hinge"/>

<joint axis="-1 1 0" name="ankle_3" pos="0.0 0.0 0.0" range="-50 -30"
type="hinge"/>

<joint axis="1 1 0" name="ankle_4" pos="0.0 0.0 0.0" range="30 50" type=
"hinge"/>
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• ant-kinematic-anklejnt-hard: the the rotation range of the ankle joint is modified from
[30, 70] to [30, 38]:

<joint axis="-1 1 0" name="ankle_1" pos="0.0 0.0 0.0" range="30 38" type
="hinge"/>

<joint axis="1 1 0" name="ankle_2" pos="0.0 0.0 0.0" range="-38 -30"
type="hinge"/>

<joint axis="-1 1 0" name="ankle_3" pos="0.0 0.0 0.0" range="-38 -30"
type="hinge"/>

<joint axis="1 1 0" name="ankle_4" pos="0.0 0.0 0.0" range="30 38" type=
"hinge"/>

• halfcheetah-kinematic-foojnt-easy: the rotation range of the foot joint is modified to be 0.8
times of foot joint’s rotation range in the source domain:

<joint axis="0 1 0" damping="3" name="bfoot" pos="0 0 0" range="-.32
.628" stiffness="120" type="hinge"/>

<joint axis="0 1 0" damping="1.5" name="ffoot" pos="0 0 0" range="-.4 .4
" stiffness="60" type="hinge"/>

• halfcheetah-kinematic-foojnt-medium: the rotation range of the foot joint is modified to be
0.5 times of foot joint’s rotation range in the source domain:

<joint axis="0 1 0" damping="3" name="bfoot" pos="0 0 0" range="-.2
.3925" stiffness="120" type="hinge"/>

<joint axis="0 1 0" damping="1.5" name="ffoot" pos="0 0 0" range="-.25
.25" stiffness="60" type="hinge"/>

• halfcheetah-kinematic-foojnt-hard: the rotation range of the foot joint is modified to be:

<joint axis="0 1 0" damping="3" name="bfoot" pos="0 0 0" range="-.08
.157" stiffness="120" type="hinge"/>

<joint axis="0 1 0" damping="1.5" name="ffoot" pos="0 0 0" range="-.1 .1
" stiffness="60" type="hinge"/>

• halfcheetah-kinematic-thighjnt-easy: the rotation range of the thigh joint is modified to be
0.8 times of that in the source domain:

<joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.416
.84" stiffness="240" type="hinge"/>

<joint axis="0 1 0" damping="4.5" name="fthigh" pos="0 0 0" range="-.8
.56" stiffness="180" type="hinge"/>

• halfcheetah-kinematic-thighjnt-medium: the rotation range of the thigh joint is modified to
be 0.5 times of that in the source domain:

<joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.26
.525" stiffness="240" type="hinge"/>

<joint axis="0 1 0" damping="4.5" name="fthigh" pos="0 0 0" range="-.5
.35" stiffness="180" type="hinge"/>

• halfcheetah-kinematic-thighjnt-hard: the rotation range of the thigh joint is modified to be
0.2 times of that in the source domain:

<joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.104
.21" stiffness="240" type="hinge"/>

<joint axis="0 1 0" damping="4.5" name="fthigh" pos="0 0 0" range="-.2
.14" stiffness="180" type="hinge"/>

• hopper-kinematic-footjnt-easy: the rotation range of the foot joint is modified from [−45, 45]
to [−36, 36]:

<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-36 36" type
="hinge"/>
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• hopper-kinematic-footjnt-medium: the rotation range of the foot joint is modified from
[−45, 45] to [−22.5, 22.5]:

<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-22.5 22.5"
type="hinge"/>

• hopper-kinematic-footjnt-hard: the rotation range of the foot joint is modified from [−45, 45]
to [−9, 9]:

<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-9 9" type="
hinge"/>

• hopper-kinematic-legjnt-easy: the rotation range of the leg joint is modified from [−150, 0]
to [−120, 0]:

<joint axis="0 -1 0" name="leg_joint" pos="0 0 0.6" range="-120 0" type=
"hinge"/>

• hopper-kinematic-legjnt-medium: the rotation range of the leg joint is modified from
[−150, 0] to [−75, 0]:

<joint axis="0 -1 0" name="leg_joint" pos="0 0 0.6" range="-75 0" type="
hinge"/>

• hopper-kinematic-legjnt-hard: the rotation range of the leg joint is modified from [−150, 0]
to [−30, 0]:

<joint axis="0 -1 0" name="leg_joint" pos="0 0 0.6" range="-30 0" type="
hinge"/>

• walker2d-kinematic-footjnt-easy: the rotation range of the foot joint is modified from
[−45, 45] to [−36, 36]:

<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-36 36" type
="hinge"/>

<joint axis="0 -1 0" name="foot_left_joint" pos="0 0 0.1" range="-36 36"
type="hinge"/>

• walker2d-kinematic-footjnt-medium: the rotation range of the foot joint is modified from
[−45, 45] to [−22.5, 22.5]:

<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-22.5 22.5"
type="hinge"/>

<joint axis="0 -1 0" name="foot_left_joint" pos="0 0 0.1" range="-22.5
22.5" type="hinge"/>

• walker2d-kinematic-footjnt-hard: the rotation range of the foot joint is modified from
[−45, 45] to [−9, 9]:

<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-9 9" type="
hinge"/>

<joint axis="0 -1 0" name="foot_left_joint" pos="0 0 0.1" range="-9 9"
type="hinge"/>

• walker2d-kinematic-thighjnt-easy: the rotation range of the thigh joint is modified from
[−150, 0] to [−120, 0]:

<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-120 0"
type="hinge"/>

<joint axis="0 -1 0" name="thigh_left_joint" pos="0 0 1.05" range="-120
0" type="hinge"/>
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Source domain

halflegs

easy medium hard

alllegs

easy medium hard

Figure 8: Visualization results of the morphology shifts in the ant task. We consider morphology
shifts in the legs, where the front two legs or all legs become shorter.

