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Abstract

We introduce Neural Conditional Probability (NCP), an operator-theoretic approach
to learning conditional distributions with a focus on statistical inference tasks. NCP
can be used to build conditional confidence regions and extract key statistics such
as conditional quantiles, mean, and covariance. It offers streamlined learning via a
single unconditional training phase, allowing efficient inference without the need
for retraining even when conditioning changes. By leveraging the approximation
capabilities of neural networks, NCP efficiently handles a wide variety of com-
plex probability distributions. We provide theoretical guarantees that ensure both
optimization consistency and statistical accuracy. In experiments, we show that
NCP with a 2-hidden-layer network matches or outperforms leading methods. This
demonstrates that a a minimalistic architecture with a theoretically grounded loss
can achieve competitive results, even in the face of more complex architectures.

1 Introduction

This paper studies the problem of estimating the conditional distribution associated with a pair of
random variables, given a finite sample from their joint distribution. This problem is fundamental
in machine learning, and instrumental for various purposes such as building prediction intervals,
performing downstream analysis, visualizing data, and interpreting outcomes. This entails predicting
the probability of an event given certain conditions or variables, which is a crucial task across
various domains, ranging from finance (Markowitz, 1958) to medicine (Ray et al., 2017), to climate
modeling (Harrington, 2017) and beyond. For instance, in finance, it is essential for risk assessment to
estimate the probability of default given economic indicators. Similarly, in healthcare, predicting the
likelihood of a disease, given patient symptoms, aids in diagnosis. In climate modeling, estimating
the conditional probability of extreme weather events such as hurricanes or droughts, given specific
climate indicators, helps in disaster preparedness and mitigation efforts.

According to Gao and Hastie (2022), there exist four main strategies to learn the conditional distribu-
tion. The first one relies on the Bayes formula for densities and proposes to apply non-parametric
statistics to learn the joint and marginal densities separately. However, most of non-parametric
techniques face a significant challenge known as the curse of dimensionality (Scott, 1991; Nagler and
Czado, 2016). The second strategy, also known as Localization method, involves training a model
unconditionally on reweighted samples, where weights are determined by their proximity to the
desired conditioning point (Hall et al., 1999; Yu and Jones, 1998). These methods require retraining
the model whenever the conditioning changes and may also suffer from the curse of dimensionality if
the weighting strategy treats all covariates equally. The third strategy, known as Direct Learning of
the conditional distribution involves finding the best linear approximation of the conditional density
on a dictionary of base functions or a kernel space (Sugiyama et al., 2010; Li et al., 2007). The
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performance of these methods relies crucially on the selection of bases and kernels. Again for
high-dimensional settings, approaches that assign equal importance to all covariates may be less
effective. Finally, the fourth strategy, known as Conditional Training, involves training models to
estimate a target variable conditioned on certain covariates. This is typically based on partitioning the
covariates space X into sets, followed by training models unconditionally within each partition (see
Gao and Hastie, 2022; Winkler et al., 2020; Lu and Huang, 2020; Dhariwal and Nichol, 2021, and
references therein). However, this strategy requires a large dataset to provide enough samples for
each conditioning and is expensive as it requires training separate models for each conditioning input
set, even though they stem from the same underlying joint distribution.

Contributions The principal contribution of this work is a different conditional probability ap-
proach that does not fall into any of the four aforementioned strategies. Rather than learning the
conditional density directly, our method, called Neural Conditional Probability (NCP), aims to learn
the conditional expectation operator EY |X associated to the random variables X ∈ X and Y ∈ Y
based on data from their joint distribution. The operator is defined, for every measurable function
f : Y → R, as

[EY |Xf ](x) := E[f(Y ) |X = x].

NCP is based on a principled loss, leveraging the connection between conditional expectation
operators and deepCCA (Andrew et al., 2013) established in (Kostic et al., 2024), and can be used
interchangeably to:

(a) retrieve the conditional density pY |X with respect to marginal distributions of X and Y ;

(b) compute conditional statistics E[f(Y ) |X] for arbitrary functions f : Y → R, including
conditional mean, variance, moments, and the conditional cumulative distribution function,
thereby providing access to all conditional quantiles simultaneously;

(c) estimate the conditional probabilities P[Y ∈ B |X ∈ A] for arbitrary sets B ⊂ Y and
A ⊂ X with theoretical non-asymptotic guarantees on accuracy, allowing us to easily
construct conditional confidence regions.

Notably, our approach extracts statistics directly from the trained operator without retraining or
resampling, and it is supported by both optimization consistency and statistical guarantees. In
addition our experiments show that our approach matches or exceeds the performance of leading
methods, even when using a basic a 2-hidden-layer network. This demonstrates the effectiveness of a
minimalistic architecture combined with a theoretically grounded loss function.

Paper organization In Section 2 we review related work. Section 3 introduces the operator theoretic
approach to model conditional expectation, while Section 4 discusses its training pipeline. In Section
5, we derive learning guarantees for NCP. Finally, Section 6 presents numerical experiments.

2 Related works

Non-parametric estimators are valuable for density and conditional density estimation as they don’t
rely on specific assumptions about the density being estimated. Kernel estimators, pioneered by
Parzen (1962) and Rosenblatt (1956), are a widely used non-parametric density estimation method.
Much effort has been dedicated to enhancing kernel estimation, focusing on aspects like bandwidth
selection (Goldenshluger and Lepski, 2011), non-linear aggregation (Rigollet and Tsybakov, 2007),
and computational efficiency (Langrené and Warin, 2020), as well as extending it to conditional
densities (Bertin et al., 2014). A comprehensive review of kernel estimators and their variants
is provided in (Silverman, 2017). See also (Tsybakov, 2009) for a statistical analysis of their
performance. However, most of non-parametric techniques face a significant challenge known as the
curse of dimensionality (Scott, 1991; Nagler and Czado, 2016), meaning that the required sample
size for accurate estimation grows exponentially with the dimensionality of the data (Silverman,
2017). Additionally, the computational complexity also increases exponentially with dimensionality
(Langrené and Warin, 2020).

Examples of localization methods include the work by Hall et al. (1999) for conditional CDF
estimation using local logistic regression and locally adjusted Nadaraya-Watson estimation, as well as
conditional quantiles estimation via local pinball loss minimization in (Yu and Jones, 1998). Examples
of direct learning of the conditional distribution include (Sugiyama et al., 2010) via decomposition on
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a dictionary of base functions. Similarly, Li et al. (2007) explores quantile regression in reproducing
Hilbert kernel spaces.

Conditional training is a popular approach which was adopted in numerous works, as in the recent
work by Gao and Hastie (2022) where a parametric exponential model for the conditional density
pθ(y|x) is trained using the Lindsey method within each bin of a partition of the space X . This
strategy has also been implemented in several prominent classes of generative models, including
Normalizing Flow (NF) and Diffusion Models (DM) (Tabak and Vanden-Eijnden, 2010; Dinh
et al., 2014; Rezende and Mohamed, 2015a; Sohl-Dickstein et al., 2015). These models work by
mapping a simple probability distribution into a more complex one. Conditional training approaches
for NF and DM have been developed in many works including (e.g. Winkler et al., 2020; Lu
and Huang, 2020; Dhariwal and Nichol, 2021). In efforts to lower the computational burden of
conditional diffusion models, an alternative approach used heuristic approximations applied directly
to unconditional diffusion models on computer vision related tasks (see e.g. Song et al., 2023;
Zhang et al., 2023). However, the effectiveness of these heuristics in accurately mimicking the true
conditional distributions remains uncertain. Another crucial aspect of these classes of generative
models is that while the probability distribution is modelled explicitly, the computation of any relevant
statistic, say E[Y |X] is left as an implicit problem usually solved by sampling from pθ(y|x) and
then approximating E[Y |X] via simple Monte-Carlo integration. As expected, this approach quickly
becomes problematic as the dimension of the output space Y becomes large.

Conformal Prediction (CP) is a popular model-agnostic framework for uncertainty quantification
(Vovk et al., 1999). Conditional Conformal Prediction (CCP) was later developed to handle condi-
tional dependencies between variables, allowing in principle for more accurate and reliable predictions
(see Lei and Wasserman, 2014; Romano et al., 2019; Chernozhukov et al., 2021; Gibbs et al., 2023,
and the references cited therein). However, (CP) and (CCP) are not without limitations. The construc-
tion of these guaranteed prediction regions need to be recomputed from scratch for each value of the
confidence level parameter and of the conditioning for (CCP). In addition, the produced confidence
regions tend to be conservative.

3 Operator approach to probability modeling

Consider a pair of random variables X and Y taking values in probability spaces (X ,ΣX , µ) and
(Y,ΣY , ν), respectively, where X and Y are state spaces, ΣX and ΣY are sigma algebras, and µ and
ν are probability measures. Let ρ be the joint probability measure of (X,Y ) from the product space
X × Y . We assume that ρ is absolutely continuous w.r.t. to the product measure of its marginals, that
is ρ ≪ µ × ν, and denote the corresponding density by p = dρ/d(µ × ν), also called point-wise
dependency in Tsai et al. (2020), so that ρ(dx, dy) = p(x, y)µ(dx)ν(dy).

The principal goal of this paper is, given a dataset Dn := (xi, yi)i∈[n] of observations of (X,Y ), to
estimate the conditional probability measure

p(B |x) := P[Y ∈ B |X = x], x ∈ X , B ∈ ΣY . (1)
Our approach is based on the simple fact that p(B |x) = E[1B(Y ) |X = x], where 1B denotes
the characteristic function of set B. More broadly we address the above problem by studying the
conditional expectation operator EY |X : L2

ν(Y) → L2
µ(X ), which is defined, for every f ∈ L2

ν(Y)
and x ∈ X , as

[EY |Xf ](x) := E[f(Y ) |X = x] =

∫
Y
f(y)p(dy |x) =

∫
Y
f(y)p(x, y)ν(dy),

where L2
µ(X ) and L2

ν(Y) denotes the Hilbert spaces of functions that are square integrable w.r.t. to µ
and ν, respectively. One readily verifies that ∥EY |X∥ = 1 and EY |X1Y = 1X .

A prominent feature of the above operator is that its rank can reveal the independence of the random
variables. That is, X and Y are independent random variables if and only if EY |X is a rank one
operator, in which case we have that EY |X = 1X ⊗ 1Y . It is thus useful to consider the deflated
operator DY |X = EY |X − 1X ⊗ 1Y : L2

ν(Y)→ L2
µ(X ), for which we have that

[EY |Xf ](x) = E[f(Y )] + [DY |Xf ](x), f ∈ L2
ν(Y). (2)

For dependent random variables, the deflated operator is nonzero. In many important situations,
such as when the conditional probability distribution is a.e. absolutely continuous w.r.t. to the target
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measure, that is p(· |x) ≪ ν for µ-a.e. x ∈ X , the operator EY |X is compact, and, hence, we can
write the SVD of EY |X and DY |X respectively as

EY |X =

∞∑
i=0

σ⋆i u
⋆
i ⊗ v⋆i , and DY |X =

∞∑
i=1

σ⋆i u
⋆
i ⊗ v⋆i , (3)

where the left (u⋆i )i∈N and right (v⋆i )i∈N singular functions form complete orthonormal systems of
L2
µ(X ) and L2

ν(Y), respectively. Notice that the only difference in the SVD of EY |X and DY |X is
the extra leading singular triplet (σ⋆0 , u

⋆
0, v

⋆
0) = (1,1µ,1ν) of EY |X . In terms of densities, the SVD

of EY |X leads to the characterization

p(x, y) =
∑∞
i=0σ

⋆
i u

⋆
i (x) v

⋆
i (y) = 1 +

∑∞
i=1σ

⋆
i u

⋆
i (x) v

⋆
i (y).

The mild assumption that EY |X is a compact operator allows one to approximate it arbitrarily well
with a (large enough) finite rank (empirical) operator. Choosing the operator norm as the measure of
approximation error and appealing to the Eckart-Young-Mirsky Theorem (see Theorem 3 in Appendix
B.1) one concludes that the best approximation is given by the truncated SVD, that is for every d ∈ N,

DY |X ≈ [[DY |X ]]d :=
∑d
i=1σ

⋆
i u

⋆
i ⊗ v⋆i , and [[DY |X ]]d ∈ arg minrank(A)≤d∥DY |X −A∥, (4)

where the minimum is given by σ⋆d , and the minimizer is unique whenever σ⋆d+1 < σ⋆d . This leads to
the approximation of the joint density w.r.t. marginals p(x, y) ≈ 1 +

∑d
i=1 σ

⋆
i u

⋆
i (x) v

⋆
i (y), so that

E[f(Y ) |X = x] ≈ E[f(Y )] +
∑d
i=1 σ

⋆
i u

⋆
i (x)E[f(Y ) v⋆i (Y )], (5)

which in particular, choosing f = 1B , gives

P[Y ∈ B |X = x] ≈ P[Y ∈ B] +
∑d
i=1 σ

⋆
i u

⋆
i (x)E[v⋆i (Y )1B(Y )].

