
OPEL: Optimal Transport Guided ProcedurE
Learning

Sayeed Shafayet Chowdhury, Soumyadeep Chandra, and Kaushik Roy
Elmore Family School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907, USA
{chowdh23, chand133, kaushik}@purdue.edu

Abstract

Procedure learning refers to the task of identifying the key-steps and determining
their logical order, given several videos of the same task. For both third-person
and first-person (egocentric) videos, state-of-the-art (SOTA) methods aim at
finding correspondences across videos in time to accomplish procedure learning.
However, to establish temporal relationships within the sequences, these methods
often rely on frame-to-frame mapping, or assume monotonic alignment of video
pairs, leading to sub-optimal results. To this end, we propose to treat the video
frames as samples from an unknown distribution, enabling us to frame their
distance calculation as an optimal transport (OT) problem. Notably, the OT-
based formulation allows us to relax the previously mentioned assumptions. To
further improve performance, we enhance the OT formulation by introducing
two regularization terms. The first, inverse difference moment regularization,
promotes transportation between instances that are homogeneous in the embedding
space as well as being temporally closer. The second, regularization based on
the KL-divergence with an exponentially decaying prior smooths the alignment
while enforcing conformity to the optimality (alignment obtained from vanilla
OT optimization) and temporal priors. The resultant optimal transport guided
procedure learning framework (‘OPEL’) significantly outperforms the SOTA on
benchmark datasets. Specifically, we achieve 22.4% (IoU) and 26.9% (F1) average
improvement compared to the current SOTA on large scale egocentric benchmark,
EgoProceL. Furthermore, for the third person benchmarks (ProCeL and CrossTask),
the proposed approach obtains 46.2% (F1) average enhancement over SOTA.

1 Introduction

The development of autonomous agents capable of reliably replicating human actions to accomplish
certain end goals presents significant challenges. Traditional approaches would necessitate hard-
coding tedious explicit instructions for each sub-task of the process (thus difficult to scale and
generalize). A more efficient solution would involve the agent learning directly from observing
multiple demonstrations of the assembly, without the need of any label. This motivates us to explore
unsupervised procedure learning from videos. In the context of this work, procedure learning (PL)
is conceptualized as the process of determining the key-steps and their correct sequential order to
accomplish an overall task, as demonstrated across multiple video demonstrations [1, 2, 3].

PL analyzes multiple videos of a task as illustrated in Figure 1, in contrast to action-based tasks [4],
which focus on a single video. The single-video approach is inapplicable to the identification of
repetitive key-steps across videos. Moreover, action-based tasks typically neglect the sequencing of
events, crucial for discerning an overall expected procedure composed of the sub-tasks. For instance,
they fail to capture variations in the sequence of key-steps between videos V1 and V2 (Fig. 1). Other
research efforts in video understanding that employ instructional videos include procedure planning
[5], verifying sequences of procedures [6], and summarizing instructional content [7]. Additionally,
unlike video alignment tasks [8], PL specifically aims to localize these essential steps within videos.
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Figure 1: Key-steps required to prepare a brownie [17]. The sequences showcase temporal variations
and corresponding key-step alignment challenges, namely (i) background frames (depicted as gray
blocks), (ii) non-monotonic frames. OPEL aims to learn an embedding space where corresponding
key-steps have similar embeddings while tackling the above challenges.

Much of the research on PL till now has been performed within the frameworks of supervised
[9, 10, 11] and weakly supervised learning [12, 13, 14]. In a supervised setting, the reliance on
per-frame annotations demands extensive manual labor. Conversely, weakly supervised methods
involve using either ordered or unordered lists of key-steps. The generation of these lists requires
either direct observation of the videos or specific heuristics, both of which pose significant scalability
challenges [3]. Consequently, recent studies [1, 8] have shifted focus towards self-supervised learning,
which do not require frame-wise labeling. Such a learning paradigm leverages the structured nature
of accomplishing a complex task, which typically unfold in a predictable sequence of steps. For
example, the act of preparing a "brownie" might involve breaking an egg, adding water, oil, mixing
the contents, and then baking in the oven. The alignment of video frames is commonly performed in a
monotonic manner [15], which presupposes a consistent order of actions across sequences. However,
real-world sequences frequently deviate from this pattern, exhibiting temporal non-uniformities as
depicted in Figure 1. These deviations can be categorized as follows: (i) background frames: frames
irrelevant to the primary activity and should thus be excluded from alignment; (ii) redundant frames:
these frames appear only in one sequence but not in others and do not contribute to the task; (iii)
non-monotonic frames: these frames are characterized by a non-monotonic sequence of actions. Such
frames challenge the assumption of monotonic progression and highlight the complexity of real-world
activities. State-of-the-art (SOTA) methods adopt custom approaches to counter these irregularities
such as removing background frames from processing [2], using extra information (e.g. gaze, depth)
[16], or simply ignore them leading to suboptimal results [1].

To address the limitations of previous approaches, we relax the strict assumptions about the temporal
sequence of actions and introduce a novel PL framework designed to learn temporal correspondences
across videos. By treating instances of the sequences as samples from an unknown distribution,
we formulate the task of computing the distance between them as an optimal transport (OT) [18]
problem. The differentiable OT loss facilitates the alignment of non-monotonic sequences through
frame-wise matching based on individual frame features. However, it typically overlooks the temporal
smoothness and the inherent ordering relationships within the videos. To overcome this deficiency,
we integrate two priors into the transportation matrix. First, the optimality prior favors the positions
dictated by the OT, whereas the temporal prior discourages transport between temporally distant
frames. Both these priors are modeled using a Laplace distribution with exponentially decaying
probability from the corresponding centers. We introduce an additional virtual frame into the OT
matrix to address background and redundant frames. Furthermore, to avoid the common issue of
converging to trivial solutions in temporal video alignment [15], we employ a novel inter-video
contrastive loss, which acts as a regularizer. Finally, the sub-tasks of each video are clustered in
the embedding space using graphcut segmentation [19]. The overall framework, termed optimal
transport guided procedure learning (‘OPEL’), achieves SOTA results on both the ego and exocentric
benchmarks. To summarize, our main contributions are-

• We propose a novel optimal transport based procedure learning framework that aligns frames with
similar semantics together in an embedding space.

2
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• To enhance the OT-based learning, we integrate optimality and temporal priors, both modeled
using the Laplace distribution. These two priors also serve as regularizers. Furthermore, OPEL
incorporates a novel inter-video contrastive loss for additional improvement.

• OPEL demonstrates substantial performance gains, achieving an average improvement of 22.4% in
IoU and 26.9% in F1-score compared to the current SOTA on the EgoProceL benchmark.

2 Related Works
Representation Learning for Videos. Recent studies have explored various pretext tasks to facilitate
representation learning through self-supervised or unsupervised approaches. Examples include
temporal coherence and sequence ordering [20, 21, 22, 23, 24], predicting frames [25, 26, 27, 28, 29],
and determining the directionality of time [30]. These methods typically derive signals from a
constrained set of videos. In contrast, our objective is to discern and characterize key-steps of a
certain task across multiple videos, expanding the scope and applicability of representation learning.
Self-Supervised Representations for Procedure Learning. Previous studies on PL have focused
on developing methods for learning frame-level features [31, 3, 32, 33]. For instance, Kukleva et
al. [32] enhance the representation space by utilizing relative timestamps of frames, while Vidal
et al. [33] engage in predicting future frames along with their timestamps. Elhamifar et al. [3]
apply attention mechanisms to individual frames to enhance feature learning. Similarly, Bansal et
al. [1] leverage temporal correspondences across videos to generate signals and learn frame-level
embeddings. The current SOTA model for egocentric PL [2] utilizes task-level graph representation to
cluster semantically similar and temporally close frames. Despite these advancements, these methods
often exhibit limitations in adequately modeling either temporal or spatial relationships within video
sequences, especially in the presence of background and redundant frames. As a result, extra curated
processing steps are required, resulting in additional layer of complexity and computation e.g. [2]
depends on background frame removal to improve performance.
Multi-modal Procedure Learning. PL has also been used with multi-modal data such as (a)
narrated text and videos [34, 35, 36, 37, 38, 39], (b) optical flow, depth and gaze information [16].
These studies typically rely on the assumption of a reliable alignment between video content and
corresponding supporting modalities [34, 38, 39], an assumption that often proves inaccurate [31, 3]
due to lack of synchrony among the modalities. Additionally, the dependence on imperfect Automatic
Speech Recognition (ASR) systems necessitates subsequent manual corrections. Moreover, multiple
modalities require additional memory and compute. In contrast, our framework exclusively leverages
visual data, thereby circumventing the inaccuracies associated with multimodal alignment and
enhancing scalability by eliminating the need for extra data modalities.
Video Alignment. can be efficiently addressed in synchronized settings using established methods
like Canonical Correlation Analysis (CCA) [40] and soft-Dynamic Time Warping (DTW) [41]. A
recent work [42] aligns videos by learning self-supervised representations from multiple viewpoints.
However, the requirement for synchronized multi-view recordings limits its applicability. To tackle
this challenge, [8] proposes a cycle consistency loss to establish frame correspondences, focusing
primarily on local matches and not on the global temporal structure of the videos. Perhaps, works
leveraging OT for visual analysis [43, 44, 45] are most related to our approach. But, such approaches
do not address sequence alignment as we do. An exception is [46], which employs OT for videos,
however their setup for evaluation is supervised fine-tuning for action segmentation, a fundamentally
different task than unsupervised PL. As a result, [46] does not deal with temporal localization of the
key-steps of a task nor their ordering, unlike us. Moreover, our modeling of priors using Laplace
distribution and inter-video contrastive loss formulation are different from [46].
Learning Key-step Ordering. Most existing studies fail to account for variations in the ordering of
key-steps required to complete a task, often assuming either a strict sequential order [31, 32, 33] or
neglecting to model the sequence altogether [3, 47]. However, as illustrated in Figure 1, individuals
frequently execute the same task in diverse manners, underscoring the need for a more flexible
approach. To that end, OPEL is designed to identify and construct a unique key-step sequence for
each video, thereby adapting to and inferring the specific ordering of the task.

