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Abstract

Exploring unknown environments efficiently is a fundamental challenge in unsu-
pervised goal-conditioned reinforcement learning. While selecting exploratory
goals at the frontier of previously explored states is an effective strategy, the policy
during training may still have limited capability of reaching rare goals on the
frontier, resulting in reduced exploratory behavior. We propose "Cluster Edge
Exploration" (CE2), a new goal-directed exploration algorithm that when choosing
goals in sparsely explored areas of the state space gives priority to goal states
that remain accessible to the agent. The key idea is clustering to group states that
are easily reachable from one another by the current policy under training in a
latent space and traversing to states holding significant exploration potential on
the boundary of these clusters before doing exploratory behavior. In challenging
robotics environments including navigating a maze with a multi-legged ant robot,
manipulating objects with a robot arm on a cluttered tabletop, and rotating ob-
jects in the palm of an anthropomorphic robotic hand, CE2 demonstrates superior
efficiency in exploration compared to baseline methods and ablations.

1 Introduction

In recent years, Goal-Conditioned Reinforcement Learning (GCRL) (Andrychowicz et al., 2017)
has emerged as a powerful paradigm for training agents to accomplish diverse tasks in complex
and dynamic environments. GCRL enables agents to learn goal-directed behaviors, allowing them
to achieve specific objectives in a flexible and adaptive manner. However, a central challenge in
GCRL lies in guiding agents to effectively explore their environment during training. The exploration
problem in GCRL can be viewed as the task of setting goals for the agent during training to guide
the agent’s environment navigation to collect exploratory data that improves its learning process. In
this paper, we address this critical challenge by proposing a novel strategy for selecting exploration-
inducing goals in GCRL.

Because goal-conditioned policies excel at reaching states encountered frequently during training,
a simple strategy is setting goals in less-visited areas of the state space to broaden the range of
reachable states. However, throughout training, goal-conditioned policies may encounter difficulties
in reaching arbitrary goals. For example, when instructed to navigate to an unexplored section of
a maze environment, a novice agent might instead revisit a previously traversed area that provides
low exploration value. To address this shortcoming, the environment exploration procedure must set
up additional mechanisms to filter out unreachable goals. A common strategy in the literature is to
select goals at the frontier of previously explored states and launch an exploration phase immediately
after these goals are achieved, adhering to a Go-Explore principle (Ecoffet et al., 2019). For example,
Skewfit (Pong et al., 2019) estimates state densities and selects goals at the frontier from the replay
buffer in inverse proportion to their density. Similarly, MEGA (Pitis et al., 2020) uses kernel density
estimates (KDE) of state densities and selects frontier goals with low density from the replay buffer.
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However, precisely identifying the frontier of known states can be challenging with these heuristics.
Even once the frontier is identified, the policy during training may still have limited capability of
reaching rare goals on the frontier, resulting in reduced exploratory behavior.

To address the aforementioned challenge, we propose a new goal-directed exploration algorithm,
CE2 (short for "Cluster Edge Exploration"). When choosing goals in sparsely explored areas of the
state space, CE2 gives priority to goal states that remain accessible to the agent. For this purpose,
our key idea is clustering to group known states that are easily reachable from one another by the
current policy under training, and traversing to states holding significant exploration potential on the
boundary of these clusters before doing exploratory behavior. In this way, our method accounts for
the capability of the current policy for exploratory goals. First, a state cluster likely represents part
of the state space where the training policy is familiar with. Second, given the easy accessibility of
states within each cluster by the training policy, the agent’s capability extends to reaching states even
at cluster boundaries. Moreover, less explored regions naturally reside adjacent to the periphery of
state clusters. This Go-Explore strategy enables the agent to progressively broaden the coverage of
each state cluster to effectively explore a novel environment. We instantiate CE2 in the context of
model-based GCRL, demonstrating how learned world models can facilitate clustering environment
states that are easily reachable from one another by the training policy in a latent space. We validate
the effectiveness of CE2 in challenging robotics scenarios, including navigating a maze with a multi-
legged ant robot, manipulating objects with a robot arm on a cluttered tabletop, and rotating objects
in the palm of an anthropomorphic robotic hand. In each scenario, CE2 exploration results in more
efficient training of adaptable GCRL policies compared to baseline methods and ablations.

2 Problem Setup and Background

Our work focuses on the exploration problem in unsupervised goal-conditioned reinforcement
learning (GCRL) settings. In this section, we set up notation and preliminary concepts.

