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Abstract

The increasing size of language models necessitates a thorough analysis across
multiple dimensions to assess trade-offs among crucial hardware metrics such as
latency, energy consumption, GPU memory usage, and performance. Identifying
optimal model configurations under specific hardware constraints is becoming
essential but remains challenging due to the computational load of exhaustive
training and evaluation on multiple devices. To address this, we introduce HW-
GPT-Bench, a hardware-aware benchmark that utilizes surrogate predictions to
approximate various hardware metrics across 13 devices of architectures in the GPT-
2 family, with architectures containing up to 1.55B parameters. Our surrogates,
via calibrated predictions and reliable uncertainty estimates, faithfully model the
heteroscedastic noise inherent in the energy and latency measurements. To estimate
perplexity, we employ weight-sharing techniques from Neural Architecture Search
(NAS), inheriting pretrained weights from the largest GPT-2 model. Finally, we
demonstrate the utility of HW-GPT-Bench by simulating optimization trajectories
of various multi-objective optimization algorithms in just a few seconds.

1 Introduction

Language models (LMs) based on the transformer architectures [73] mark the current state-of-the-art
[52] in most natural language understanding tasks, including text summarization, question-answering
and language generation. This has led to a surge in research, with models [9, 13, 66] and training data
[33, 44] growing in size. Consequently, inference costs have also risen significantly, making it often
challenging to deploy these models in practice. For instance, ChatGPT utilizes over half a million
kilowatt-hours of electricity daily, a consumption sufficient to handle approximately two hundred
million requests. This energy usage is comparable to that of around 180,000 U.S. households, each
consuming approximately twenty-nine kilowatt-hours [27].

There is a natural trade-off (Pareto frontier) between latency and performance of LLMs. While
techniques such as KV-Cache optimization [75] and pruning [79, 86] have been used to improve
inference efficiency, they do not explicitly balance performance and latency. Hence, discovering the
inference-optimal frontier of language models is a multi-objective optimization problem [17], where
we are interested in the Pareto set of architectures, i.e. the set of all dominating architectures that
have a lower loss value on at least one objective and no higher loss value on any other objective.

Neural architecture search (NAS) [21] is a powerful framework to derive Pareto-optimal neural
network architectures in an automated data-driven way. However, as pointed out by Wan et al. [76],
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Figure 1: HW-GPT-Bench Overview. Illustration of the search space (left), hardware devices and
metrics (middle) and multi-objective algorithms (right) used in the HW-GPT-Bench framework.

training a single language model can require millions of GPU hours, making the use of simple multi-
objective NAS strategies, such as NSGA-II [45], that need to train multiple architectures from scratch,
impractical. To foster the development of more efficient NAS methods, surrogate [19, 31, 83, 88]
and tabular [18, 39, 72, 84] NAS benchmarks have been proposed — particularly for convolutional
networks and image classification tasks. These benchmarks have significantly aided the development
of search algorithms to replace manual heuristics. Surrogate benchmarks such as Once-for-all [31]
or HAT [78] follow the idea of two-stage weight-sharing based NAS [6], which trains a single
supernet subsuming a large number of architectures into a single model, followed by a gradient-
free search to select the Pareto optimal sub-networks. While some benchmarks focus on natural
language understanding tasks, such as machine translation [78] and speech recognition [49], the
efficacy of these techniques does not directly transfer to architectures for causal language modelling
problems and across various hardware metrics (e.g., FLOPS, latency) and devices (e.g., CPUs, GPUs).
Therefore, a hardware-aware benchmark for evaluating multi-objective NAS methods is crucial for
advancing the design of inference-optimal LM architectures. In this paper, we introduce HW-GPT-
Bench (see Figure 1 for an overview), a hardware-aware LM benchmark, based on the GPT-2 [58]
architecture, for multi-objective NAS across 13 devices, 5 hardware metrics, and 4 model scales. Our

contributions include:

* Benchmark Creation (Section 3): Establishing a benchmark across small, medium, and large
model scales with surrogate supernets, performance predictors, and hardware metric predictors.

* Faithful Latency and Energy Estimates (Section 3): Contrary to previous in works in the NAS
literature, we use surrogate predictors that provide calibrated predictions and faithfully model the

uncertainties inherent in latency and energy profiling.

* Metric Interaction Analysis and Algorithm Evaluation (Sections 4 and 5): Studying interaction
effects between different hardware and performance metrics, importance of architectural choices
and evaluations of various multi-objective optimization algorithms, providing out-of-the-box
baselines for future development.

We provide an open-source API !, for latency and perplexity predictors, the supernetwork weights and
different baselines studied, making integration of new methods into this benchmark straightforward.
Through HW-GPT-Bench, we aim to accelerate research in hardware-aware NAS for language models,
ultimately advancing the development of efficient and high-performing language model architectures.

2 Related work

Structural Pruning, Computational Efficiency, and Neural Architecture Search. Network prun-
ing [42], a model compression technique, reduces model complexity with minimal performance
loss. Empirical studies [35, 51, 60, 74] have examined the impact of pruning different layers and

!Code at: https://github.com/automl/HW-GPT-Bench/
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modules in pretrained transformers on validation loss. Techniques such as KV-Caching [57] and
Quantization [4, 32, 46, 70] improve inference time, memory footprint, and energy usage. These
methods complement structural pruning and can be incorporated for further speedups. Structured
pruning removes structured parameter blocks from pretrained models, while unstructured pruning
introduces sparsity by zeroing out unimportant weights. Adaptive pruning methods [3, 23], which
prune based on task difficulty, have also been proposed. Recently, Klein et al. [36] and Sarah
et al. [64] used neural architecture search (NAS) [81] for automated structural pruning of pretrained
LLMs. Similarly Mufioz et al. [53] and Munoz et al. [54] study, starting from pretrained models and
parameter-efficient finetuning for NAS. Training multiple architectures from scratch is computation-
ally expensive [59, 67, 89], so efficient NAS methods employ one-shot models (or supernetworks)
[7, 31, 43] as performance proxies by inheriting weights and fine-tuning individual architectures. In
our benchmark, we follow this procedure to create perplexity proxies from the largest GPT-2 [58]
model. As a second stage, many multi-objective NAS methods [31, 78] run gradient-free search
routines efficiently, such as evolutionary strategies, to optimize performance and hardware metrics.
Recently, Sukthanker et al. [69] proposed a method that generates the entire Pareto set in a single
stage based on preference vectors of objectives and hardware type.

(Hardware-aware) NAS Benchmarks. NAS benchmarks, both tabular and surrogate, emerged due
to the high computational costs and reproducibility challenges in developing and evaluating NAS
algorithms [18, 49, 84, 87, 88]. Tabular benchmarks [18, 20, 49, 84] evaluate all architectures in
the search space upfront, but this becomes infeasible as search spaces and training times grow. To
address this, surrogate benchmarks [83, 88] use model-based performance predictors, overcoming
the limitations of tabular benchmarks and providing more realistic search space evaluations [88].
One-shot models [10, 29, 31, 78] can also act as surrogates by inheriting weights and evaluating
performance on validation sets. Most NAS benchmarks focus on convolutional spaces and computer
vision tasks [18, 20, 50, 84], with some targeting natural language processing (NLP) [37, 78] and
speech recognition[49]. Given the rising computational costs of training, deploying, and searching
models via multi-objective NAS, extended tabular NAS benchmarks now include hardware-specific
metrics like FLOPS, on-device latency, and energy consumption [5, 19, 38, 39, 78]. Unlike these
benchmarks, HW-GPT-Bench focuses on language modeling with decoder-only transformers [58, 73].
Additionally, our surrogates offer calibrated predictions by modeling the intrinsic heteroscedastic
noise in latency and energy usage, rather than relying on single measurements [19, 38, 39].

3 HW-GPT-Bench Design Choices

In this section we provide details on design choices , such as the architecture search space, data
collection procedure, performance and hardware metrics, as well as the surrogate model types.

3.1 Architecture Search Space

To construct our architecture search space, we pick the GPT-2 [58] language model, which is an
autoregressive decoder-only transformer [73] composed by three primary components (see Figure 1,
left): (i) Embedding layers that map input tokens to learnable representations and encode their
position; (ii) Transformer blocks stacked multiple times; (iii) a Prediction head that predicts
the next token for a given sequence. Moreover, each of the transformer blocks consist of: (a) a
Causal Self-Attention Block that weights the significance of different input tokens (b) a MLP block
containing two layers that project the input to a higher dimension and back to a lower one. We denote
the ratio of the higher projection dimension to the transformer dimension as MLP ratio. In addition,
we apply the following enhancements to the original architecture:

* Rotary positional embeddings (RoPE) [68]: A form of position embedding that captures absolute
positional details using rotation matrices while seamlessly integrating explicit relative positional
relationships into the self-attention mechanism. Importantly, RoPE offers several advantages,
including adaptability to sequences of varying lengths, diminishing token interactions over greater
relative distances, and the ability to enhance linear self-attention via relative positional encoding.

* Parallel residual: Following PaLLM [13, 77], in contrast to the standard serialized formulation, we
use a parallel formulation in each transformer block. Specifically, if z is the input to the block, the
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Table 1: HW-GPT-Bench search space. We pretrain 7 supernetworks with different sizes and search
space strides: GPT-S, -M and -L, -S-wide, -M-wide, -L-wide, -XL-wide. On each of them we
parameterize the dimensinality of the embedding layer, number of stacked layers (transformers
blocks), number of self-attention heads and MLP ratio for every active layer, as well as if the bias is

on or off.
Supernet Type  Embedding Dim. Layer No. Head No. MLP Ratio Bias No. of Archs  Supernet Size
GPT-S [192, 384, 768] [10, 11, 12] [4, 8, 12] [2, 3, 4] [On, Off] ~ 102 124M
GPT-M [256, 512, 1024] [22, 23, 24] [8, 12, 16] [2, 3, 4] [On, Off] ~10% 350M
GPT-L [320, 640, 1280] [34, 35, 36] [8, 16, 201 [2, 3, 4] [On, Off] ~ 1036 774M
GPT-S-wide [192, 384, 768] [3, 6, 12] [3, 6, 121 [1, 2, 4] [On, 0ff] ~ 1012 124M
GPT-M-wide  [256, 512, 1024] [6, 12, 24] [4, 8, 161 [1, 2, 4] [On, Off] ~10%* 350M
GPT-L-wide [320, 640, 12801 [9, 18, 36] [5, 10, 201 [1, 2, 4] [On, Off] ~ 1036 774M
GPT-XL-wide [400,800, 1600] [12,24,48] [6, 12, 251 [1, 2, 4] [On, Off] ~ 10%8 1.55B

standard and parallel formulations can be written as:

Yserialized = € + MLP(LayerNorm(x + Attention(LayerNorm(z)))

Yparallel = & + MLP(LayerNorm(z)) + Attention(LayerNorm(z))

As reported in PaLLM [13], the parallel formulation is faster at larger scales as the MLP and attention
input matrix multiplications can be fused.

Architectural choices. Consider a search space S = D, x D; x Dy x Dy x D,,, obtained
by parameterizing the building blocks of the transformer architecture, where D, := {e1, e, €3},
Dy := {l1,l2,13}, Dy, := {h1, ha,hs}, Dy := {0n,0£f£f} and D,, := {m1, ma, ms} correspond
to the set of embedding dimension choices, number of layers, number of heads, choice of setting
the bias in linear layers and the MLP ratio choices, respectively. Furthermore, we choose the
MLP ratio and the number of heads on a per-layer basis, amounting to a search space size of
~ 1035 possible architectures. We represent architecture configurations as a list of integers s =
{e,l,ht,--- bt m',--- ,m!, b}, where e € D., | € Dy, h' € Dy, m' € D,, and b € Dy. ht
and m! denote the number of heads and MLP ratio of layer I, respectively. Given a set of m
metrics (objectives) Y = {y, € R™ : y = f(s),s € S} e.g.: latency, perplexity, energy, memory
consumption etc., a NAS algorithm searches for the (Pareto) optimal architectures, evaluated using
these metrics, from the space S.