• walker2d-kinematic-thighjnt-medium: the rotation range of the thigh joint is modified from
[−150, 0] to [−75, 0]:

<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-75 0"
type="hinge"/>

<joint axis="0 -1 0" name="thigh_left_joint" pos="0 0 1.05" range="-75 0
" type="hinge"/>

• walker2d-kinematic-thighjnt-hard: the rotation range of the thigh joint is modified from
[−150, 0] to [−30, 0]:

<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-30 0"
type="hinge"/>

<joint axis="0 -1 0" name="thigh_left_joint" pos="0 0 1.05" range="-30 0
" type="hinge"/>

D.1.4 Morphology shift

The morphology shift involves directly altering the visual appearance of the robot. We consider
various morphological changes for different simulated robots. The visualization results of these
changes are presented as follows: the morphology change of the ant task in Figure 8, the morphology
change of the halfcheetah task in Figure 9, the morphology change of the hopper task in Figure 10,
and the morphology change of the walker2d task in Figure 11. We provide a summary of the specific
modifications made for each morphology shift task below.

• ant-morph-halflegs-easy: the leg sizes of the front two legs are revised to be 0.8 times of
those in the source domain:

<geom fromto="0.0 0.0 0.0 0.32 0.32 0.0" name="left_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.32 0.32 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>

• ant-morph-halflegs-medium: the leg sizes of the front two legs are revised to be 0.5 times of
those in the source domain:

<geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="left_ankle_geom" size="0.08
" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>
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Source domain

thigh

easy medium hard

torso

easy medium hard

Figure 9: Visualization results of the morphology shifts in the halfcheetah task. We consider
shorter thigh or torso part for the robot.

Source domain

foot

easy medium hard

torso

easy medium hard

Figure 10: Visualization results of the morphology shifts in the hopper task. The morphology
shift occurs in the foot part or the torso part.

Source domain

leg

easy medium hard

torso

easy medium hard

Figure 11: Visualization results of the morphology shifts in the walker2d task. The morphology
mismatch happens at the leg or the torso part of the robot.
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• ant-morph-halflegs-hard: the leg sizes of the front two legs are revised to be 0.2 times of
those in the source domain:

<geom fromto="0.0 0.0 0.0 0.08 0.08 0.0" name="left_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.08 0.08 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>

• ant-morph-alllegs-easy: the leg sizes of all legs are revised to be 0.8 times of those in the
source domain:

<geom fromto="0.0 0.0 0.0 0.32 0.32 0.0" name="left_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.32 0.32 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.32 -0.32 0.0" name="third_ankle_geom" size=
"0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 0.32 -0.32 0.0" name="fourth_ankle_geom" size=
"0.08" type="capsule"/>

• ant-morph-alllegs-medium: the leg sizes of all legs are revised to be 0.5 times of those in
the source domain:

<geom fromto="0.0 0.0 0.0 0.2 0.2 0.0" name="left_ankle_geom" size="0.08
" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.2 0.2 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.2 -0.2 0.0" name="third_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 0.2 -0.2 0.0" name="fourth_ankle_geom" size="
0.08" type="capsule"/>

• ant-morph-alllegs-hard: the leg sizes of all legs are revised to be 0.2 times of those in the
source domain:

<geom fromto="0.0 0.0 0.0 0.08 0.08 0.0" name="left_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.08 0.08 0.0" name="right_ankle_geom" size="
0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 -0.08 -0.08 0.0" name="third_ankle_geom" size=
"0.08" type="capsule"/>

<geom fromto="0.0 0.0 0.0 0.08 -0.08 0.0" name="fourth_ankle_geom" size=
"0.08" type="capsule"/>

• halfcheetah-morph-thigh-easy: the front thigh size and the back thigh size are modified to
be:

<geom fromto="0 0 0 0.11 0 -0.11" name="bthigh" size="0.046" type="
capsule"/>

<body name="bshin" pos="0.11 0 -0.11">
<geom fromto="0 0 0 -.13 0 -.15" name="bshin" rgba="0.9 0.6 0.6 1" size=

"0.046" type="capsule"/>
<body name="bfoot" pos="-.13 0 -.15">
<geom fromto="0 0 0 -0.09 0 -0.1" name="fthigh" size="0.046" type="

capsule"/>
<body name="fshin" pos="-0.09 0 -0.1">
<geom fromto="0 0 0 .11 0 -.13" name="fshin" rgba="0.9 0.6 0.6 1" size="

0.046" type="capsule"/>
<body name="ffoot" pos=".11 0 -.13">

• halfcheetah-morph-thigh-medium: the front thigh size and the back thigh size are modified
to be:
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<geom fromto="0 0 0 0.08 0 -0.08" name="bthigh" size="0.046" type="
capsule"/>

<body name="bshin" pos="0.08 0 -0.08">
<geom fromto="0 0 0 -.13 0 -.15" name="bshin" rgba="0.9 0.6 0.6 1" size=

"0.046" type="capsule"/>
<body name="bfoot" pos="-.13 0 -.15">
<geom fromto="0 0 0 -0.07 0 -0.08" name="fthigh" size="0.046" type="

capsule"/>
<body name="fshin" pos="-0.07 0 -0.08">
<geom fromto="0 0 0 .11 0 -.13" name="fshin" rgba="0.9 0.6 0.6 1" size="

0.046" type="capsule"/>
<body name="ffoot" pos=".11 0 -.13">

• halfcheetah-morph-thigh-hard: the front thigh size and the back thigh size are modified to
be:

<geom fromto="0 0 0 0.02 0 -0.02" name="bthigh" size="0.046" type="
capsule"/>

<body name="bshin" pos="0.02 0 -0.02">
<geom fromto="0 0 0 -.13 0 -.15" name="bshin" rgba="0.9 0.6 0.6 1" size=

"0.046" type="capsule"/>
<body name="bfoot" pos="-.13 0 -.15">
<geom fromto="0 0 0 -0.04 0 -0.05" name="fthigh" size="0.046" type="

capsule"/>
<body name="fshin" pos="-0.04 0 -0.05">
<geom fromto="0 0 0 .11 0 -.13" name="fshin" rgba="0.9 0.6 0.6 1" size="

0.046" type="capsule"/>
<body name="ffoot" pos=".11 0 -.13">

• halfcheetah-morph-torso-easy: the torso size of the robot is revised to be 0.8 times of that in
the source domain:

<geom fromto="-.4 0 0 .4 0 0" name="torso" size="0.046" type="capsule"/>
<geom axisangle="0 1 0 .87" name="head" pos=".5 0 .1" size="0.046 .15"

type="capsule"/>
<body name="bthigh" pos="-.4 0 0">
<body name="fthigh" pos=".4 0 0">

• halfcheetah-morph-torso-medium: the torso size of the robot is revised to be 0.5 times of
that in the source domain:

<geom fromto="-.25 0 0 .25 0 0" name="torso" size="0.046" type="capsule"
/>

<geom axisangle="0 1 0 .87" name="head" pos=".35 0 .1" size="0.046 .15"
type="capsule"/>

<body name="bthigh" pos="-.25 0 0">
<body name="fthigh" pos=".25 0 0">

• halfcheetah-morph-torso-hard: the torso size of the robot is revised to be 0.2 times of that
in the source domain:

<geom fromto="-.1 0 0 .1 0 0" name="torso" size="0.046" type="capsule"/>
<geom axisangle="0 1 0 .87" name="head" pos=".2 0 .1" size="0.046 .15"

type="capsule"/>
<body name="bthigh" pos="-.1 0 0">
<body name="fthigh" pos=".1 0 0">

• hopper-morph-foot-easy: the foot size is revised to be 0.8 times of that within the source
domain:

<geom friction="2.0" fromto="-0.104 0 0.1 0.208 0 0.1" name="foot_geom"
size="0.048" type="capsule"/>
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• hopper-morph-foot-medium: the foot size is revised to be 0.6 times of that within the source
domain:

<geom friction="2.0" fromto="-0.078 0 0.1 0.156 0 0.1" name="foot_geom"
size="0.036" type="capsule"/>

• hopper-morph-foot-hard: the foot size is revised to be 0.4 times of that within the source
domain:

<geom friction="2.0" fromto="-0.052 0 0.1 0.104 0 0.1" name="foot_geom"
size="0.024" type="capsule"/>

• hopper-morph-torso-easy: the torso size is revised to be 1.5 times of that within the source
domain, and the length of the torso becomes 0.48:

<geom friction="0.9" fromto="0 0 1.53 0 0 1.05" name="torso_geom" size="
0.075" type="capsule"/>

• hopper-morph-torso-medium: the torso size is revised to be 2.0 times of that within the
source domain, and the length of the torso becomes 0.64:

<geom friction="0.9" fromto="0 0 1.69 0 0 1.05" name="torso_geom" size="
0.1" type="capsule"/>

• hopper-morph-torso-hard: the torso size is revised to be 2.5 times of that within the source
domain, and the length of the torso becomes 0.8:

<geom friction="0.9" fromto="0 0 1.85 0 0 1.05" name="torso_geom" size="
0.125" type="capsule"/>

• walker2d-morph-leg-easy: the leg size of the robot is revised to be 0.8 times of that in the
source domain (the thigh size becomes larger accordingly):

<geom friction="0.9" fromto="0 0 1.05 0 0 0.5" name="thigh_geom" size="
0.05" type="capsule"/>

<joint axis="0 -1 0" name="leg_joint" pos="0 0 0.5" range="-150 0" type=
"hinge"/>

<geom friction="0.9" fromto="0 0 0.5 0 0 0.1" name="leg_geom" size="0.04
" type="capsule"/>

<geom friction="0.9" fromto="0 0 1.05 0 0 0.5" name="thigh_left_geom"
rgba=".7 .3 .6 1" size="0.05" type="capsule"/>

<joint axis="0 -1 0" name="leg_left_joint" pos="0 0 0.5" range="-150 0"
type="hinge"/>

<geom friction="0.9" fromto="0 0 0.5 0 0 0.1" name="leg_left_geom" rgba=
".7 .3 .6 1" size="0.04" type="capsule"/>

• walker2d-morph-leg-medium: the leg size of the robot is revised to be 0.5 times of that in
the source domain (the thigh size becomes larger accordingly):

<geom friction="0.9" fromto="0 0 1.05 0 0 0.35" name="thigh_geom" size="
0.05" type="capsule"/>

<joint axis="0 -1 0" name="leg_joint" pos="0 0 0.35" range="-150 0" type
="hinge"/>

<geom friction="0.9" fromto="0 0 0.35 0 0 0.1" name="leg_geom" size="
0.04" type="capsule"/>

<geom friction="0.9" fromto="0 0 1.05 0 0 0.35" name="thigh_left_geom"
rgba=".7 .3 .6 1" size="0.05" type="capsule"/>

<joint axis="0 -1 0" name="leg_left_joint" pos="0 0 0.35" range="-150 0"
type="hinge"/>

<geom friction="0.9" fromto="0 0 0.35 0 0 0.1" name="leg_left_geom" rgba
=".7 .3 .6 1" size="0.04" type="capsule"/>

• walker2d-morph-leg-easy: the leg size of the robot is revised to be 0.2 times of that in the
source domain (the thigh size becomes larger accordingly):
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<geom friction="0.9" fromto="0 0 1.05 0 0 0.2" name="thigh_geom" size="
0.05" type="capsule"/>

<joint axis="0 -1 0" name="leg_joint" pos="0 0 0.2" range="-150 0" type=
"hinge"/>

<geom friction="0.9" fromto="0 0 0.2 0 0 0.1" name="leg_geom" size="0.04
" type="capsule"/>

<geom friction="0.9" fromto="0 0 1.05 0 0 0.2" name="thigh_left_geom"
rgba=".7 .3 .6 1" size="0.05" type="capsule"/>

<joint axis="0 -1 0" name="leg_left_joint" pos="0 0 0.2" range="-150 0"
type="hinge"/>

<geom friction="0.9" fromto="0 0 0.2 0 0 0.1" name="leg_left_geom" rgba=
".7 .3 .6 1" size="0.04" type="capsule"/>

• walker2d-morph-torso-easy: the torso size is revised to be 1.5 times of that within the source
domain, and the length of the torso becomes 0.48:

<geom friction="0.9" fromto="0 0 1.53 0 0 1.05" name="torso_geom" size="
0.075" type="capsule"/>

• walker2d-morph-torso-medium: the torso size is revised to be 2.0 times of that within the
source domain, and the length of the torso becomes 0.64:

<geom friction="0.9" fromto="0 0 1.69 0 0 1.05" name="torso_geom" size="
0.1" type="capsule"/>

• walker2d-morph-torso-hard: the torso size is revised to be 2.5 times of that within the
source domain, and the length of the torso becomes 0.8:

<geom friction="0.9" fromto="0 0 1.85 0 0 1.05" name="torso_geom" size="
0.125" type="capsule"/>

D.2 AntMaze Task

AntMaze navigation tasks are composed of three different map sizes (small, medium, large), with
each size featuring six unique map layouts, resulting in a total of 18 tasks. The navigation domain is
used to assess the agent’s ability to transfer the learned policy to diverse maps and obstacles. For the
small maze, the shift level can be centerblock (a block in the center of the maze), empty (no blocks in
the maze), lshape, zshape, reverseu, or reversel. For the medium and large size mazes, the shift level
can be {1, 2, 3, 4, 5, 6}, each representing a different type of map layout. The full list of AntMaze
task names can be found in Table 8. It’s important to note that only the map layouts are changed, with
the embodied ant robot remaining unmodified. The AntMaze domain here has a single starting point
and a single goal position. The objective is to navigate the ant robot from the bottom left corner of
the map to the top right corner. Visualization results for all supported maps are shown in Figure 12.