3 OPEL Framework
Optimal Transport Formulation. OT provides a metric for assessing the dissimilarity between two
probability distributions within a metric space [18]. By using the feature vectors from each entity
and a distance matrix between them, it establishes correspondences that minimize total distance, also
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Figure 2: (A) The encoder generates frame-wise embeddings from videos, facilitating subsequent
OT calculations. (B) Pair-wise scenarios captured through the assignment matrix- from strictly
synchronized actions to temporal shifts and differing action speeds, to non-monotonicity. (C) 1-D
depiction of alignment of a single frame (i-th) of Video 2 with its best match frame (j-th) of Video 1,
based on the proposed priors. (D) 2-D representation of the optimal alignment of frame sequences.

ensuring optimality, separability, and completeness. Assume, the inputs are two sequences of video
frames, \protect \bm  {P} = [\bm {p}_1, \bm {p}_2, \dots , \bm {p}_N]        and \protect \bm  {Q} = [\bm {q}_1, \bm {q}_2, \dots , \bm {q}_M]         . We pass these through a deep encoder
network (as illustrated in Fig. 2(A)) to obtain their respective embeddings, \protect \bm  {X} = [\bm {x}_1, \bm {x}_2, \dots , \bm {x}_N]      
and \protect \bm  {Y} = [\bm {y}_1, \bm {y}_2, \dots , \bm {y}_M]       . Let, (Ω, l) is a metric space, where l : Ω× Ω→ R denotes the distance
in Ω, and P (Ω) represents all Borel probability measures on Ω. Considering the elements of X and
Y as independent samples, their probability measures can be written as, f =

∑N
i=1 αiδxi

and g =∑M
j=1 βjδyj

, where δx denotes the Dirac mass at x, and α and β are the weights for the distributions
f and g, respectively. Since there is no justification for assigning greater importance to one frame over
another, initially we set \alpha _i = \frac {1}{N}


 and \beta _j = \frac {1}{M}


 for all i, j, leading to a feasible set of weight matrices

defined as the transportation polytope [48], U(α,β) := {T ∈ RN×M
+ : T1M = α,T⊤1N = β}.

Here, tij can be interpreted to be proportional to the probability that xi will be aligned to yj . We start
by computing the pairwise Euclidean distances between embedding vectors, d(\bm {x}_i, \bm {y}_j) = \|\bm {x}_i - \bm {y}_j\|   
to form the N \times M  distance matrix, \protect \bm  {D}. The cost of transporting mass from f to g with a transport
plan T is quantified by the Frobenius inner product ⟨T ,D⟩. Thus, the Wasserstein distance raised
to the power p is: W p

p (f, g) = lW (α,β,D) = minT∈U(α,β)⟨T ,D⟩. We only consider p = 1,
and drop p henceforth. To simplify the above optimization and make training feasible, Cuturi [48]
introduced an entropy regularization, leading to the Sinkhorn distance,

  l_\lambda ^S(\bm {\alpha }, \bm {\beta }, \bm {D}) = \langle \bm {T}_\lambda , \bm {D} \rangle \quad \text {s.t.}~ \bm {T}_\lambda = \arg \min _{\bm {T} \in U(\bm {\alpha }, \bm {\beta })} \langle \bm {T}, \bm {D} \rangle - \frac {1}{\lambda } h(\bm {T}), \tag {1} \label {eq:1} \vspace {-1mm}        


  


  (1)

where h(T ) = −
∑N

i=1

∑M
j=1 tij log tij denotes the entropy of T , and λ is the regularization

parameter. The optimal solution for Eqn. (1) has the form [48], Tλ = diag(κ1) exp(−λD)diag(κ2),
where \qopname \relax o{exp}(-\lambda \bm {D}) is the element-wise exponential of the matrix -\lambda \bm {D}, and \protect \bm  {\kappa }_1 \in \mathbb {R}^N   and \protect \bm  {\kappa }_2 \in \mathbb {R}^M 

are the non-negative left and right scaling vectors to be obtained by the Sinkhorn fixed point iterations.

Regularization with Priors. The above formulation minimizes the cost of aligning two sequences,
however it totally neglects the temporal ordering relationships inherent in videos, failing to leverage
the temporal consistency. Typically, the alignment of multiple videos depicting the same activity
should constrain the temporal position of one sequence to correspond closely with adjacent temporal
positions of another sequence. Perfect alignment would render the transport matrix  \bm {T} diagonal, but
this strict requirement is impractical for real-world applications. As illustrated in Fig. 2(B), variations
such as earlier commencement of activities, differing action speeds, or non-monotonic sequences
complicate alignment. To address these challenges and achieve optimal alignment while accounting
for temporal variations, we introduce two priors into the OT framework. Essentially, there are 2
factors in play - (i) optimality which tries to find the best match between frames irrespective of their
temporal distance (which may result in temporally incoherent alignment), and (ii) the temporal factor
which promotes transport between nearby frames only without considering their feature matching.
We hypothesize that the optimal solution requires striking a balance between both, and thus propose
to enhance the OT formulation by incorporating two specific priors addressing the above factors [46].

4
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The first prior, termed the ‘Optimality Prior’, is introduced to effectively manage non-monotonic
sequences. This prior leverages the transport matrix  \bm {T} as delineated in Eqn. (1), which provides a
preliminary indication of alignment between two video sequences. This matrix adapts dynamically
to reflect the temporal variations observed across the sequences. Our approach uses this dynamic
behavior to establish the optimality prior. We want the point representing the most likely alignment
according to  \bm {T} to have the highest likelihood, while the assignment probability decays along any
perpendicular direction from this center. Specifically, we model this as a Laplace distribution,

  \bm {Q}_o (i, j) = \frac {1}{2b} e^{-\frac {|d_o(i,j)|}{b}}, \quad \text {where}~ d_o(i, j) = \frac {|i/N - i_o/N| + |j/M - j_o/M|}{2\sqrt {1/N^2 + 1/M^2}}, \tag {2} \label {eq:2} \vspace {-1mm}  






    

      


 

 (2)

represents the average distance from (i, j)  to the frame locations (i, j_o)  and (i_o, j)  that correspond to
the optimal alignment as indicated by the transport matrix, and b is a scale parameter. Motivated by
[46], we incorporate a second prior, termed the ‘Temporal Prior’, which promotes alignment of one
sequence with elements in proximal temporal positions of the other sequence, thereby preserving
the overall temporal structure and maintaining consistency in action order. This prior results in
an assignment matrix characterized by peak values along the diagonal, with values diminishing
perpendicular to the diagonal. Again, this scenario is modeled using a two-dimensional Laplace
distribution, where the distribution along any line perpendicular to the diagonal is exponentially
decaying, centered along the diagonal itself:

  \bm {Q}_t (i, j) = \frac {1}{2b} e^{-\frac {|d_t(i,j)|}{b}}, \quad \text {where}~ d_t(i, j) = \frac {|i/N - j/M|}{\sqrt {1/N^2 + 1/M^2}} \tag {3} \label {eq:3} \vspace {-1mm}  






    

  
 

(3)

is the distance from (i, j) to the diagonal. Inspired by [46], we merge these priors as,
  \bm {Q} (i, j) = \phi ~\bm {Q}_t (i, j) + (1- \phi )~ \bm {Q}_o (i, j), \tag {4} \label {eq:4} \vspace {-0.5mm}           (4)

where, \phi serves as a dynamic weight, initially set to 1.0, and progressively reduced to 0.5 during
training. This gradual adjustment of \phi allows the model to adaptively improve its alignment based on
the increasing fidelity of the OT predictions. Optimal alignment based on these priors is pictorially
depicted in Fig.2(C, D). Note, the 1-dimensional alignment in Fig.2(C) is for demonstration only, our
actual implementation is based on 2-dimensional distributional priors as shown in Fig.2(D).