GCRL. A goal-conditioned Markov decision process (MDP) is defined by the tuple (S, A, G, T , η)
where the state space S defines the set of all possible agent’s observations into the environment, the
action space A defines all possible actions that the agent can take in each state, G is the set of all
possible goals that the agent may aim to achieve in the environment, and the transition function T
describes the probability of transitioning from one state to another given an action. It is defined as
T (s′|s, a), where s′ ∈ S is the next state, s ∈ S is the current state, and a ∈ A is the action taken.
η : S → G is a tractable mapping function that maps a state to a specific goal. A goal-conditioned
π(a|s, g) represents the agent’s strategy for selecting actions based on states and goal commands,
indicating the probability of taking action a in state s given goal command g ∈ G. In this paper, for
ease of presentation, we assume S = G and η is an identify function.

Replay Buffer

(𝑠!, 𝑎!, 𝑠")

(𝑠#$!, 𝑎#$!, 𝑠#)
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Figure 1: Model-based GCRL Framework

Our goal is to develop agents capable of unsu-
pervised exploration when dropped into an un-
known environment. During the unsupervised
exploration stage, there are no predefined tasks
or goals. The agent sets its own goal command
g ∈ G as it explores the environment. Following
this exploration phase, a successful agent should
be able to navigate to a wide range of previously
unknown goal states in the environment upon
goal commands.

Model-based GCRL. Model-based reinforce-
ment learning (MBRL) is an approach where
an agent learns a model of the environment’s
dynamics to predict future states, enabling more efficient policy learning. Fig. 1 shows the general
MBRL framework. We use the world model structure M̂ of Dreamer (Hafner et al., 2019a,b, 2020,
2023) to learn real environment dynamics as a recurrent state-space model (RSSM). We provide a
detailed explanation of the network architecture and working principles of the RSSM in Appendix C.1.
Particularly, we consider GC-Dreamer (goal-conditioned Dreamer) as a baseline. In GC-Dreamer,
the goal-conditioned agent πG(a|s, g) samples goal commands g ∈ G from a given environment goal
distribution pg to collect trajectories in the real world. These trajectories are used to train the world

2

61161https://doi.org/10.52202/079017-1955



model M̂ , and subsequently, πG is trained on imagined rollouts generated by M̂ , with these two
steps run in alternation. The reward function used to train πG is determined by a temporal distance
network Dt (see below).

Go-Explore. In unsupervised GCRL, the goal distribution pg is only revealed at test time. "Go-
Explore" (Ecoffet et al., 2019; Pislar et al., 2021; Tuyls et al., 2022; Hu et al., 2023) is a popular
mechanism tailored for long-term GCRL scenarios that require extensive exploration. The Go-
Explore methodology splits each training episode into two distinct phases: the "Go-phase" and the
"Explore-phase". In the "Go-phase", the agent is guided to an "interesting" goal g (Pong et al.,
2019; Pitis et al., 2020) (e.g., states rarely encountered in the replay buffer) by the GCRL policy πG,
reaching a final state sT . Subsequently, the "Explore-phase" kicks in, with an undirected exploration
policy πE taking over from sT for the remaining timesteps. This exploration policy is optimized to
maximize an intrinsic exploration reward (Bellemare et al., 2016; Pathak et al., 2017; Burda et al.,
2018; Sekar et al., 2020) (e.g., to explore less familiar areas of the environment that the world models
have not adequately learned).

Recently, Go-Explore has been integrated with model-based unsupervised GCRL (Mendonca et al.,
2021; Hu et al., 2023), as depicted in Fig. 1. In addition to the goal-conditioned policy πG(a|s, g), an
exploration policy πE(s) is introduced into the model-based GCRL framework. The agent’s training
process involves learning the following components:

World Model: M̂(st|st−1, at−1)

Exploration policy: πE(st) Goal Reaching policy: πG(st, g)

Exploration value: V E(st) Goal Reaching value: V G(st, g)

where both πG and πE are trained using the model-based actor-critic algorithm in Dreamer (Hafner
et al., 2020). They are entirely trained with the imagined rollouts of the world model M̂ to maximize
the accumulated rewards