Four Transformer scales. Based on the values we assign to the choices in every architectural
block, we can obtain arbitrary number of search spaces. In HW-GPT-Bench, we construct 7 such
spaces, namely, GPT-S, GPT-M, GPT-L, GPT-S-wide, GPT-M-wide, GPT-L-wide and GPT-XL-
wide as defined in Table 1, with the largest model containing 1.55B parameters. Note that in
every search space, the supernetwork is the largest possible model, e.g. in GPT-S that would be
s={784,12,12,--- 4,---  On}.

3.2 Dataset Collection

Building a tabular benchmark for our search spaces with ECDF for Search Space Subspaces A € B € C
cardinality ranging from ~ 1012 to ~ 10*® is infeasible
even for objectives such as latency or energy usage that are
faster to measure than performance. Therefore, following
Zela et al. [88], we sample 10000 unique architectures
uniformly at random from each of the search spaces
(GPT-S, -M, -L, -S-wide, -M-wide, -L-wide, -XL-wide),

=
=]

o
@

o
o

o
'S

Empirical Cumulative Prob.

and use observations from these architectures to train our 02 — Perplexity A
Perplexity B
hardware and performance surrogates. o L ety

. 18.6 18.8 19.0 19.2 19.4
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curacy of the sampled architectures at every scale, by
inheriting the weights corresponding to a particular ar- Figure 2: Empirical Cumulative distribu-
chitecture from the supernetwork, which subsumes all tion of different search space subspaces.
possible architectures in a single network (see Section 2).
Since architectures index the same supernetwork to access their weights, all their individual weights
are entangled [10, 31, 78]. Various strategies exist to pretrain the supernetwork, such as random
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sampling, sandwich scheme, and pre-defined structured sampling [36, 85]. Following its effectiveness,
as shown by [36], we employ the sandwich scheme, that at every mini-batch training iteration samples
the largest, the smallest, and two random architectures from the search space. Similar to [36], the
weights of different sub-networks are tightly coupled with each other and the memory footprint
of the supernetwork is the same as the largest network in the space. This allows for extremely
efficient training of about 10*® (for GPT-XL-wide) architectures by updating multiple architectures
that share weights simultaneously. We train the supernetwork with the standard language modeling
loss function, which is the average negative log likelihood of all tokens without label smoothing.
We use the OpenWebText 2 dataset, split to train and test sets, for training the supernetwork and
evaluating individual architectures’ perplexity, respectively. We refer the reader to Appendix A for
more details on the training pipeline and used hyperparameters. In Figure 2 we plot the empirical
cumulative distribution of the 10k architectures evaluated using the pretrained supernetwork weights
on the validation set. The green curve represents random sampling in a space of fixed embedding
dimension of 1280 in the GPT-L space, the orange curve with the number of layers fixed to 36 as well,
and the blue curve with the average number of heads and MLP ratio across layers greater than 16
and 3, respectively (with embedding dimension fixed to 1280 and number of layers to 36). From the
cumulative distribution we can see that there is a lot to gain from searching for the right architectural
choices instead of randomly sampling.

Hardware metrics and devices. In addition to perplexity, we also collect the following hardware-
related metrics: (i) number of parameters (ii) FLOPS (Floating Point Operations) (iii) on-device
latency (in ms) (iv) on-device energy consumption (in kWh) (v) memory footprint (in GB). We
compute latencies and energies for all 10k sampled architectures on a variety of GPU and CPU types:

- GPU devices: NVidia RTX A6000, RTX 2080Ti, RTX 3080Ti, P100, A40, A100 and H100.
- CPU devices: Intel Xeon Silver, Xeon Gold, and AMD EPYC 7513, 7452, 7502.

For details on hardware specifications refer to Appendix B. To profile the energy usage, we use
CodeCarbon® on CPU devices and Nvidia’s visual profiling tool* on GPUs. For latency profiling
we use the native PyTorch profiler’ on both GPUs and CPUs. For FLOPs, we use the DeepSpeed
library®. Furthermore, due to the high intrinsic measurement noise for energy and latencies, to
get robust estimates, we collect up to 10 observations per architecture for latency and up to 50
observations per architecture for energy on GPUs. We then use these observations to incorporate the
aleatoric uncertainty into the surrogates (see Section 3.3) and estimate the noisy latency and energy
distributions more reliably. In all evaluations of every metric, we used a batch size of 8, 4, 1 and 1 for
GPT-S, -M, -L and -XL scales respectively, and a sequence length of 1024.

In Figure 3 we show the computed ground-truth perplexity from the trained supernet, latency and
energy usage values of all 10000 architectures. We can clearly see the heteroscedastic noise in the
latency and energy measurements, with an increasing variance as the model perplexity improves.
In the same figure, we show the Pareto fronts obtained by randomly sampling an observation (blue
line) — 1 out of 10 for latency and 1 out of 50 for energy — while the best and worst possible Pareto
fronts (red and black markers, respectively) are obtained by using the best and worst measured value,
respectively. These results show that the high observation noise in the data can potentially affect the
optimization trajectories of multi-objective algorithms, hence resulting in different Pareto fronts.

3.3 Surrogate Models

Perplexity and Memory Usage Surrogates. After pretraining the supernetwork, evaluating thou-
sands of architectures on the test set can still be relatively expensive. To this end, similar to Han et al.
[31], we train a MLP surrogate model on 80% of the collected datapoints, obtained by evaluating
the supernetwork, to predict the perplexity given the architecture encoding as input. We also train a
MLP surrogate to predict GPU memory usage. Evaluations on the unseen 2000 architectures, yielded
a rank correlation of > 0.90 for every metric. Refer to Appendix C.1 for more details on the MLP
architecture and training hyperparameters.

https://skylion007.github.io/OpenWebTextCorpus/
*https://codecarbon.io/
*https://docs.nvidia.com/cuda/profiler-users-guide/index.html
Shttps://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
®https://github.com/microsoft/DeepSpeed
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Trade-offs between perplexity, energies and latencies on RTX2080
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Figure 3: Trade-offs between Energy, Latency, and Perplexity across architectures for different search
spaces. The blue curve represents the Pareto front obtained by randomly sampling an observation,
while the best and worst possible Pareto fronts (red and black markers, respectively) are obtained by
using the best and worst measured value, respectively, for latencies and energies.

Energy and Latency Surrogates. From our initial collection of energy and latency observations for
different architectures, we observe that on-device latencies and energies tend to be very noisy, and
the median of observations is insufficient to capture this noisy distribution (see Figure 3). Moreover,
we empirically observe that the distribution of energies and latencies is often normally distributed
with a few outliers. A reliable surrogate model in such a case should not only be performant in terms
of accuracy or ranking of the architectures, but on uncertainty quantification and calibration as well.
As our surrogate model for predicting per-device latency and energy, we choose AutoGluon [22],
the state-of-the-art automated machine learning system for tabular data [26] that has been shown
to outperform (ensembles of) individual model types [61]. Specifically, we train two AutoGluon
models on the 80% split of the sampled architectures to predict the first and second moments of
the latency and energy distributions. AutoGluon builds stacking ensembles [82] to further enhance
performance while using a portfolio [24, 61] of linear models, neural networks, and decision tree-
based models to be robust to outliers and performant across diverse data distributions. To analyze
different model choices, we compare AutoGluon to LightGBM [34] and XGBoost [11], state-of-the-
art tabular regression models [28, 48, 61] as baselines. To enhance performance, for both baselines,
we ensemble various configurations of LightGBM and XGBoost, and estimate the first and second
moments using the individual baselearners’ predictions. In addition, we also evaluate an ensemble
mix of scitkit-learn’s [56] Linear Regression, Ridge Regression, and Random Forest [8]. We refer the
reader to Appendix C.2 for more details on the surrogate models.

After fitting AutoGluon and the baselines and computing evaluations on the testing data points, we
compute various performance and calibration metrics from the Uncertainty Toolbox’ [14, 71] to
quantitatively compare AutoGluon to the other baselines. In Table 2, we report accuracy metrics,
such as mean absolute error (MAE), Spearman rank correlation, etc., between predicted mean and
true mean of observations (e.g. mean of the 50 energy observations per architecture), averaged

7ht‘cps ://github.com/uncertainty-toolbox/uncertainty-toolbox
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Figure 4: Calibration area, Prediction Intervals and Confidence Bounds for different surrogate types
on Xeon Silver CPU (Latency) and V100 (Energy). The rightmost plots show only the predictions
and confidence bands of AutoGluon.

Table 2: Various performance metrics of surrogates evaluated to predict H100 Latency and RTX2080
Energy. The arrow on the side of the metric name indicates if lower or higher is better.

s Accuracy Calibration
urrogate
MAE | RMSE | MDAE | MARPD | R2 1 Corr. 1 RMS Cal. | MA Cal. | Miscal. Area |
H100 2080 HI100 2080 HI00 2080 HI00 2080 HI00 2080 H100 2080 HI00 2080 HI00 2080 H100 2080
AutoGluon 0153 1.80 0211 2.576 0.111 1.121 0.153 10.677 0.999 0.904 0.999 0.950 0.223 0.244 0.198 0.217 0.199 0.220

Ensemble (Mix)  0.569 1.830 0.785 2.621 0413 1092 0565 10920 0.999 0.900 0.999 0949 0472 0298 0411 0264 0415 0.267
Ensemble (XGB) 0.620 1.832 0.827 2.628 0475 1.154 0.629 10919 0990 0.899 0.990 0948 0481 0286 0417 0251 0421 0.254
Ensemble (LGB) 0.361 2.094 0411 2922 0379 1415 0384 13.140 0970 0.875 0.999 0947 0.559 0.347 0.481 0304 0486 0.308

across architectures in the test set. Furthermore, we also compute various calibration metrics, such as
average calibration error. In summary, from the results in Table 2 we can conclude that: AutoGluon
is the best model that provides both accurate and calibrated predictions, as well as reliable
uncertainty estimates for energy usage and latency. Refer to Appendix D for more details on these
evaluation metrics.

Figure 4 shows the average calibration plot (left), prediction interval plot (middle) and predicted
mean and 95% confidence interval (right) on two devices and two metrics. We can see from the
rightmost plot that AutoGluon reliably predicts the mean of the observations and has calibrated
uncertainty estimates (left plot: calibrated models have calibration curves that approach the ideal
diagonal line). Following Tran et al. [71], we utilized the standard deviation of predictions from each
surrogate model to generate Gaussian random variables for each test point. We then evaluated the
residuals’ adherence to their respective Gaussian random variables. Consequently, models considered
"well-calibrated" had residuals that formed Gaussian distributions with standard deviations closely
matching the model’s predicted standard deviations. For more details on these plots see Appendix D.

4 Analysis and Interpretability on HW-GPT-Bench

Correlations between hardware metrics. We now use our collected data to examine the relation-
ships between performance and hardware metrics in order to gain insights on how these different
metrics are correlated with each other and across devices. Interestingly, we observe that at smaller
scales (Figure 62 in the Appendix), the energy and latency are highly correlated (assesed via the
Kendall-7 correlation coefficient between the ground truth metrics across devices) with FLOPS, often
used as a proxy for device-agnostic latency measurements. However, the correlation coefficient
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Figure 5: Feature ranking of architecture dimensions at different scales (lower rank is better). The
embedding dimension (in red) is most important across scales and the number of layers (in yellow)
is more important at smaller scales. MLP ratio (mr) and Number of heads (nh) at layer N — 1 is
important across different scales (depicted in blue and green).

become progressively lower at larger model scales as shown in Figures 63 and 64 of the Appendix,
mainly due to higher energy and latency measurement noise. As expected, per-device latency and
energy are highly correlated, whilst latency/energy and perplexity are anti-correlated (see Figure 3).

Importance of Architectural Choices. For the collected perplexity data at each scale, to model
the function of perplexity dependent on the architectural choices, we assume a power law of the form,
for analysis purposes:

é
X (b+1)7%,

v

l ; l ;
il % 2 m

y=CxI%xe’ x ; i

where C, «, 3,7, d, o are data-dependent constants, [ is the number of layers, e is the embedding
dimension, m® and h? are the MLP ratio and number of heads on layer i, respectively, and b is the
bias. After fitting the power law on the collected 10000 pairs (architecture, perplexity), we obtain the
following estimated coefficients:

GPT-S: Y= 646.234 - 170‘226 . 670.371 . m*O.lOO . h70.076 . b*0.00l’
GPT-M: y = 404.456 - 170.104 . 670.343 . m70.091 3 h70.049 3 b*O.OOE)7
GPT-L: y = 280.757 - l70.073 . 670.309 . m70.088 . h70.051 3 b70.005.