Moreover, we have that

P[Y ∈ B |X ∈ A] =
⟨1A,EY |X1B⟩

P[X ∈ A]
≈ P[Y ∈ B] +

d∑
i=1

σ⋆i
E[u⋆i (X)1A(X)]

P[X ∈ A]
E[v⋆i (Y )1B(Y )],

for which the approximation error is bounded in the following lemma.
Lemma 1 (Approximation bound). For any A ∈ ΣX such that P[X ∈ A] > 0 and any B ∈ ΣY ,∣∣∣∣P[Y ∈ B |X ∈ A]− P[Y ∈ B]−

⟨1A, [[DY |X ]]d1B⟩
P[X ∈ A]

∣∣∣∣ ≤ σ⋆d+1

√
P[Y ∈ B]

P[X ∈ A]
. (6)

Neural network model Inspired by the above observations, to build the NCP model, we will
parameterize the truncated SVD of the conditional expectation operator and then learn it. Specifically,
we introduce two parameterized embeddings uθ : X → Rd and vθ : Y → Rd, and the singular values
parameterized by wθ ∈ Rd, respectively given by

uθ(x):=[uθ1(x) . . . u
θ
d(x)]

⊤, vθ(y):=[vθ1(y) . . . v
θ
d(y)]

⊤, and σθ:=[e−(wθ
1)

2

, . . . , e−(wθ
d)

2

]⊤,

where the parameter θ takes values in a prescribed set Θ.

We then aim to learn the joint density function p(x, y) in the (separable) form

pθ(x, y) := 1 +
∑
i∈[d]σ

θ
i u

θ
i (x) v

θ
i (y) = 1 + ⟨σθ ⊙ uθ(x), vθ(y)⟩,

where ⊙ denotes element-wise product. One of the prominent losses considered for the task
of learning p ∈ L2

µ×ν is the least squares density ratio loss Eµ×ν(p − pθ)2 − Eρp = Eµ×νp2θ −
2Eρpθ, c.f. Tsai et al. (2020), also considered by HaoChen et al. (2022) in the specific context of
augmentation graph in self-supervised deep learning, linked to kernel embeddings (Wang et al., 2022),
and rediscovered and tested on DeepCCA tasks by Wells et al. (2024). Here, following the operator
perspective, we use the characterization (4) of the optimal finite rank model to propose a new loss
that: (1) excludes the known feature from the learning process, and (2) introduces a penalty term to
enforce orthonormality of the basis functions. More precisely, our loss Lγ(θ) := L(θ) + γR(θ) is
composed of two terms. The first one

L(θ) := Eµ×νp
2
θ − 2Eρpθ + [Eµ×νpθ]

2 − Eµ[Eνpθ]
2 − Eν [Eµpθ]

2 + 2Eµ×νpθ (7)
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is equivalent to solving (4) with A =
∑d
i=1 σ

θ
i [u

θ
i − Eµuθi ] ⊗ [vθi − Eνvθi ] and can be written in

terms of correlations between features. Namely, denoting the covariance and variance matrices by

Cov[z, z′] := E[(z − E[z])(z′ − E[z′])⊤] and Var[z] := E[(z − E[z])(z − E[z])⊤], (8)

and abbreviating uθ := uθ(X) and vθ := vθ(Y ) for simplicity, we can write

L(θ) := tr
(
Var[
√
σθ ⊙ uθ] Var[

√
σθ ⊙ vθ]− 2Cov[

√
σθ ⊙ uθ,

√
σθ ⊙ vθ]

)
. (9)

If p=pθ for some θ∈Θ, then the optimal loss is the χ2-divergenceL(θ)=Dχ2(ρ |µ×ν)=−
∑
i≥1 σ

⋆
i
2

and, as we show below, L(θ) measures how well pθ(x, y)− 1 approximates
∑
i∈[d]σ

⋆
i u

⋆
i (x) v

⋆
i (y).

However, in order to obtain a useful probability model, it is of paramount importance to align the
metric in the latent spaces with the metrics in the data-spaces L2

µ(X ) and L2
ν(Y). For different

reasons, a similar phenomenon has been observed in Kostic et al. (2024) where dynamical systems are
learned via transfer operators. In our setting, this leads to the second term of the loss that measures
how well features uθ and vθ span relevant subspaces in L2

µ(X ) and L2
ν(Y), respectively. Namely,

aiming E[u⋆i (X)u⋆j (X)] = E[v⋆i (Y )v⋆j (Y )] = 1{i=j}, i, j ∈ {0, 1, . . . , d} leads to

R(θ):=∥E[uθ(X)uθ(X)⊤]−I∥2F+∥E[vθ(Y )vθ(Y )⊤]−I∥2F+2∥E[uθ(X)]∥2+2∥E[vθ(Y )∥2. (10)

We now state our main result on the properties of the loss Lγ , which extends the result in Wells et al.
(2024) to infinite-dimensional operators and guarantees the uniqueness of the optimum due toR.
Theorem 1. Let EY |X : L2

ν(Y)→ L2
µ(X ) be a compact operator and DY |X =

∑∞
i=1 σ

⋆
i u

⋆
i ⊗ v⋆i be

the SVD of its deflated version. If uθi ∈ L2
µ(X ) and vθi ∈ L2

ν(Y), for all θ ∈ Θ and i ∈ [d], then for
every θ ∈ Θ, Lγ(θ) ≥ −

∑
i∈[d] σ

⋆2
i . Moreover, if γ > 0 and σ⋆d > σ⋆d+1, then the equality holds if

and only if (σθi , u
θ
i , v

θ
i ) equals (σ⋆i , u

⋆
i , v

⋆
i ) ρ-a.e., up to unitary transform of singular spaces.

We provide the proof in Appendix B.3. In the following section, we show how to learn these canonical
features from data and construct approximations of the conditional probability measure.

Comparison to previous methods NCP does not fall into any of the four categories defined by
Gao and Hastie (2022), as it does not aim to learn conditional density of Y |X directly. Instead, NCP
focuses on learning the operator mapping L2

ν(Y)→ L2
µ(X ), from which all relevant task-specific

statistics can be derived without requiring retraining. This approach effectively integrates with
deep representation learning to create a latent space adapted to p(y|x). As a result, NCP efficiently
captures the intrinsic dimension of the data, which is supported by our theoretical guarantees that
depend solely on the latent space dimension (Theorem 2). In contrast, strategies designed for
learning density often encounter significant limitations, such as the curse of dimensionality, potential
substantial misrepresentation errors when the pre-specified function dictionary misaligns with the true
distribution p(y|x), and high computational complexity due to the need for retraining. Experiments
confirm NCP’s capability to learn representations tailored to a wide range of data types—including
manifolds, graphs, and high-dimensional distributions—without relying on predefined dictionaries.
This flexibility allows NCP to outperform popular aforementioned methods.

4 Training the NCP inference method

In this section, we discuss how to train the model. Given a training dataset Dn = (xi, yi)i∈[n] and
networks (uθ, vθ, σθ), we consider the empirical loss L̂γ(θ) := L̂(θ)+γR̂(θ), where we replaced (9)
and (10) by their empirical versions. In order to guarantee the unbiased estimation, as we show within
the proof of Theorem 1, two terms of our loss can be written using two independent samples (X,Y )
and (X ′, Y ′) from ρ as L(θ)=E[L(uθ(X)−Euθ(X), uθ(X ′)−Euθ(X ′), vθ(Y )−Evθ(Y ), vθ(Y ′)−
Evθ(Y ′), σθ)] and R(θ)=E[R(uθ(X), uθ(X ′), vθ(Y ), vθ(Y ′))], where the loss functionals L and
R are defined for u, u′, v, v′∈Rd and s∈ [0, 1]d as

L(u, u′, v, v′, s):= 1
2

(
u⊤ diag(s)v′

)2
+ 1

2

(
v⊤ diag(s)u′

)2−u⊤ diag(s)v′−v⊤ diag(s)u′, (11)

R(u, u′, v, v′):=(u⊤u′)2−(u−u′)⊤(u−u′)+(v⊤v′)2−(v−v′)⊤(v−v′)+2d. (12)

Therefore, at every epoch we take two independent batches D1
n and D2

n of equal size from Dn,
leading to Algorithm 1. See Appendix A.1 for the full discussion, and Appendix A.2, where we also
provide in Figure 4 an example of learning dynamics.
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Algorithm 1 Separable density learning procedure
Require: training data (Xtrain,Ytrain)

train uθ, σθ and vθ using the NCP loss
Center and scale Xtrain and Ytrain
for each epoch do

From (Xtrain,Ytrain) pick two random batches (Xtrain,Ytrain) and (X ′
train,Y ′

train)
Evaluate: U ← uθ(Xtrain), U ′ ← uθ(X ′

train), V ← vθ(Ytrain), V ′ ← vθ(Y ′
train)

Compute L̂(θ) as an unbiased estimate using (9) or (11)
Compute R̂(θ) as an unbiased estimate using (10) or (12)
Compute NCP loss L̂γ(θ) := L̂(θ) + γR̂(θ) and back-propagate

end for

Practical guidelines for training In the following, we briefly report a few aspects to be kept in
mind when using the NCP in practice, referring the reader to Appendix A for further details. The
computational complexity of loss estimation presents three distinct methodological approaches. The
first method utilizes unbiased estimation via covariance calculations in (9) and (10), achieving a
computational complexity of O(nd2) for a batch size n. An alternative approach employing U-
statistics with (11) and (12) requires O(n2d) operations per iteration, offering the estimation of the
same precision. A third method involves batch averaging of (11) and (12), reducing computational
complexity to O(nd), which enables seamless integration with contemporary deep learning frame-
works, albeit potentially compromising training robustness through less accurate 4th-order moment
estimations. Method selection remains contingent upon the specific problem’s computational and
statistical constraints. Further, the size of latent dimension d, as indicated by Theorem 1 relates to the
problem’s ”difficulty” in the sense of smoothness of joint density w.r.t. its marginals. Lastly, after the
training, an additional post-processing may be applied to ensure the orthogonality of features uθ and
vθ and improve statistical accuracy of the learned model.

Performing inference with the trained NCP model We now explain how to extract important
statistical objects from the trained model (ûθ, v̂θ, σθ). To this end, define the empirical operator

D̂θY |X : L2
ν(Y)→L2

µ(X ) [D̂θY |Xf ](x):=
∑
i∈[d] σ

θ
i û

θ
i (x) Êy[v̂

θ
i f ], f ∈ L2

ν(Y), x ∈ X , (13)

where Êy[v̂
θ
i f ] :=

1
n

∑
j∈[n] v̂

θ
i (yj)f(yj). Then, without any retraining nor simulation, we can

compute the following statistics:

▶ Conditional Expectation: [ÊθY |Xf ](x) := Êyf+[D̂θY |Xf ](x), f ∈ L
2
ν(Y), x ∈ X .

▶ Conditional moments of order α ≥ 1: apply previous formula to f(u) = uα.

▶ Conditional covariance: Ĉov
θ
(Y |X) := ÊθY |X [Y Y ⊤]− ÊθY |X [Y ]ÊθY |X [Y ⊤].

▶ Conditional probabilities: apply the above conditional expectation formula with f(y) = 1B(y),
that is, p̂y(B) = Êy[1B ] and p̂θ(B |x) = p̂y(B)+

∑
i∈[d] σ

θ
i û

θ
i (x) Êy[v̂

θ
i 1B ], B∈ΣY , x∈X . Then,

integrating over an arbitrary set A ∈ ΣX we get

p̂θ(B |A) := p̂y(B) +
∑
i∈[d] σ

θ
i

Êx[û
θ
i 1A]

Êx[1A]
Êy[v̂

θ
i 1B ]. (14)

▶ Conditional quantiles: for scalar output Y , the conditional CDF F̂Y |X∈A(t) is obtained by taking
B = (−∞, t], and in Algorithm 3 in Appendix C we show how to extract quantiles from it.

5 Statistical guarantees

We introduce some standard assumptions needed to state our theoretical learning guarantees. To that
end, for any A ∈ ΣX and B ∈ ΣY we define important constants, followed by the main assumption,

φX(A):=1 ∨

√
1−P[X ∈ A]

P[X ∈ A]
and φY (B):=1∨

√
1−P[Y ∈ B]

P[Y ∈ B]
.
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Assumption 1. There exists finite absolute constants cu, cv > 1 such that for any θ ∈ Θ

ess sup
x∼µ

∥uθ(x)∥l∞ ≤ cu, ess sup
y∼ν

∥vθ(y)∥l∞ ≤ cv.

Next, we set σ2
θ(X):=Var(∥uθ(X)− E[uθ(X)]∥l2), σ2

θ(Y ):=Var(∥vθ(Y )− E[vθ(Y )]∥l2) and

ϵn(δ):=C

(
(cu∨cv)

√
d log(eδ−1)

n
+(σθ(X)∨σθ(Y ))

√
log(eδ−1)

n

)
, ϵn(δ):=2

√
2
log 2δ−1

n
,

(15)

for some large enough absolute constant C > 0.
Remark 1. It follows easily from Assumption 1 that σ2

θ(X)≤c2ud and σ2
θ(Y )≤c2vd. Consequently,

assuming that n ≥ (cu ∨ cv)d, then ϵn(δ) ≲ (cu∨cv)
√
d[
√

log(eδ−1)/n∨(log(eδ−1)/n)].