D.3 Dexterous Manipulation

The dexterous manipulation tasks are constructed based on Adroit. We adopt four tasks pen, door,
relocate, hammer, where we need to control a 24-DoF shadow hand robot hand to hammer a nail,
open a door, twirls a pen or pick up and move a ball. We consider two kinds of dynamics shifts,
kinematic shift and morphology shift. Each dynamics shift is equipped with three shift levels: easy,
medium, hard. We modify the embodied dexterous hand instead of changing the objects like the pen,
indicating that the four tasks share the identical robot hand given the dynamics shift type and the shift
level. We summarize the detailed modifications to the robot hand below.

D.3.1 Kinematic shift

The kinematic shift occurs in all finger joints of the index finger and the thumb. The simulated
robot hand remains the same as that in the source domain in visual appearance. The visualization
results can be found in Figure 13. We provide three types of shift levels (easy, medium, hard) for the
kinematic shift. For each shift level, we have
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Table 8: Full list of supported task names in AntMaze.

Map layout

small maze

antmaze-small-empty
antmaze-small-centerblock
antmaze-small-lshape
antmaze-small-zshape
antmaze-small-reversel
antmaze-small-reverseu

medium maze

antmaze-medium-1
antmaze-medium-2
antmaze-medium-3
antmaze-medium-4
antmaze-medium-5
antmaze-medium-6

large maze

antmaze-large-1
antmaze-large-2
antmaze-large-3
antmaze-large-4
antmaze-large-5
antmaze-large-6

Source domain Small maze

centerblock empty lshape zshape reversel reverseu

Medium maze

Large maze

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Figure 12: Visualization of AntMaze tasks. We consider three different map sizes and each map
size contains 6 different map layouts. The robot starts from the bottom left corner of the map and aim
at reaching the top left position in the map.

Table 9: Full list of supported task names in the Adroit domain.

kinematic

pen-broken-joint-easy

morphology

pen-shrink-finger-easy
pen-broken-joint-medium pen-shrink-finger-medium
pen-broken-joint-hard pen-shrink-finger-hard
door-broken-joint-easy door-shrink-finger-easy
door-broken-joint-medium door-shrink-finger-medium
door-broken-joint-hard door-shrink-finger-hard
relocate-broken-joint-easy relocate-shrink-finger-easy
relocate-broken-joint-medium relocate-shrink-finger-medium
relocate-broken-joint-hard relocate-shrink-finger-hard
hammer-broken-joint-easy hammer-shrink-finger-easy
hammer-broken-joint-medium hammer-shrink-finger-medium
hammer-broken-joint-hard hammer-shrink-finger-hard

39

59897 https://doi.org/10.52202/079017-1912



Source domain
easy medium hard

kinematic
morphology

Figure 13: Visualization of dexterous hand manipulation tasks. The robot hand under kinematic
shifts has the same appearance as the source domain, while the fingers are contracted for morphology
shifts.

• pen / door / relocate / hammer-broken-joint-easy: the rotation ranges of all finger joints in
the index finger and the thumb are modified to be 0.5 times of those in the source domain:

# index finger
<joint name="FFJ3" pos="0 0 0" axis="0 1 0" range="-0.218 0.218" user="

1103" />
<joint name="FFJ2" pos="0 0 0" axis="1 0 0" range="0 0.7855" user="1102"

/>
<joint name="FFJ1" pos="0 0 0" axis="1 0 0" range="0 0.7855" user="1101"

/>
<joint name="FFJ0" pos="0 0 0" axis="1 0 0" range="0 0.7855" user="1100"

/>
# thumb
<joint name="THJ4" pos="0 0 0" axis="0 0 -1" range="-0.5235 0.5235" user

="1121" />
<joint name="THJ3" pos="0 0 0" axis="1 0 0" range="0 0.6545" user="1120"

/>
<joint name="THJ2" pos="0 0 0" axis="1 0 0" range="-0.131 0.131" user="

1119" />
<joint name="THJ1" pos="0 0 0" axis="0 1 0" range="-0.262 0.262" user="

1118" />
<joint name="THJ0" pos="0 0 0" axis="0 1 0" range="-0.785 0" user="1117"

/>

• pen / door / relocate / hammer-broken-joint-medium: the rotation ranges of all finger joints
in the index finger and the thumb are modified to be 0.25 times of those in the source
domain:

# index finger
<joint name="FFJ3" pos="0 0 0" axis="0 1 0" range="-0.109 0.109" user="

1103" />
<joint name="FFJ2" pos="0 0 0" axis="1 0 0" range="0 0.39275" user="1102

" />
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<joint name="FFJ1" pos="0 0 0" axis="1 0 0" range="0 0.39275" user="1101
" />

<joint name="FFJ0" pos="0 0 0" axis="1 0 0" range="0 0.39275" user="1100
" />

# thumb
<joint name="THJ4" pos="0 0 0" axis="0 0 -1" range="-0.26175 0.26175"

user="1121" />
<joint name="THJ3" pos="0 0 0" axis="1 0 0" range="0 0.32725" user="1120

" />
<joint name="THJ2" pos="0 0 0" axis="1 0 0" range="-0.0655 0.0655" user=

"1119" />
<joint name="THJ1" pos="0 0 0" axis="0 1 0" range="-0.131 0.131" user="

1118" />
<joint name="THJ0" pos="0 0 0" axis="0 1 0" range="-0.3925 0" user="1117

" />

• pen / door / relocate / hammer-broken-joint-hard: the rotation ranges of all finger joints in
the index finger and the thumb are modified to be 0.125 times of those in the source domain:

# index finger
<joint name="FFJ3" pos="0 0 0" axis="0 1 0" range="-0.0545 0.0545" user=

"1103" />
<joint name="FFJ2" pos="0 0 0" axis="1 0 0" range="0 0.196375" user="

1102" />
<joint name="FFJ1" pos="0 0 0" axis="1 0 0" range="0 0.196375" user="