Background and Redundant Frames. To effectively manage background and redundant frames, we
integrate an additional ‘virtual frame’ within the transport matrix, following [46]. This serves as a
placeholder for aligning any frame that do not match with the primary sequence, and allows OPEL
to explicitly assign these non-contributing frames to the virtual frame, as shown in Fig. 4(B). The
augmented transport matrix, now denoted as  \hat {\bm {T}} \in \mathbb {R}^{(N+1) \times (M+1)}   , includes an extra row and column
to accommodate the virtual frame. Note, if the likelihood of a frame aligning with any salient frame
falls below a predefined threshold,  \zeta , we assign that frame to the virtual frame.

Training Methodology. While the above formulation sounds promising, devising a differentiable
framework to leverage these during training is pivotal. To that effect, following [46], we define 2
terms to effectively regularize T̂ . To capture the essence of Qo, T̂ needs to be structured to highlight
prominent values at locations corresponding to the most probable alignments,

  M_o(\hat {\bm {T}}) = \sum _{i=1}^{N+1} \sum _{j=1}^{M+1} \frac {t_{ij}} {\frac {1}{2} d_m+ 1}, \quad \text {where}~ d_m = {\left ( \frac {i-i_o}{N+1} \right )^2 + \left (\frac {j-j_o}{M+1} \right )^2} \label {eq:5} \tag {5} \vspace {-0.5mm}   









 

  



 






 
 



(5)

Similarly, to conform to Qt, T̂ is expected to exhibit prominent values along its diagonal, reflecting
temporally closely aligned frames; while off-diagonal elements should ideally possess diminished
magnitudes. This sort of structural arrangement can be quantitatively assessed using:

  M_t(\hat {\bm {T}}) = \sum _{i=1}^{N+1} \sum _{j=1}^{M+1}\frac {t_{ij}} {\left ( \frac {i}{N+1} - \frac {j}{M+1} \right )^2 + 1} \tag {6} \label {eq:6} \vspace {-0.5mm}   


















(6)

Similar to Eqn. (4), the above 2 equations are combined as a regularizer on the transport matrix,
M(T̂ ) = ϕ Mt(T̂ ) + (1− ϕ)Mo(T̂ ). Such a structure is known as the inverse difference moment
(IDM) [49, 46]. To encourage optimal alignment, M(T̂ ) of the learned T̂ should be maximized. In
order to facilitate this and to ensure the smooth assignment of such matches, we define a modified
feasible set for T̂ by incorporating two additional constraints into the set U(\bm {\alpha }, \bm {\beta }),

  \label {eq:7} U_{\xi _1, \xi _2}(\bm {\alpha }, \bm {\beta }) = \left \{\hat {\bm {T}} \in \mathbb {R}^{N+1 \times M+1}_+ \mid \hat {\bm {T}}\bm {1}_{M+1} = \bm {\alpha }, \hat {\bm {T}}^\top \bm {1}_{N+1} = \bm {\beta }, M(\hat {\bm {T}}) \geq \xi _1, \text {KL}(\hat {\bm {T}} \parallel \hat {\bm {Q}}) \leq \xi _2 \right \} \tag {7} 

 

               


(7)
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where KL(T̂ ∥ Q̂) =
∑N+1

i=1

∑M+1
j=1 tij log

tij
qij

is the Kullback- Leibler (KL) divergence between

T̂ and Q̂, and Q̂ is same as Eqn. (4) but augmented with the virtual frame. So, the regularized
Wasserstein distance between X and Y now becomes -

 \label {eq:8} l^R_{\xi _1, \xi _2}(\bm {X}, \bm {Y}) = \min _{\hat {\bm {T}} \in U_{\xi _1, \xi _2}(\bm {\alpha }, \bm {\beta })} \langle \hat {\bm {T}}, \bm {D} \rangle . \tag {8}   



   (8)

The above optimization can be efficiently solved by considering its dual. As such, we incorporate
two Lagrange multipliers, \lambda _1 > 0   and \lambda _2 > 0  , to obtain the dual of Eqn. (8) as-

 \label {eq:9} l_{\lambda _1, \lambda _2}^R(\bm {X}, \bm {Y}) := \langle \hat {\bm {T}}_{\lambda _1, \lambda _2}, \bm {D} \rangle ,~ \text {s.t.}~ \hat {\bm {T}}_{\lambda _1, \lambda _2} = \arg \min _{\hat {\bm {T}} \in U(\bm {\alpha }, \bm {\beta })} \langle \hat {\bm {T}}_{\lambda _1, \lambda _2}, \bm {D} \rangle - \lambda _1 M(\hat {\bm {T}}) + \lambda _2 \text {KL}(\hat {\bm {T}} \parallel \hat {\bm {Q}}). \tag {9} 
   

 
 




    

(9)
The optimal T̂λ1,λ2

that optimizes Eqn. (9) is ediag(−
1
2−

µ
λ2

)Kediag(−
1
2−

ν
λ2

), where K =

[qije
1
λ2

(s
λ1
ij −dij)]ij , sλ1

ij = λ1

(
1

( i
N+1−

j
M+1 )

2
+1

+ 1
1
2dm+1

)
, dm given by Eqn.(5), and µ and ν

are the dual variables for the two equality constraints T̂1M+1 = α, and T̂ T1N+1 = β, respectively.
The detailed derivation of this optimal T̂λ1,λ2 is provided in appendix section A.1.

Contrastive Regularization. Incorporating temporal priors into the video alignment processes often
leads to trivial solutions [41, 46]. So, following [41, 1], we utilize the Contrastive-Inverse Difference
Moment (C-IDM) loss to further regularize the training. This loss is characterized by,

 \label {eq:10} I(\bm {X})=\sum _{i=1}^{N+1} \sum _{j=1}^{M+1} \left (1-\mathcal {N}(i, j)\right ) \gamma (i, j) \max (0, \lambda _3 - d(i, j)) + \mathcal {N}(i, j) \frac {d(i, j)}{\gamma (i, j)}, \tag {10} \vspace {-0.5mm} 







          



 (10)

where  \gamma (i, j) = (i-j)^2 + 1       , d(i, j) = \|\bm {x}_i - \bm {x}_j\|     ,  \mathcal {N}(i, j)   is a neighborhood function defined as:
N (i, j) = 1, if |i−j| ≤ δ and 0 otherwise,  \delta is a predefined window size,  \lambda _3  is a margin parameter.
The preceding C-IDM loss is an intra-video loss. Additionally, we incorporate an inter-video
contrastive loss guided by OT to further regularize the training process. Specifically, this novel loss
component contrasts pairs of videos based on their similarity as quantified by the OT matrix. We find,
xbest(i) = argmaxj T̂λ1,λ2

and xworst(i) = argminj T̂λ1,λ2
. Likewise, ybest(j) = argmaxi T̂λ1,λ2

and yworst(j) = argmini T̂λ1,λ2
are calculated. Then, the best distance is computed as the average

of squared differences between matched pairs, scaled by a temperature factor: best_distance =
1

temperature ·
(

1
N

∑N
i=1 ∥xi − yxbest(i)∥2 + 1

M

∑M
j=1 ∥yj − xybest(j)∥2

)
. Similarly, the worst distance

is: worst_distance = 1
temperature ·

(
1
N

∑N
i=1 ∥xi − yxworst(i)∥2 + 1

M

∑M
j=1 ∥yj − xyworst(j)∥2

)
. Finally,

the inter-sequence loss is computed using the cross-entropy over the best and worst distances:

 \label {eq:11} \text {loss\_inter} = F_{\text {cross\_entropy}}\left ( \begin {bmatrix} \text {best\_distance} \\ \text {worst\_distance} \end {bmatrix}, \begin {bmatrix} 0 \\ 1 \end {bmatrix} \right ). \tag {11}  














 (11)

Ideally, we want each frame embedding xi, to align highly to its best match from Y . So the best
distance should be as close to 0 as possible, at the same time, we maximize its distance from the
unmatched frame embeddings, and the same holds true for yjs. As a result, our proposed inter-video
loss (Eqn. (11)) promotes learning disentangled representations. So, the overall loss for OPEL
combines the regularized OT loss (Eqn.( 9)) with the contrastive regularization terms,