Finally, for a given parameter θ∈Θ and δ ∈ (0, 1), let us denote

Eθ :=max{∥[[DY |X ]]d−UθSθV ∗
θ ∥, ∥U∗

θUθ−I∥, ∥U∗
θ 1X ∥, ∥V ∗

θ Vθ−I∥, ∥V ∗
θ 1Y∥}, and (16)

ψn(δ) := σ⋆d+1 + Eθ + 2
√
1 + Eθ(Eθ + εn(δ)) + [εn(δ)]

2. (17)

In the following result, we prove that NCP model approximates well the conditional probability
distribution w.h.p. whenever the empirical loss L̂γ(θ) is well minimized.
Theorem 2. Let Assumption 1 be satisfied, and in addition assume that

P(X∈A)
∧

P(Y ∈B)≥ϵn(δ/3) and n≥(cu∨cv)2d
∨

8 log(6δ−1) [φX(A)∨φY (B)] . (18)

Then for every A ∈ ΣX \ {X} and B ∈ ΣY \ {Y}∣∣∣∣P[Y ∈B |X∈A]P[Y ∈B]
− p̂θ(B |A)

p̂y(B)

∣∣∣∣ ≤ 4ψn(δ/3) + [1+ψn(δ/3)] [2φX(A)+4φY (B)] ϵn(δ/3)√
P[X∈A]P[Y ∈B]

, (19)

and∣∣∣∣P[Y ∈B |X∈A]−p̂θ(B |A)P[Y ∈B]

∣∣∣∣≤φY (B)ϵn(δ/3)+
2(1+ψn(δ/3))φX(A)ϵn(δ/3)+ψn(δ/3)√

P[X∈A]P[Y ∈B]
(20)

hold with probability at least 1− δ w.r.t. iid draw of the dataset Dn = (xj , yj)j∈[n] from ρ.
Remark 2. In Appendix B.5, we prove a similar result under a less restrictive sub-Gaussian assump-
tion on the singular functions uθ(X) and vθ(Y ).

Discussion The rate ψn(δ) in (17) is pivotal for the efficacy of our method. If we appropriately
choose the latent space dimension d to ensure accurate approximation (σ⋆d+1 ≪ 1), achieve successful
training (Eθ ≈ σ⋆d+1), and secure a large enough sample size (εn(δ) ≪ 1), Theorem 2 provides
assurance of accurate prediction of conditional probabilities. Indeed, (20) guarantees (up to a
logarithmic factor)

P[Y ∈B |X∈A]−p̂θ(B |A)=OP

(
1√
n
+

√
P[Y ∈B]

P[X∈A]

(
σ⋆d+1+Eθ+

√
d/n+φX(A)/

√
n
))

,

Note the inclusion of the term
√

P[X ∈ A] in the denominator of the last term on the right-hand side,
along with φX(A). This indicates a decrease in the accuracy of conditional probability estimates
for rarely encountered event A, aligning with intuition and with a known finite-sample impossibility
result Lei and Wasserman (2014, Lemma 1) for conditional confidence regions when A is reduced to
any nonatomic point of the distribution (i.e. A = {x} with P[X = x] = 0). For rare events, a larger
sample size n and a higher-dimensional latent space characterized by d are necessary for accurate
estimation of conditional probabilities.

We propose next a non-asymptotic estimation guarantee for the conditional CDF of Y |X when
Y is a scalar output. This result ensures in particular that accurate estimation of the true quan-
tiles is possible with our method. Fix t ∈ R and consider the set Bt = (−∞, t] meaning that
P[Y ∈Bt|X∈A]=FY |X∈A(t) and P[Y ∈Bt]=FY (t). We define similarly for the NCP estimator of
the conditional CDF F̂Y |X∈A(t)=p̂θ(Bt |A). The result follows from applying (20) to the set Bt.
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Table 1: Mean and standard deviation of Kolmogorov-Smirnov distance of estimated CDF from the
truth averaged over 10 repetitions with n = 105 (best method in red, second best in bold black).

Model LinearGaussian EconDensity ArmaJump SkewNormal GaussianMixture LGGMD

NCP - W 0.010 ± 0.000 0.005 ± 0.001 0.010 ± 0.002 0.008 ± 0.001 0.015 ± 0.004 0.047 ± 0.005
DDPM 0.410 ± 0.340 0.236 ± 0.217 0.338 ± 0.317 0.250 ± 0.224 0.404 ± 0.242 0.405 ± 0.218
NF 0.008 ± 0.006 0.006 ± 0.003 0.143 ± 0.010 0.032 ± 0.002 0.107 ± 0.003 0.254 ± 0.004
KMN 0.601 ± 0.004 0.362 ± 0.017 0.487 ± 0.004 0.381 ± 0.009 0.309 ± 0.001 0.224 ± 0.005
MDN 0.225 ± 0.013 0.048 ± 0.001 0.163 ± 0.018 0.087 ± 0.001 0.129 ± 0.007 0.176 ± 0.013
LSCDE 0.420 ± 0.001 0.118 ± 0.002 0.247 ± 0.001 0.107 ± 0.001 0.202 ± 0.001 0.268 ± 0.024
CKDE 0.120 ± 0.000 0.010 ± 0.001 0.072 ± 0.001 0.023 ± 0.001 0.048 ± 0.001 0.230 ± 0.014
NNKCDE 0.047 ± 0.003 0.036 ± 0.003 0.030 ± 0.004 0.030 ± 0.002 0.035 ± 0.002 0.183 ± 0.006
RFCDE 0.128 ± 0.007 0.141 ± 0.009 0.133 ± 0.015 0.142 ± 0.012 0.130 ± 0.012 0.121 ± 0.006
FC 0.095 ± 0.005 0.011 ± 0.001 0.033 ± 0.002 0.035 ± 0.007 0.016 ± 0.001 0.047 ± 0.003
LCDE 0.108 ± 0.001 0.026 ± 0.001 0.113 ± 0.002 0.075 ± 0.006 0.035 ± 0.001 0.124 ± 0.002

Corollary 1. Let the Assumptions of Theorem 2 be satisfied. Then for any t ∈ R and δ ∈ (0, 1), it
holds with probability at least 1− δ that

|F̂Y |X∈A(t)− FY |X∈A(t)| ≤
√
FY (t)(1− FY (t))ϵn(δ/3)

+

√
FY (t)

P[X ∈ A]

(
σ⋆d+1 + 2

√
2Eθ + (2

√
2 + 1)ϵn(δ/3) + 4φX(A)ϵn(δ/3)

)
. (21)

An important application of Corollary 1 lies in uncertainty quantification when output Y is a scalar.
Indeed, for any α ∈ (0, 1/2), we can scan the empirical conditional CDF F̂Y |X∈A for values tα < t′α
such that F̂Y |X∈A(t

′
α) − F̂Y |X∈A(tα) = 1 − α and t′α − tα is minimal. That way we define a

non-asymptotic conditional confidence interval B̂α := (tα, t
′
α] with approximate coverage 1 − α.

More precisely we deduce from Corollary 1 that

|P[Y ∈ B̂α |X ∈ A]− (1− α)| ≤ 1

2
ϵn(δ/6)

+

√
1

P[X ∈ A]

(
σ⋆d+1 + 2

√
2Eθ + (2

√
2 + 1)ϵn(δ/6) + 4φX(A)ϵn(δ/6)

)
. (22)

In App B.6, we derive statistical guarantees for the conditional expectation and covariance of Y .

6 Experiments

Conditional density estimation We applied our NCP method to a benchmark of several conditional
density models including those of Rothfuss et al. (2019); Gao and Hastie (2022). See Appendix
C.1 for the complete description of the data models and the complete list of compared methods in
Tab. 2 with references. We also plotted several conditional CDF along with our NCP estimators
in Fig. 6. To assess the performance of each method, we use Kolmogorov-Smirnov (KS) distance
between the estimated and the true conditional CDFs. We test each method on nineteen different
conditional values uniformly sampled between the 5%- and 95%-percentile of p(x) and computed the
averaged performance over all the used conditioning values. In Tab. 1, we report mean performance
(KS distance ± std) computed over 10 repetitions, each with a different seed. NCP with whitening
(NCP–W) outperforms all other methods on 4 datasets, ties with FlexCode (FC) on 1 dataset, and
ranks a close second on another one behind NF. These experiments underscore NCP’s consistent
performance. We also refer to Tab. 3 in App C.1 for an ablation study on post-treatments for NCP.

Confidence regions Our goal is to estimate conditional confidence intervals for two different data
models (Laplace and Cauchy). We investigate the performance of our method in (22) and compare it
to the popular conditional conformal prediction approach. We refer to App C.2 for a quick description
of the principle underlying CCP. We trained an NCP model combined with an MLP architecture
followed by whitening post-processing. See App C.2 for the full description. We obtained that

8

61006https://doi.org/10.52202/079017-1950



0 1 2 3 4 5

0

10

20

30

40

50
NCP (mse = 0.0083)

data points
predicted expectation
true confidence interval
estimated confidence interval at level 90%

0 1 2 3 4 5

0

10

20

30

40

50
NF (mse = 0.035)

0 1 2 3 4 5

0

10

20

30

40

50
Conditional Conformal (mse = 0.0036)

0 1 2 3 4 5

50

25

0

25

50

75

100

125

150
NCP

data points
true confidence interval
estimated confidence interval at level 90%

0 1 2 3 4 5

50000

0

50000

100000

150000

NF

0 1 2 3 4 5

100

0

100

200

300

Conditional Conformal

Figure 1: Conditional mean (top only) and 90% confidence interval for NCP, NFs and CCP. Top:
Laplace distribution; Bottom: Cauchy distribution.

way the NCP conditional CDE model that we used according to (22) to build the conditional 90%
confidence intervals. We proceeded similarly to build another set of conditional confidence intervals
based on NFs. Finally, we also implemented the CCP method of Gibbs et al. (2023).

In Fig. 1, the marginal is X ∼ Unif([0, 5]) and Y |X = x follows either a Laplace distribution (top)
with location and scale parameters (µ(x), b(x)) = (x2, x) or a Cauchy distribution (bottom) with
location and scale parameters (x2, 1 + x). In this experiment, we considered a favorable situation
for the CCP method of Gibbs et al. (2023) by assuming prior knowledge that the true conditional
location is a polynomial function (the truth is actually the square function). Every other parameter of
the method was set as prescribed in their paper.

In Fig. 1, observe first that the CCP regression achieves the best estimation of the conditional mean
mse = 3.6 · 10−3 against mse = 3.8 · 10−2 for NFs and mse = 8.3 · 10−3 for NCP, as expected
since the CCP regression model is well-specified in this example. However, the CCP confidence
intervals are unreliable for most of the considered conditioning. We also notice instability for NF and
CCP when conditioning in the neighborhood of x = 0, with the NF confidence region exploding at
x = 0. We suspect this is due to the fact that the conditional distribution at x = 0 is degenerate, hence
violating the condition of existence of a diffeomorphism with the generating prior, a fundamental
requirement for NFs models to work at all. Comparatively, NCP does not exhibit such instability
around x = 0; it only tends to overestimate the confidence region for conditioning close to x = 0.
The Cauchy distribution is known to be more challenging due to its heavy tail and undefined moments.
In Fig 1 (bottom), we notice that NF and CCP completely collapse. This is not a surprising outcome
since CCP relies on estimation of the mean which is undefined in this case, creating instability in the
constructed confidence regions, while NF attempts to build a diffeomorphism between a Gaussian
prior and the final Cauchy distribution. We suspect the conservative confidence region produced by
NF might originate from the successive Jacobians involved in the NF mapping taking large values. In
comparison, our NCP method still returns some reasonable results. Although the NCP coverage might
appear underestimated for larger x, actual mean coverages computed on a test set of 200 samples are
88% for NCP, 99% for NF and 79% for CCP. Tab. 5 in Appendix C.2 provides a comparison study on
real data for learning a confidence region with NCP, NF and a split conformal predictor featuring a
Random Forest regressor (RFSCP).

High-dimensional synthetic experiment We simulated the following d-distribution for different
values of d ∈ {100, 500, 1000}. Let x̄ = (x̄1, x̄2, 0, . . . , 0)

⊤ ∈ Rd where x′ = (x̄1, x̄2) admits
uniform distribution on the 2-dimensional unit sphere. We pick a random mapping A ∈ Od and
we set X = Ax̄ and the angle θ(X) = arcsin(x̄2). Next we consider two conditional distribution
models for Y |X (Gaussian and discrete) described in Figure 3. NCP performs similarly to NF in the
Gaussian case and outperforms NF for discrete distribution. Figure 7 in Appendix C.3 demonstrates
that NCP scales effectively with increasing dimensionality d. As the dimension rises from d = 100
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Figure 2: Protein folding dynamics. Pairwise Euclidean distances between Chignolin atoms exhibit increased
variance during folded metastable states (between 87-88µs and around 89.5µs). Ground truth is depicted in blue,
predicted mean in orange, and the grey lines indicate the estimated 10% lower and upper quantiles.

to d = 1000, the computation time increases by only 20%, while maintaining strong statistical
performance throughout.
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Figure 3: High-dimensional synthetic experiment. We consider two models for Y |X with d = 100. Left:
Y |X ∼ N(θ(X), sin(θ(X)/2). Right: Y ∈ {1, 2, 3, 4, 5} admits discrete distribution depending on θ(X):
Y |X ∼ P1 if θ(X) ∈ [0, π/2), P2 if θ(X) ∈ [π/2, π), P3 if θ(X) ∈ [π, 3π/2), P4 if θ(X) ∈ [3π/2, 2π). We
take P1 = (1/5, 1/5, 1/5, 1/5, 1/5), P2 = (1/2, 1/2, 0, 0, 0), P3 = (0, 0, 1, 0, 0), P4 = (0, 0, 0, 1/2, 1/2).

High-dimensional experiment in molecular dynamics We investigate protein folding dynamics
and predict conditional transition probabilities between metastable states. Figure 2 shows how,
by integrating our NCP approach with a graph neural network (GNN), we achieve accurate state
forecasting and strong uncertainty quantification, enabling efficient tracking of transitions. For further
context and a full model description, see App C.3.