1101" />
<joint name="FFJ0" pos="0 0 0" axis="1 0 0" range="0 0.196375" user="

1100" />
# thumb
<joint name="THJ4" pos="0 0 0" axis="0 0 -1" range="-0.130875 0.130875"

user="1121" />
<joint name="THJ3" pos="0 0 0" axis="1 0 0" range="0 0.163625" user="

1120" />
<joint name="THJ2" pos="0 0 0" axis="1 0 0" range="-0.03275 0.03275"

user="1119" />
<joint name="THJ1" pos="0 0 0" axis="0 1 0" range="-0.0655 0.0655" user=

"1118" />
<joint name="THJ0" pos="0 0 0" axis="0 1 0" range="-0.19625 0" user="

1117" />

D.3.2 Morphology shift

The morphology shift happens at the proximal, intermediate, and distal phalanges in the index, middle,
ring, and little fingers. The thumb is unchanged. We shrink the phalanges sizes of these fingers with
three different shift levels (easy, medium, hard). Please check the visualization results of dexterous
hand under morphology shifts in Figure 13. For each shift level, we have

• pen / door / relocate / hammer-shrink-finger-easy: the phalanges sizes are modified to be
0.5 times of those in the source domain:

# index finger
<inertial pos="0 0 0.0115" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffproximal" class="DC_Hand" size="0.01 0.01125" pos="0 0

0.01125" type="capsule" />
<site class="D_Touch" name="Tch_ffproximal" size="0.009 0.004 0.006" pos

="0 -.007 .011"/>
<body name="ffmiddle" pos="0 0 0.0225">
<inertial pos="0 0 0.0055" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffmiddle" class="DC_Hand" size="0.00805 0.00625" pos="0 0

0.00625" type="capsule" />
<site class="D_Touch" name="Tch_ffmiddle" size="0.009 0.002 0.0036" pos=

"0 -.007 .0065"/>
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<body name="ffdistal" pos="0 0 0.0125">
<inertial pos="0 0 0.0075" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffdistal" class="DC_Hand" size="0.00705 0.006" pos="0 0

0.006" type="capsule" condim="4" />
<site name="S_fftip" pos="0 0 0.013" group="3" />
<site name="Tch_fftip" class="D_Touch" pos="0 -0.004 0.009" />
# middle finger
<inertial pos="0 0 0.0115" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfproximal" class="DC_Hand" size="0.01 0.01125" pos="0 0

0.01125" type="capsule" />
<site class="D_Touch" name="Tch_mfproximal" size="0.009 0.004 0.006" pos

="0 -.007 .022"/>
<body name="mfmiddle" pos="0 0 0.0225">
<inertial pos="0 0 0.006" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfmiddle" class="DC_Hand" size="0.00805 0.00625" pos="0 0

0.00625" type="capsule" />
<site class="D_Touch" name="Tch_mfmiddle" size="0.009 0.002 0.0035" pos=

"0 -.007 .0065"/>
<body name="mfdistal" pos="0 0 0.0125">
<inertial pos="0 0 0.0075" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfdistal" class="DC_Hand" size="0.00705 0.006" pos="0 0

0.006" type="capsule" condim="4" />
<site name="S_mftip" pos="0 0 0.013" group="3" />
<site name="Tch_mftip" class="D_Touch" pos="0 -0.004 0.009" />
# ring finger
<inertial pos="0 0 0.0115" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_rfproximal" class="DC_Hand" size="0.01 0.01125" pos="0 0

0.01125" type="capsule" />
<site class="D_Touch" name="Tch_rfproximal" size="0.009 0.004 0.006" pos

="0 -.007 .011"/>
<body name="rfmiddle" pos="0 0 0.0225">
<inertial pos="0 0 0.006" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_rfmiddle" class="DC_Hand" size="0.00805 0.00625" pos="0 0

0.00625" type="capsule" />
<site class="D_Touch" name="Tch_rfmiddle" size="0.009 0.002 0.0035" pos=

"0 -.007 .0065"/>
<body name="rfdistal" pos="0 0 0.0125">
<inertial pos="0 0 0.0075" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="V_rfdistal" class="D_Vizual" pos="0 0 0.0005" mesh="F1" />
<geom name="C_rfdistal" class="DC_Hand" size="0.00705 0.006" pos="0 0

0.006" type="capsule" condim="4" />
<site name="S_rftip" pos="0 0 0.013" group="3" />
<site name="Tch_rftip" class="D_Touch" pos="0 -0.004 0.009" />
# little finger
<body name="lfknuckle" pos="-0.017 0 0.022">
<inertial pos="0 0 0.0115" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_lfproximal" class="DC_Hand" size="0.01 0.01125" pos="0 0

0.01125" type="capsule" />
<site class="D_Touch" name="Tch_lfproximal" size="0.009 0.004 0.006" pos

="0 -.007 .011"/>
<body name="lfmiddle" pos="0 0 0.0225">
<inertial pos="0 0 0.006" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_lfmiddle" class="DC_Hand" size="0.00805 0.00625" pos="0 0

0.00625" type="capsule" />
<site class="D_Touch" name="Tch_lfmiddle" size="0.009 0.002 0.0035" pos=

"0 -.007 .0065"/>
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<body name="lfdistal" pos="0 0 0.0125">
<inertial pos="0 0 0.0075" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="V_lfdistal" class="D_Vizual" pos="0 0 0.0005" mesh="F1" />
<geom name="C_lfdistal" class="DC_Hand" size="0.00705 0.006" pos="0 0

0.006" type="capsule" condim="4" />
<site name="S_lftip" pos="0 0 0.013" group="3" />
<site name="Tch_lftip" class="D_Touch" pos="0 -0.004 0.009" />

• pen / door / relocate / hammer-shrink-finger-medium: the phalanges sizes are modified to be
0.25 times of those in the source domain:

# index finger
<inertial pos="0 0 0.00575" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffproximal" class="DC_Hand" size="0.01 0.005625" pos="0 0

0.005625" type="capsule" />
<site class="D_Touch" name="Tch_ffproximal" size="0.009 0.004 0.003" pos

="0 -.007 .0055"/>
<body name="ffmiddle" pos="0 0 0.01125">
<inertial pos="0 0 0.00275" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffmiddle" class="DC_Hand" size="0.00805 0.003125" pos="0 0

0.003125" type="capsule" />
<site class="D_Touch" name="Tch_ffmiddle" size="0.009 0.002 0.0018" pos=