∑
t r

G
t and

∑
t r

E
t , respectively. The explorer reward rE encourages

exploration by leveraging the Plan2Explore (Sekar et al., 2020) disagreement objective, which
motivates the agent to seek states that induce discrepancies among an ensemble of world models. In
contrast, the goal-reaching reward rG is driven by the self-supervised temporal distance objective
Dt (Mendonca et al., 2021), which reinforces the policy to minimize the action steps required to
transition from the current state s to a sampled goal state g in an imagined rollout, i.e., rG(s, g) =
−Dt(Ψ(s),Ψ(g)). The temporal distance network Dt predicts the anticipated number of action
steps needed to transition from s to g. It is trained by extracting pairs of states st and st+k from an
imagined rollout generated by M̂ and predicting the distance k as shown in Equation 1 where H is
the total length of the imagined rollout:

Dt

(
Ψ(st),Ψ(st+k)

)
≈ k/H (1)

Here, Ψ is a learned function for state embeddings in the world model (we assume S = G in the
paper). Further details on the training procedure of Dt can be found in Appendix C.2.

CE2 aims to address the core challenge in the Go-Explore mechanism: how do we select an interesting
goal command g at the frontier of known states with high exploration potential and effectively guide
the agent to g?

3 State Cluster Edge Exploration

The major limitation in existing Go-Explore approaches, such as those described in Pong et al. (2019);
Pitis et al. (2020) is that the policy under training can struggle to reach heuristically chosen rare goals
at the frontier of known states (Hu et al., 2023). This difficulty arises because the goal commands
are selected without a systematic method to filter out unachievable goals for the agent, leading to
diminished exploratory behavior. In CE2, when choosing goals in sparsely explored areas of the state
space in the "Go-phase", our method gives priority to goal states that remain accessible. For this
purpose, the key idea is clustering to group states that are easily reachable from one another by the
current policy under training in a latent space, and selecting states holding significant exploration
potential on the boundary of these clusters as the "interesting" goals to explore. In Sec. 3.1, we discuss
how to learn a latent space that can represent the reachability relationships between environment
states. In Sec. 3.2, we explain how this latent space can be used to cluster states in the replay buffer
that are easily reachable from one another. In Sec. 3.3, we demonstrate how the agent can be brought
to interesting states on the boundary of latent state clusters to effectively explore its environment.
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3.1 Latent Space Learning

Typically, during the learning process of a world model M̂ as a neural network, an essential step
involves encoding states from the original observation space into a latent space using an encoder,
which can then be decoded back to the original observation space by a decoder. This latent space is
subsequently used to learn the dynamic model of the real environment (Hafner et al., 2019a, 2020).

In CE2, we additionally require the latent space can express the temporal distance between different
states. In other words, we aim for the distances between various states in the latent space to represent
the number of steps required to transition from one another in the real environment (after decoding)
by the training policy. Therefore, the loss function of training the latent space in CE2 comprises
two components. The first component is the reconstruction loss Lrec, akin to the latent space loss
function in Dreamer framework (Hafner et al., 2019a, 2020). It captures the association between the
latent space and the re-decoding to the observation space, along with predicting dynamic transition in
the latent space. We introduce a second loss term Ldt that leverages the temporal distance network
Dt in Equation 1 to guide the learning of the latent space structure. For any pair of states (s1, s2)
sampled from the replay buffer, the Ldt loss function is formulated as follows (Ψ is a learned function
for state embeddings in the world model):

Ldt = (∥Ψ(s1)−Ψ(s2)∥22 −
1

2
(Dt(Ψ(s1),Ψ(s2)) +Dt(Ψ(s2),Ψ(s1))))

2 (2)

Llatent = Lrec + Ldt (3)
We use the loss function Llatent to supervise the training of the latent space. The trained latent space
provides the agent with a deeper understanding of the real environment, where states that are easily
reachable from one another in the real environment are closer in proximity within the latent space.

3.2 Latent State Clustering

To identify the frontier of known states, CE2 conducts state clustering to group states in the replay
buffer. States that are easily reachable from one another are classified in the same cluster in the latent
space by Gaussian Mixture Models (GMMs), based on the temporal distances between the encoded
states. GMMs are probabilistic models that assume all data points are generated by a mixture of a
finite number of Gaussian Distributions. We initialize the Gaussian models in the latent space with
Nc trainable latent centroids c = {c1, . . . , cNc