7 Conclusion

We introduced NCP, a novel neural operator approach to learn the conditional probability distribution
from complex and highly nonlinear data. NCP offers a number of benefits. Notably, it streamlines
the training process by requiring just one unconditional training phase to learn the joint distribution
p(x, y). Subsequently, it allows us to efficiently derive conditional probabilities and other relevant
statistics from the trained model analytically, without any additional conditional training steps or
Monte Carlo sampling. Additionally, our method is backed by theoretical non-asymptotic guarantees
ensuring the soundness of our training method and the accuracy of the obtained conditional statistics.
Our experiments on learning conditional densities and confidence regions demonstrate our approach’s
superiority or equivalence to leading methods, even using a simple Multi-Layer Perceptron (MLP)
with two hidden layers and GELU activations. This highlights the effectiveness of a minimalistic
architecture coupled with a theoretically grounded loss function. While complex architectures often
dominate advanced machine learning, our results show that simplicity can achieve competitive results
without compromising performance. Our numerical experiments suggest that, while our approach
works well across different datasets and models, the price we pay for this generality appears to be
the need for a relatively large sample size (n ≳ 104) to start outperforming other methods. Hence,
a future direction is to study how to incorporate prior knowledge into our method to make it more
data-efficient. Future works will also investigate the performance of NCP for multi-dimensional time
series, causality and more general sensitivity analysis in uncertainty quantification.
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Supplemental material

The appendix is organized as follows:

• Appendix A provides additional details on the post-processing for NCP.

• Appendix B contains the proofs of the theoretical results and additional statistical results.

• In Appendix C, comprehensive details are presented regarding the experiment benchmark
utilized to evaluate the performances of NCP.

A Details on training and algorithms

A.1 Practical guidelines for training NCP

• It is better to choose a larger d rather than a smaller one. Typically for the problems we
considered in Section 6, we used d ∈ {100, 500}.

• The regularization parameter γ was found to yield the best results for γ ∈ {10−2, 10−3}.

• To ensure the positivity of the singular values, we transform the vector wθ with the Gaussian
function x 7→ exp(−x2) to recover σθ during any call of the forward method. The vector
wθ is initialized at random with parameters following a normal distribution of mean 0 and
standard deviation 1/d.

• With the ReLU function, we observe instabilities in the loss function during training, whereas
Tanh struggles to converge. In contrast, the use of GELU solves both problems.

• We can compute some statistical objects as a sanity check for the convergence of NCP
training. For instance, we can ensure that the computed conditional CDFsatisfies all the
conditions to be a valid CDF.

• After training, an additional post-processing may be applied to ensure the orthogonality of
operators uθ and vθ. This whitening step is described in Alg 2 in App A.3. It leads to an
improvement of statistical accuracy of the trained NCP model. See the ablation study in
Tab. 3.

A.2 Learning dynamics with NCP

0 500 1000 1500 2000 2500 3000
Epochs

4

2

0

2

4

Lo
ss

Training
Validation

Figure 4: Learning dynamic for the Laplace experiment in Section 6.

A.3 Whitening post-processing

We describe in Algorithm 2 the whitening post-processing procedure that we apply after training.
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Algorithm 2 Whitening procedure
Require: new data (Xnew,Ynew); trained uθ, σθ and vθ

Evaluate uX = uθ(Xtrain) and vY = vθ(Ytrain)
Centering:
uX ← uX − Ê(uθ(Xtrain)) and vY ← vY − Ê(vθ(Ytrain))

uX ← uXdiag(σθ)
1
2 and vY ← vY diag(σθ)

1
2

Compute covariance matrices :
CX ← u⊤

x ux/n
CY ← v⊤Y vY/n
CXY ← u⊤

XvY/n

U, V, σnew ← SVD
(
C

−1/2
X CXY C

−1/2
Y

)
if (Xnew,Ynew) is different than (Xtrain, Ytrain) then
uX ←

(
uθ(Xnew)− Ê(uθ(Xtrain)

)
diag(σθ)

1
2

vY ←
(
vθ(Xnew)− Ê(vθ(Ytrain)

)
diag(σθ)

1
2

end if
Final whitening:
unew
X ← uXC

−1/2
X U

vnew
Y ← vY C

−1/2
Y V

return unew
X , σnew, vnew

Y

B Proofs of theoretical results

B.1 A reminder on Hilbert spaces and compact operators

Definition 1. Given a vector spaceH, we say it is a Hilbert space if there exists an inner product
⟨·, ·⟩ such that:

H is complete with respect to the norm ∥x∥ =
√
⟨x, x⟩ for all x ∈ H.

An important example of an infinite-dimensional Hilbert space is L2
µ(R), the space of square-

integrable functions w.r.t probability measure µ on R with the inner product defined as ⟨f, g⟩ =∫
R f(x)g(x)µ(dx).

Definition 2 (Bounded Operators). LetH1 andH2 be Hilbert spaces. A linear operator T : H1 →
H2 is called bounded if there exists a constant C ≥ 0 such that for all x ∈ H1, the following
inequality holds:

∥Tx∥H2
≤ C∥x∥H1

.

The smallest such constant C is called the operator norm of T , denoted by ∥T∥, and is given by:

∥T∥ = sup
x ̸=0

∥Tx∥H2

∥x∥H1

.

Bounded operators are continuous and play a key role in functional analysis.
Definition 3 (Compact Operators). LetH1 andH2 be Hilbert spaces. A bounded linear operator
T : H1 → H2 is called compact if for any bounded sequence {xn} ⊂ H1, there exists a subsequence
{xnk

} such that Txnk
converges inH2.

Compact operators can be viewed as infinite-dimensional analogues of matrices with finite rank in
finite-dimensional spaces.

A key result in the theory of compact operators is the existence of a singular value decomposition
(SVD) for compact operators. The following is the statement of the Eckart-Young-Mirsky theorem:
Theorem 3 (Eckart-Young-Mirsky). Let T : H1 → H2 be a compact operator between Hilbert
spaces. Then T can be decomposed as:

T =

∞∑
i=1

σi⟨·, ui⟩vi,
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where {ui} ⊂ H1 and {vi} ⊂ H2 are orthonormal sets, and σi are the singular values of T , which
satisfy σ1 ≥ σ2 ≥ · · · ≥ 0.

Moreover, for any rank-k operator Tk =
∑k
i=1 σi⟨·, ui⟩vi, we have:

∥T − Tk∥ = min
rank(S)≤k

∥T − S∥,

where ∥ · ∥ is the operator norm induced by the Hilbert spaces.

B.2 Proof of Lemma 1

Proof of Lemma 1. It follows from (3) and (5) that

P[Y ∈ B |X ∈ A]− P[Y ∈ B]−
⟨1A, [[DY |X ]]d1B⟩

P[X ∈ A]
=
⟨1A, (DY |X − [[DY |X ]]d)1B⟩

P[X ∈ A]
.

Next, by definition of the operator norm, we have

|⟨1A, (DY |X − [[DY |X ]]d)1B⟩| ≤ ∥DY |X − [[DY |X ]]d∥L2
ν(Y)→L2

µ(X )∥1A∥L2
µ(X )∥1B∥L2

ν(Y)

= ∥DY |X − [[DY |X ]]d∥L2
ν(Y)→L2

µ(X )

√
P[X ∈ A]

√
P[Y ∈ B],

where the operator norm ∥DY |X − [[DY |X ]]d∥L2
ν(Y)→L2

µ(X ) is upper bounded by σ⋆d+1 by definition
of the SVD of DY |X .

B.3 Proof of Theorem 1

Proof of Theorem 1. In the following, to simplify notation, whenever dependency on the parameters
is not crucial, recalling that (X,Y ) and (X ′, Y ′) are two iid samples from the joint distribution ρ,
we will denote the vector-valued random variables in the latent (embedding) space as u := uθ(X),
u′ := uθ(X ′), v := vθ(Y ) and v′ := vθ(Y ′), as well as s = σθ and S := Sθ. Then, we can write
the training loss simply as E [Lγ(u− Eu, u− Eu′, v − Ev, v′ − Ev′, S)].

Let us further denote centered features as u = u− Eu and v = v − Ev, and the operators based on
them as Uθ:Rd→L2

µ(X ) and V θ:Rd→L2
ν(Y) by

Uθz := z⊤(uθ − E[uθ(X)])1X and V θz := z⊤(vθ − E[vθ(Y )])1Y , for z ∈ Rd.

and prove that L0(θ) = ∥UθSθV
∗
θ∥2HS − 2 tr(SθU

∗
θDY |XV θ). Since we have that Uθ = JµUθ and

V θ = JνVθ, where Jµ = I−1X⊗1X and Jν = I−1Y⊗1Y are orthogonal projectors in L2
µ(X ) and

L2
ν(Y), respectively, as well as U

∗
θDY |XV θ = U∗

θ JµDY |XJνVθ = U∗
θ JµEY |XJνVθ, consequently

U
∗
θDY |XV θ = U∗

θ EY |XVθ−U∗
θ 1X⊗(V ∗

θ 1Y) = E[uθ(X)E[vθ(Y )⊤ |X]]−(E[uθ(X)])(E[vθ(Y )])⊤,

that is U
∗
θDY |XV θ = E[uv⊤] − E[u]]E[v]⊤ is simply centered cross-covariance in the embedding

space. Recalling that U∗
θUθ = E[uu⊤] and V ∗

θ Vθ = E[vv⊤] are covariance matrices in the embedding
space, similarly we get that U

∗
θUθ = E[(u− Eu)(u− Eu)⊤] and V

∗
θV θ = E[(v − Ev)(v − Ev)⊤]

are centered covariances. Thus, we obtain

L0(θ) = −2 tr E[(S1/2u)(S1/2v)⊤] + tr(E[(S1/2u)(S1/2u)⊤]E[(S1/2v)(S1/2v)⊤])

= −2E[u⊤Sv] + tr(E[(S1/2u)(S1/2u)⊤]E[(S1/2v)(S1/2v)⊤])

which, by taking (X,Y ) and (X ′, Y ′) to be iid random variables drawn from ρ, gives that L0(θ) can
be written as

E
[
−uSv − u′Sv′ + u′Sv + uSv′ + 1

2 tr
(
S1/2uu⊤Sv′v′⊤S1/2 + S1/2u′u′⊤Svv⊤S1/2

)]
= E

[
1
2

(
u⊤Sv′

)2
+ 1

2

(
u′⊤Sv

)2 − (u− u′)S(v − v′)
]
= E [L0(u, u

′, v, v′, s)]

= E [L0(u
θ(X)− Euθ(X), uθ(X ′)− Euθ(X ′), vθ(Y )− Euθ(Y ), vθ(Y ′)− Euθ(Y ′), σθ)].
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which implies that L0(θ) = ∥UθSθV
∗
θ∥2HS − 2 tr(SθU

∗
θDY |XV θ). Moreover, to show that Lγ(θ) =

L0(θ) + γR(θ). It suffices to note that

∥U∗
θUθ − I∥2F = tr((U∗

θUθ − I)2) = tr((U∗
θUθ)

2 − 2U∗
θUθ + I) =

= tr(E[uu⊤]E[u′u′⊤]−E[uu⊤]−E[u′u′⊤]+I)

= E[tr(uu⊤u′u′⊤−uu⊤−u′u′⊤+I)] = E
[
(u⊤u′)2 − ∥u∥2 − ∥u′∥2

]
+ d,

as well as that ∥U∗
θ 1µ∥2 = ∥Eu∥2 = (Eu)⊤(Eu) = Eu⊤u′, and apply the analogous reasoning for

random variable Y ∼ ν.

Now, given r > d+ 1, let us denote Dr :=
∑
i∈[r] σ

⋆
i u

⋆
i ⊗ v⋆i and

Lr0(θ) :=
∥∥Dr−UθSθV θ

∥∥2
HS
− ∥Dr∥2HS . (23)

Then, applying the Eckhart-Young-Mirsky theorem, we obtain that

Lr0(θ) ≥
∑r
i=d+1σ

⋆2
i −

∑
i∈[r]σ

⋆2
i = −

∑
i∈[d]σ

⋆2
i ,

with equality holding whenever (σθi , u
θ
i , v

θ
i ) = (σ⋆i , u

⋆
i , v

⋆
i ), ρ-almost everywhere.

To prove that the same holds for L0(θ), observe that after expanding the HS norm via trace in (23),
we have that

Lr0(θ) = −2 tr
(
S
1/2
θ U

∗
θDrV θS

1/2
θ

)
+ ∥UθSθV ∗

θ ∥
2
HS ,

and, consequently,

Lr0(θ) = ∥UθSθV
∗
θ∥2HS − 2 tr(S1/2

θ U
∗
θDrV θS

1/2
θ ) = L0(θ) + 2 tr(SθU

∗
θ(DY |X −Dr)V θ).

Thus, using Cauchy-Schwartz inequality, we obtain

|Lr0(θ)− L0(θ)| ≤ |tr(SθU
∗
θ(DY |X−Dr)V θ)| ≤ ∥Sθ∥∥U

∗
θ∥HS∥DY |X − [[DY |X ]]r∥∥V

∗
θ∥HS,

and, therefore, |Lr0(θ) − L0(θ)| ≤ σ⋆r+1

√
tr(U∗

θUθ) tr(V ∗
θ Vθ) ≤ Mdσ⋆r+1, where the constant is

given by M := maxi∈[d]{∥uθi − Euθi ∥L2
µ(X ), ∥vθi − Evθi ∥L2

ν(Y)} < ∞. So, Lr0(θ) −Mdσ⋆r+1 ≤
L0(θ) ≤ Lr0(θ) +Mdσ⋆r+1, and, since r > d + 1 was arbitrary, we can take r arbitrary large to
obtain σ⋆r → 0 and conclude that L0(θ) ≥ −

∑
i∈[d] σ

⋆2
i , with equality holding when (σθi , u

θ
i , v

θ
i ) =

(σ⋆i , u
⋆
i , v

⋆
i ), ρ-almost everywhere, since then U

∗
θDY |XV θ = U∗

θDY |XVθ = U∗
θUθSθ = Sθ =

diag(σ1, . . . , σd).