An ordinary-least-squares (OLS) fit on the log-transformed data indicates that all search dimensions
are statistically significant with p-value < 0.001, with embedding dimension being the most important
architecture parameter in the search space. The number of layers [ and MLP ratio become increasingly
less important at larger scales and could potentially be pruned without significantly impacting
perplexity. The importance of bias stays more or less constant across scales, while the MLP ratio is
more important than the number of heads, indicating that a significant number of heads are possibly
redundant and are amenable to pruning. In Figure 5, we study the ranking upon applying Recursive
Feature Elimination (RFE) [12] to the architecture features and present the 10 top-ranked features.
We observe that embedding dimension and number of layers are important across different model
scales. Furthermore, the MLP ratio and the number of heads chosen in the transformer’s later layers
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(e.g., layer N — 1 and layer N — 2) are more important than their choices in earlier layers. We present
additional results in Appendix F.

S HW-GPT as a Benchmark for Multi-objective Optimization

In this section, we showcase how HW-GPT-Bench 14,0 LAtency RTX2080 and Energy A6000
can be used as a benchmark for evaluating multi- 1317
objective NAS algorithms. 1381 [ 13758

13.693
Multi-objective NAS algorithms. State-of-the- 136 i 13.59¢
art multi-objective NAS (MO-NAS) methods aim
to identify Pareto-optimal configurations that bal-
ance performance and efficiency. HW-GPT-Bench,
enables simulations of their optimization trajecto-
ries in just a few minutes using the predictions
from our surrogate models. We simulate multi-
ple runs of the following MO-NAS methods im-
plemented in Syne Tune [62]: (i) Random Search
(RS) (ii)) Multi-objective Regularized Evolution ;
(MOREA) [59] (iii) Non-dominated Sorting Genetic &0‘9 ©
Algorithm IT (NSGA-II) [16] (iv) Local Search (LS)

(v) Multi-objective Asynchronous Successive Haly- Figure 7: HV of MO-NAS methods on 3 ob-
ing (MOASHA) [65] (vi) Bayesian Optimization Jectives (on GPT-S), namely, perplexity, RTX
with Random Scalarizations (RSBO) and (vii) Lin- 2080Ti latency and A6000 energy usage.

ear Scalarizations (LSBO) [55] (viii) Expected Hypervolume Improvement (EHVI) [15]. Refer to
Appendix K for a more detailed description of them.
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5.1 Experiments with 2 objectives

We run all MO-NAS methods for a fixed (simulated) time bud- HV over Time for Energy on RTX2080
get of 16 CPU hours. We repeat each run 4 times to account
for the noise in the latency and energy predictions. In Figure
8 shows the hypervolume indicator over number of surrogate
evaluations. Notably, EHVI and NSGA-II achieve a higher
hypervolume under smaller budgets compared to Local Search
(LS) and Random Search (RS), underscoring the efficiency of
model-based optimization algorithms in navigating the search
space and identify Pareto-optimal architectures. To aggregate
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the resulting Pareto fronts from our multiple runs, we use the — s RSBO

— LSBO NSGA2

Empirical Attainment Function (EAF) [47], which represents 28 — MOREA B

a coherent way to capture the uncertainty in the multi-objective 0 000 1500 2000 2500 3000
metric space (see Appendix G for details). We show the results Number of Surrogate Evaluations

of all methods in Figure 6. We can see that LS and NSGA-II
generally yield more favorable trade-offs between the objec- .
tives, achieving lower perplexity for a given energy, latency or €r's Over 200 surrogate evaluations
memory consumption. In contrast, Random Search (RS) shows ©n HW-GPT-Bench for RTX2080
wider variability, with worst case scenarios containing solutions ENergy-

in the Pareto set with relatively high energy usage and low perplexity. Appendix L.1 contains the rest
of the experimental results across devices and metrics.

Figure 8: HV of blackbox optimiz-

5.2 Experiments with more than 2 objectives

All the methods we run on HW-GPT-Bench on 2 objectives in the section above, are extendable
to more than 2 objectives. HW-GPT-Bench enables optimizing for different hardware metrics,
not necessarily measured on the same hardware device. Here, we showcase this by optimizing
simultaneously for perplexity, latency on RTX 2080Ti and energy usage on the A6000 GPU. We
picked these objectives due to their relatively low correlation, as we can see in Figure 62. We run the
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from hwgpt.api import HWGPT

api = HWGPT(search_space="s") # initialize API

random_arch = api.sample_arch() # sample random arch
api.set_arch(random_arch) # set arch

results = api.query() # query all

energy = api.query(metric="energy") # query energy

rtx2080 = api.query(device="rtx2080") # query device

# query perplexity based on mlp predictor

perplexity_mlp = api.query(metric="perplexity",predictor="mlp")
# query perplexity based on supernet

perplexity_supernet = api.query(metric="perplexity",predictor="supernet")
# run baseline and plot EAF
nsga2_results = api.run_baseline(method="nsga2", device="rtx2080", metrics=["energy","perplexity"],

ppl_predictor="mlp")
# plot Pareto-front
api.plot_eaf (nsga2_results)

Snippet 1: A minimal example of the HW-GPT-Bench API.

baselines for 16 hrs on a single CPU and compute the hypervolume 8, which we show in Figure 7
(see Appendix L.2 for the other results.). Notably, NSGA-II achieves good trade-offs also in the
3-objective case, however, the Bayesian optimization methods perform worse than RS and LS here.

With this set of baselines and evaluations, we hope that HW-GPT-Bench will serve as a de-facto
testbed for prototyping and benchmarking future hardware-aware optimization methods.

5.3 HW-GPT-Bench API

We provide a minimal API for users, that enables loading the benchmark and querying all or specific
hardware and performance metrics across devices, and different search spaces with just a few lines of
code.

Users can also select which perplexity surrogate to use — either the supernetwork itself or the MLP
performance predictor — ensuring flexibility in performance assessment. Furthermore, the API
supports the execution of multi-objective baselines, enabling rigorous benchmarking and comparative
analysis. See code snippet 1 for a simple example. Additional examples can be found in Appendix O.

6 Conclusions, Broader Impact and Implications

We introduce HW-GPT-Bench, a hardware-aware surrogate benchmark for evaluating language
models across various hardware devices, metrics, and scales on a single CPU in just a few seconds.
By enabling efficient exploration of multi-objective NAS algorithms to achieve Pareto-optimal
configurations across multiple hardware metrics and devices, our work has several broader societal
implications: (i) Energy Efficiency and Environmental Impact - It promotes the development
of energy-efficient language models, mitigating the environmental cost of large-scale Al systems
and enhancing sustainability; (i) Enhanced Research and Development - It accelerates research
in NAS and structural pruning, leading to more energy-efficient architectures; (iii) Accessibility
and Democratization of Al - Resource-efficient language models enable innovation for users and
organizations with limited resources; (iv) Economic Benefits - Optimizing for hardware efficiency
reduces training and deployment costs, benefiting industries reliant on extensive language model
querying and improving user experience.

Overall, HW-GPT-Bench addresses critical challenges in developing and deploying algorithms that
enhance the resource efficiency of language models, providing a more sustainable, accessible, and
reliable benchmarking framework. It underscores the importance of considering hardware efficiency
constraints alongside performance in advancing language models.

8computed with respect to the empirical nadir point for the 3 objectives
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A Pretraining details

We present all the training hyperparameters for the supernetwork (see Section 3.2 too) at different
scales in Table 3. We train GPT-S, -M and -L scales for 4, 6 and 8 days, respectively, on 4 Nvidia
A100 GPUs. GPT-XL is trained for 6 days across 40 A100 GPUs. As described in Section 3.2, we
use the sandwich rule for the supernetwork training, which accumulates gradients from the smallest,
largest and 2 random subnetworks of the supernetwork in each gradient update step.

Hyperparameter Value
Trainer

num_gpus 4
gradient_clip_val 1.0
max_steps 800000
precision BFloat16 Mixed precision
seed 1234
Optimizer

optimizer AdamW
Ir 0.000316
weight_decay 0.1
betas [0.9, 0.95]
eps 1.0e-09
seed 1234
Optimizer Parameter Grouping

bias_weight_decay False
normalization_weight_decay False
Scheduler

num_warmup_steps 4000
num_training_steps 800000
decay_factor 0.1
schedule cosine
Model

block_size 1024
vocab_size 50254
padding_multiple 512
scale_embeddings False
padded_vocab_size 50254
head_size 64
Im_head_bias False
attn_dropout 0.1
resi_dropout 0.1
embed_dropout 0.1
shared_attention_norm False
norm LayerNorm
rope_condense_ratio 1
scale_attn_weights True
scale_attn_by_inverse_layer_idx True
shared_embedding True
pos_embedding False
rel_pos_enc True
rotary_percentage 0.5
norm_eps le-5
rope_base 10000
parallel_residual True
initializer_range 0.02
Data

dataset "openwebtext"
num_cpu_worker 32
batch_size 32(GPT-S), 8(GPT-M), 8(GPT-L), 1(GPT-XL-wide)
max_sample_len 1024
val_ratio 0.0005
val_split_seed 2357

Table 3: Supernet training hyperparameters.
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B Hardware specifications and Properties

In Table 4, we present details of the 8 GPU devices and 5 CPU devices we used for profiling our
3 search spaces GPT-S, GPT-M and GPT-L. The devices we study capture a wide range of micro-
architectures, number of cores and GPU/CPU memory. The considered GPUs capture a wide range

of inference latencies and throughput °.

Table 4: Hardware specifications.

Platform Device Name Micro Architecture Number of Cores Memory
NVIDIA RTX 2080 Turing CUDA 2944 8GB GDDR6
NVIDIA RTX 3080 Ampere CUDA 8704 12GB GDDR6X
NVIDIA RTX A6000 Ampere CUDA 10752 48 GB GDDR6

GPU NVIDIA A100 Ampere CUDA 6912 40GB HBM2e
NVIDIA A40 Ampere CUDA 10752 48GB GDDR6
NVIDIA Tesla P100 Pascal CUDA 3584 12GB HBM2
NVIDIA Tesla V100 Volta CUDA 5120 24GB GDDR6
NVIDIA H100 Hopper CUDA 16896 80GB HBM3
AMD 7452 Zen?2 CPU Core 32 Cache 128 MB
AMD 7513 Zen3 CPU Core 32 Cache 128MB

CPU AMD 7502 Zen?2 CPU Core 32 Cache 128MB
Intel Xeon Silver 4114 1Intel P6 CPU Core 10 Cache 13.75MB
Intel Xeon Gold 6242 Intel P6 CPU Core 16 Cache 22MB

C Surrogate models

In this section, we provide details of the latency and energy surrogate predictors used in HW-GPT-
Bench. The surrogates are trained and evaluated on 8000 and 2000 fixed architectures, respectively.

C.1 PPL Surrogates

Data collection. We subsample 10% from the OpenWebText training set and use that as a validation
set to compute the perplexity and accuracy metrics of architectures in the supernetwork, that inherit
the trained supernetwork weights. The time to collect the perplexity pairs for 10k architectures was 8,
16, 24 and 32 days on 4 A100 GPUs for GPT-S, -M and -L and -XL-wide, respectively. Note that
this computation is trivial to parallelize, as all architectures can be evaluated independently of each
other, given the pretrained supernetwork weights. Afterwards, the (x, y) pairs, where « is the one-hot
encoded architecture and y the corresponding perplexity value, are used to train an MLP (Multi Layer
Perceptron) using the MSE loss to predict the perplexity on unseen (test) architectures.

Surrogate Architecture. The MLP contains 4 linear layers with hidden dimension of 128 and
output dimension of 1 (the perplexity prediction). We use ReLLU activations at every layer. The
dimension of the one-hot encoding is 3 (3 choices for layers) + 3 (3 choices for embedding dimension)
+ max_layers x3 (3 choices for number of heads for every layer) + max_layers x3 (3 choices for MLP
ratio for every layer). We train the MLP for 4000 epochs using the Adam optimizer with a learning
rate of 1073 and a batch size of 1024.