"0 -.007 .00325"/>
<body name="ffdistal" pos="0 0 0.00625">
<inertial pos="0 0 0.00375" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffdistal" class="DC_Hand" size="0.00705 0.003" pos="0 0

0.003" type="capsule" condim="4" />
<site name="S_fftip" pos="0 0 0.0065" group="3" />
<site name="Tch_fftip" class="D_Touch" pos="0 -0.004 0.0045" />
# middle finger
<inertial pos="0 0 0.00575" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfproximal" class="DC_Hand" size="0.01 0.005625" pos="0 0

0.005625" type="capsule" />
<site class="D_Touch" name="Tch_mfproximal" size="0.009 0.004 0.003" pos

="0 -.007 .022"/>
<body name="mfmiddle" pos="0 0 0.01125">
<inertial pos="0 0 0.003" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfmiddle" class="DC_Hand" size="0.00805 0.003125" pos="0 0

0.003125" type="capsule" />
<site class="D_Touch" name="Tch_mfmiddle" size="0.009 0.002 0.00175" pos

="0 -.007 .00325"/>
<body name="mfdistal" pos="0 0 0.00625">
<inertial pos="0 0 0.00375" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfdistal" class="DC_Hand" size="0.00705 0.003" pos="0 0

0.003" type="capsule" condim="4" />
<site name="S_mftip" pos="0 0 0.0065" group="3" />
<site name="Tch_mftip" class="D_Touch" pos="0 -0.004 0.0045" />
# ring finger
<inertial pos="0 0 0.00575" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_rfproximal" class="DC_Hand" size="0.01 0.005625" pos="0 0

0.005625" type="capsule" />
<site class="D_Touch" name="Tch_rfproximal" size="0.009 0.004 0.003" pos

="0 -.007 .0055"/>
<body name="rfmiddle" pos="0 0 0.01125">
<inertial pos="0 0 0.003" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
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<geom name="C_rfmiddle" class="DC_Hand" size="0.00805 0.003125" pos="0 0
0.003125" type="capsule" />

<site class="D_Touch" name="Tch_rfmiddle" size="0.009 0.002 0.00175" pos
="0 -.007 .00325"/>

<body name="rfdistal" pos="0 0 0.00625">
<inertial pos="0 0 0.00375" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="V_rfdistal" class="D_Vizual" pos="0 0 0.00025" mesh="F1" />
<geom name="C_rfdistal" class="DC_Hand" size="0.00705 0.003" pos="0 0

0.003" type="capsule" condim="4" />
<site name="S_rftip" pos="0 0 0.0065" group="3" />
<site name="Tch_rftip" class="D_Touch" pos="0 -0.004 0.0045" />
# little finger
<body name="lfknuckle" pos="-0.017 0 0.011">
<inertial pos="0 0 0.00575" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_lfproximal" class="DC_Hand" size="0.01 0.005625" pos="0 0

0.005625" type="capsule" />
<site class="D_Touch" name="Tch_lfproximal" size="0.009 0.004 0.003" pos

="0 -.007 .0055"/>
<body name="lfmiddle" pos="0 0 0.01125">
<inertial pos="0 0 0.003" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_lfmiddle" class="DC_Hand" size="0.00805 0.003125" pos="0 0

0.003125" type="capsule" />
<site class="D_Touch" name="Tch_lfmiddle" size="0.009 0.002 0.00175" pos

="0 -.007 .00325"/>
<body name="lfdistal" pos="0 0 0.00625">
<inertial pos="0 0 0.00375" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="V_lfdistal" class="D_Vizual" pos="0 0 0.00025" mesh="F1" />
<geom name="C_lfdistal" class="DC_Hand" size="0.00705 0.003" pos="0 0

0.003" type="capsule" condim="4" />
<site name="S_lftip" pos="0 0 0.0065" group="3" />
<site name="Tch_lftip" class="D_Touch" pos="0 -0.004 0.0045" />

• pen / door / relocate / hammer-shrink-finger-hard: the phalanges sizes are modified to be
0.125 times of those in the source domain:

# index finger
<inertial pos="0 0 0.002875" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffproximal" class="DC_Hand" size="0.01 0.0028125" pos="0 0

0.0028125" type="capsule" />
<site class="D_Touch" name="Tch_ffproximal" size="0.009 0.004 0.0015"

pos="0 -.007 .00275"/>
<body name="ffmiddle" pos="0 0 0.005625">
<inertial pos="0 0 0.001375" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffmiddle" class="DC_Hand" size="0.00805 0.0015625" pos="0

0 0.0015625" type="capsule" />
<site class="D_Touch" name="Tch_ffmiddle" size="0.009 0.002 0.0009" pos=

"0 -.007 .001625"/>
<body name="ffdistal" pos="0 0 0.003125">
<inertial pos="0 0 0.001875" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_ffdistal" class="DC_Hand" size="0.00705 0.0015" pos="0 0

0.0015" type="capsule" condim="4" />
<site name="S_fftip" pos="0 0 0.00325" group="3" />
<site name="Tch_fftip" class="D_Touch" pos="0 -0.004 0.00225" />
# middle finger
<inertial pos="0 0 0.002875" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfproximal" class="DC_Hand" size="0.01 0.0028125" pos="0 0

0.0028125" type="capsule" />
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<site class="D_Touch" name="Tch_mfproximal" size="0.009 0.004 0.0015"
pos="0 -.007 .022"/>

<body name="mfmiddle" pos="0 0 0.005625">
<inertial pos="0 0 0.0015" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfmiddle" class="DC_Hand" size="0.00805 0.0015625" pos="0

0 0.0015625" type="capsule" />
<site class="D_Touch" name="Tch_mfmiddle" size="0.009 0.002 0.000875"

pos="0 -.007 .001625"/>
<body name="mfdistal" pos="0 0 0.003125">
<inertial pos="0 0 0.001875" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_mfdistal" class="DC_Hand" size="0.00705 0.0015" pos="0 0

0.0015" type="capsule" condim="4" />
<site name="S_mftip" pos="0 0 0.00325" group="3" />
<site name="Tch_mftip" class="D_Touch" pos="0 -0.004 0.00225" />
# ring finger
<inertial pos="0 0 0.002875" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_rfproximal" class="DC_Hand" size="0.01 0.0028125" pos="0 0

0.0028125" type="capsule" />
<site class="D_Touch" name="Tch_rfproximal" size="0.009 0.004 0.0015"

pos="0 -.007 .00275"/>
<body name="rfmiddle" pos="0 0 0.005625">
<inertial pos="0 0 0.0015" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_rfmiddle" class="DC_Hand" size="0.00805 0.0015625" pos="0