Finally, we prove that γ > 0 and σ⋆d > σ⋆d+1 assure uniqueness of the global optimum. First, if the
global minimum is achieved σ⋆d > σ⋆d+1 allows one to use uniqueness result in the Eckhart-Young-
Mirsky theorem that states that

∑
i∈[d] σ

⋆
i u

⋆
i ⊗ v̂θi =

∑
i∈[d] σ

θ
i û

θ
i ⊗ v̂θi . But since, γ > 0 implies

that R(θ) = 0, i.e. (uθi )i∈[d] ⊂ L2
µ(X ) and (vθi )i∈[d] ⊂ L2

ν(Y) are two orthonormal systems in the
corresponding orthogonal complements of constant functions, using the uniqueness of SVD, the
proof is completed.

B.4 Proof of Theorem 2

Proof of Theorem 2. Let us denote the operators arising from centered and empirically centered
features as Uθ, Ûθ : Rd → L2

µ(X ) and V̂θ, V θ : Rd → L2
ν(Y) by

Uθz := z⊤(uθ−E[uθ(X)])1X , V θz := z⊤(vθ−E[vθ(Y )])1Y and Ûθz := z⊤ûθ, V̂θz := z⊤v̂θ,

respectively, for z ∈ Rd.

We first bound the error of the conditional expectation model as ∥DY |X − D̂θY |X∥ as follows.

∥DY |X − D̂θY |X∥ = ∥DY |X ± [[DY |X ]]d ± U∗
θ SθVθ ± U

∗
θSθV θ − Û∗

θ SθV̂θ∥

≤ σ⋆d+1 + Eθ + ∥U∗
θ SθVθ − U

∗
θSθV θ∥+ ∥U

∗
θSθV θ − Û∗

θ SθV̂θ∥.
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Next, using that ∥Sθ∥ ≤ 1 and that centered covariances are bounded by uncentered ones, i.e.
U

∗
θUθ ⪯ U∗

θUθ, we have

∥U∗
θ SθVθ − U

∗
θSθV θ∥ = ∥U∗

θ SθVθ ± U
∗
θSθVθ − U

∗
θSθV θ∥

≤ ∥Uθ − Uθ∥∥Vθ∥+ ∥Uθ∥∥Vθ − V θ∥

≤ ∥U∗
θ 1X ∥∥V ∗

θ Vθ∥1/2 + ∥V ∗
θ 1Y∥∥U∗

θUθ∥1/2 ≤ 2Eθ
√
1 + Eθ.

In a similar way, we obtain

∥U∗
θSθV θ − Û∗

θ SθV̂θ∥ = ∥U
∗
θSθV θ ± Û∗

θ SθV θ − Û∗
θ SθV̂θ∥

≤ ∥Uθ − Ûθ∥∥V θ∥+ ∥Ûθ∥∥V θ − V̂θ∥
≤ ∥Uθ − Ûθ∥∥V θ∥+ ∥V θ − V̂θ∥∥Uθ∥+ ∥Uθ − Ûθ∥∥V θ − V̂θ∥

≤
√
1 + Eθ

(
∥Êx[uθ]− E[uθ(X)]∥+ ∥Êy[vθ]− E[vθ(Y )]∥

)
+ ∥Êx[uθ]− E[uθ(X)]∥ ∥Êy[vθ]− E[vθ(Y )]∥

≤ 2
√

1 + Eθεn(δ) + [εn(δ)]
2.

where ∥Êx[uθ]− E[uθ(X)]∥ ≤ εn(δ) and ∥Êy[vθ]− E[vθ(Y )]∥ ≤ εn(δ) hold w.p.a.l. 1− δ in view
of Lemma 2.

To summarize, it holds w.p.a.l. 1− δ

∥DY |X − D̂θY |X∥ ≤ σ
⋆
d+1 + Eθ + 2

√
1 + Eθ(Eθ + εn(δ)) + [εn(δ)]

2 =: ψn(δ). (24)

By definition in (5) and (14), we have

P[Y ∈ B |X ∈ A]− p̂θ(B |A) = E[1B(Y )]− Êy[1B ] +
⟨1A,DY |X1B⟩

E[1A(X)]
−
⟨1A, D̂θY |X1B⟩

Êx[1A]
,

and
⟨1A,DY |X1B⟩

E[1A(X)]
=
⟨1A, (DY |X − D̂θY |X)1B⟩

E[1A(X)]
+
⟨1A, D̂θY |X1B⟩

Êx[1A]

Êx[1A]
E[1A(X)]

.

Note also that ∥1A(X)∥L2
µ(X ) =

√
E[1A(X)] =

√
P[X ∈ A], ∥1B(Y )∥L2

ν(Y) =
√

E[1B(Y )] =√
P[Y ∈ B], for any A ∈ ΣX and B ∈ ΣY and

|⟨1A, (DY |X − D̂θY |X)1B⟩| ≤ ∥DY |X − D̂θY |X∥∥1A(X)∥L2
µ(X )∥1B(Y )∥L2

ν(Y).

Combining the previous observations, we get

|P[Y ∈ B |X ∈ A]− p̂θ(B |A)| ≤

(
|Êy[1B ]− E[1B(Y )]|

E[1B(Y )]
+

∥DY |X − D̂θY |X∥√
E[1A(X)]E[1B(Y )]

)
E[1B(Y )]

+
|⟨1A, D̂θY |X1B⟩|

Êx[1A]

|Êx[1A]− E[1A(X)]|
E[1A(X)]

, (25)

and

|⟨1A, D̂θY |X1B⟩|

Êx[1A]
≤ E[1A(X)]

Êx[1A]

(
|⟨1A,DY |X1B⟩|

E[1A(X)]
+
|⟨1A, (DY |X − D̂θY |X)1B⟩|

E[1A(X)]

)

≤ E[1A(X)]

Êx[1A]

(
∥DY |X∥+ ∥DY |X − D̂θY |X∥

)√E[1B(Y )]

E[1A(X)]

≤ E[1A(X)]

Êx[1A]

√
E[1B(Y )]

E[1A(X)]

(
1 + ∥DY |X − D̂θY |X∥

)
, (26)
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where we have used that ∥DY |X∥ ≤ 1.

Similarly, we have

P[Y ∈ B |X ∈ A]
P[Y ∈ B]

− p̂θ(B |A)
p̂y(B)

=
⟨1A,DY |X1B⟩

E[1A(X)]E[1B(Y )]
−
⟨1A, D̂θY |X1B⟩

Êx[1A]Êy[1B ]

=
⟨1A, (DY |X − D̂θY |X)1B⟩

Êx[1A]Êy[1B ]

+ ⟨1A, D̂θY |X1B⟩

(
1

E[1A(X)]E[1B(Y )]
− 1

Êx[1A]Êy[1B ]

)

=
⟨1A, (DY |X − D̂θY |X)1B⟩

Êx[1A]Êy[1B ]

+
⟨1A, D̂θY |X1B⟩

E[1A(X)]E[1B(Y )]

(
(Êx[1A]− E[1A(X)])Êy[1B ] + E[1A(X)](Êy[1B ]− E[1B(Y )])

Êx[1A]Êy[1B ]

)

=
⟨1A, (DY |X − D̂θY |X)1B⟩

Êx[1A]Êy[1B ]

+
⟨1A, D̂θY |X1B⟩

E[1A(X)]E[1B(Y )]

(
Êx[1A]− E[1A(X)]

Êx[1A]
+

E[1A(X)](Êy[1B ]− E[1B(Y )])

Êx[1A]Êy[1B ]

)
. (27)

Next Lemmas 3 and 4 combined with (18) and elementary algebra give w.p.a.l. 1− 2δ that∣∣∣∣ Êx[1A]− E[1A(X)]

Êx[1A]

∣∣∣∣ ≤ 2φX(A)ϵn(δ),

∣∣∣∣ Êy[1B ]− E[1B(Y )]

Êx[1B ]

∣∣∣∣ ≤ 2φY (B)ϵn(δ),

and

E[1A(X)]

Êx[1A]
∨ E[1B(Y )]

Êy[1B ]
≤ 2,

∣∣∣∣E[1A(X)](Êy[1B ]− E[1B(Y )])

Êx[1A]Êy[1B ]

∣∣∣∣ ≤ 4φY (B)ϵn(δ).

It also holds on the same probability event as above that∣∣∣∣ ⟨1A, (DY |X − D̂θY |X)1B⟩

Êx[1A]Êy[1B ]

∣∣∣∣≤ ∥DY |X − D̂θY |X∥√
E[1A(X)]E[1B(Y )]

E[1A(X)]

Êx[1A]

E[1B(Y )]

Êy[1B ]
≤4

∥DY |X − D̂θY |X∥√
E[1A(X)]E[1B(Y )]

.

Combining Lemma 2 and (24), we get with probability at least 1− δ that ∥DY |X − D̂θY |X∥ ≤ ψn(δ).

By a union bound combining the last two displays with (24), (27), (25) and (26), we get with
probability at least 1− 3δ∣∣∣∣P[Y ∈ B |X ∈ A]P[Y ∈ B]

− p̂θ(B |A)
p̂y(B)

∣∣∣∣ ≤ 4ψn(δ) + [1 + ψn(δ)] [2φX(A) + 4φY (B)] ϵn(δ)√
E[1A(X)]E[1B(Y )]

, (28)

and∣∣∣∣P[Y ∈ B |X ∈ A]− p̂θ(B |A)P[Y ∈ B]

∣∣∣∣ ≤ φY (B)ϵn(δ) +
2(1 + ψn(δ))φX(A)ϵn(δ) + ψn(δ)√

E[1A(X)]E[1B(Y )]
. (29)

Replacing δ by δ/3, we get the result w.p.a.l. 1− δ.

The following result will be useful to investigate the theoretical properties of the NCP method in the
iid setting.
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Lemma 2. Let Assumption 1 be satisfied. Assume in addition that n ≥ c2ud. Then there exists an
absolute constant C > 0 such that, for any δ ∈ (0, 1), it holds w.p.a.l. 1− δ

∥Êx[uθ]− E[uθ(X)]∥ ≤ C cu
√
d

(
log(eδ−1)

n
+

√
log(eδ−1)

n

)
.

Similarly, if n ≥ c2vd, w.p.a.l. 1− δ

∥Êy[vθ]− E[vθ(Y )]∥ ≤ Ccv
√
d

(
log(eδ−1)

n
+

√
log(eδ−1)

n

)
.

Proof of Lemma 2. We note that

Êx[u
θ]− E[uθ(X)] =

1

n

n∑
i=1

Zi with Zi = uθ(Xi)− Euθ(Xi), ∀i ∈ [n].

We note that ∥Zi∥ ≤ 2cu
√
d =: U and Var(Zi) = Var(∥uθ(Xi)− E[uθ(Xi)]∥) = σ2

θ(X) for any
i ∈ [n]. We apply Minsker (2017, Corollary 4.1) to get for any t ≥ 1

6 (U +
√
U2 + 36nσ2

θ(X)),

P

[
∥
n∑
i=1

Zi∥ > t

]
≤ 28 exp

(
− t2/2

nσ2
θ(X) + tU/3

)
. (30)

Replacing t by nt and some elementary algebra give for any t ≥ 1
6

(
U
n +

√
U2

n2 + 36
σ2
θ(X)

n

)
=: c,

w.p.a.l. 1− 28 exp (−t),

∥ 1
n

n∑
i=1

Zi∥ ≤
4U

3

t

n
+ 2σθ(X)

√
t

n
.

Replacing t by t+ c, we get for any t ≥ 0, w.p.a.l. 1− 28 exp (−t+ c),

∥ 1
n

n∑
i=1

Zi∥ ≤
4U

3

t+ c

n
+ 2σθ(X)

√
t+ c

n
.

Up to a rescaling of the constants, there exists a numerical constantC > 0 such that for any δ ∈ (0, 1),
w.p.a.l. 1− δ

∥ 1
n

n∑
i=1

Zi∥ ≤ C

(
U

n
c+ σθ(X)

√
c

n
+ U

t

n
+ σθ(X)

√
t

n

)
.

Elementary computations give the following bound, that is, there exists a numerical constant C > 0
such that for any t > 0, w.p.a.l. 1− exp(−t)

∥ 1
n

n∑
i=1

Zi∥ ≤ C

(
cu
√
d

n
∨ c

2
u d

n2
∨
σ
3/2
θ (X)

n3/4
∨ σ

2
θ(X)

n
+ cu

√
d t

n
+ σθ(X)

√
t

n

)
.

Under Assumption 1 and the condition c2u d
n ≤ 1, it also holds that σ

2
θ(X)
n ≤ 1 since σ2

θ(X) ≤ c2ud.
Consequently, the bound simplifies and we obtain for any t > 1, w.p.a.l. 1− exp(−t)

∥ 1
n

n∑
i=1

Zi∥ ≤ C cu
√
d

(
t

n
∨
√
t

n

)
,

where C > 0 is possibly a different absolute constant from the previous bound. Taking t = log eδ−1

for any δ ∈ (0, 1) gives the first result. We proceed similarly to get the second result.
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Control on empirical probabilities We derive now a concentration result for empirical probabilities.

Lemma 3. For any A ∈ ΣX and any δ ∈ (0, 1), it holds w.p.a.l. 1− δ

|Êx[1A]− E[1A(X)]| ≤ 2
log 2δ−1

n
+
√

P[X ∈ A](1− P[X ∈ A])
√
2
log 2δ−1

n
.