C.2 Hardware Surrogates

We now describe the different surrogates we study to model uncertainties in energy and latency
prediction. Each of the surrogates is trained to predict mean and standard deviation of energy or
latency predictions of a given architecture. For FLOPs, memory and number of parameters, we
compute and predict a single observation per architecture. We use 8000 architectures for training our
surrogates and 2000 to test the performance and calibration properties of our surrogates.

°GPU benchmark
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Data collection. We measure energy and latency pairs across different devices multiple times to
capture the noise in the energy and latency profiling. Additionally, we also profile hardware metrics
like Floating Point Operations (FLOPs), Memory consumption (Float16 and BFloat16) and number
of parameters for an architecture. Specifically, for every architecture, we compute 50 observations per
architecture for energies on GPU and 10 observations for energies on CPU. Similarly, we compute 10
observations per architecture for latencies on both CPUs and GPUs. We use 8 CPU cores (per GPU)
for all the latency and energy evaluations.

AutoGluon. AutoGluon simplifies the process of developing, training, and deploying machine
learning models by automating key tasks such as feature engineering, model selection, and hyperpa-
rameter tuning. AutoGluon has two major components. First one is Bagging (bootstrap aggregation)
on wide varieties of models like decision trees, random forests, nearest neighbors, linear models
and neural networks. Second one is stacking, where predictions of models on the first level are
fed as input to models at the next level. We use an AutoGluon model per metric (latency or en-
ergy) with dynamic_stacking = False, num_stack levels = 1, number_of_bag folds =8
and number_of_bag_sets = 4. The input feature map to the model is simply a concatenation of
chosen hyperparameters with choices for MLP ratio and number of heads set to -1 when a particular
layer is not selected. We train two AutoGluon predictors, one to predict mean, and one to predict the
standard deviation of the ground truth latency or energy measurements.

Ensemble (XGB). We use an ensemble of 27 Extreme Gradient Boosting (XGB) models with dif-
ferent hyperparameter combinations. Specifically, the models in the ensemble contain a cross
product of n_estimator choices from [200, 500, 800], depth choices from [5,9,3] and
learning_rate choices from [0.01,0.1,1.0]. We then fit this ensemble, and predict the mean
and standard deviation values for the metric at hand by aggregating the predictions of different models
using bagging.

Ensemble (LightGBM). We use an ensemble of 36 Light Gradient Boosting Machine (LightGBM)
models with different hyperparameter combinations. Specifically, the models in the ensemble contain
a cross product of n_estimator choices from [200, 500, 800], depth choices from [5,9,3]
and learning_rate choices from [0.01,0.1,0.001,1.0]. We then fit this ensemble, and predict
the mean and standard deviation values for the metric at hand by aggregating the predictions of
different models using bagging.

Ensemble (MIX). In addition to ensembles based on XGB and LightGBM, we also fit an ensemble
containing a mixture of different machine learning models. Specifically, this ensemble contains 4 XGB
and LightGBM regressors (default: [n_estimators = 500,max_depth = 5 ,learning rate
= 0.01],[n_estimators = 800,max_depth = 3,learning rate = 0.1], [n_estimators
= 200,max_depth = 9,learning rate = 1]), as well as LinearRegression, Ridge and Ran-
domForestRegressor from sklearn with their default hyperparameters.

C.3 Memory Surrogate.

We model the memory consumption using a simple MLP (similar to perplexity). The MLP has 4
layers with a hidden dimension of 128 and uses ReL.U activations. The input to the MLP is the
normalized feature map corresponding to the concatenation of the architecture parameters. The MLP
is trained using Adam, with learning rate of 10~* and a batch size of 1024, for 4000 epochs.

D Accuracy and Calibration of Surrogate models

In this section we provide a more detailed description on the metrics we used to evaluate our surrogate
models in Section 3.3, as well as additional results that complement results shown in Table 2 and
Figure 4.

D.1 Accuracy and Calibration Metrics

Given a finite dataset D = {(=;, ;)Y , } and a regression model that predicts the mean value 7, we
use standard accuracy metrics:
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Root Mean Squared Error (RMSE): RMSE = \/ % > f\; 1T —yi)?

Mean Absolute Error (MAE): MAE = L SV |4, — ;|

Median Absolute Error (MDAE): Median of the absolute differences between predicted and actual
values, in ascending order.
MDAE = med({|gi — yi|}iL,)

Mean Absolute Percentage Relative Deviation (MARPD): A similar metric to MAE but scaled by
the sum of the absolute values of predicted and actual values. This scaling can be beneficial when
dealing with a wider range of values, especially when the predicted or actual values are very close to
Zero.

2 (9i — i)

- - 100
|9:] + |yl

1 N
MARPD = N;

Coefficient of Determination (R2): Tells us about the proportion of variance in the dependent
variable (y) explained by the independent variable (x) through the model. Denoting by ¢ = Zf\il Yi
the mean of the ground truth data, R? is defined as:

N /.
R2—1_ >im1 (i — yi)®

i (7 — )’

Correlation Coefficient: The Pearson correlation coefficient () measures the strength and direction
of the linear relationship between predicted values (y;) and actual values (y;) of the data. It ranges

from -1 to 1.
RO w1 (5[5 )
VEN G- 92 S - 9)?

Root Mean Squared Calibration Error (RMS Cal.): A metric used to evaluate the calibration of
probabilistic predictions in regression models, particularly in the context of uncertainty quantification.
It measures the discrepancy between predicted and observed quantiles. For a model to be well-
calibrated, the proportion of observations below a given predicted quantile should match the quantile
value. For example, the 90th percentile prediction should contain the true outcome 90% of the time.
RMS Cal. is computed as the root mean square of the difference between the predicted quantile levels
and the observed frequencies over all quantiles:

K
1 2
RMS Cal. = | - 1; (P(Y <Qr) —ar)",

where @)y, is the k-th predicted quantile, gy, is the corresponding quantile level, and P(Y < Qi) =
+ Zfil I[y; < Qg (w;)] is the empirical frequency of the target variables Y = {y;}¥ | being less
than or equal to (. [ stands for the indicator function. A lower RMS Cal. indicates better calibration,
reflecting that the predicted uncertainties are accurate and reliable.

Mean Absolute Calibration Error (MA Cal.): MA Cal. is computed as the average absolute
difference between the predicted quantile levels and the observed frequencies over all quantiles:

K
1
MA Cal. = — STIPY < Qk) — al-
k=1
D.2 Additional Results on the Accuracy and Calibration of Surrogates

In Tables 5-10 and Figures 9-34 we show additional results that complement results shown in Table 2
and Figure 4.
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4.45 0.06 2.42 0.04 1.54 6.17 1.00 0.92 1.00 0.96 0.53 0.02 0.45 0.02 0.46 0.02
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Accuracy Calibration
RMSE | MDAE | MARPD | R? 4 Corr. T RMS Cal. | MA Cal. | Miscal. Area |
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198243 11.88 1242.68  6.52 3.89 11.69 0.99 0.91 1.00 0.95 0.14 0.50 0.13 0.43 0.13 0.43
2107.51 12.21 1297.02  6.92 4.11 12.08 0.99 0.90 0.99 0.95 0.21 0.53 0.19 0.45 0.20 0.46
4020.23  13.66 283339  8.42 9.15 14.42 0.96 0.88 0.99 0.95 0.39 0.54 0.34 0.46 0.35 0.47
2146.05 12.09 128548 6.95 4.14 11.81 0.99 0.90 0.99 0.95 0.22 0.52 0.20 0.45 0.20 0.46
1634.77  3.37 833.97 2.08 6.49 9.40 0.96 0.92 0.98 0.96 0.12 0.02 0.10 0.02 0.10 0.02
169522 347 896.84  2.19 6.88 9.66 0.95 0.92 0.98 0.96 0.06 0.04 0.05 0.04 0.05 0.04
214480 3.98 1456.95 278 9.58 11.52 0.93 0.89 0.98 0.96 0.09 0.12 0.09 0.11 0.09 0.11
1677.90 3.42 874.13  2.16 6.68 9.47 0.95 0.92 0.98 0.96 0.07 0.04 0.06 0.04 0.06 0.04
229745 2215 102143 11.24 3.84 4.89 0.99 0.98 0.99 0.99 0.17 0.35 0.15 0.31 0.15 0.31
2420.66  23.22 1107.53  12.16 4.12 5.16 0.99 0.98 0.99 0.99 0.20 0.39 0.17 0.34 0.17 0.35
453132 3853 3489.26  26.99 9.94 10.26 0.96 0.95 0.99 0.99 0.45 0.51 0.39 0.44 0.40 0.44
242590  23.07 1110.10  12.23 4.13 5.21 0.99 0.98 0.99 0.99 0.20 0.41 0.17 0.36 0.17 0.36
5518.96 221.10 2174.08  103.02 2.76 10.55 0.99 0.93 1.00 0.96 0.38 0.53 0.34 0.46 0.34 0.46
6054.88  230.02 2633.74  108.79 323 11.14 0.99 0.92 1.00 0.96 0.41 0.54 0.36 0.46 0.36 0.47
13456.74  268.02 10465.21  150.15 10.68 14.91 0.96 0.89 1.00 0.96 0.55 0.54 0.47 0.47 0.48 0.47
6098.78  226.36 2635.35 104.72 3.22 10.85 0.99 0.92 1.00 0.96 0.41 0.54 0.36 0.47 0.36 0.47
6100.78 18.95 382030 11.39 9.02 9.21 0.95 0.95 0.98 0.97 0.41 0.47 0.36 0.41 0.37 0.41
6253.26  19.54 3817.53 11.60 9.16 9.46 0.95 0.95 0.98 0.97 0.44 0.47 0.39 0.41 0.39 0.42
7569.56  23.38 4669.03  14.40 11.97 12.29 0.93 0.92 0.98 0.97 0.45 0.48 0.40 0.41 0.40 0.42
6172.90 19.31 3738.50 11.25 9.12 9.36 0.95 0.95 0.98 0.97 0.46 0.48 0.40 0.42 0.40 0.42
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Table 7: Various performat
name indicates if lower or |

GPU Surrogate -
latenc

AutoGluon 23

Ensemble (XGB) 3.3:

AlOD Encemble (LGB)  13.8
Ensemble (Mix) 32

AutoGluon 1.1

A40 Ensemble (XGB) 4.1
Ensemble (LGB) 233

Ensemble (Mix) 4.0

AutoGluon 0.2

Ensemble (XGB) 0.9

H100 Ensemble (LGB) 4.4t
Ensemble (Mix) 0.8

AutoGluon 9.1

Ensemble (XGB) 11.9

RTX2080  Ensemble (LGB) 349
Ensemble (Mix) 11.5

AutoGluon 2.9

Ensemble (XGB) 5.8.