 \label {eq:12} L_{\text {OPEL}}(\bm {X}, \bm {Y}) = c_1*l_{\lambda _1, \lambda _2}^R(\bm {X}, \bm {Y})+c_2*(I(\bm {X})+I(\bm {Y}))+c_3*\text {loss\_inter}. \tag {12} \vspace {0.5mm}     
             (12)

Clustering and Key-step Ordering. After learning the embeddings, our goal is to localize the
key-steps required for PL. We frame this problem as multi-label graph-cut segmentation [50]. The
node set V of the graph includes k terminal nodes representing the key-steps and non-terminal nodes
corresponding to the number of frames, which are derived from the embeddings produced by the
embedder network. Upon constructing the graph, we apply \alpha -Expansion [19] to identify the minimum
cost cut, utilizing the results to assign frames to k labels. To deduce the sequential order of key-steps,
we first compute the normalized time for each frame in a video, following [1]. Subsequently, the
temporal instant for each cluster is determined by calculating the average normalized time for frames
allocated to that cluster. Clusters are then sequenced in ascending order of their average time, thus
outlining the sequence of key-steps of a video. Upon establishing the key-step order for all videos
associated with the same task, we generate a ranked list based on the frequency at which subjects
adhere to a specific sequence. The most commonly observed order is placed at the top of this list.
This methodological approach allows us to discern various sequential orders of key-steps of a task.
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4 Experiments and Results
Datasets. In contrast to previous research that predominantly utilized either 1st person or 3rd person
viewpoints for PL, we incorporate datasets from both perspectives. For 3rd person view, we utilize
established benchmark datasets, namely CrossTask [11] and ProceL [3]. CrossTask features 213
hours of video footage spanning 18 primary tasks, totaling 2763 videos. ProceL includes 47.3 hours
of video from 12 varied tasks, comprising 720 videos. To evaluate the effectiveness of our proposed
OPEL framework, we apply it to the 1st-person EgoProceL benchmark [1], which contains 62 hours
of egocentric video recordings from 130 subjects engaged in 16 tasks. Detailed information on
individual datasets is provided in Table A2 of appendix.

Evaluation. Unless specified differently, we assess OPEL as per the current SOTA [1, 2]. We
compute the framewise scores for each key-step separately and then take the mean of the scores over
all the key-steps, reporting both the F1-score and the Intersection over Union (IoU). The F1-score
is defined as the harmonic mean of precision and recall. Precision is calculated as the ratio of the
number of frames correctly predicted as key-steps to the total number of frames labeled as key-steps.
Recall is determined by the ratio of correctly predicted key-step frames to the total number of actual
key-step frames. Following the methodology in [1, 2, 31, 3, 47], we employ the Hungarian algorithm
[51] to derive a one-to-one mapping between the ground truth and the predictions.

Table 1: Results using EgoProceL [1] demonstrate the superior performance of OPEL. The results in
bold and underline denote the highest and second-highest values in a column, respectively.

EgoProceL
CMU-MMAC [17] EGTEA-GAZE+[52] MECCANO[53] EPIC-Tents[54] PC Assembly PC Disassembly

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU
Random 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5 15.1 7.2 15.3 7.1
Uniform 18.4 6.1 20.1 6.6 16.2 6.7 16.2 7.9 17.4 8.9 18.1 9.1
CnC [1] 22.7 11.1 21.7 9.5 18.1 7.8 17.2 8.3 25.1 12.8 27.0 14.8
GPL-2D [2] 21.8 11.7 23.6 14.3 18.0 8.4 17.4 8.5 24.0 12.6 27.4 15.9
UG-I3D [2] 28.4 15.6 25.3 14.7 18.3 8.0 16.8 8.2 22.0 11.7 24.2 13.8
GPL-w BG [2] 30.2 16.7 23.6 14.9 20.6 9.8 18.3 8.5 27.6 14.4 26.9 15.0
GPL-w/o BG [2] 31.7 17.9 27.1 16.0 20.7 10.0 19.8 9.1 27.5 15.2 26.7 15.2
OPEL (Ours) 36.5 18.8 29.5 13.2 39.2 20.2 20.7 10.6 33.7 17.9 32.2 16.9

Experimental Setup. We employ ResNet-50 (pretrained on ImageNet) as the embedder network.
Inspired by [1], we train the embedder using pairs of training videos. Within these videos, we
randomly select frames and optimize the proposed LOPEL until convergence. The feature extraction
is conducted from the Conv4c layer, and we subsequently create a stack of 2 context frames along
the temporal dimension. Our video frames are resized to 224×224. The aggregated features are
processed through two 3D convolutional layers, followed by a 3D global max pooling layer, two
fully-connected layers, and a linear projection layer that outputs embeddings of 128 dimensions. All
hyper-parameters are listed in Table A1. Our code is provided as part of the supplementary material.

Table 2: PL results on third-person datasets [3, 11].
P, R, and F1 represent precision, recall, F1-score.

ProceL [3] CrossTask [11]
P R F1 P R F1

Uniform 12.4 9.4 10.3 8.7 9.8 9.0
Alayrc et al. [34] 12.3 3.7 5.5 6.8 3.4 4.5
Kukleva et al. [32] 11.7 30.2 16.4 9.8 35.9 15.3
Elhamifar et al. [3] 9.5 26.7 14.0 10.1 41.6 16.3
Fried et al. [37] - - - - 28.8 -
Shen et al. [47] 16.5 31.8 21.1 15.2 35.5 21.0
CnC [1] 20.7 22.6 21.6 22.8 22.5 22.6
GPL-2D [2] 21.7 23.8 22.7 24.1 23.6 23.8
UG-I3D [2] 21.3 23.0 22.1 23.4 23.0 23.2
GPL [2] 22.4 24.5 23.4 24.9 24.1 24.5
STEPS [16] 23.5 26.7 24.9 26.2 25.8 25.9
OPEL (Ours) 33.6 36.3 34.9 35.6 34.8 35.1

Results on Egocentric View. Table 1 presents
a comparative analysis between the SOTA
techniques and OPEL applied to the large scale
egocentric benchmark, EgoProceL. Results
from tasks within CMU-MMAC and EGTEA G.
have been aggregated and presented (detailed
task-wise results are given in Table A4).
It is important to highlight that EgoProceL
represents a contemporary dataset specifically
designed for egocentric procedure learning,
thereby limiting the number of applicable
approaches for fair comparison. Notably, OPEL
outperforms the SOTA across most tasks. This
superiority underscores the efficacy of the video
representation learning through OT. Specifically,
we achieve 22.4% (IoU) and 26.9% (F1) average
improvement compared to current SOTA.

Results on Third-person View. We provide comparison between SOTA and OPEL on two distinct
third-person datasets [3, 11] in Table 2. To ensure consistency in evaluation, we follow the evaluation
protocol outlined in the SOTA prior arts [1, 2]. Once again, we perform better in almost all cases, with
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Figure 3: Qualitative results from MECCANO [53] and PC Assembly [1] tasks. Each sub-task is
color-coded to represent different key-steps, while gray areas signify background elements. Notably,
OPEL’s performance surpasses that of the SOTA networks, attributed to its ability to handle unmatched
frames through the integration of a virtual frame, thus enhancing alignment accuracy.

46.2% (F1) average enhancement over SOTA. Note, [32, 3] predominantly allocate frames to a single
key-step, resulting in elevated recall rates but concomitantly diminishing precision, consequently
impacting the overall F-score. Additional detailed third-person results from CMU-MMAC [17],
ProceL [3] and CrossTask [11] are given in Table A3 and Table A5, respectively.

Qualitative Results. Fig. 3 illustrates the qualitative PL outcomes of the baselines and OPEL.
Higher match with the ground truth in our case (the bottom row) depicts the usefulness of OPEL.
Additionally, we depict the alignment of two sequences in Fig. 4(B), showcasing accurate alignment
despite temporal variations, with correct matches indicating consistent action frame alignment and
redundancy handling, affirming the reliability of our model.

Figure 4: (A) Impact of training data quantity on encoder training. (B) Example alignment of two
videos with corresponding key-step clusters from the Brownie task [17].

Comparison with Multimodal Models. While we only use videos for training, our results are
competitive with models using multiple modalities. On the egocentric EgoProcel dataset, we perform
comparably or even better (4 out of 6 datasets) compared to the multimodal SOTA model, STEPS
[16], as shown in Table 3. Note, STEPS uses gaze and depth data during training, thus enhancing its
results on EPIC-Tents. We also outperform [47, 34] (Table 2), which use narrations with video.

Table 3: Comparison with models with multimodal input. Note, STEPS [16] uses additional data
(optical flow, gaze, depth) for training, while we use just the visual modality.