Assume in addition that P(X ∈ A) ≥ 2
√
2 log 2δ−1

n . Then it holds w.p.a.l. 1− δ

|Êx[1A]− E[1A(X)]|
E[1A(X)]

≤
√

2
log 2δ−1

n

√
1 ∨ 1− P[X ∈ A]

P[X ∈ A]
.

Proof. We note that

Êx[1A(X)]− E[1A(X)] =
1

n

n∑
i=1

Zi with Zi = 1A(Xi)− E[1A(Xi)], ∀i ∈ [n].

We note that |Zi| ≤ 2 and Var(Zi) = P[X ∈ A](1− P[X ∈ A]). Then Bercu et al. (2015, Theorem
2.9) gives w.p.a.l. 1− 2δ

|Êx[1A]− E[1A(X)]| ≤ 2
log δ−1

n
+
√

P[X ∈ A](1− P[X ∈ A])
√
2
log δ−1

n
.

Dividing by E[1A(X)] gives w.p.a.l. 1− 2δ

|Êx[1A]− E[1A(X)]|
E[1A(X)]

≤ 2

√
2
log δ−1

n

√
[2 log(δ−1)/n] ∨ (1− P[X ∈ A])

P[X ∈ A]
.

Replacing δ by δ/2 gives the result for X . The result for Y follows from a similar reasoning.

The same proof argument gives an identical result for Y .
Lemma 4. For any B ∈ ΣY and any δ ∈ (0, 1), it holds w.p.a.l. 1− δ

|Êy[1B ]− E[1B(Y )]| ≤ 2
log 2δ−1

n
+
√

P[Y ∈ B](1− P[Y ∈ B])

√
2
log 2δ−1

n
.

Assume in addition that P(Y ∈ B) ≥ 2
√

2 log 2δ−1

n . Then it holds w.p.a.l. 1− δ

|Êy[1B ]− E[1B(Y )]|
E[1B(Y )]

≤
√

2
log 2δ−1

n

√
1 ∨ 1− P[Y ∈ B]

P[Y ∈ B]
.

B.5 Sub-Gaussian case

Sub-Gaussian setting. We derive another concentration result under a less restricted sub-Gaussian
condition on functions uθ and vθ. This result relies on Pinelis and Sakhanenko’s inequality for
random variables in a separable Hilbert space, see (Caponnetto and De Vito, 2007, Proposition 2).

Let ψ2(x) = ex
2 − 1, x ≥ 0. We define the ψ2-Orlicz norm of a random variable η as

∥η∥ψ2 := inf

{
C > 0 : E

[
ψ2

(
|η|
C

)]
≤ 1

}
.

We recall the definition of a sub-Gaussian random vector.
Definition 4 (Sub-Gaussian random vector). A centered random vector X ∈ Rd will be called
sub-Gaussian iff, for all u ∈ Rd,

∥⟨X,u⟩∥ψ2
≲ ∥⟨X,u⟩∥L2(P).
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Proposition 1. Caponnetto and De Vito (2007, Proposition 2) Let Ai, i ∈ [n] be i.i.d copies of a
random variable A in a separable Hilbert space with norm ∥·∥. If there exist constants L > 0 and
σ > 0 such that for every m ≥ 2, E∥A∥m ≤ 1

2m!Lm−2σ2, then with probability at least 1− δ∥∥∥∥∥∥ 1n
∑
i∈[n]

Ai − EA

∥∥∥∥∥∥ ≤ 4
√
2√
n

√
σ2 +

L2

n
log

2

δ
. (31)

Lemma 5 ((Sub-Gaussian random variable) Lemma 5.5. in Vershynin (2011)). Let Z be a random
variable. Then, the following assertions are equivalent with parameters Ki > 0 differing from each
other by at most an absolute constant factor.

1. Tails: P{|Z| > t} ≤ exp(1− t2/K2
1 ) for all t ≥ 0;

2. Moments: (E|Z|p)1/p ≤ K2
√
p for all p ≥ 1;

3. Super-exponential moment: E exp(Z2/K2
3 ) ≤ 2.

A random variable Z satisfying any of the above assertions is called a sub-Gaussian random variable.
We will denote by K3 the sub-Gaussian norm.

Consequently, a sub-Gaussian random variable satisfies the following equivalence of moments
property. There exists an absolute constant c > 0 such that for any m ≥ 2,(

E|Z|m
)1/m ≤ cK3

√
m
(
E|Z|2

)1/2
.

Lemma 6. Assume that ∥uθ(X) − E[uθ(X)]∥ and ∥vθ(Y ) − E[vθ(Y )]∥ are sub-Gaussian with
sub-Gaussian norm K. We set σ2

θ(X) := Var(∥uθ(X) − E[uθ(X)]∥), σ2
θ(Y ) := Var(∥vθ(Y ) −

E[vθ(Y )]∥). Then there exists an absolute constant C > 0 such that for any δ ∈ (0, 1), it holds
w.p.a.l. 1− δ

∥Êx[uθ]− E[uθ(X)]∥ ≤ C√
n

√
σ2
θ(X) +

K2

n
log(2δ−1).

Similarly, w.p.a.l. 1− δ

∥Êy[vθ]− E[vθ(Y )]∥ ≤ C√
n

√
σ2
θ(Y ) +

K2

n
log(2δ−1)

Proof. Set Z := ∥uθ(X)− Euθ(X)∥ and we recall that σ2
θ(X) := Var(∥uθ(X)− E[uθ(X)]∥). We

check that the moment condition,

EZm ≤ 1

2
m!Lm−2σ2

θ(X)2, ∀m ≥ 2,

for some constant L > 0 to be specified.

The condition is obviously satisfied for m = 2. Next for any m ≥ 3, the Cauchy-Schwarz inequality
and the equivalence of moment property give

EZm ≤
(

EZ2(m−2)
)1/2 (

EZ4
)1/2 ≤ 4K2

3σ
2
θ(X)2

(
EZ2(m−2)

)1/2
.

Next, by homogeneity, rescaling Z to Z/K1 we can assume that K1 = 1 in Lemma 5. We recall that
if Z is in addition non-negative random variable, then for every integer p ≥ 1, we have

EZp =
∫ ∞

0

P{Z ≥ t} ptp−1 dt ≤
∫ ∞

0

e1−t
2

ptp−1 dt =
(ep
2

)
Γ
(p
2

)
.

With p = 2(m − 2), we get that EZp ≤ e(m − 2)Γ
(
m − 2

)
= e(m − 2)! = em!/2. Using again

Lemma 5, we can take L = cK for some large enough absolute constant c > 0. Then Proposition 1
gives the result.
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B.6 Estimation of conditional expectation and Conditional covariance

We now derive guarantees for the estimation of the conditional expectation and the conditional
covariance for vector-valued output Y ∈ Rdy .

We start with a general result for arbitrary vector-valued functions of Y . We consider a vector-valued
function h = (h1, . . . , hd) where hj ∈ L2

ν(Y) for any j ∈ [d]. We introduce the space of square
integrable vector-valued functions [L2

ν(Y,Rd)] equipped with the norm

∥h∥ =
√∑
j∈[d]

∥hj∥2L2
ν(Y).

Next we can define the conditional expectation of h(Y ) = (h1(Y
(1)), . . . hd(Y

(dy)))⊤ conditionally
on X ∈ A as follows

E[h(Y ) |X ∈ A] =
(

E[h1(Y )] +
⟨1A,DY |Xh1⟩

P(X ∈ A)
, . . . ,E[hd(Y )] +

⟨1A,DY |Xhd⟩
P(X ∈ A)

)⊤

= E[h(Y )] +
⟨1A, [1d ⊗ DY |X ]h⟩

P(X ∈ A)
.

We define similarly its empirical version as

Êθ[h(Y ) |X ∈ A] =

(
Êy[h1] +

⟨1A, D̂θY |Xh1⟩

Êx[1A]
, . . . , Êy[hd] +

⟨1A, D̂θY |Xhd⟩

Êx[1A]

)⊤

= Êy[h] +
⟨1A, [1d ⊗ D̂θY |X ]h⟩

Êx[1A]
.

Assuming that h(Y ) is sub-Gaussian, we set

K := ∥∥h(Y )− E[h(Y )]∥∥ψ2
, σ2(h(Y )) := Var(∥h(Y )− E[h(Y )]∥).

Define

ψ
n
(δ) :=

1√
n

√
σ2(h(Y )) +

K2

n
log(3δ−1)

+
∥h∥√

P(X ∈ A)

(
ψn(δ/3) + 2(1 + ψn(δ/3))φX(A)ϵn(δ/3)

)
.

Theorem 4. Let the assumptions of Theorem 2 be satisfied. Assume in addition that h(Y ) is
sub-Gaussian. Then we have w.p.a.l. 1− δ that

∥Êθ[h(Y ) |X ∈ A]− E[h(Y ) |X ∈ A]∥ ≲ ψ
n
(δ). (32)

Proof. We have

∥E[h(Y ) |X ∈ A]− Êθ[h(Y )|X ∈ A]∥

≤ ∥E[h(Y )]−Êy[h]∥+
∥DY |X − D̂θY |X∥√

P(X ∈ A)
∥h∥+|⟨1A, [1d ⊗ D̂θY |X ]h⟩|

∣∣∣∣ 1

Êx[1A]
− 1

P(X ∈ A)

∣∣∣∣
≤ ∥E[h(Y )]− Êy[h]∥+

∥DY |X − D̂θY |X∥√
P(X ∈ A)

∥h∥

+
√

P(X ∈ A)(∥DY |X∥+ ∥DY |X − D̂θY |X∥)∥h∥
∣∣∣∣P(X ∈ A)− Êx[1A]

Êx[1A]P(X ∈ A)

∣∣∣∣. (33)

Recall that ∥DY |X∥ ≤ 1, (24) and Lemma 3. Hence, a union bound we get with w.p.a.l. 1− 2δ that

∥E[h(Y ) |X∈A]−Êθ[h(Y )|X∈A]∥

≤ ∥E[h(Y )]−Êy[h]∥+
∥h∥√

P(X∈A)

(
ψn(δ)+2(1+ψn(δ))φX(A)ϵn(δ)

)
. (34)
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We now handle the first term ∥E[h(Y )]− Êy[h]∥. We recall that a similar quantity was already studied
in Lemma 6. We can just replace uθ(X) by h(Y ) ∈ Rd to get the result since we assumed that h(Y )
is sub-Gaussian. Hence there exists an absolute constant C > 0 such that w.p.a.l. 1− δ

∥E[h(Y )]− Êy[h]∥ ≤
C√
n

√
σ2(h(Y )) +

K2

n
log(2δ−1).

Actually, we can handle the conditional expectation E[Y |X ∈ A] in a more direct way. Set

ϵn(δ) :=

√
log(δ−1dy)

n

∨ log(δ−1dy)

n
.

Corollary 2. Let the Assumptions of Theorem 2 be satisfied. Assume in addition that Y is a
sub-Gaussian vector. Then for any δ ∈ (0, 1), it holds with probability at least 1− δ that

∥E[Y |X ∈ A]− Êθ[Y |X ∈ A]∥ ≲
√
tr(Cov(Y ))ϵn(δ/3)

+
∥h∥√

P(X ∈ A)

(
ψn(δ/3) + 2(1 + ψn(δ/3))φX(A)ϵn(δ/3)

)
=: ψ(1)

n (δ). (35)

Proof. The proof of this result is identical to that of Theorem 4 up to (34). Now if we specify
h(Y ) = Y ∈ Rdy . Then, applying Bernstein’s inequality on each of the dy components of E[Y ]−Y n
and a union bound, we get w.p.a.l. 1− δ

∥E[Y ]− Y n∥ ≲
√
tr(Cov(Y ))

√
log(δ−1dy)

n
+ max
j∈[dy ]

∥Y (j)∥ψ2

log(δ−1dy)

n
.

Using again Definition 4, we obtain maxj∈[dy ]∥Y (j)∥ψ2
≲
√
∥Cov(Y )∥ ≤

√
tr(Cov(Y )).

It follows from the last two displays, w.p.a.l. 1− δ
∥E[Y ]− Y n∥ ≲

√
tr(Cov(Y ))ϵn(δ). (36)

A union bound combining the previous display with (34) gives the first result.

We focus now on the conditional covariance estimation problem. We first define the conditional
covariance as follows:
Cov(Y |X ∈ A) = Cov(Y ) + ⟨1A, [(1dy ⊗ 1dy )⊗ DY |X ]h⊗ h⟩/P[X ∈ A]

− ⟨1A, [1dy ⊗ DY |X ]h⟩ ⊗ ⟨1A, [1dy ⊗ DY |X ]h⟩/(P[X ∈ A])2. (37)

Note that ⟨1A, [(1dy ⊗ 1dy )⊗ DY |X ]h⊗ h⟩ = (⟨1A,DY |Xhjhk⟩)j,k∈[dy ] is a dy × dy matrix. We

obtain a similar decomposition for the estimator Ĉov
θ
(Y |X ∈ A) of the conditional covariance

Cov(Y |X ∈ A) by replacing DY |X by D̂θY |X :

Ĉov
θ
(Y |X ∈ A) := Ĉov(Y ) + ⟨1A, [(1dy ⊗ 1dy )⊗ D̂θY |X ]h⊗ h⟩/Êx[1A]

− ⟨1A, [1dy ⊗ D̂θY |X ]h⟩ ⊗ ⟨1A, [1dy ⊗ D̂θY |X ]h⟩/(Êx[1A])2. (38)

We define the effective of covariance matrix Cov(Y ) as follows:

r(Cov(Y )) :=
tr(Cov(Y ))

∥Cov(Y )∥
.