} and a shared variance σ, where Nc represents the
desired number of clusters. These Nc latent centroids are initialized by applying the Farthest Point
Sampling (FPS) algorithm (Eldar et al., 1997) to select a representative subset of states from a batch
of data sampled from the replay buffer. We provide a detailed description of the FPS algorithm in
Appendix G.1. After initialization, we optimize the clustering model by maximizing the Evidence
Lower Bound (ELBO) iteratively on sampled batches from the replay buffer with a uniform prior
p(c) to scatter out the latent centroids (Zhang et al., 2021):

log p(z = Ψ(s)) ≥ Eq(c|Ψ(s))[log p(Ψ(s)|c)]−DKL(q(c|Ψ(s))||p(c)) (4)

where p and q are represented as Gaussian distributions within the GMMs. q(c|Ψ(s)) is the postior
distribution over c (the clusters) given an encoded state Ψ(s). log p(Ψ(s)|c) is the distribution
donating the probability of the encoded state Ψ(s) in cluster c. p(c) is the prior distribution of the
weight of clusters in GMMs. For each round of optimization, we increase the probability of the
sampled batches in GMMs by updating the weight of each cluster c in GMMs and the mean and
variance of them.

3.3 Exploring the Boundaries of Latent State Clusters

Assuming we have already trained Nc state clusters in the latent space, each representing part of the
state space where the goal-conditioned policy under training is familiar with, how can we utilize these
state clusters to plan an exploration strategy? CE2 selects goal states at the edges of these latent state
clusters for exploration because (1) less explored regions are naturally adjacent to these boundaries,
and (2) given the easy accessibility between states within each cluster by the training policy, the
agent’s capability extends to reaching states even at the cluster boundaries.

We outline our exploration algorithm in Algorithm 1. At line 3, it samples Ncandidate latent states as
Scandidate from GMMs. A higher sampling quantity ensures sampling from more states at the edges
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of the clusters. We set Ncandidate = 1000 in CE2. We compute the total probability of each latent
state ŝ ∈ Scandidate in the Gaussian mixture model, given by the formula:

p(ŝ) =

Nc∑
i=1

βiN (ŝ|ci, σ) (5)

In this formula, βi are the mixture weights satisfying βi ≥ 0 and
∑Nc

i=1 βi = 1, N (ŝ|ci, σ) repre-
sents the i-th Gaussian distribution with mean ci and the shared standard deviation σ. At line 4,
we select Nedge latent states with the lowest total probability from Scandidate by Equation 5 as
a set Sedge. Intuitively, these states reside on the edges of the latent state clusters and, there-
fore, induce a set of a goal commands Gedge = {η(fD(ŝ))|ŝ ∈ Sedge} that may be used for the
"Go-phase" for Go-Explore, where fD is the state decoder and η is the goal mapping function.

Algorithm 1 Cluster Edge Exploration(CE2)
1: Dexp ← {}
2: for episode i = 1 to Nτ do
3: Scandidate ← Sample Ncandidate points from GMM
4: Gedge ← Nedge states in Scandidate with the smallest total

probability based on Equation 5.
5: gE ← argmaxg∈Gedge

PE(g) through imagination with M̂

6: τ ← GO-EXPLORE(gE , πG, πE)
7: Dexp ← Dexp ∪ τ

However, randomly picking a goal com-
mand from Gedge overlooks whether the
policy can exactly navigate the agent to
the sampled goal in the real environment.
Although determining the exact outcome
of the policy without execution is imprac-
tical, similar to PEG (Hu et al., 2023),
we can leverage the world model to pro-
vide an approximation of the exploration
potential PE(g) of a goal command g:

p̂πG(·|·,g)(τ) = p(s0)[

T∏
t=1

M̂(st|st−1, at−1)π
G(at−1|st−1, g)] (6)

PE(g) = EpπG(·|·,g)(sT )
[V E(sT )] ≈

1

K

K∑
k

V E(skT ) where skT ∼ p̂πG(·|·,g)(τ) (7)

In Equation 6, we simulate the "Go-phase" of Go-Explore over the world model M̂ . We set each state
from Gedge as the goal command g for the goal-conditioned policy πG to run over M̂ and denote
sT as the final state of the resulting imagined trajectory (here p̂πG(·|·,g)(τ) essentially induces the
imagined trajectory distribution over the world model). In our implementation, we set the length of
"Go-phase" T to half of the maximum episode length for all environments. The time limits for both
the Go and Explore phases during real environment exploration are also set to this value. We use the
learned exploration value function V E of explorer πE to estimate the exploration value of skT , the
final state of k-th imagined trajectory. We average the estimated exploration potential over K such
imagined trajectories.