0 0.0015625" type="capsule" />
<site class="D_Touch" name="Tch_rfmiddle" size="0.009 0.002 0.000875"

pos="0 -.007 .001625"/>
<body name="rfdistal" pos="0 0 0.003125">
<inertial pos="0 0 0.001875" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="V_rfdistal" class="D_Vizual" pos="0 0 0.000125" mesh="F1" />
<geom name="C_rfdistal" class="DC_Hand" size="0.00705 0.0015" pos="0 0

0.0015" type="capsule" condim="4" />
<site name="S_rftip" pos="0 0 0.00325" group="3" />
<site name="Tch_rftip" class="D_Touch" pos="0 -0.004 0.00225" />
# little finger
<body name="lfknuckle" pos="-0.017 0 0.0055">
<inertial pos="0 0 0.002875" quat="0.707095 -0.00400054 0.00400054

0.707095" mass="0.014" diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_lfproximal" class="DC_Hand" size="0.01 0.0028125" pos="0 0

0.0028125" type="capsule" />
<site class="D_Touch" name="Tch_lfproximal" size="0.009 0.004 0.0015"

pos="0 -.007 .00275"/>
<body name="lfmiddle" pos="0 0 0.005625">
<inertial pos="0 0 0.0015" quat="0.707107 0 0 0.707107" mass="0.012"

diaginertia="1e-05 1e-05 1e-05" />
<geom name="C_lfmiddle" class="DC_Hand" size="0.00805 0.0015625" pos="0

0 0.0015625" type="capsule" />
<site class="D_Touch" name="Tch_lfmiddle" size="0.009 0.002 0.000875"

pos="0 -.007 .001625"/>
<body name="lfdistal" pos="0 0 0.03125">
<inertial pos="0 0 0.001875" quat="0.7071 -0.00300043 0.00300043 0.7071"

mass="0.01" diaginertia="1e-05 1e-05 1e-05" />
<geom name="V_lfdistal" class="D_Vizual" pos="0 0 0.000125" mesh="F1" />
<geom name="C_lfdistal" class="DC_Hand" size="0.00705 0.0015" pos="0 0

0.0015" type="capsule" condim="4" />
<site name="S_lftip" pos="0 0 0.00325" group="3" />
<site name="Tch_lftip" class="D_Touch" pos="0 -0.004 0.00225" />
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E Additional Results

In this section, we provide additional experimental results that were omitted from the main text
due to space constraints. These include experiments conducted under the Online-Online setting,
performance comparisons across varying dataset qualities on locomotion tasks in the Offline-Online,
Online-Offline, and Offline-Offline settings, and some results on the AntMaze and Adroit domain.

E.1 Wider Results in the Online-Online Setting

We present a broader range of empirical results for the implemented algorithms in the context of
both the online source domain and the online target domain in Figure 14. It is evident that different
algorithms excel in various types of dynamic shift tasks. For instance, DARC struggles with the
ant-morph-alllegs-medium task but delivers impressive performance on dexterous manipulation tasks.
We observe that Obs 2 and Obs 4 still hold, i.e., PAR fails to achieve meaningful performance
in dexterous manipulation tasks but achieves good results in locomotion tasks, while DARC and
SAC_IW rank among the best algorithms for dexterous manipulation tasks. We reemphasize that
the experimental results demonstrate that no single algorithm can master all types of dynamic shifts
across all domains, thereby validating Obs 1.

E.2 Wider Results in the Offline-Online Setting and the Online-Offline Setting

Offline-Online setting. We follow the same experimental setup as in the main text (interacting with
the target domain for only 0.1M steps) and present a wider range of experimental results in Figure
15. Here, we find that our observations (Obs 6, Obs 7, Obs 8) from the main text still hold. Firstly,
even when provided with expert source domain datasets, existing methods do not necessarily achieve
good performance in the target domain. In fact, on many tasks, the performance with expert source
domain datasets is even worse than with medium-replay or medium datasets. Furthermore, methods
that treat both domains as a single mixed domain can outperform off-dynamics RL algorithms,
particularly RLPD, which exhibits superior performance on numerous tasks. Moreover, on tasks
like walker2d-kinematic-footjnt-hard, methods that involve conservative value estimation (e.g.,
MCQ_SAC) outperform those that utilize the BC term when given expert source domain datasets.

Furthermore, we carry out experiments on dexterous hand manipulation tasks. D4RL provides three
types of source domain datasets for these tasks: human, cloned, expert. For our experiments, we
use the expert-level source domain datasets. The results are shown in Figure 16, where we observe
that existing off-dynamics RL algorithms typically struggle with high-dimensional, sparse reward
tasks like Adroit, even when expert source domain datasets are available, as highlighted in Obs 6.
RLPD is the only method that consistently achieves good performance across numerous tasks. This
suggests that complex manipulation tasks pose a significant challenge for existing off-dynamics RL
methods, and specific designs may be required when training on the Adroit domain, such as building
off-dynamics RL algorithms on top of RLPD instead of SAC. These results indicate that there is still
substantial work to be done towards realizing general dynamics-aware RL algorithms.

Online-Offline setting. We train algorithms in this category for 500K gradient steps, with 500K
interactions with the source domain. We present the wider empirical results given the offline target
domain and the online source domain in Figure 17, where it is evident that Obs 9 still holds, i.e.,
it is difficult to achieve a good performance given the random target domain datasets, and policy
performance may not improve even when expert target domain datasets are provided. Obs 10 also
holds as PAR_BC can achieve quite good performance in walker2d-gravity-5.0, and numerous
algorithms can acquire good policies in ant-kinematic-anklejnt-medium and ant-friction-0.5.

Moreover, we include experiments on AntMaze tasks to investigate whether existing methods can
achieve efficient policy adaptation using limited offline data from the target domain and sufficient
online interactions with the source domain. We use the mixed target domain datasets for the small,
medium, and large size mazes, respectively. The results are depicted in Figure 18. It appears that
most existing methods struggle with AntMaze tasks, and adapting policies across varied landscapes
or obstacles remains a challenge. This observation aligns with Obs 3 in the main text.