We set for any δ ∈ (0, 1)

ϵ(2)n (δ) := ∥Cov(Y )∥

(√
r(Cov(Y ))

n
+

r(Cov(Y ))

n
+

√
log(δ−1)

n
+

log(δ−1)

n

)
, (39)

and

ψ(2)
n (δ) = ϵ(2)n (δ) + [ψn(δ/4) + 2(1 + ψn(δ/4))φX(A)ϵn(δ/4)]

(E[∥Y ∥2])2√
P[X ∈ A]

+ ψ(1)
n (δ/4)

[
2∥E[Y |X ∈ A]∥+ ψ(1)

n (δ/4)
]
.
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Corollary 3. Let the assumptions of Corollary 2 be satisfied. Then for any δ ∈ (0, 1), it holds with
probability at least 1− δ that

∥Ĉov
θ
(Y |X ∈ A)− Cov(Y |X ∈ A)∥ ≲ ψ(2)

n (δ). (40)

Proof. We use again the function h(Y ) = Y . We note in view of (37)-(38) that

∥Ĉov
θ
(Y |X ∈ A)− Cov(Y |X ∈ A)∥ ≤ ∥Ĉov(Y )− Cov(Y )∥

+ ∥⟨1A,

[
(1dy ⊗ 1dy )⊗

(
DY |X

P[X ∈ A]
−

D̂θY |X

Êx[1A]

)]
h⊗ h⟩∥

+∥E[h(Y ) |X∈A]⊗ E[h(Y ) |X ∈ A]−Êθ[h(Y ) |X∈A]⊗ Êθ[h(Y ) |X∈A]∥, (41)

Next, we note that

∥⟨1A,

[
(1dy ⊗ 1dy )⊗

(
DY |X

P[X ∈ A]
−

D̂θY |X

Êx[1A]

)]
h⊗ h⟩∥

≤ ∥⟨1A,

[
(1dy ⊗ 1dy )⊗

(
DY |X

P[X ∈ A]
−

D̂θY |X

Êx[1A]

)]
h⊗ h⟩∥HS

≤
√

P[X ∈ A]∥
DY |X

P[X ∈ A]
−

D̂θY |X

Êx[1A]
∥
∑

j,k∈[dy ]

∥YjYk∥L2
ν(Y)

≲
√

P[X∈A]

(
∥
DY |X−D̂θY |X

P[X∈A]
∥+∥D̂θY |X∥

(
1

P[X∈A]
− 1

Êx[1A]

)) ∑
j,k∈[dy ]

∥YjYk∥L2
ν(Y)

Remind that Y is a sub-Gaussian vector. Using the equivalence of moments property of sub-Gaussian
vector, we get that

∥YjYk∥L2
ν(Y) ≤

√
E[Y 4

j ]E[Y
4
k ] ≲ E[Y 2

j ]E[Y
2
k ], ∀j, k ∈ [dy].

By a union bound combining the last two displays with (24) and Lemma 3, we get w.p.a.l. 1− 2δ

∥⟨1A,

[
(1dy ⊗ 1dy )⊗

(
DY |X

P[X ∈ A]
−

D̂θY |X

Êx[1A]

)]
h⊗ h⟩∥

≤ [ψn(δ) + 2(1 + ψn(δ))φX(A)ϵn(δ)]
(E[∥Y ∥2])2√

P[X ∈ A]
. (42)

Next, we set u = E[h(Y ) |X ∈ A] and û = Êθ[h(Y ) |X ∈ A]. Then we have

∥u⊗ u− û⊗ û∥ ≤ ∥u− û∥(∥u∥+ ∥û∥) ≤ ∥u− û∥(2∥u∥+ ∥û− u∥).

We apply next Corollary 2 to get w.p.a.l. 1− δ

∥u⊗ u− û⊗ û∥ ≤ ψ(1)
n (δ)

[
2∥E[Y |X ∈ A]∥+ ψ(1)

n (δ)
]
. (43)

Next Koltchinskii and Lounici (2017, Theorem 4) guarantees that w.p.a.l 1− δ

∥Ĉov(Y )− Cov(Y )∥ ≲ ϵ(2)n (δ), (44)

where ϵ(2)n (δ) is defined in (39).

A union bound combining (41), (42), (43) and (44) gives the result.
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C Numerical Experiments

Experiments were conducted on a high-performance computing cluster equipped with an Intel(R)
Xeon(R) Silver 4210 CPU @ 2.20GHz Sky Lake CPU, 377GB RAM, and an NVIDIA Tesla V100
16Gb GPU. Code is available at https://github.com/CSML-IIT-UCL/NCP.

C.1 Conditional Density Estimation

To evaluate our method’s ability to estimate conditional densities, we tested NCP on six different data
models (described in the following paragraph) and compared its performance with ten other methods
(detailed in Tab. 2). We assessed the methods’ performance using the KS distance between the
estimated conditional CDF and the true CDF. Additionally, we explored how the performance of each
method scales with the number of training samples, ranging from 102 to 105, with a validation set
of 103 samples. We tested each method on nineteen different conditional values uniformly sampled
between the 5%- and 95%-percentile of p(x). Conditional CDFs were estimated on a grid of 1000
points uniformly distributed over the support of Y . The KS distance between each pair of CDFs was
averaged over all the conditioning values. In Tab. 5, we present the mean performance (KS distance
± standard deviation), computed over 10 repetitions, each with a different random seed.

Synthetic data models. We included the following synthetic datasets from Rothfuss et al. (2019)
and Gao and Hastie (2022) into our benchmark:

• LinearGaussian, a simple univariate linear density model defined as Y = X +N (0, 0.1)
where X ∼ Unif(−1, 1).

• EconDensity, an economically inspired heteroscedastic density model with a quadratic
dependence on the conditional variable defined as Y = X2 + ϵY , ϵY ∼ N (0, 1+X) where
X ∼ |N (0, 1)|.

• ArmaJump, a first-order autoregressive model with a jump component exhibiting negative
skewness and excess kurtosis, defined as

xt = [c(1− α) + αxt−1] + (1− zt)ϵt + zt [−3c+ 2ϵt] ,

where ϵt ∼ N (0, 0.05) and zt ∼ B(1, p) denote a Gaussian shock and a Bernoulli dis-
tributed jump indicator with probability p, respectively. The parameters were left at their
default value.

• GaussianMixture, a bivariate Gaussian mixture model with 5 kernels where the goal is
to estimate the conditional density of one variable given the other. The mixture model
is defined as p(X,Y ) =

∑5
k=1 πkN (µk,Σk) where πk, µk, and Σk are the mixing

coefficient, mean vector, and covariance matrix of the k-th distribution. All the parameters
were randomly initialized.

• SkewNormal, a univariate skew normal distribution defined as Y = 2ϕ(X)ψ(αX) where
ϕ(·) and ψ(·) are the standard normal probability and cumulative density functions, and α is
a parameter regulating the skewness. The parameters were left at their default value.

• Locally Gaussian or Gaussian mixture distribution (LGGMD) (Gao and Hastie, 2022), a
regression dataset where the target y depends on the three first dimensions of x, with
seventeen irrelevant features added to x. The features of x are all uniformly distributed
between −1 and 1. The first dimension of x gives the mean of Y |X , the second is whether
the data is Gaussian or a mixture of two Gaussians, and the third gives its asymmetry. More
specifically:

Y |X ∼


0.5N (0.25X(1) − 0.5, 0.25(0.25X(3) + 0.5)2)

+0.5N (0.25X(1) + 0.5, 0.25(0.25X(3) − 0.5)2) if X(2) ≤ 0.2

0N (0.25X(1) − 0.5, 0.3) if X(2) > 0.2

(45)

To sample data from EconDensity, ArmaJump, GaussianMixture, and SkewNormal, we used the
library Conditional Density Estimation (Rothfuss et al., 2019) available at https://github.
com/freelunchtheorem/Conditional_Density_Estimation.
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Training NCP. We trained an NCP model with uθ and vθ as multi-layer perceptrons (MLPs), each
having two hidden layers of 64 units using GELU activation function in between. The vector σθ has a
size of d = 100, and γ is set to 10−3. Optimization was performed over 104 epochs using the Adam
optimizer with a learning rate of 10−3. Early stopping was applied based on the validation set with
patience of 1000 epochs. To ensure the positiveness of the singular values, we transform the vector
σθ with the Gaussian function x 7→ exp(−x2) during any call of the forward method. Whitening
was applied at the end of training.

Compared methods. We compared our NCP network with ten different CDE methods. See Tab. 2
for the exhaustive list of models including a brief summary and key hyperparameters.

In particular, the methods were set up as follows:

• NF was characterized by a 1D Gaussian base distribution and two Masked Affine Autore-
gressive flows (Papamakarios et al., 2017) followed by a LU Linear permutation flow. To
match the NCP architecture, each flow was defined by two hidden layers with 64 units each.
The training procedure was the same as for the NCP model. The model was implemented
using the library normflows (Stimper et al., 2023).

• DDPM was characterized by a U-Net (Ronneberger et al., 2015), a noise schedule starting
from 10−4 to 0.02 and 400 steps of diffusion as implemented in https://github.com/
TeaPearce/Conditional_Diffusion_MNIST.

• CKDE’s kernels bandwidth was estimated according to Silverman’s rule (Silverman, 1986).

• MDN’s architecture was defined by two hidden layers with 64 units each and 20 Gaussians
kernels.

• KMN’s architecture was defined by two hidden layers with 64 units each, 50 Gaussians
kernels, and kernels bandwidth was estimated according to Silverman’s rule (Silverman,
1986).

• LSCDE was defined by 500 components which bandwidths were set to 0.5 and kernels center
found via a k-means procedure.

• NNKDE’s number of neighbors was set using the heuristics k =
√
n (Devroye et al., 1996).

Kernels bandwidth was estimated according to Silverman’s rule (Silverman, 1986). We used
the implementation available at https://github.com/lee-group-cmu/NNKCDE.

• RFCDE was characterized by a Random Forest with 1000 trees and 31 cosine basis functions.
The training was performed using the rfcde library available at https://github.com/
lee-group-cmu/RFCDE.

• FC was trained using a Random Forest with 1000 trees as a regression method and had 31
cosine basis functions. The training was performed using the flexcode library available at
https://github.com/lee-group-cmu/FlexCode.

• LinCDE was trained with 1000 LinCDE trees using the LinCDE.boost R function from
https://github.com/ZijunGao/LinCDE.

CKDE, MDN, KMN, and LSCDE hyperparameters were set according to Rothfuss et al. (2019) and were
trained using the library Conditional Density Estimation available at https://github.com/
freelunchtheorem/Conditional_Density_Estimation. All methods involving the training
of a neural network were assigned the same number of epochs given to NCP. All other method
parameters were set as prescribed in their paper.

Results. See Tab. 4 for the comparison of performances for n = 104. See also Fig. 5. We also
carried out an ablation study on centering and whitening post-treatment for NCP in Tab. 3

C.2 Confidence Regions

The objective of this next experiment is to estimate a confidence interval at coverage level 90% for
two distribution models with different properties (Laplace and Cauchy) and one real dataset in order
to showcase the versatility of our NCP approach.
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Table 2: Compared methods for the CDE problem.

Method Summary Main hyperparams

Normalizing Flows (NF)
(Rezende and Mohamed, 2015b)

Generative models that transform a
simple distribution into a complex
one through a series of invertible
and differentiable transformations

• Architecture
• Flow type

Denoising Diffusion
Probabilistic Model (DDPM)

(Ho et al., 2020)

Generative models that learn to generate
data by reversing a gradual noising

process, modeling distributions through
iterative refinement

• Number of diffusion steps
• Noise schedule

Conditional KDE (CKDE)
(Li and Racine, 2006)

Nonparametric approach modeling the
joint and marginal probabilities via
KDE and computes the conditional
density as p(y|x) = p(x, y)/p(x).

• KDE bandwidth

Mixture Density Network (MDN)
(Bishop, 1994)

Uses NeuralNets which takes conditional
x as input and governs all the

weights of a GMM modeling p(y|x).
• NeuralNet architecture
• Number of kernels

Kernel Mixture Network (KMN)
(Ambrogioni et al., 2017)

Similar to MDN with the difference that
NN only controls the weights of the GMM.

• NeuralNet architecture
• Method for finding kernel centers
• Number of kernels

Least-Squares CDE (LSCDE)
(Sugiyama et al., 2010)

Computes the conditional density as
linear combination of Gaussian kernels

• Method for finding kernel centers
• Number of kernels
• Kernels’ bandwidth

Nearest Neighbor Kernel CDE (NNKDE)
(Izbicki et al., 2017)

(Freeman et al., 2017)

Uses nearest neighbors of the
evaluation point x to compute

a KDE estimation of y.

• Number of neighbors
• Kernel bandwidth

Random Forest CDE (RFCDE)
(Pospisil and Lee, 2018)

Uses a random forest to partition
the feature space and constructs

a weighted KDE of the output space,
based on the weights of the leaves

in the forest.

• Random forest hyperparams
• Basis system
• Number of basis

Flexible CDE (FC)
(Izbicki and Lee, 2017)

Nonparametric approach which uses
a basis expansion of univariate y

to turn CDE into a series
of univariate regression problems.

• Number of expansion coeffs
• Regression method hyperparams.