CMU-MMAC EGTEA-GAZE+ MECCANO EPIC-Tents ProceL CrossTask
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

STEPS [16] 28.3 11.4 30.8 12.4 36.4 18.0 42.2 21.4 24.9 15.4 25.9 14.6
OPEL 36.5 18.8 29.5 13.2 39.2 20.2 20.7 10.6 34.9 21.3 35.1 21.5

5 Ablation Study
Effectiveness of LOPEL We analyze the effectiveness of the proposed loss by replacing or combining
with other SOTA losses used for PL - TCC [8], LAV [41], and CnC [1]. Overall, the proposed
LOPEL outperforms previous approaches as shown in Table 4. This enhancement can be attributed
to the flexibility in modeling sequences provided by OT. Furthermore, ablation results on all the
loss components of LOPEL are provided in Table 5, where we show the contribution of each factor
individually to analyze their effect on the overall result. Comparing row 3 with row 9, we observe, the
priors jointly play a critical role; as without them (row 3), the F1 and IoU scores drop by ∼5 points.
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Specifically, the optimality prior has a significant impact (∼2 point), while the temporal prior affects
the score by ∼1 point. Similar to the combined priors, the intra and inter-video contrastive losses
together (row 6 vs row 9) have a significant effect (∼3.5 points) on the overall performance. The
individual effect of virtual frame is negligible as it only plays a role in case of excessive background
frames - a scenario that is not prevalent in most datasets. Furthermore, due to the IDM structure of
M(T̂ ), the T̂ and Q̂ are similar by formulation. This results in KL(T̂ ∥ Q̂) to be already small. As
a consequence, adding the KL divergence as a standalone loss component in the proposed pipeline
has a minimal impact. Overall, while some loss components may have a smaller individual impact,
they do contribute to performance improvements, even if incrementally. Therefore, our proposed
approach incorporates all of them to achieve the best possible results.

Table 4: Comparison of effectiveness of LOPEL with other losses.
CMU-MMAC [17] MECCANO [53] EGTEA-GAZE+ [52] PC Assembly [1]

P F1 IoU P F1 IoU P F1 IoU P F1 IoU
TCC + PCM [8] 18.5 19.7 9.5 15.1 17.9 8.7 17.5 19.7 8.8 19.9 21.7 11.6
LAV + TCC + PCM [41] 18.8 19.7 9.0 13.4 15.6 7.3 16.4 18.6 7.5 21.6 21.1 10.8
LAV + PCM [41] 20.6 21.1 9.4 14.6 17.4 7.1 17.4 19.1 8.0 21.5 22.7 11.7
TC3I + PCM (CnC) [1] 21.6 22.7 11.1 15.5 18.1 7.8 19.6 21.7 9.5 25.0 25.1 12.8
OT + TCC 28.8 32.6 15.6 25.2 34.5 17.5 22.6 26.7 11.2 27.8 28.2 15.6
OT + LAV 30.2 34.7 16.8 26.7 36.2 18.8 23.1 27.8 12.4 30.2 30.9 16.8
OT + TCC + LAV 27.6 31.2 15.3 23.8 33.6 16.1 21.8 25.4 10.5 28.1 28.4 14.7
OPEL (Ours) 32.8 36.5 18.8 28.9 39.2 20.2 24.3 29.5 13.2 32.5 33.7 17.9

Table 5: Analysis of the impact of each term in LOPEL on the overall performance.
Intra- Inter- KL Temporal Optimality Virtual MECCANO [53] CMU-MMAC [17]
Video Video Divergence Prior Prior Frame F1 IoU F1 IoU
✓ 34.1 14.2 30.5 12.9

✓ 33.3 13.5 29.6 12.3
✓ ✓ 34.6 14.9 31.3 13.7
✓ ✓ ✓ ✓ 36.1 18.4 33.8 16.4
✓ ✓ ✓ ✓ 38.6 19.6 36.1 18.2

✓ ✓ ✓ ✓ 35.8 16.1 32.6 14.4
✓ ✓ ✓ ✓ 37.0 18.3 34.1 16.5
✓ ✓ ✓ ✓ ✓ 38.1 19.1 35.2 17.3
✓ ✓ ✓ ✓ ✓ ✓ 39.2 20.2 36.5 18.8

Table 6: Analysis of different clustering algorithms.
CMU-MMAC EGTEA-GAZE+ MECCANO EPIC-Tents ProceL CrossTask

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU
Random 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5 15.1 7.2 15.3 7.1
OT + K-means 34.2 13.5 23.9 8.8 31.8 19.6 16.2 7.9 24.8 12.5 27.4 14.4
OT + SS 34.8 13.2 23.7 8.7 31.6 19.5 17.2 8.3 25.1 12.8 28.0 14.8
OPEL 36.5 18.8 29.5 13.2 39.2 20.2 20.7 10.6 33.7 17.9 32.2 16.9

Choice of clustering algorithm. We replace the proposed clustering approach with K-means and
subset selection (SS). The results in Table 6 show that OPEL performs the best, highlighting the
effectiveness of OT with graphcut segmentation.

Table 7: Results obtained for different k.

k PC Assembly PC Disassembly
R F1 IoU R F1 IoU

7 35.0 33.7 18.0 35.4 32.2 16.7
10 27.8 24.3 12.1 28.5 24.8 10.5
12 25.2 24.1 11.8 26.7 24.2 9.7
15 27.6 25.8 12.2 25.2 23.6 9.1

Number of key-steps. In Table 7, we present the results
of OPEL alongside baseline models, with varying k. Note,
we obtain best results with k=7, and the performance drops
sharply as k goes from 7 to 10 or higher. This observation
is consistent with all the other SOTA methods on the same
datasets [1, 2, 16]. We hypothesize that k=7 works best as
it is the optimal number of clusters considering the average
number of distinct key-steps (subtasks) of the datasets. For
example, for PC Disassembly, although the ground-truth
(GT) number of steps is 9, 3 steps are quite similar (remove
hard disk, remove motherboard, remove RAM), effectively making them quite close in the feature
space. This results in k=7 being a better estimation of the cluster number with distinct steps. Note,
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this demarcation of subtasks (hence, number of clusters) is subjective and varies from dataset to
dataset as well as from task to task; as some may consider semantically similar tasks (e.g. pouring
oil vs water) to be one subtask, while others may consider it different. As k becomes larger than the
actual distinctive number of clusters, each subtask gets split into multiple clusters with very similar
embeddings, which upon comparison with GT leads to inferior results.

Impact of Training data Quantity. Fig. 4(A) presents the results from varying the number of
training videos on MECCANO, aiming to evaluate OPEL’s performance with respect to video count.
We consistently outperform other SOTA methods. Overall, the performance improves with more
training data, however, even with just few (2-5) videos of a task, we reach the upper-limit of other
methods using full dataset, as shown in Fig. 4(A). Additional ablation results including choice of
distribution as priors and hyperparameters λ1, λ2 are provided in appendix A.8.

Comparison with AS methods. PL and action segmentation (AS) are related but not the same. PL,
when applied to a set of instructional videos depicting the same task, involves two primary steps:
(i) assigning each video frame to one of the k key-steps (including background elements), and (ii)
determining the logical sequence of these key-steps necessary to complete the task. As illustrated in
Fig. 1, PL addresses multiple videos of a given task, enabling the identification of repetitive key-steps
across these videos [1, 2]. In contrast, AS [4] focuses on a single video, thereby lacking the ability to
discern repetitive key-steps across different videos.

Table 8: Comparison with SOTA unsupervised AS
methods. Note ‘-’ denotes that the authors have
not provided any data on those metrics.

AS benchmark ProceL [3] CrossTask [11]
P R F1 P R F1

JointSeqFL [31] - - 29.8 - - -
Elhamifar et al. [3] 9.5 26.7 14.0 10.1 41.6 16.3
Fried et al. [37] - - - - 28.8 -
Shen et al. [47] 16.5 31.8 21.1 15.2 35.5 21.0
Dvornik et al. [55] - - - - - 25.3
StepFormer [56] 18.3 28.1 21.9 22.1 42 28.3
OPEL (Ours) 33.6 36.3 34.9 35.6 34.8 35.1

Despite the differences between PL and AS, we
compare our approach against existing SOTA
unsupervised AS models and present the results
in Table 8. Our model demonstrates a significant
performance improvement compared to these
works. In [3, 56], authors report a high recall
score for CrossTask as it assigns majority of the
frames to a single key-step - a phenomenon also
reported by [2]. While achieving high recall
is important for ensuring that most positive
instances are correctly identified, it can result
in a greater number of false positives, which in
turn lowers precision and leads to undesirable
results. Therefore, it is crucial to balance recall with precision to develop an effective model. This
balance is reflected in the superior performance of our model, as evidenced by the F1-score results
across various benchmarks. Note in the Table 8, our approach is compared with SOTA unsupervised
AS methods for only third-person datasets, as these do not report any result on egocentric datasets.