RTX3080  Ensemble (LGB) ~ 34.6
Ensemble (Mix) 5.9:

AutoGluon 0.7

Ensemble (XGB) 3.6(

AGDO0 Ensemble (LGB) 209
Ensemble (Mix) 3.5

AutoGluon 9.4

V100 Ensemble (XGB) 10.2
Ensemble (LGB) 26.3

Ensemble (Mix) 104

AutoGluon 6.8

P100 Ensemble (XGB) 33.8
Ensemble (LGB) 213’

Ensemble (Mix) 38.6

86209

f surrogates evaluated to predict latencies and energies on GPT-M for different GPUs. The arrow on the side of the metric

Cr.
Accuracy Calibration
RMSE | MDAE | MARPD | R? ¢ Corr. T RMS Cal. | MA Cal. | Miscal. Area |

ttencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies
3.59 0.36 1.17 0.06 0.74 6.50 1.00 0.84 1.00 0.92 0.45 0.40 0.39 0.35 0.39 0.36
4.66 0.39 2.30 0.07 1.17 7.94 1.00 0.81 1.00 0.90 0.50 0.36 0.43 0.32 0.44 0.32
16.12 0.39 13.82 0.13 5.37 12.00 0.97 0.81 1.00 0.91 0.57 0.24 0.49 0.21 0.49 0.22
4.50 0.37 2.21 0.07 1.11 7.32 1.00 0.82 1.00 091 0.48 0.37 0.42 0.33 0.43 0.33
1.68 0.35 0.67 0.18 0.28 6.38 1.00 0.98 1.00 0.99 0.45 0.20 0.39 0.18 0.40 0.18
5.58 0.36 3.19 0.20 1.17 6.82 1.00 0.98 1.00 0.99 0.54 0.18 0.47 0.16 0.47 0.16
26.62 0.56 2493 0.45 7.11 13.17 0.97 0.95 1.00 0.99 0.57 0.08 0.49 0.08 0.49 0.08
5.47 0.36 2.94 0.19 1.09 6.63 1.00 0.98 1.00 0.99 0.54 0.19 0.46 0.17 0.47 0.1
0.37 0.07 0.21 0.04 0.24 4.57 1.00 0.95 1.00 0.98 0.22 0.24 0.19 0.21 0.20 0.21
1.19 0.07 0.74 0.04 0.81 4.72 1.00 0.95 1.00 0.98 0.45 0.24 0.39 0.22 0.40 0.22
5.14 0.09 4.54 0.06 4.04 6.25 0.97 0.92 1.00 0.98 0.56 0.31 0.48 0.27 0.48 0.27
1.15 0.07 0.68 0.04 0.76 4.68 1.00 0.95 1.00 0.98 0.45 0.24 0.39 0.21 0.40 0.22
12.76 0.23 6.70 0.12 1.36 3.04 1.00 1.00 1.00 1.00 0.11 0.35 0.07 0.31 0.07 0.31
16.15 0.27 8.86 0.14 1.83 3.35 0.99 1.00 1.00 1.00 0.16 0.32 0.12 0.28 0.12 0.29
41.31 0.70 34.08 0.57 5.73 9.74 0.97 0.97 1.00 1.00 0.37 0.09 0.33 0.07 0.33 0.07
15.82 0.27 8.78 0.15 1.76 3.43 0.99 1.00 1.00 1.00 0.16 0.32 0.12 0.28 0.13 0.28
4.62 1.06 1.70 0.59 0.54 16.97 1.00 0.93 1.00 0.97 0.14 0.20 0.11 0.18 0.11 0.19
8.10 1.08 4.52 0.63 1.28 17.18 1.00 0.93 1.00 0.96 0.26 0.24 0.21 0.21 0.21 0.21
38.99 1.28 36.60 0.87 7.87 2233 0.97 0.90 1.00 0.96 0.55 0.32 0.47 0.27 0.48 0.27
8.17 1.07 4.63 0.63 1.30 16.84 1.00 0.93 1.00 0.96 0.27 0.24 0.22 0.21 0.22 0.21
1.06 0.18 0.46 0.07 0.21 3.97 1.00 0.99 1.00 0.99 0.32 0.20 0.28 0.18 0.28 0.18
4.93 0.19 2.82 0.07 1.16 4.25 1.00 0.99 1.00 0.99 0.52 0.18 0.45 0.16 0.46 0.16
23.81 0.34 22.15 0.23 7.19 10.84 0.97 0.96 1.00 0.99 0.57 0.21 0.49 0.19 0.49 0.19
4.86 0.20 2.57 0.10 1.08 5.25 1.00 0.99 1.00 0.99 0.52 0.10 0.45 0.09 0.46 0.09
11.64 0.35 7.92 0.05 2.60 4.46 0.99 0.99 1.00 0.99 0.37 0.08 0.33 0.07 0.33 0.07
12.67 0.45 8.31 0.10 2.71 7.80 0.99 0.98 1.00 0.99 0.42 0.20 0.37 0.15 0.37 0.15
30.14 0.67 25.11 0.42 6.63 25.46 0.97 0.96 1.00 0.99 0.54 0.40 0.46 0.34 0.47 0.35
12.69 0.46 9.43 0.23 2.81 15.49 0.99 0.98 1.00 0.99 0.42 0.31 0.37 0.25 0.37 0.25
10.69 0.96 4.52 0.42 0.28 2.38 1.00 1.00 1.00 1.00 0.32 0.06 0.28 0.04 0.28 0.04
48.02 1.06 24.22 0.46 1.39 2.63 1.00 1.00 1.00 1.00 0.52 0.03 0.45 0.03 0.46 0.03
241.02  3.03 224.82 233 10.04 11.36 0.97 0.97 1.00 1.00 0.57 0.43 0.49 0.38 0.49 0.38
52.59 1.21 28.81 0.69 1.60 3.61 1.00 0.99 1.00 1.00 0.53 0.08 0.46 0.06 0.47 0.07
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Table 8: Various performai
name indicates if lower or |

CPU Surrogate
late
AutoGluon 171
Xeon Silver Ensemble (XGB) 186
Ensemble (LGB) 507
Ensemble (Mix) 191
AutoGluon 99
Ensemble (XGB) 105
Xeon Gold g cemble (LGB) 203
Ensemble (Mix) 104
AutoGluon 279
Ensemble (XGB) 288
AMD 7502 gocemble (LGB) 566
Ensemble (Mix) 288
AutoGluon 329
Ensemble (XGB) 402
AMD 7513 Ensemble (LGB) 157:
Ensemble (Mix) 439
AutoGluon 642
Ensemble (XGB) 658
AMD 7452 Ensemble (LGB) 841
Ensemble (Mix) 653

66209

f surrogates evaluated to predict latencies and energies on GPT-M for different CPUs. The arrow on the side of the metric

Cr.
Accuracy Calibration
RMSE | MDAE | MARPD | R? 4 Corr. T RMS Cal. | MA Cal. | Miscal. Area |

latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies
235546 16.40 1261.81  10.12 3.50 11.85 0.99 0.94 1.00 0.97 0.08 0.54 0.07 0.46 0.07 0.47
254482 16.74 1379.22  10.25 3.78 12.04 0.99 0.93 1.00 0.97 0.14 0.54 0.12 0.46 0.12 0.47
5981.26  20.00 4830.55 13.47 10.78 15.19 0.97 091 1.00 0.97 0.44 0.54 0.38 0.46 0.39 0.47
2597.53 1648 1464.40  9.92 3.87 11.93 0.99 0.94 1.00 0.97 0.14 0.54 0.12 0.46 0.12 0.47
134244 236 74929  1.37 4.66 5.51 0.99 0.98 0.99 0.99 0.21 0.02 0.19 0.02 0.19 0.02
1399.18  2.46 835.65 149 5.00 5.82 0.99 0.98 0.99 0.99 0.19 0.02 0.17 0.02 0.17 0.02
2439.66 3.88 1886.11  2.99 9.75 9.79 0.96 0.96 0.99 0.99 0.08 0.22 0.07 0.20 0.07 0.20
139596  2.47 795.68  1.47 4.81 5.74 0.99 0.98 0.99 0.99 0.20 0.02 0.18 0.02 0.18 0.02
3832.68 29.64 2039.52  16.81 4.75 4.81 0.99 0.99 0.99 0.99 0.36 0.45 0.32 0.40 0.32 0.40
3927.64  30.61 2083.31  17.06 4.95 4.98 0.99 0.99 0.99 0.99 0.41 0.47 0.36 0.41 0.36 041
695141 5457 5092.86  39.69 11.17 11.02 0.96 0.96 0.99 0.99 0.51 0.51 0.44 0.44 0.44 0.45
3930.69  30.58 2101.56  16.93 4.95 4.94 0.99 0.99 0.99 0.99 0.41 0.46 0.36 0.40 0.36 0.40
6512.33  708.51 1709.93 174.70 1.92 14.36 1.00 0.74 1.00 0.86 0.46 0.55 0.40 0.48 0.40 0.48
7071.85  724.33 2639.66  200.98 2.55 15.96 1.00 0.72 1.00 0.85 0.49 0.55 0.43 0.48 0.43 0.48
18417.64  744.75 15733.28  256.65 11.25 19.37 0.97 0.71 1.00 0.85 0.57 0.56 0.49 0.48 0.49 0.49
7277.61  717.62 3043.23 18358 272 14.82 0.99 0.73 1.00 0.85 0.50 0.55 0.44 0.48 0.44 0.48
8400.06 25.91 4603.69 13.53 8.76 8.80 0.96 0.96 0.98 0.98 0.40 0.43 0.34 0.37 0.35 0.38
8650.39  26.64 4800.54  14.12 9.01 9.17 0.96 0.96 0.98 0.98 0.46 0.47 0.40 0.41 0.41 0.42
11082.78 3329 674691  20.86 13.18 13.17 0.93 0.93 0.98 0.98 0.49 0.51 0.43 0.44 0.43 0.44
8556.66  26.48 5013.65 14.41 8.93 9.06 0.96 0.96 0.98 0.98 0.46 0.47 0.40 0.41 0.40 041
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Table 9: Various performai
name indicates if lower or |

GPU Surrogate -
latenc

AutoGluon 14

Ensemble (XGB) 2.00

A100 Ensemble (LGB) 9.2¢
Ensemble (Mix) 2.1«

AutoGluon 0.6

A40 Ensemble (XGB) 2.4«
Ensemble (LGB) 15.2

Ensemble (Mix) 24

AutoGluon 0.1

Ensemble (XGB) 0.6

HIOO  Ensemble (LGB) 3.6
Ensemble (Mix) 0.5

AutoGluon 2.4

Ensemble (XGB) 52

RTX2080  Ensemble (LGB) 280
Ensemble (Mix) 4.7

AutoGluon 1.4

Ensemble (XGB) 3.9:

RTX3080  Ensemble (LGB) ~ 22.6
Ensemble (Mix) 3.8(

AutoGluon 1.5

Ensemble (XGB) 2.2

AGDO0 Ensemble (LGB) 134
Ensemble (Mix) 2.0¢

AutoGluon 11.6

V100 Ensemble (XGB) 11.5
Ensemble (LGB) 17.7

Ensemble (Mix) 11.8

AutoGluon 5.5

P100 Ensemble (XGB) 21.8
Ensemble (LGB) 131.:

Ensemble (Mix) 239

00809

f surrogates evaluated to predict latencies and energies on GPT-L for different GPUs. The arrow on the side of the metric

Cr.
Accuracy Calibration
RMSE | MDAE | MARPD | R? ¢ Corr. T RMS Cal. | MA Cal. | Miscal. Area |

ttencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies
1.97 0.56 1.14 0.16 0.70 6.63 1.00 0.98 1.00 0.99 0.31 0.39 0.24 0.34 0.24 0.34
2.85 0.58 1.55 0.18 1.00 7.55 1.00 0.97 1.00 0.99 0.30 0.35 0.22 0.31 0.23 0.32
10.63 0.84 9.24 0.54 4.75 18.27 0.97 0.95 1.00 0.99 0.46 0.13 0.41 0.10 0.41 0.10
2.94 0.58 1.68 0.21 1.04 8.26 1.00 0.97 1.00 0.99 0.29 0.34 0.22 0.30 0.22 0.31
0.90 0.23 0.41 0.15 0.27 243 1.00 1.00 1.00 1.00 0.44 0.38 0.39 0.34 0.39 0.35
3.37 0.28 1.81 0.19 1.11 2.88 1.00 1.00 1.00 1.00 0.54 0.36 0.47 0.32 0.47 0.32
17.17 0.95 16.50 0.87 7.69 10.53 0.97 0.97 1.00 1.00 0.57 0.06 0.49 0.05 0.49 0.05
3.34 0.28 1.74 0.19 1.07 2.79 1.00 1.00 1.00 1.00 0.54 0.36 0.47 0.32 0.47 0.33
0.21 0.17 0.11 0.09 0.15 5.37 1.00 0.96 1.00 0.98 0.22 0.16 0.20 0.14 0.20 0.14
0.83 0.18 0.47 0.09 0.63 5.50 1.00 0.96 1.00 0.98 0.48 0.16 0.42 0.14 0.42 0.14
4.11 0.23 3.79 0.15 3.84 8.09 0.97 0.93 1.00 0.98 0.56 0.27 0.48 0.25 0.49 0.25
0.78 0.17 0.41 0.08 0.57 5.41 1.00 0.96 1.00 0.98 0.47 0.16 0.41 0.14 0.41 0.14
3.43 2.58 1.53 1.12 0.59 10.68 1.00 0.90 1.00 0.95 0.16 0.24 0.14 0.22 0.14 0.22
6.98 2.63 4.06 1.15 1.30 1091 1.00 0.90 1.00 0.95 0.16 0.29 0.13 0.25 0.13 0.25
31.84 2.92 30.68 1.42 7.61 13.14 0.97 0.88 1.00 0.95 0.35 0.35 0.32 0.30 0.32 0.31
6.60 2.62 3.46 1.09 1.14 10.92 1.00 0.90 1.00 0.95 0.16 0.30 0.13 0.26 0.13 0.27
213 0.77 0.99 0.66 0.50 6.50 1.00 0.99 1.00 1.00 0.13 0.07 0.12 0.06 0.12 0.06
5.40 0.81 2.89 0.65 1.36 6.59 1.00 0.99 1.00 1.00 0.21 0.07 0.15 0.06 0.16 0.06
25.65 1.71 24.92 1.42 8.86 12.08 0.97 0.96 1.00 1.00 0.52 0.12 0.45 0.11 0.46 0.11
532 0.81 2.78 0.65 1.32 6.56 1.00 0.99 1.00 1.00 0.23 0.07 0.17 0.06 0.17 0.06
2.24 0.61 1.08 0.33 0.74 7.13 1.00 0.98 1.00 0.99 0.48 0.20 0.42 0.17 0.42 0.18
3.06 0.63 1.57 0.34 1.11 7.21 1.00 0.98 1.00 0.99 0.51 0.19 0.44 0.17 0.45 0.17
15.18 1.04 14.58 0.67 7.47 12.16 0.97 0.95 1.00 0.99 0.57 0.03 0.49 0.02 0.49 0.02
2.95 0.63 1.45 0.34 0.99 7.36 1.00 0.98 1.00 0.99 0.50 0.17 043 0.15 0.44 0.15
13.29 2.99 11.30 0.15 423 3.74 0.98 0.86 0.99 0.93 0.52 0.21 0.45 0.19 0.45 0.19
13.66 3.02 10.46 0.25 4.16 6.43 0.98 0.86 0.99 0.93 0.54 0.05 0.47 0.05 0.47 0.05
22.53 3.31 13.23 1.34 6.55 25.45 0.96 0.83 0.99 0.93 0.54 0.34 0.46 0.30 0.47 0.30
13.63 3.03 10.69 0.24 4.35 6.30 0.98 0.86 0.99 0.93 0.55 0.07 0.47 0.06 0.48 0.06
7.81 1.27 4.28 0.40 0.52 1.31 1.00 1.00 1.00 1.00 0.29 0.13 0.26 0.11 0.26 0.12
29.68 1.77 16.52 0.73 1.61 2.18 1.00 1.00 1.00 1.00 0.49 0.06 043 0.06 0.43 0.06
14645  6.60 139.03  5.69 10.74 13.53 0.97 0.97 1.00 1.00 0.57 0.50 0.49 0.44 0.49 0.44
31.74 2.20 18.94 1.30 1.76 3.66 1.00 1.00 1.00 1.00 0.49 0.20 0.42 0.18 0.43 0.18
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Table 10: Various perform:
name indicates if lower or |

CPU Surrogate -
late:

AutoGluon 63(

Xeon Silver Ensemble (XGB) 75!
Ensemble (LGB) 282

Ensemble (Mix) 79:

AutoGluon 180

Ensemble (XGB) 207

Xeon Gold  pcemble (LGB) 227
Ensemble (Mix) 195

AutoGluon 97!

Ensemble (XGB) 106

AMD 7502 ppcemble (LGB) 296
Ensemble (Mix) 107

AutoGluon 134

Ensemble (XGB) 182

AMD 7513 ppcemble (LGB) 843
Ensemble (Mix) 199

AutoGluon 761

Ensemble (XGB) 89!

AMD 7452 ppcemble (LGB) 326
Ensemble (Mix) 92(

T0809

of surrogates evaluated to predict latencies and energies on GPT-L for different CPUs. The arrow on the side of the metric

Cr.
Accuracy Calibration
RMSE | MDAE | MARPD | R? 1 Corr. T RMS Cal. | MA Cal. | Miscal. Area |

latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies latencies energies
864.06 7.70 494.13 393 2.54 9.84 1.00 0.96 1.00 0.98 0.17 0.44 0.15 0.38 0.15 0.39
1025.05 7.81 578.99  4.01 2.96 10.02 1.00 0.96 1.00 0.98 0.08 0.42 0.07 0.36 0.07 0.37
3236.41  9.97 273385  6.99 11.64 14.87 0.97 0.93 1.00 0.98 0.41 0.48 0.37 0.41 0.37 0.42
1061.38  7.73 619.52  3.82 3.12 10.00 1.00 0.96 1.00 0.98 0.06 0.42 0.05 0.36 0.06 0.37
4993.72  9.06 961.39 1.64 12.44 12.52 0.65 0.60 0.81 0.77 0.04 0.22 0.03 0.20 0.03 0.20
517230 921 119299 2.01 14.28 14.39 0.62 0.58 0.79 0.76 0.23 0.36 0.21 0.32 0.21 0.32
5208.21 9.42 154631  2.52 16.82 17.10 0.62 0.56 0.80 0.76 0.32 0.42 0.28 0.37 0.28 0.37
5056.95 9.17 1058.07 1.74 13.15 13.29 0.64 0.59 0.80 0.77 0.21 0.35 0.18 0.31 0.18 0.31
140141 1513 637.77 747 3.47 4.78 0.99 0.99 1.00 0.99 0.32 0.46 0.29 0.40 0.29 0.41
1488.69  15.60 747.04  8.16 3.90 5.16 0.99 0.99 1.00 0.99 0.36 0.47 0.32 0.41 0.32 0.41
3487.50  29.94 2788.52 22.54 12.75 13.26 0.96 0.96 1.00 0.99 0.53 0.54 0.46 0.47 0.46 0.47
1504.92  15.53 77137 8.19 3.88 4.97 0.99 0.99 1.00 0.99 0.34 0.44 0.30 0.38 0.31 0.39
2336.42 193.98 74738 9212 1.55 13.84 1.00 0.91 1.00 0.96 0.48 0.55 0.42 0.48 0.42 0.48
2867.87  198.08 1203.03  97.95 2.32 14.26 1.00 0.91 1.00 0.95 0.53 0.56 0.45 0.48 0.46 0.48
9602.56  224.77 8622.26  129.98 12.73 18.19 0.97 0.88 1.00 0.95 0.57 0.56 0.49 0.48 0.49 0.49
2967.07  197.03 1402.25  103.07 2.56 14.02 1.00 091 1.00 0.95 0.53 0.56 0.46 0.48 0.46 0.49
1101.54  6.15 53575 272 2.52 4.20 1.00 0.99 1.00 1.00 0.05 0.26 0.04 0.23 0.05 0.23
126225  6.44 636.53  3.02 2.98 4.55 1.00 0.99 1.00 1.00 0.14 0.29 0.12 0.26 0.13 0.26
374771 1255 329440 9.69 12.28 12.92 0.97 0.96 1.00 0.99 0.50 0.50 0.43 0.43 0.44 0.44
1277.03  6.47 681.07 298 3.07 4.57 1.00 0.99 1.00 0.99 0.14 0.29 0.13 0.26 0.13 0.26
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E Comparison with NAS-Bench-301

Given the immense size of the search spaces (approximately 106), training architectures from
scratch is impractical. Our work is inspired by surrogate benchmarks such as those proposed by
[88]. However, HW-GPT-Bench presents several key differences compared to NB301. First, unlike
NB301, which trains architectures from scratch—impractical for larger models and dataset sizes—we
utilize an efficient weight-sharing-based supernet. The performance of the inherited subnetwork
directly serves as a reliable performance estimation proxy, and these architectures can be fine-tuned if
necessary. We also employ a sandwich scheme to train the supernet by sampling the largest, smallest,
and a set of random architectures. Second, while NB301 uses the DARTS pre-training pipeline, we
introduce three novel search spaces and design a training pipeline specifically for supernet training.
Additionally, we focus on the application domain of language modeling, in contrast to NB301’s
primary focus on image classification. Lastly, unlike NB301, our work supports a range of hardware
devices and provides well-calibrated latency predictions. To our knowledge, we are the first to study
the calibration of surrogate models for latency predictions.

F Importance Analysis

In this section, we provide details on the methods we used throughout the paper to analyze and
interpret the data collected from the HW-GPT-Bench search space.

F.1 OLS Covariate Analysis.

Ordinary Least Squares (OLS) is a statistical method used for estimating the parameters of a linear
regression model. The primary goal of OLS is to minimize the sum of the squared residuals, which are
the differences between the observed values and the values predicted by the model. In the context of
OLS, covariate analysis involves examining the relationships between independent variables (covari-
ates) and the dependent variable. This analysis helps to understand how each covariate contributes to
the prediction of the dependent variable and the overall model performance. To fit the linear regression
model and conduct the analysis we used statsmodel.regression.linear model.0LS '°.

F.1.1 Key Concepts in OLS

Linear Regression Model: The model assumes a linear relationship between the dependent variable
Y (perplexity) and one or more independent variables (covariates). The general form of the model is:

! !
Y =fo+Bie+ Bal + Y Bivah' + Y Birayim’ + Bagsb+e,

=1 i=1

where Sy is the intercept, 3; (for i = 1,...,2[ + 3) are the coefficients of the covariates, and ¢
represents the error term. [ is the number of layers, e is the embedding dimension, m* and h* are the
MLP ratio and number of heads on layer ¢, respectively, and b is the bias.

Objective of OLS: The goal is to estimate the coefficients 8 such that we minimize the sum of the
squared residuals (SSR):

N
SSR=7 (Yi-Yi)?,
=1

where Y; is the observed ground truth perplexity and Y; is the predicted perplexity by the Linear
Regression model.

F.1.2 Covariate Analysis

Covariate analysis in the context of OLS involves investigating the effect of each independent variable
(embedding dimension, number of layers, etc.) on the dependent variable, i.e. perplexity. This
includes:

Yhttps://www.statsmodels.org/dev/examples/notebooks/generated/ols . html
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 Estimating Coefficients: Determining the values of 31, 82, .. ., B2;+3 which represent the change
in perplexity for a one-unit change in the respective architectural dimension, holding other variables
constant.

* Statistical Significance: Assessing the significance of each coefficient using t-tests. The null
hypothesis Hj states that the coefficient is zero (no effect). The p-value indicates whether the null
hypothesis can be rejected.

» Standard Errors: Providing a measure of the variability of the coefficient estimates. Smaller
standard errors suggest more precise estimates.

* Goodness-of-Fit: Evaluating how well the model explains the variability of perplexity using
metrics such as R-squared and adjusted R-squared. R-squared indicates the proportion of the
variance in perplexity that is predictable from the independent variables.

The results of the OLS analysis for perplexity on the collected samples are presented below. These
results include:

Coefficients (3): Estimates for each covariate.

Standard Errors: Indicate the precision of the coefficient estimates.

t-Values: Used to test the hypothesis that a coefficient is significantly different from zero.
P-Values: Indicate the significance level of each coefficient.

R?: The proportion of the variance in the dependent variable explained by the model.

AN

Adjusted R-squared: Adjusted for the number of predictors in the model, providing a more
accurate measure of goodness-of-fit for models with multiple covariates.