LinCDE (LCDE)
(Gao and Hastie, 2022)

Conditional training of
unconditional machine learning

models to learn density
• Number of LinCDE trees

Table 3: Ablation study on post-treatment for NCP. We report the mean and std of KS distance of
estimated CDF from the truth averaged over 10 repetitions with n = 105 (best method in bold red).
NCP–C and NCP–W refer to our method with centering and whitening post-treatment, respectively.

Model LinearGaussian EconDensity ArmaJump SkewNormal GaussianMixture LGGMD

NCP 0.040 ± 0.007 0.014 ± 0.003 0.046 ± 0.012 0.023 ± 0.006 0.027 ± 0.008 0.055 ± 0.010
NCP–C 0.019 ± 0.006 0.010 ± 0.003 0.037 ± 0.011 0.015 ± 0.004 0.015 ± 0.004 0.048 ± 0.007
NCP–W 0.010 ± 0.000 0.005 ± 0.001 0.010 ± 0.002 0.008 ± 0.001 0.015 ± 0.004 0.047 ± 0.005

Table 4: Mean and standard deviation of KS distance of estimated CDF from the truth averaged over
10 repetitions with sample size of 104 (best method in bold red, second best in bold black). NCP–C
and NCP–W refer to our method with centering and whitening post-treatment, respectively.

Model LinearGaussian EconDensity ArmaJump SkewNormal GaussianMixture LGGMD

NCP 0.046 ± 0.011 0.021 ± 0.009 0.048 ± 0.009 0.043 ± 0.029 0.035 ± 0.004 0.188 ± 0.011
NCP–C 0.031 ± 0.008 0.019 ± 0.008 0.038 ± 0.011 0.031 ± 0.013 0.031 ± 0.003 0.189 ± 0.012
NCP–W 0.026 ± 0.002 0.016 ± 0.003 0.020 ± 0.002 0.024 ± 0.011 0.030 ± 0.002 0.176 ± 0.014
DDPM 0.414 ± 0.341 0.264 ± 0.240 0.358 ± 0.314 0.284 ± 0.251 0.416 ± 0.242 0.423 ± 0.223
NF 0.011 ± 0.002 0.015 ± 0.003 0.141 ± 0.005 0.039 ± 0.005 0.113 ± 0.006 0.288 ± 0.010
KMN 0.599 ± 0.003 0.349 ± 0.019 0.490 ± 0.007 0.380 ± 0.009 0.306 ± 0.003 0.225 ± 0.008
MDN 0.245 ± 0.011 0.051 ± 0.002 0.164 ± 0.005 0.089 ± 0.002 0.144 ± 0.009 0.232 ± 0.008
LSCDE 0.418 ± 0.003 0.119 ± 0.004 0.250 ± 0.007 0.109 ± 0.002 0.201 ± 0.005 0.295 ± 0.034
CKDE 0.187 ± 0.001 0.023 ± 0.003 0.125 ± 0.002 0.046 ± 0.001 0.085 ± 0.003 0.241 ± 0.021
NNKCDE 0.090 ± 0.002 0.060 ± 0.006 0.063 ± 0.006 0.052 ± 0.005 0.059 ± 0.004 0.207 ± 0.013
RFCDE 0.132 ± 0.009 0.136 ± 0.010 0.130 ± 0.009 0.139 ± 0.009 0.134 ± 0.012 0.162 ± 0.006
FC 0.090 ± 0.004 0.030 ± 0.006 0.042 ± 0.003 0.033 ± 0.002 0.033 ± 0.003 0.065 ± 0.008
LCDE 0.122 ± 0.002 0.029 ± 0.003 0.118 ± 0.003 0.064 ± 0.007 0.050 ± 0.002 0.141 ± 0.004
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Figure 5: Performances for CDE on synthetic datasets w.r.t sample size n. Performance metric is
Kolmogorov-Smirnov (KS) distance to truth.

Compared methods. We compared our NCP procedure for building conditional confidence inter-
vals to the state-of-the-art conditional conformal prediction method in Gibbs et al. (2023). We also
developed another method based on Normalizing Flows’ estimation of the conditional CDE and we
added it to the benchmark.

Experiment for Laplace and Cauchy distributions. We generate a dataset where the X variable
follows a uniform distribution on interval [0, 5] and Y |X = x follows either a Laplace distribution
with location and scale parameters (µ(x), b(x)) = (x2, x) or a Cauchy distribution with location and
scale parameters (µ(x), b(x)) = (x2, 1 + x). We create a train set of 50000 samples, a validation set
of 1000 samples and a test set of 1000 samples.

For the Laplace distribution, we train an NCP where uθ and vθ are multi-layer perceptrons with two
hidden layers of 128 cells, σθ is a vector of size d = 500 and γ = 10−2. Between each layer, we
use the GELU activation function. We optimize over 5000 epochs using the Adam optimizer with a
learning rate of 10−3. We apply early stopping with regard to the validation set with a patience of
100 epochs. Whitening is applied at the end of training. To fit the Cauchy distribution, we increase
the depth of the MLPs to 5 and the width to 258.

We compare this NCP network with two state-of-the-art methods. The first is a normalizing flow with
base distribution a 1D Gaussian and two Autoregressive Rational Quadratic spline flows (Durkan
et al., 2019) followed by a LU Linear permutation flow. All flows come from the library normflows
(Stimper et al., 2023). The spline flows have each two blocks of 128 hidden units to match the NCP
architecture. The normalizing flow is allowed the same number of epochs as ours with the same
optimizer. The second model is the conditional conformal predictor from Gibbs et al. (2023). This
model needs a regressor as an input. We consider a situation favorable to Gibbs et al. (2023) as
we assume as prior knowledge that the true conditional expectation is a polynomial function (the
truth is actually the quadratic function in this example). Therefore we chose a linear regression with
polynomial features as in Gibbs et al. (2023) as this regressor should fit the data without any problem.
For all other choices of parameters, we follow the prescriptions of Gibbs et al. (2023). For the sake of
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Figure 6: Estimated conditional PDFs (left) and CDFs (right) for each synthetic dataset for
3 different conditioning points. Dotted lines represent the true distributions, while solid lines
represent the estimates from NCP. The average KS distance over 5 repetitions is also reported on the
right plots.
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fairness, we note that the validation set used for early stopping in NF and NCP was also used as a
calibration set for the CCP method.

By design, the Conditional Conformal Predictor (CCP) gives the confidence interval directly. However
NCP and NF output the conditional distribution. To find the smallest confidence interval with desired
coverage, we apply the linear search algorithm described in Algorithm 3 on the discretized conditional
CDFs provided by NCP and NF. The results are provided in Fig. 1. First, observe that although the
linear regression achieves the best estimation of the conditional mean, as should be expected since
the model is well-specified in this case, the confidence intervals, however, are unreliable for most
of the considered conditioning. We also notice instability for NF and CCP for conditioning in the
neighborhood of x = 0 with NF confidence region exploding at x = 0. We expect this behavior is
due to the fact that the conditional distribution at x = 0 is degenerate. Comparatively, NCP does not
exhibit such instability around x = 0. It only tends to overestimate the produced confidence region
for conditioning close to x = 0.

Algorithm 3 Confidence interval search given a CDF
Require: Y a vector of values, FY a vector of realisations of the CDF at points Y , α ∈ [0, 1] a

confidence level
Initialize tlow = 0 and thigh = 1
Initialize t∗low = 0 and t∗high = −1
Initialize s∗ =∞
while Center and scale Xtrain and Ytrain do

if FY [thigh]− FY [tlow] ≥ α then
size = Y [thigh]− Y [tlow]
if size < s∗ then
t∗low = tlow, t∗high = thigh, s∗ =size

end if
tlow = tlow + 1

else if thigh = len(Y )− 1 then
break

else
thigh = thigh + 1

end if
end while
Return Y [tlow], Y [thigh]

Experiment on real data. We also evaluate the performance of NCP in estimating confidence in-
tervals using the Student Performance dataset available at https://www.kaggle.com/datasets/
nikhil7280/student-performance-multiple-linear-regression/data. This dataset
comprises 10000 records, each defined by five predictors: hours studied, previous scores, extracurric-
ular activities, sleep hours, and sample question papers practiced, with a performance index as the
target variable. In this experiment, the NCP’s uθ and vθ are defined by MLPs with two hidden layers,
each containing 32 units and using GELU activation functions, σθ is a vector of size d = 50 and
γ = 10−2. Optimization was performed over 50000 epochs using the Adam optimizer with a learning
rate of 10−3. We compare NCP with a normalizing flow defined as above in which spline flows have
each two blocks of 32 hidden units to match NCP architecture. The normalizing flow is trained for
the same number of epochs as our model, using the same optimizer. We further compare NCP with
a split conformal predictor featuring a Random Forest regressor (RFSCP) with 100 estimators. We
used the implementation of the library puncc (Mendil et al., 2023). For NCP and the normalizing
flow, early stopping is based on the validation set, while for RFSCP, the validation set serves as the
calibration set. We performed 10 repetitions, randomly splitting the dataset into a training set of 8000
samples and validation and test sets of 1000 samples each. We report the results of the estimated
confidence interval at a coverage level of 90% in Tab. 5. The methods provide fairly good coverage.
NF did not respect the 90% coverage condition. Only NCP and RFSCP both respect the coverage
condition but the width of the confidence intervals for RFSCP are larger than for NCP.

Discussion on Conformal Prediction. Conformal prediction (CP) is a popular model-agnostic
framework for uncertainty quantification approach Vovk et al. (1999). CP assigns nonconformity
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Table 5: Mean and standard deviation of 90% prediction interval (PI) coverages and interval widths,
averaged over 10 repetitions for the Student Performance dataset from Kaggle.NCP–C and NCP–W
refer to our method with centering and whitening post-treatment, respectively.

Model Coverage 90% PI Width 90% PI

NCP–C 89.41% ± 2.12% 0.39 ± 0.02

NCP–W 91.02% ± 0.72% 0.38 ± 0.01

NF 89.10% ± 1.07% 0.35 ± 0.00

RFSCP 90.03% ± 1.06% 0.41 ± 0.01

scores to new data points. These scores reflect how well each point aligns with the model’s predictions.
CP then uses these scores to construct a prediction region that guarantees the true outcome will fall
within it with a user-specified confidence parameter. However, CP is not without limitations. The
construction of these guaranteed prediction regions can be computationally expensive especially for
large datasets, and need to be recomputed from scratch for each value of the confidence level parameter.
In addition, the produced CP confidence regions tend to be conservative. Another limitation of
regular CP is that predictions are made based on the entire input space without considering potential
dependencies between variables. Conditional conformal prediction (CCP) was later developed to
handle conditional dependencies between variables, allowing in principle for more accurate and
reliable predictions Gibbs et al. (2023). CCP suffers from the typical limitations of regular CP and
the theoretical guarantees.

C.3 High-dimensional Experiments

Experiment on high-dimensional synthetic data. In Fig. 3, we trained NCP for d = 100 using
the same MLP architecture and the same NF with autoregressive flow as in our initial experiments
based on n = 105 samples {(Xi, Yi)}ni=1 with values in Rd × Y . We plot the conditional CDF
for several conditioning w.r.t. θ(x) on 10 repetitions. NCP paired with a small MLP architecture
performs comparably to the NF model for Gaussian distributions. For discrete distributions, the NCP
demonstrates superior performance compared to the NF model.

We repeated the experiment in Fig. 3 for d ∈ {100, 200, 500, 1000} and recorded the aver-
age Kolmogorov-Smirnov (KS) distance of the NCP conditional distribution to the truth, computation
time and their standard deviations over 10 repetitions.
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Figure 7: Left: we observe only ≈ 20% increase in compute time going from d = 102 to d = 103. Right:
average KS distance to the truth and standard deviation over 10 repetitions.

High-dimensional experiment in molecular dynamics: Chignolin folding. We investigated the
dynamics of Chignolin folding, using a molecular dynamics simulation lasting 106µs and sampled
every 200ps, resulting in 524, 743 data points. Our analysis focuses on 39 heavy atoms (nodes)
with a cutoff radius of 5 Angstroms. To predict the conditional transition probability between
metastable states, we integrate our NCP approach with a graph neural network (GNN) model. GNNs,
as demonstrated by Chanussot et al. (2021), represent the state-of-the-art in modeling atomistic
systems, adeptly incorporating the roto-translational and permutational symmetries inherent in
physical systems. In particular, we employed a SchNet model Schütt et al. (2019, 2023) with
three interaction blocks. Each block features a 64-dimensional latent atomic environment, and the
inter-atomic distances for message passing are expanded over 20 radial basis functions. After the
final interaction block, each latent atomic environment is processed through a linear layer and then
aggregated by averaging. The model underwent training for 100 epochs using an Adam optimizer
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with a learning rate of 10−3. We employed a batch size of 256 and set γ to 10−3. In Fig. 2, we show
how our NCP approach enables the tracking transitions between metastable states, demonstrating
accurate forecasting and strong uncertainty quantification.
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35

61033 https://doi.org/10.52202/079017-1950



Justification: Yes each statement clearly state all required assumptions and all proofs are
provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper presents the pseudo-code of our method, links to the datasets and
methods used to reproduce our results

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: While the paper is predominantly theoretical, we have presented experiments
which illustrate our theory. Data and code can be made available upon request during the
rebuttal and will be made readily available should the paper be accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix C provides all details on the architecture used for our method in
order to reproduce the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Whenever appropriate, we provided standard deviations for the performance
of the compared methods computed over several repetitions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the information at the beginning of Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a theoretical paper. Experiments were carried out on synthetic data or
publicly available data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Paper of theoretical nature. There are no particular concerns.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: there is no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: all existing methods used in our experimental study were properly cited in the
main paper and/or Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This is a theoretical work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: see above.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: see above.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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