6 Conclusion
In this study, we have introduced a novel approach for procedure learning leveraging optimal transport,
enhanced by temporal and distributional regularizations to improve the alignment of key-steps across
multiple video instances. Our method addresses inherent limitations in current SOTA techniques
that primarily rely on frame-to-frame mappings and assumptions of monotonic alignment, which
do not optimally utilize temporal information. We observe an improvement of 22.4% in IoU and
26.9% in F1 scores on the EgoProceL dataset, outperforming the current state-of-the-art methods.
Similarly, in third-person video benchmarks, such as ProCeL and CrossTask, our framework achieves
an average F1 score enhancement of 46.2% over existing methods. These advancements underscore
the potential of OT guided learning in handling complex video procedure learning tasks. A limitation
of the proposed OPEL framework is the assumption that subjects utilize similar objects for identical
key-steps, which may introduce inaccuracies when dissimilar objects are employed in the execution
of these steps. Future work will focus on exploring the integration of additional contextual and
semantic features within the OT framework to further refine the procedure learning process. Moreover,
extending this framework to other domains of video understanding could provide valuable insights
into the general applicability of optimal transport in video analysis tasks.
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A Appendix

A.1 Derivation of the Optimal Transport Matrix (T̂λ1,λ2
)

In this section, we obtain the optimal transport matrix T̂λ1,λ2
that optimizes the OT Eqn. 9. Note, all

the notations used here are same as section 3 of the main manuscript. We start with Eqn. 9 of section
3-

 \label {eq:app9} l_{\lambda _1, \lambda _2}^R(\bm {X}, \bm {Y}) := \langle \hat {\bm {T}}_{\lambda _1, \lambda _2}, \bm {D} \rangle ,~ \text {s.t.}~ \hat {\bm {T}}_{\lambda _1, \lambda _2} = \arg \min _{\hat {\bm {T}} \in U(\bm {\alpha }, \bm {\beta })} \langle \hat {\bm {T}}_{\lambda _1, \lambda _2}, \bm {D} \rangle - \lambda _1 M(\hat {\bm {T}}) + \lambda _2 \text {KL}(\hat {\bm {T}} \parallel \hat {\bm {Q}}), \nonumber 
   

 
 




    

From the duality theory, we know, for each pair ξ1, ξ2 in Equation 8, a corresponding pair λ1 > 0,
λ2 > 0 exists, such that lRξ1,ξ2(X,Y ) = lRλ1,λ2

(X,Y ) for the pair (X,Y ).

T̂λ1,λ2
is the optimal transport matrix, so it optimizes-

 \label {eq:A1} \min _{\hat {\bm {T}} \in \mathbb {R}^{N+1 \times M+1}_+} \langle \hat {\bm {T}}, \bm {D} \rangle - \lambda _1 M(\hat {\bm {T}}) + \lambda _2 \text {KL}(\hat {\bm {T}} \parallel \hat {\bm {Q}}) \quad \text {subject to} \quad \hat {\bm {T}} \mathbf {1}_{M+1} = \bm {\alpha }, \hat {\bm {T}}^\top \mathbf {1}_{N+1} = \bm {\beta }, \tag {A1} 




                  

(A1)

Given that both the objective function and the feasible set defined in Equation A1 are convex, the
existence and uniqueness of the optimal transport matrix T̂λ1,λ2

are guaranteed. To derive this optimal
matrix, the analysis begins by taking the Lagrangian of Equation A1 as-

 {eq:A2} L(\hat {\bm {T}}, \bm {\mu }, \bm {\nu }) = \sum _{i=1}^{N+1} \sum _{j=1}^{M+1} \left ( d_{ij} t_{ij} - \lambda _1 t_{ij} \left ( \frac {1} {\left ( \frac {i}{N+1} - \frac {j}{M+1} \right )^2 + 1}+\frac {1} {\frac {1}{2} d_m+ 1}\right ) + \lambda _2 t_{ij} \log \frac {t_{ij}}{q_{ij}} \right ) \\ + \bm {\mu }^T (\hat {\bm {T}} \mathbf {1}_{M+1} - \bm {\alpha }) + \bm {\nu }^T (\hat {\bm {T}}^\top \mathbf {1}_{N+1} - \bm {\beta }), \tag {A2}  







 
















 

 




           (A2)

where dm =
(

i−io
N+1

)2

+
(

j−jo
M+1

)2

, io and jo have their same meaning as the main paper, i.e. they
correspond to the optimal assignment locations (i, j_o)  and (i_o, j)  as provided by the transport matrix,
and µ and ν are the dual variables for the two equality constraints T̂1M+1 = α, and T̂ T1N+1 = β,
respectively. Taking the derivative of L(T̂ ,µ,ν) w.r.t. tij yields-

 {eq:A3} \frac {\partial L(\hat {\bm {T}}, \bm {\mu }, \bm {\nu })}{\partial t_{ij}} = d_{ij} - \lambda _1 \left ( \frac {1} {\left ( \frac {i}{N+1} - \frac {j}{M+1} \right )^2 + 1}+\frac {1} {\frac {1}{2} \left ( \left ( \frac {i-i_o}{N+1} \right )^2 + \left (\frac {j-j_o}{M+1} \right )^2 \right )+ 1}\right ) \\ + \lambda _2 \log \frac {t_{ij}}{q_{ij}} + \lambda _2 + \mu _i + \nu _j. \tag {A3} 


  




































 




       (A3)

Let, sλ1
ij = λ1

(
1

( i
N+1−

j
M+1 )

2
+1

+ 1
1
2

(
( i−io

N+1 )
2
+( j−jo

M+1 )
2
)
+1

)
.

Setting L(T̂ ,µ,ν) = 0, we get-

 \label {eq:A4} t_{ij} = q_{ij} e^{-\frac {1}{2}-\frac {\mu _i}{\lambda _2}} e^{\frac {1}{\lambda _2} (s_{ij}^{\lambda _1} - d_{ij})} e^{-\frac {1}{2}-\frac {\nu _j}{\lambda _2}}. \tag {A4}  

















  (A4)

Let, K = [qije
1
λ2

(s
λ1
ij −dij)]ij , then we get,

  t_{ij} = e^{-\frac {1}{2}-\frac {\mu _i}{\lambda _2}} \bm {K}_{ij} e^{-\frac {1}{2}-\frac {\nu _j}{\lambda _2}}, \nonumber  
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Thus,
 \label {eq:A5} \hat {\bm {T}}_{\lambda _1, \lambda _2} = \bm {e}^{diag(-\frac {1}{2}-\frac {\bm {\mu }}{\lambda _2})}\bm {K}\bm {e}^{diag(-\frac {1}{2}-\frac {\bm {\nu }}{\lambda _2})}. \tag {A5} 















 (A5)

Every element of the matrix  \bm {K} is strictly positive, as we take the element-wise exponential to obtain
each  K_{ij}  and qij > 0. As per the Sinkhorn’s theorem (Theorem A), there exist diagonal matrices
\protect \text  {diag}(\bm {\kappa }_1) and \protect \text  {diag}(\bm {\kappa }_2) with strictly positive diagonal elements, such that \protect \text  {diag}(\bm {\kappa }_1) \bm {K} \text {diag}(\bm {\kappa }_2) is a
member of the set  U(\bm {\alpha }, \bm {\beta }) , with \protect \bm  {\kappa }_1 \in \mathbb {R}^{N+1}   and \protect \bm  {\kappa }_2 \in \mathbb {R}^{M+1}  . This product matrix is unique, and
the diagonal matrices are also uniquely determined, up to a scalar factor.

Theorem A [57, 58]: For any  (N+1) \times (M+1)        matrix  \bm {A} with all positive elements, diagonal
matrices  \bm {B}_1  and  \bm {B}_2  exist such that  \bm {B}_1 \bm {A} \bm {B}_2  belongs to  U(\bm {\alpha }, \bm {\beta }) . Both  \bm {B}_1  and  \bm {B}_2  possess strictly
positive diagonal elements and are unique up to a positive scalar factor.

The optimal  \hat {\bm {T}}_{\lambda _1, \lambda _2} 
of Equation (A5) in  U(\bm {\alpha }, \bm {\beta })  mirrors the form of \protect \text  {diag}(\bm {\kappa }_1) \bm {K} \text {diag}(\bm {\kappa }_2), thereby

constituting the unique matrix in  U(\bm {\alpha }, \bm {\beta })  that represents a rescaled version of  \bm {K} . We efficiently
compute the scaling vectors \protect \bm  {\kappa }_1 and \protect \bm  {\kappa }_2, also unique up to a scaling factor, using the Sinkhorn-Knopp
iterative matrix scaling algorithm-

  \bm {\kappa }_1 \leftarrow \frac {\bm {\alpha }}{\bm {K}\bm {\kappa }_2}, 





  \bm {\kappa }_2 \leftarrow \frac {\bm {\beta }}{\bm {K}^T\bm {\kappa }_1}. 