We believe the additional evidence further strengthens the observations presented in the main text.
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Figure 14: Wider normalized score comparison in the Online-Online setting. We select 4 kinds
of dynamics shift tasks from each single locomotion task, along with two dexterous hand manipulation
tasks. We do not include results on AntMaze tasks because all algorithms fail on those tasks.
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Figure 15: Wider normalized score comparison under varied source domain dataset qualities
under Offline-Online setting. We choose ant and walker2d tasks with 4 varied dynamics shift tasks.
The source domain datasets can be medium-replay, medium, or expert, which are directly taken from
the D4RL benchmark. We report the average performance and the standard deviations at the final
gradient step.
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Figure 16: Empirical results on selected Adroit tasks under the Offline-Online setting. We adopt
the expert-level source domain datasets for experiments.
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Figure 17: Normalized score comparison of baseline methods on wider environments. We
choose 8 tasks from the ant and walker2d robots with varied dynamics shifts. We consider the fol-
lowing qualities of the target domain datasets: random, medium, expert. The final mean performance
as well as the standard deviations are reported.

50

59908https://doi.org/10.52202/079017-1912



SAC_BC H2O
SAC_CQL

SAC_MCQ
PAR_BC

2

0

2

4

6

No
rm

al
ize

d 
Sc

or
e

antmaze-small-centerblock

SAC_BC H2O
SAC_CQL

SAC_MCQ
PAR_BC

0

5

10

15

20

25

30

35

No
rm

al
ize

d 
Sc

or
e

antmaze-small-empty

SAC_BC H2O
SAC_CQL

SAC_MCQ
PAR_BC

5

0

5

10

15

20

25

No
rm

al
ize

d 
Sc

or
e

antmaze-medium-1

SAC_BC H2O
SAC_CQL

SAC_MCQ
PAR_BC

2

0

2

4

6

No
rm

al
ize

d 
Sc

or
e

antmaze-medium-2

SAC_BC H2O
SAC_CQL

SAC_MCQ
PAR_BC

2

0

2

4

6

No
rm

al
ize

d 
Sc

or
e

antmaze-large-1

SAC_BC H2O
SAC_CQL

SAC_MCQ
PAR_BC

0.04

0.02

0.00

0.02

0.04

No
rm

al
ize

d 
Sc

or
e

antmaze-large-2

Figure 18: Normalized score comparison on some AntMaze tasks under the Online-Offline
setting. It can be found that most of the methods fail on these tasks (with a normalized score 0).

E.3 Empirical Results in the Offline-Offline Setting

In the main text, we primarily focus on the Online-Online, Offline-Online, and Online-Offline
settings. Here, we provide some experimental results in the Offline-Offline setting. We train the
baseline methods for 500K gradient steps, without any interactions with either the source or the target
domain. We use IQL as the base offline RL algorithm for DARA. We select four tasks (ant-friction-0.5,
ant-friction-5.0, walker2d-kinematic-footjnt-medium, walker2d-kinematic-footjnt-hard) and examine
how the baselines perform under a pure offline setting, and how the performance changes if the
shift level changes. For source domain offline datasets, we consider medium-replay, medium, expert
datasets from D4RL, while for the target domain datasets, we consider random, medium, expert
datasets. We first fix the dataset quality in the target domain to be medium, and examine how the
baselines perform under different qualities of source domain datasets. Then, we fix the source domain
dataset quality to be medium, and sweep the target domain offline datasets across random, medium,
expert qualities. The results are presented in Figure 19 and Figure 20, respectively.

Based on Figure 19, we observe that the agent’s performance may not improve even when expert
source domain datasets or target domain datasets are provided (e.g., the performance of IQL and
BOSA drop with expert-level datasets in the ant-friction-5.0 task), and the agent’s performance is
unsatisfactory if only random target domain datasets are available. This further validates Obs 6 and
Obs 9. We also observe that IQL and TD3_BC can beat BOSA and DARA on some tasks, which
validates Obs 7. Note that all of our experiments generally adopt one set of hyperparameters for
implemented methods, which should explain in part why some approaches exhibit poor performance
on some tasks.

F Compute Infrastructure

Our experiments are conducted via the following dependencies:

• gym == 0.18.3
• torch == 1.11.0
• dm-control == 1.0.8
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Figure 19: Normalized score comparison of baselines given medium-level target domain
datasets and varied qualities of source domain datasets. We report the final average performance
and the corresponding standard deviation.
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Figure 20: Normalized score comparison of baselines given medium-level source domain
datasets and varied qualities of target domain datasets. We report the final average performance
and the corresponding standard deviation.
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• numpy == 1.23.5
• d4rl == 1.1
• mujoco-py == 2.1.2.14
• python == 3.8.13

In Table 10, we list the compute infrastructure that we use to run all of the algorithms.

Table 10: Compute infrastructure.

CPU GPU Memory
AMD EPYC 7452 RTX3090×20 720GB

We adopt the Gym environments and mujoco-py under the MIT License. For the D4RL library
(including the Antmaze domain and the Adroit domain, and offline datasets), all datasets are licensed
under the Creative Commons Attribution 4.0 License (CC BY), and code is licensed under the Apache
2.0 License.

G Broader Impacts

In this work, we propose the first benchmark for off-dynamics RL. The goal of our benchmark is
to facilitate the development of more general and advanced dynamics-aware RL algorithms that
can quickly adapt to structurally similar environments or tasks with varied transition dynamics.
Our benchmark primarily focuses on policy adaptation within a single task, i.e., only the transition
dynamics vary, and the state space and action space remain unchanged. We also provide only one
single source domain and one single target domain. However, it should not be difficult to modify
our benchmark code to support policy adaptation from multiple source domains to a single target
domain. It is also possible to revise the code to evaluate the zero-shot transfer capability of the agent.
Furthermore, one could modify our benchmark to support cross-domain policy adaptation, where the
source and target domains can have varied state spaces and action spaces.

Regarding potential social impacts, we believe that our benchmark is beneficial for advancing
dynamics-aware RL algorithms, which can be helpful for humans since robots can quickly adapt
to new environments or tasks and assist humans in completing more complex and dangerous work.
On the other hand, as robots become more capable and adaptable, they may replace human labor in
various industries, leading to job losses and increased unemployment. This can exacerbate economic
inequality. Meanwhile, it may become more difficult for humans to understand how off-dynamics
RL algorithms work and make decisions. This lack of transparency can lead to a loss of trust in
robotic systems and hinder accountability. Finally, the developed off-dynamics RL algorithms can
potentially be used in military applications, including wars. These algorithms, which account for the
dynamics of the environment and robotic systems, could be employed to improve the performance of
autonomous weapons, drones, and other military robots.
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