OLS Regression Results GPT-L

Dep. Variable: perplexity  R-squared: 0.901
Model: OLS Adj. R-squared: 0.901
Method: Least Squares F-statistic: 1.817e+04
No. Observations: 10000  AIC: 3.395e+04
Df Residuals: 9994  BIC: 3.399e+04
Df Model: 5
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
const 23.6263 0.013 1788.886 0.000 23.600 23.652
num_layers -0.0426 0.013 -3.227 0.001 -0.069 -0.017
embed_dim -3.9787 0.013  -301.209 0.000 -4.005 -3.953
mean_mlp_ratio -0.1164 0.013 -8.812 0.000 -0.142 -0.091
mean_heads -0.0612 0.013 -4.634 0.000 -0.087 -0.035
bias -0.0630 0.013 -4.769 0.000 -0.089 -0.037
Omnibus: 75511.319 Durbin-Watson: 2.026
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 1537.046
Skew: -0.635 Prob(JB): 0.00
Kurtosis: 1.559  Cond. No. 1.03

OLS Regression Results GPT-M
Dep. Variable: perplexity  R-squared: 0.914
Model: OLS Adj. R-squared: 0.914
Method: Least Squares F-statistic: 2.117e+04
No. Observations: 10000  AIC: 3.791e+04
Df Residuals: 9994  BIC: 3.796e+04
https://doi.org/10.52202/079017-1944 60807



Df Model: 5
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
const 28.1305 0.016  1747.009 0.000 28.099 28.162
num_layers -0.0983 0.016 -6.104 0.000 -0.130 -0.067
embed_dim -5.2315 0.016  -324.795 0.000 -5.263 -5.200
mean_mlp_ratio -0.1445 0.016 -8.975 0.000 -0.176 -0.113
mean_heads -0.0744 0.016 -4.623 0.000 -0.106 -0.043
bias -0.0650 0.016 -4.035 0.000 -0.097 -0.033
Omnibus: 66013.096  Durbin-Watson: 2.021
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 1509.031
Skew: -0.600 Prob(JB): 0.00
Kurtosis: 1.524 Cond. No. 1.03

OLS Regression Results GPT-S

Dep. Variable: perplexity  R-squared: 0.949
Model: OLS Adj. R-squared: 0.949
Method: Least Squares F-statistic: 3.754e+04
No. Observations: 10000  AIC: 3.667e+04
Df Residuals: 9994  BIC: 3.671e+04
Df Model: 5
Covariance Type: nonrobust

coef std err t P>|t]| [0.025 0.975]
const 32.3973 0.015  2141.130 0.000 32.368 32.427
num_layers -0.4912 0.015 -32.459 0.000 -0.521 -0.462
embed_dim -6.5321 0.015  -431.656 0.000 -6.562 -6.502
mean_mlp_ratio -0.2199 0.015 -14.530 0.000 -0.250 -0.190
mean_heads -0.2739 0.015 -18.096 0.000 -0.304 -0.244
bias -0.0251 0.015 -1.661 0.097 -0.055 0.005
Omnibus: 88675.889 Durbin-Watson: 2.044
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 1321.623
Skew: -0.544 Prob(JB): 1.03e-287
Kurtosis: 1.589 Cond. No. 1.03

F.2 Power-laws for GPT-wide spaces

We define the power-law fits for GPT-wide spaces below. Similar to the observation in 4, we see that
the embedding size has the most effect on perplexity, followed by number of layers, mlp expansion
ratio and number of heads. The bias plays a minimal role in determining perplexity of an architecture.

GPT-S-wide: y = 1116.453 - [~0-212 . ¢=0-3770 _ 1, —0.0514 , ~0.0647 _;~0.000190_
GPT-M-wide: y — 618.0753 - (01795 . =0:3401 ), —0.0711 _}~0.0556 _ —0.0050
GPT-L-wide: y = 498.9920 . [~0-1659 . o=0.3204 ), —0.0692  5~0.053  —~0.0081

F.3 Recursive Feature Elimination
Recursive Feature Elimination (RFE) is a feature selection method used in machine learning to

identify the most relevant features in a dataset. It works by recursively fitting a model and removing
the least important feature(s) based on model coefficients or importance scores until the maximum

60808

https://doi.org/10.52202/079017-1944



number of features is reached. Features in our case are the architectural choices, i.e. embedding
dimension size, number of layers, etc. The process involves the following steps:

1. Model Fitting: The model is initially trained on the entire set of features.

2. Feature Ranking: Features are ranked based on their importance scores derived from the
fitted model.

3. Feature Elimination: The least important feature(s) are removed from the dataset.

4. Repetition: Steps 1-3 are repeated recursively on the pruned feature set until the desired
number of features is reached or only a single feature remains.

We implement RFE using sklearn !!, which provides an efficient and easy-to-use RFE function. We
employ a RandomForest regressor as the base model due to its ability to handle high-dimensional
data and capture non-linear relationships. Specifically, we use a RandomForest regressor with 50
estimators, which balances model complexity and computational efficiency. In Figures 35, 36 and 37,
we present the ranking of all search space dimensions for GPT-S, GPT-M and GPT-L spaces.

Feature Importance from Recursive Feature Elimination (RFE)
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Figure 35: Detailed feature ranking from RFE for GPT-S.
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Figure 36: Detailed feature ranking from RFE for GPT-M.

G Details on Empirical Attainment Function (EAF)

Running multi-objective optimization algorithms multiple times can yield different Pareto fronts.
Computing uncertainty estimates of Pareto fronts over multiple runs of an algorithm is important to
ensure that we appropriately compare different algorithms in a statistically meaningful way. Simply
superimposing the Pareto fronts across multiple runs is insufficient in depicting how the Pareto fronts
tend to vary. The Empirical Attainment Function (EAF) [25, 47] is a statistical measure used in

Uhttps://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.
html
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Figure 37: Detailed feature ranking from RFE for GPT-L.

multi-objective optimization to describe the distribution of outcomes achieved by an optimization
algorithm over multiple runs. It provides a way to empirically estimate the probability that a given
point in the objective space is attained (i.e., dominated or matched) by the solutions generated by the
algorithm.

For two solution vectors of the multi-objective function, y and z, y weakly dominates z (y =< z) if
the following conditions hold:

1. Not worse on any objective: y is at least as good as z on all objectives. This means for each
objective function, the value in y is either equal to or better than the corresponding value in z.

2. Strictly better on at least one objective (or indifferent on all): y must be strictly better than z
on at least one objective function. Alternatively, it can be equal on all objectives.

Given a set of Pareto fronts { F', ..., F™} obtained from n independent runs with different random
seeds, the EAF is defined by the following empirical attainment function:

e(z) = %ZH[FZ‘ <z,

where £(z) represents the EAF value for a specific objective vector z in the objective space. I[F" < z]
is an indicator function that is 1 if the objective vector z is weakly dominated by the F?, i.e. the
Pareto front from the i-th run, and 0 otherwise. F"* < z means that there exists at least an objective
vector y in F* at least as good as z. This doesn’t necessarily mean every single run achieved a better
outcome than z, but at least one did. In simpler terms, the EAF value at a given objective vector
z represents the portion of independent runs where a Pareto front achieved at least that good of an
objective vector (weakly dominated z).

The EAF can be used to visualize uncertainty in the Pareto front by plotting different EAS levels. For
example, S'/2 represents the set of objective vectors that are weakly dominated by at least half of the
independent runs (50% EAF level). To compute the Empirical Attainment Surfaces (EAS) in this
paper we used the implementation from Watanabe [80] 2.

H Inheriting v/s Finetuning Subnetworks

We validate the effectiveness of out perplexity surrogate by inheriting randomly sampled 100 subnet-
works and comparing the correlation between the perplexity on simply inheriting the subnetworks
v/s finetuning the subnetworks further upon inheritance for 5000 update steps. We observe that the
inherited subnetwork performance strongly correlates with fine-tuned subnetworks as indicated by
Table 11.

I Distribution of Architecture Latencies

We fit a kernel-density-estimator to the collected subnetwork latencies. As observed in Figure 38 and
39, the distribution of CPU latency is more noisier than GPU latency.

Zhttps://github.com/nabenabe0928/empirical -attainment-func
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Supernet  Kendall-Tau

GPT-S 0.9626
GPT-M 0.9580
GPT-L 0.9286

Table 11: Kendall-Tau values between perplexities after inheriting and perplexities after finetuning
(for 5000 steps) for different Supernets for a set of 100 random architectures

Kernel Density Estimate of Latency Kernel Density Estimate of Latency
=1 A100 Latency CPU Xeon Gold Latency

234 26 2600 2600
Latency Latency

Figure 38: GPU-A100 Figure 39: CPU-Xeon Gold

Figure 40: Distribution of Latencies on different devices

J Scatter Plots for GPT-wide

We introduced 4 new search spaces (with more widely spaced choices), mainly GPT-S-wide, GPT-
M-wide, GPT-L-wide and GPT-XL-wide and present the scatter plots on the collected ground truth
subnetworks for these spaces in Figure 41.

K Multi-objective NAS algorithms

In this section, we provide more details on the multi-objective NAS methods we run on HW-GPT-
Bench in Section 5. We use their implementation in SyneTune [62]'3.

* Random Search (RS). RS has been shown to be a strong baseline for single [40] and multi-
objective [10, 31, 69] architecture search. For this baseline we sample architectures uniformly at
random from the search space and then compute the Pareto-Front from these architecture samples.
In larger search space, random search, while being embarrasingly parallel and often performant, is
not guaranteed to yield the optimal architectures.

* Multi-Objective Regularized Evolution Algorithm (MOREA). Regularized Evolution (RE) or
Aging Evolution [59] has been quite successfully applied for neural architecture search. Regularized
Evolution works by evolving a population of candidates using mutation and periodically discarding
the oldest members of the population, inducing a regularization effect. In SyneTune RE is extended
to Multi-Objective Regularized Evolution (MOREA) by scoring the population via a multi-objective
priority based on non-dominated sorting. Parents are then be sampled from the population based
on this priority score.

* Non-dominated Sorting Genetic Algorithm IT (NSGA-II). NSGA-II [16], is a multi-objective
evolutionary algorithm to obtain a Pareto-Set of architectures. It employs non-dominated sorting
to rank architecures based on their dominance relationships and crowding distance to maintain
a diverse population. Through selection, crossover, and mutation, NSGA-II iteratively evolves
populations toward the Pareto front, offering a range of trade-off solutions.

* Local Seach (LS). SyneTune adapts LS to explore the vicinity of Pareto-optimal points in multi-
objective optimization problems, aiming to iteratively refine Pareto-optimal solutions solutions
within defined neighborhoods. The method is described in more detail in Klein et al. [36].

* Bayesian Optimization with Random Scalarizations (RSBO). RSBO [55] uses an acquisition
function that takes as input multiple random scalarizations of the objectives being optimized, to
obtain the Pareto-optimal set which minimizes the Bayesian regret.

Bhttps://syne-tune.readthedocs.io/en/latest/getting_started.html#
supported-multi-objective-optimization-methods
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Figure 41: Trade-off scatter plots for GPT-M-wide, GPT-L-wide and GPT-XL-wide

* Bayesian Optimization with Linear Scalarizations (LSBO). Similar to RSBO, this method
optimizes a single objective corresponding to a fixed linear combination of two objectives instead
of randomizing the scalarizations at each BO iteration.

* Expected Hypervolume Improvement (EHVI). EHVI [15] is a Bayesian optimization method
with an acquisition function designed to efficiently explore the Pareto front in multi-objective
optimization problems. It quantifies the expected improvement in hypervolume, which measures
the volume of the objective space dominated by Pareto-optimal solutions, that a candidate solution
can offer. EHVI guides the search towards regions of the objective space likely to contain better
trade-offs, aiding in the discovery of diverse Pareto-optimal solutions.

* Multi-objective Asynchronous Successive Halving (MOASHA). MOASHA [65] is a multi-
fidelity approach that leverages an asynchronous successive halving scheduler [41] along with
non-dominating sorting for budget allocation. It employs the NSGA-II selection mechanism and
the e-net [63] exploration strategy, which ranks candidates within the same Pareto set by iteratively
choosing the one with the greatest Euclidean distance from the previously selected candidates.

L Additional experiments with MOO methods

In addition to the results presented in the paper we also run MOO methods on our benchmark for
latencies and perplexity across different devices and search spaces in Figures 42-54. We present the
EAFs resulting from running the baselines for multiple seeds and the hypervolume of the baselines
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over the number of surrogate evaluations. Furthermore, we also present the results of running
different MOO methods on the energy-perplexity objectives for different devices on GPT-L in Figures
55-59. Interestingly for these two objectives local search is often very performant at higher budgets,
outperforming other baselines like NSGA-2 and EHVI.