In this paper, only 20 iterations are used, as a limited number of iterations has been shown to
effectively converge in previous studies [48].

A.2 Hyper-parameter Settings

Table A1 lists the hyper-parameters used for OPEL.

Table A1: Hyper-parameter settings for OPEL.
Hyper-parameter Value
No. of key-steps (k) 7
No. of sampled frames (N,M ) 32
No. of epochs 10000
Batch Size 2
Learning Rate 10−4

Weight Decay 10−5

Window size (δ) 15
Laplace scale parameter (b) 3.0 (MECCANO, EPIC-Tents PC Assembly)
Laplace scale parameter (b) 2.0 (for all other datasets)
Temperature 0.5
λ1

1
N+M

λ2
0.1∗N∗M

4.0
Margin (λ3) 2.0
Threshold for virtual frame (ζ) 2∗5

N+M
No. of context frames 2
Context stride 15
Embedding Dimension 128
Optimizer Adam
c1

1
N∗M

c2 0.5
Coefficient for loss_inter (c3) 0.0001
Maximum Sinkhorn Iterations 20

A.3 Compute Resources for Experiments

For our experiment, we require adequate computing resources to effectively train our models.
We utilize a single Nvidia A40 GPU, but its full RAM is not required. The GPU memory is

16

59999https://doi.org/10.52202/079017-1915



dependent on batch size (bs). For a bs of 2, a GPU equipped with approximately 12GB of memory is
sufficient for our purposes. Training time depends on dataset size and number of epochs (we used
10000). The above configuration allows us to process a dataset consisting of 15-20 videos (e.g. PC
assembly/MECCANO domain) in around 12 hours. With these computing resources in place, we
conducted our experiments effectively, ensuring optimal performance and reliable outcomes.

A.4 Detailed Statistics of Dataset

In Table A2, we provide the statistical analysis for each of the 16 tasks within the EgoProceL dataset
[1]. N denotes the total number of videos, while K represents the number of key-steps for each task.
un signifies the count of unique key-steps, and gn denotes the number of annotated key-steps for the
nth video. Following the approach outlined in reference [31], we compute the subsequent metrics:

Foreground Ratio: This measure indicates the proportion of the total duration occupied by key-steps
in relation to the overall video duration. It assists in gauging the prevalence of background actions
within a task. The foreground ratio is inversely correlated with the presence of background activity
and is determined as:

  F = \frac {\sum _{n=1}^{N} \frac {t_{k}^{n}}{t_{v}^{n}}}{N} \tag {A6} 








(A6)

Here,  t_{k}^{n}  and  t_{v}^{n}  represent the duration of key-steps and the video for the nth instance, respectively.
The foreground ratio F ranges from 0 to 1. The higher the value of F indicates minimal background
actions.

Table A2: Statistics of the EgoProceL dataset across different tasks.

Task Videos Key-steps Foreground Missing Repeated
Count Count Ratio Key-steps Key-steps

PC Assembly [1] 14 9 0.79 0.02 0.65
PC Disassembly [1] 15 9 0.72 0.00 0.60
MECCANO (Toy Bike Assembly) [53] 20 17 0.50 0.06 0.32
Epic-Tents (Tent Assembly) [54] 29 12 0.63 0.14 0.73
CMU-MMAC [17]
Brownie 34 9 0.44 0.19 0.26
Eggs 33 8 0.26 0.05 0.26
Pepperoni Pizza 33 5 0.53 0.00 0.26
Salad 34 9 0.32 0.30 0.14
Sandwich 31 4 0.25 0.03 0.37
EGTEAGAZE+ [52]
Bacon and Eggs 16 11 0.15 0.22 0.51
Cheese Burger 10 10 0.22 0.22 0.65
Continental Breakfast 12 10 0.23 0.20 0.36
Greek Salad 10 4 0.25 0.18 0.77
Pasta Salad 19 8 0.25 0.19 0.86
Hot Box Pizza 6 8 0.31 0.13 0.62
Turkey Sandwich 13 6 0.21 0.01 0.52

Missing Key-steps: This metric quantifies the number of omitted key-steps in each video. It is defined
as:

  M = 1 - \frac {\sum _{n=1}^{N} u_{n}}{KN} \tag {A7} 





(A7)

The range of M is between 0 and 1. It aids in assessing the feasibility of completing a task despite
certain steps being skipped.
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Repeated Key-steps: This metric assesses the occurrence of repeated key-steps across multiple videos.
It is expressed as:

  R = 1 - \frac {\sum _{n=1}^N u_{n}}{\sum _{n=1}^N g_{n}} \tag {A8} 





(A8)

The range of R varies between 0 and 1. Higher values of R indicate a greater recurrence of key-steps
across videos. OPEL considers these repetitions, to demonstrate better performance.

A.5 Third-Person Video Perspective

In this comparison, we assess the outcomes of training OPEL on diverse perspectives from CMU-
MMAC [17]. Table A3 depicts the F1-Score and IoU scores per frame for exocentric views. We
conducted our experiments on exocentric videos and achieved promising results. Through rigorous
testing and analysis, our model demonstrated strong performance when trained and evaluated on this
particular perspective. The obtained outcomes not only validate the effectiveness of our approach
but also underscore its applicability to real-world scenarios involving both egocentric and exocentric
video data.

Table A3: Third-person view results using diverse perspectives from CMU-MMAC [17]. Our
findings demonstrate improved outcomes utilizing OT on egocentric as well as third-person videos,
emphasizing their efficacy. P, R, and F denote precision, recall, and F-score, respectively.

View P R F1 IoU
TP (Top) 29.0 42.0 34.0 17.5
TP (Back) 30.7 43.9 35.9 19.6
TP (LHS) 38.3 52.7 44.0 24.3
TP (RHS) 31.8 42.8 36.2 18.4

A.6 Quantitative results of OPEL on different subtasks across both ego- and exo-datasets

We report the results for all subtasks within the egocentric datasets in Table A4 such as CMU-MMAC
[17] and EGTEA-GAZE+ [52], as well as for various third-person exocentric videos in datasets like
ProceL [3] and CrossTask [11] in Table A5. Our analysis encompasses comprehensive evaluations
across these diverse datasets, providing insights into the performance of our model across different
perspectives and scenarios. These results offer a holistic understanding of the capabilities and
effectiveness of our approach in handling varied video types and tasks, contributing significantly to
the advancement of research in procedure learning and related domains.

Table A4: Results on individual subtasks of egocentric datasets.

(a) EGTEA-GAZE+[52]

Bacon Eggs Cheeseburger Breakfast Greek Salad Pasta Salad Pizza Turkey
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

26.7 10.7 33.6 14.3 31.4 14.1 33.5 17.7 26.1 10.7 31.7 14.4 23.6 10.2

(b) CMU-MMAC [17]

Brownie Eggs Pizza Salad Sandwich
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

34.0 17.1 28.9 13.3 37.1 20.6 41.6 22.1 41.0 20.9
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Table A5: Results on individual subtasks of Third-person exocentric datasets.

(a) ProceL [3]

Clarinet PB&J Sandwich Salmon Jump Car Toilet Tire Change
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

34.5 21.0 36.6 22.7 37.3 23.2 31.3 18.7 31.6 18.8 35.5 21.7

Tie-Tie Coffee iPhone Battery Repot Plant Chromescast CPR
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

38.3 23.9 32.6 19.7 34.4 20.8 34.4 20.9 35.8 22.0 36.7 22.7

(b) CrossTask [11]

40567 16815 23521 44047 44789 77721
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

35.0 21.8 37.4 23.1 34.4 20.9 35.1 21.5 32.6 19.7 38.7 24.3

87706 71781 94276 53193 76400 91515
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

33.4 20.2 34.6 21.1 37.5 23.3 35.5 21.8 37.0 22.9 34.2 20.8

59684 95603 105253 105222 109972 113766
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

35.6 21.9 30.9 18.4 34.1 20.7 35.2 21.6 35.7 22.0 34.9 21.3

A.7 Additional Applications

Learning from multiple videos of the same task opens up numerous potential applications. Firstly, in
monitoring procedures, a system trained to recognize key steps can identify deviations or variations
when a new person performs the task. Secondly, in guidance systems, such a system can detect the
current step and suggest the next steps needed for task completion. Thirdly, in automated systems, this
framework enables robotic systems to autonomously learn key steps through observation, allowing
them to perform tasks independently in future instances without human assistance.

In terms of cross-modal transfer within videos, the capability to align related videos without
supervision allows for the transfer of annotations or other modalities from one video to another. For
example, text annotations can be applied to an entire dataset of related videos by labeling just one.
Additionally, temporal modalities like sound can be transferred between videos; for instance, the
sound of pouring liquids can be transferred purely based on visual cues.

Moreover, fine-grained retrieval within videos can be achieved by using nearest neighbors, enabling
the retrieval of specific frames that depict various scenarios. Anomaly detection is possible by
observing deviations in the video trajectories within the embedding space, helping to identify unusual
activities. This ensures the proper sequence of tasks, such as jacking up a car before accessing the
wheel during a tire change.

A.8 Additional Ablation Studies

A.8.1 Distribution for Optimality and Temporal Priors

Instead of using the Laplace distribution, we also tested a Gaussian mean distribution as described
in Eqn. A9, with mean µ and variance σ to accommodate temporal variations. Additionally, we
evaluated a Uniform distribution as described in Eqn. A10. We conducted ablation experiments with
various hyperparameters and summarize the best performances in Table A6. However, the Laplace
distribution consistently outperformed these alternatives, leading us to adopt it for our experiments.
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Figure A1: Importance of choosing Laplace distribution as a prior.

  \bm {Q}(i, j) = \mathcal {N}(x; \mu , \sigma ^2) = \frac {1}{\sqrt {2 \pi \sigma ^2}} \exp \left ( -\frac {(x - \mu )^2}{2 \sigma ^2} \right ) \tag {A9} \label {eq:a9}      






 




(A9)

  \bm {Q}(i, j) = f(x; a, b) = \begin {cases} \frac {1}{b-a} & \text {if } a \leq x \leq b, \\ 0 & \text {otherwise}. \end {cases} \tag {A10} \label {eq:a10}      




     


(A10)

Table A6: Ablation on the choice of distribution function for optimality and temporal priors

EgoProceL

Distribution CMU-MMAC MECCANO PC Assembly PC Disassembly

F1 IoU F1 IoU F1 IoU F1 IoU

Uniform 31.3 15.2 28.9 13.8 26.3 13.5 27.4 14.2

Gaussian 35.1 18.3 33.8 17.3 29.0 15.3 30.1 16.5

Laplace 36.5 18.8 39.2 20.2 33.7 17.9 32.2 16.9

To analyze the superior performance of Laplace as a prior, we plot the distributions in Fig. A1. Note,
we use the same distribution for optimality as well as temporal priors.

For the optimality prior, the x-axis is the difference of frames in the feature space (1-d representation
for illustration purposes), and the y-axis denotes the corresponding probability of alignment. We
want the point representing the most likely alignment (as per T̂ ) to have the highest likelihood, while
the assignment probability should exponentially decay further away. The graph clearly shows that the
Laplace distribution captures this behavior suitably compared to Uniform and Gaussian. Similarly,
for the temporal prior, the x-axis denotes the temporal distance between the frames, and the y-axis
denotes the corresponding probability of alignment. The graph shows that Laplace distribution
facilitates alignment of the frames when they are temporally aligned (close to center), and its long tail
distribution enables better correlation of non-monotonic frames compared to Gaussian or Uniform.
As a result, as shown in Fig. A1, even at far away locations from the center (temporally distant
frames), alignment is possible if indeed these frames have a high match feature-wise. In this case,
the Laplace temporal prior provides non-zero probability to that far away frame (due to its long tail)
unlike other distributions and the optimality prior gives a large score (due to feature match), resulting
in improved handling of non-monotonicity.

A.8.2 Hyperparameters λ1 and λ2

We present additional experiments concerning the hyperparameters used in our model, specifically λ1

and λ2 in Eqn. 9. We assess their impact on the EgoProceL dataset. According to Table A7, we find
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that setting λ1 = 1
(N+M) and λ2 = 0.1∗N∗M

4.0 achieves the best overall performance, where N and M

denotes the number of sampled frames. Therefore, we adopt these values for the experiments reported
in our paper. Additionally, the results indicate that our approach maintains similar accuracy across
different combinations of λ1 and λ2, demonstrating robustness to the choice of hyperparameters.

Table A7: Ablation study for hyperparameters λ1 and λ2

EgoProceL

Hyperparameter Value CMU-MMAC MECCANO PC Assembly PC Disassembly

F1 IoU F1 IoU F1 IoU F1 IoU

0.2
(N+M) 35.2 17.7 38.1 18.8 32.7 17.1 31.6 15.7

λ1
1

(N+M) 36.5 18.8 39.2 20.2 33.7 17.9 32.2 16.9
5

(N+M) 35.8 18.1 38.6 19.3 32.5 16.7 31.3 15.6

0.02∗N∗M
4.0 34.6 16.9 36.9 17.8 31.1 15.4 29.8 14.2

λ2
0.1∗N∗M

4.0 36.5 18.8 39.2 20.2 33.7 17.9 32.2 16.9
0.5∗N∗M

4.0 35.3 17.6 37.6 18.9 32.5 16.7 30.8 15.6
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims of the paper,
including the introduction of a novel approach, OPEL, for procedure learning, addressing
limitations in current techniques, and demonstrating remarkable efficacy through empirical
results on benchmark datasets. The claims are supported by empirical results showing
significant improvements over existing methods, and the limitations and future directions
are also mentioned, providing a comprehensive overview of the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations of the proposed OPEL framework, notably the
assumption that subjects utilize similar objects for identical key-steps, which may introduce
inaccuracies when dissimilar objects are employed. Additionally, the paper mentions the
need for future work to explore the integration of additional contextual and semantic features
within the OT framework to refine the procedure learning process further. These discussions
demonstrate the authors’ awareness of the limitations of their work and their intention to
address them in future research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes theoretical results, such as the introduction of the OPEL
framework and its associated assumptions. Additionally, the empirical results are supported
by theoretical underpinnings regarding optimal transport theory. The assumptions are clearly
stated in the text, and the proofs, if any, are likely provided in either the main paper or
supplementary materials, ensuring completeness and correctness.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes detailed descriptions of the experimental setup, including
the datasets used, evaluation metrics, and any preprocessing steps applied. Additionally, it
describes the methodology and hyperparameters used to conduct the experiments, ensuring
that other researchers can replicate the results. Our code is provided as part of the
supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: The supplementary material accompanying the paper includes the necessary
code for reproducing the main experimental results. Detailed instructions provided within
the folder guide users on executing the code to replicate the experiments, including accessing
and preparing the necessary data. This encompasses instructions on accessing raw data
and preprocessed data utilized in the experiments. Additionally, the scripts are provided to
reproduce all experimental results for both the new proposed method and baselines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: The paper provides all necessary training and test details, including datasets,
data splits, hyperparameters, optimizers, etc. The hyperparameter settings for understanding
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the experimental setup and interpreting the results are mentioned in Table 8 in the
supplementary section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We didn’t perform any specific significance tests. However, it is inline with the
SOTA works for procedure learning which we compare to [1, 2] and for the experimental
setup used in this paper. Note, we repeated experiments for multiple runs and obtained
consistent results across all datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: In the appendix section A.3, detailed information regarding the computational
resources utilized is provided, including CPU and GPU hours. Specifically, we utilize a
single Nvidia A40 GPU, but its full RAM is not required. The GPU memory is dependent
on batch size (bs). For a bs of 2, a GPU equipped with approximately 12GB of memory is
sufficient for our purposes. Training time depends on dataset size and number of epochs
(we used 10000). The above configuration allows us to process a dataset consisting of 15-20
videos (e.g. PC assembly/MECCANO domain) in around 12 hours.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research adheres to the NeurIPS Code of Ethics as we utilize publicly
available datasets for our experiments. We ensure that all data used in our study
complies with ethical standards and has been obtained following appropriate protocols.
Additionally, we maintain anonymity and confidentiality in accordance with applicable laws
and regulations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: We anticipate no negative societal impact of the work, however it could have
positive impact by improving robotic applications (which we discuss as motivation in the
introduction).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper does not involve the release of data or models that have a high risk
for misuse. Therefore, no safeguards were necessary for the responsible release of such
resources.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the creators or original owners of assets such as
code, data, and models. All relevant citations are provided, and the license and terms of
use for each asset are explicitly mentioned and respected. Additionally, the authors have
ensured that any usage of assets complies with the specified licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets, therefore no documentation is
provided alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects. Therefore, there are no instructions given to participants, screenshots, or details
about compensation to include.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects. Therefore, there are no potential risks incurred by study participants, disclosure of
risks, or need for Institutional Review Board (IRB) approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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