L.1 Experiments with 2 Objectives

We observe from Figures 42-59 that NSGA-II and EHVI are amongst the top performing methods
(even at lower budgets). LS typically has a low hypervolume in the beginning, however, often
outperforms other methods with enough budget.
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Figure 42: Pareto fronts and HV over time on A100 for GPT-S (first two), GPT-M (second two) and
GPT-L (last two).
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Figure 43: Pareto fronts and HV over time on A40 for GPT-S (first two), GPT-M (second two) and
GPT-L (last two).
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Figure 44: Pareto fronts and HV over time on V100 for GPT-S (first two), GPT-M (second two) and
GPT-L (last two).
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Figure 45: Pareto fronts and HV over time on RTX3080 for GPT-S (first two), GPT-M (second two)
and GPT-L (last two).
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Figure 46: Pareto fronts and HV over time on P100 for GPT-S (first two), GPT-M (second two) and
GPT-L (last two).
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Figure 47: Pareto fronts and HV over time on A6000 for GPT-S (first two), GPT-M (second two) and
GPT-L (last two).
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Figure 48: Pareto fronts and HV over time on RTX2080 for GPT-S (first two), GPT-M (second two)
and GPT-L (last two).
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Figure 49: Pareto fronts and HV over time on H100 for GPT-S (first two), GPT-M (second two) and
GPT-L (last two).
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Figure 50: Pareto fronts and HV over time on CPU Xeon Gold for GPT-S (first two), GPT-M (second
two) and GPT-L (last two).
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Figure 51: Pareto fronts and HV over time on CPU Xeon Silver for GPT-S (first two), GPT-M (second
two) and GPT-L (last two).
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Figure 52: Pareto fronts and HV over time on CPU AMD 7452 for GPT-S (first two), GPT-M (second
two) and GPT-L (last two).
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Figure 53: Pareto fronts and HV over time on CPU AMD 7402 for GPT-S (first two), GPT-M (second
two) and GPT-L (last two).

60814 https://doi.org/10.52202/079017-1944



EAF for Latencies on CPU_AMD,_7513

11000

H B
2 < w0
H g
23 = oo
1 #s o
20 —s 530 <000
— w0 o
2 —woren wonsia 2000

o F :
mber o St St F

EAF for Latencies on CPU_AMD_7513

U over Time for Latencies on CPU_AMD_7513 EAF for Latencies on CPU_AMD_7513

1V over Time for Latencies on CPU_AMD_7513

o { s
B woom! el
3 B
> 60000 = MOREA
3 i
s ¥
. 50000 H Rs30
e . H { ey
%5 . 2 o000 { HORSHA
g H i
£ = H
5 20000 i
30 —w e 30 —s B |\SUS—
— s - w0 20000 1
ot Lt ISGA2. 29 — 1580 GA2 ™
— MOREA MOASHA . — WOREA bl 10000 s
30 1000 1500 2000 2300 3000 m = r3 350 1050 150 2000 2500 3000 T 5 3 & %

Numbe of St vt ety NambaratSrsgte s 2 ey ™

Figure 54: Pareto fronts and HV over time on CPU AMD 7513 for GPT-S (first two), GPT-M (second

two) and GPT-L (last two).

HV over Time for Energy on A100 EAF for Energy on AL00

HV over Time for Energy on A40 EAF for Energy on AdD

HV over Time for Energy on H100 EAF for Energy on HLOD
—— =

o] = N T
1 - s 1t
‘, R i
o1 h - MOREA 36 |
i £
it el ‘*z
; ot O ¥ .
£ Edhe e |2 c il :
H £ 3 - £ |8 H
32 .‘—
w - )
" — woReA woasia | O 28 — MOREA MoASHA 20
500 1000 2500 3000 8 2 24 el 500 1000 1500 2000 2500 3000 500 2000 00
Number of Surrogate Evaluations Perplexity. Number of Surrogate Evaluations. Number of Surrogate Evaluations.
Figure 55: Pareto Fronts and HV on A100 (first 2), A40 (second 2) and H100 (last 2) for GPT-L
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L.2 Experiments with 3 Objectives

In addition, we also use our benchmark to optimize energies and latencies, in conjunction with
perplexity, on different devices for the GPT-L space, as presented in Figure 60 and Figure 61. We run
these experiments for a smaller time budget of 3 hours using SyneTune. We observe that at smaller
time budgets random search and MOO methods based on Bayesian optimization are the top methods.

Latency A100 and Energy A100 Latency A40 and Energy A40 Latency A6000 and Energy A6000 Latency H100 and Energy H100

Hypervolume

Hypervolume
Hypervolume

Hypervolume

S & © & S
© & P & F &Y
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Figure 60: Hypervolumes of baselines optimizing for perplexity, latency and energy usage on A100,
A40, A6000 and H100.
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Figure 61: Hypervolumes of baselines optimizing for perplexity, latency and energy usage on
RTX2080, RTX3080, V100 and P100.

M Correlations between different metrics

Figures 62,63, 64 show the Kendall-7 rank correlation coefficient across all the metrics supported
in HW-GPT-Bench. Given two sets of n observations {y;}? ; and {z;} ,, the 7 coefficient is
computed as:

C—-D

B in(n—1)

where C and D are the number of concordant and discordant pairs, respectively. For every pair (i, )
where 1 <i < j < n:

1. A pair is concordant if the order of both elements in the pair is the same in both datasets:
(y; < yj;and z; < zj) or (y; > y; and z; > z;).

2. A pair is discordant if the order of the elements in the pair is different in the two datasets:
(y; <yjand z; > z;) or (y; > y; and z; < z;).

To compute these values, we use the same 10k (n = 10000) ground truth observations that we use to
train the surrogate models. For metrics that contain multiple observations, such as latency and energy
usage, we use the median value. For easier visualization, we stratify the aforementioned correlation
plots by metrics relevant to GPUs (Figures 68,69, 70) and CPUs (Figures 65,66, 67).
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Figure 62: Cross-Metric kendall-tau correlation plots for GPT-S
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Figure 63: Cross-metric Kendall-7 correlation plots for GPT-M.
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Figure 64: Cross-metric Kendall-7 correlation plots for GPT-L.
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Figure 65: Cross-metric Kendall-7 correlation plots for GPT-S (only CPU devices).
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Figure 66: Cross-metric Kendall-7 correlation plots for GPT-M (only CPU devices).
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Figure 67: Cross-metric Kendall-7 correlation plots for GPT-L (only CPU device).
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Figure 68: Cross-metric Kendall-7 correlation plots for GPT-S (only GPU devices).

https://doi.org/10.52202/079017-1944

60823



-1.00
-0.95

0.90

0.85
0.80

rtx3080_en

f16_mem
bfl6_mem
flops
params
v100_en
P100_lat
al00_lat
h100_lat
a40_lat
a6000_lat
rtx2080_lat
rtx3080_lat

v100_lat

rtx2080_en
1/perplexity
accuracy

h100_en

a40_en
a6000_en

al00_en

100 - P100_en

0.80

rtx3080_en
bfl6_mem
flops
params
a40_lat
a6000_lat
rtx2080_lat
rtx3080_lat
rtx2080_en
1/perplexity
accuracy
P100_en -

Figure 69: Cross-metric Kendall-7 correlation plots for GPT-M (only GPU devices).
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Figure 70: Cross-metric Kendall-7 correlation plots for GPT-L (only GPU devices).
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N Additional ECDF plots

In this section, we present the ECDF plots of perplexity on different search space scales, computed
using the 10k ground truth observations from the supernetwork. The largest set, C', contains all
architectures for a fixed embedding dimension size. B, a subset of C, contains all architectures

that, in addition to the fixed embedding dimension e, have the number of layers set

to the largest

possible value [ = I3, namely 12, 24, and 36 for GPT-S, -M and -L, respectively. A, a subset of B,
contains all architectures that, in addition to the number of layers set to largest possible values, have
the average MLP ratio and number of heads greater than a fixed threshold. We show results for all 3

Transformer scales: GPT-S, -M and -L, in Figures 71, 72 and 73, respectively.
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Figure 71: ECDF plots for GPT-S.
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Figure 72: ECDF plots for GPT-M.
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Figure 73: ECDF plots for GPT-L.

O HW-GPT-Bench API Examples

(c) Embedding dimension 1280

from hwgpt.api import HWGPT

api = HWGPT(search_space="m") # initialize API for GPT-M
random_arch = api.sample_arch() # sample random arch
api.set_arch(random_arch) # set
flops =
params =

arch

api.query(metric="flops") # query flops for the architecture
api.query(metric="params") # query params for the architecture

floatl6_memory = api.query(metric="f16mem") # query floatl6 memory for the architecture
bfloat16_memory = api.query(metric="bfi6mem") # query bfloat16 memory for the architecture

Snippet 2: Hardware agnostic metric using the HW-GPT-Bench API.
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from hwgpt.api import HWGPT

api = HWGPT(search_space="m") # initialize API for GPT-M

random_arch = api.sample_arch_gt() # sample random arch from amongst the 10k ground truth archs

api.set_arch(random_arch) # set arch

results = api.query(gt=True) # get all ground truth results for the architecture

energy = api.query(metric="energy",gt=True) # get ground truth energy observations for all
architectures

rtx2080 = api.query(device="rtx2080",gt=True) # get all hw metrics for rtx2080 device

Snippet 3: Ground truth observations using the HW-GPT-Bench API.

from hwgpt.api import HWGPT
api = HWGPT(search_space="m") # initialize API for GPT-M

nsga2_results_2d = api.run_baseline(method="nsga2", device="h100", metrics=["energy","perplexity"],
ppl_predictor="mlp") # nsga-2d
nsga2_results_3d = api.run_baseline_3d(method="nsga2", device="h100", metrics=["energy","perplexity",'

latency"],ppl_predictor="mlp") #nsga-3d

Snippet 4: Running MOO with 3 objectives using the HW-GPT-Bench API.

P HW-GPT-Bench Release and Maintainance

HW-GPT-Bench will be distributed under the Apache 2.0 License, tailored explicitly for academic
research. The Apache 2.0 License is chosen for its permissive characteristics within the open-source
community, permitting users to freely utilize, modify, and distribute the software under the condition
of proper attribution and adherence to Apache 2.0 stipulations. This licensing strategy is pivotal in
fostering broad adoption of HW-GPT-Bench.

In addition to its release, we are committed to fostering community engagement with the benchmark.
We will actively monitor and respond to inquiries, issues, and suggestions related to HW-GPT-Bench,
thereby cultivating a collaborative environment conducive to ongoing improvement and innovation.

Looking forward, our development roadmap includes plans to expand HW-GPT-Bench to encompass
a wider range of devices and language model spaces. This expansion aims to bolster the benchmark’s
utility and relevance, accommodating emerging research demands and technological advancements
in the field

Q Limitations and Future Work

While our work is the first one to efficiently benchmark different decoder-only architectures on a
variety of gpu and cpu devices, there are several possible enhancements possible, which we leave
to future work. Firstly, currently the benchmark is limited to decoder only models and we believe
it would be interesting to extend to encoder-decoder models and state-space models. Secondly,
currently the benchmark trains supernetworks from scratch and scaling to very large models (eg:
Llama 3.1 405b), would require expensive retraining. Initializing from pretrained models and
exploring parameter-efficient finetuning methods for supernet finetuning, is important to avoid
retraining and make most efficient use of available compute. Furthermore, since the benchmark is
developed primarily in an academic setting, we couldn’t profile the architectures on edge devices and
specifically edge devices which are optimized for LLM inference. However, provide a plug and play
framework by releasing all our profiling scripts and hope for community contributions to enhance the
benchmark for newer hardware devices.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and intro accurately reflect the contributions
and scope of our paper

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the potential limitations and braoder impact of our work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not present any theoritical results in our paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release the hyperparameters used in our paper, our code, raw datasets,
pretrained models and a open-source api to ensure our benchmark results are reproducible.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We release our code, the hyperparameters used and pretrained model check-
points, raw result files etc.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In our code and in the appendix of the paper we present the dataset splits used,
the hyperparameters used.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform latency and energy profiling across multiple evaluations, but
surrogates which incorporate uncertainties directly. We also perform search using the
baselines on our benchmark on multiple seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes we provide details on the hardware used and a detailed table with search
times in the appendix of the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics and we make sure to
preserve the anonymity of our submission.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we discuss the potential positive and negative impacts of the work in the
"Conclusions, Broader Impact and Implications" section 6.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We use and release datasets which are open-source and released under the
Apache 2.0 license. These models are trained on open-source datasets and we intend the use
of these models only for research purposes.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We release our own code and cite appropriately in cases where we use code
and pretrained models from other repositories.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes we release our code and models under the Apache 2.0 license and our
code and models are well documented.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our research is not dependent on/based on human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not collect data on human subjects for our research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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