At line 5 in Algorithm 1, after selecting the exploration target gE with the highest exploration potential
PE from the latent cluster boundaries, we start the Go-Explore procedure in the real environment
by executing the goal-conditioned policy πG to approach gE as closely as possible limited in T
timesteps, followed by launching the explore policy πE for exploration limited in TE timesteps.

3.4 The Main Algorithm

Algorithm 2 The main training algorithm for CE2

1: Input: πG, πE , World Model M̂ , GMM, rG, rE
2: Initialize replay buffer D
3: for i = 1 to Ntrain do
4: if Should assign centroids then
5: Bexp ← A batch of data from Dexp

6: GMM← Choose Nc centroids from Bexp by FPS
7: Dexp ← Cluster Edge Exploration(...) with Algorithm 1
8: D ← D ∪Dexp

9: Update M̂ with D (update latent space by Lrec + Llatent)
10: Update GMM with Dexp

11: Update πG in imagination with M̂ to maximize rG

12: Update πE in imagination with M̂ to maximize rE

We depict the main learning algorithm
of CE2 in Algorithm 2. Recall that the
learning objective is to train an agent
that can achieve diverse goals revealed
to it only at test time. Accordingly, in
this algorithm at line 7, the data Dexp

collected to train the world model M̂
is generated solely by our Go-Explore
strategy as outlined in Algorithm 1. At
line 6, we periodically update the cen-
troids of the latent clusters again using
the FPS algorithm (Eldar et al., 1997)
from a batch of latest trajectories from
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Figure 2: We conduct experiments on 6 environments: Point Maze, Ant Maze, Walker, 3-Block
Stacking, Block Rotation, Pen Rotation.

the replay buffer. This ensures that the candidate goal states selected for exploration are indeed located
at the boundaries of key state regions. At line 10, we train the clustering model using data from the
replay buffer in each round. This ensures that latent state clustering and the agent’s goal-reaching
capability are kept synchronized.

Algorithm 3 The main training algorithm for CE2-G

1: Input: πG, πE , G, World Model M̂ , GMM, rG, rE , pg
2: Initialize replay buffer D
3: for i = 1 to Ntrain do
4: if Should assign centroids then
5: Begc ← A batch of data from Degc

6: GMM ← Choose Nc centroids from Begc by FPS
7: Dexp ← Cluster Edge Exploration(...) with Algorithm 1
8: Degc ← Rollouts of πG using the env goal distribution pg
9: D ← D ∪Dexp ∪Degc

10: Update M̂ with D (update latent space by Lrec + Llatent)
11: Update GMM with Degc

12: Update πG in imagination with M̂ to maximize rG

13: Update πE in imagination with M̂ to maximize rE

In our experiment, we also designed a
variant of CE2 in Algorithm 3, called
CE2-G. This algorithm is given the en-
vironment goal distribution pg at train-
ing time. The main idea is to progres-
sively expand the scope of exploration
around the possible trajectories leading
to the environment goals. In this al-
gorithm, the replay buffer additionally
includes Degc the trajectories sampled
by πG conditioned on the environment
goals in pg. We only use Degc to ini-
tialize and train latent state clusters. In
this way, the agent is encouraged to
prioritize exploration starting from the
edges of latent state clusters along the trajectories towards the goal states in pg. CE2-G can be
considered as learning policies and world models specific to a given goal distribution.

4 Experiments

Our experiments evaluate CE2 over goal-reaching tasks that demand significant exploration to solve.
We aim to address the following questions: (1) Does CE2 lead to improved exploration and goal-
reaching performance? (2) How does CE2 exploration qualitatively differ from those in previous
goal-directed exploration methods? (3) Which components of CE2 are crucial to its success?

4.1 Benchmarks

We evaluate our method on six hard exploration goal-conditioned RL tasks: Point-Maze, Ant-Maze,
Walker, 3-Block Stacking, Block Rotation and Pen Rotation. Point-Maze: A blue point is placed
at the bottom left of the maze and be trained to explore the structure of maze. Ant-Maze: An ant
robot must master intricate four-legged locomotion behaviors and maneuver through narrow hallways.
Walker: A 2-legged robot needs to learn how to control its leg joints to walk on a flat plane to move
forward or backward. In 3-Block Stacking, a robot arm with a two-fingered gripper operates on a
tabletop with three blocks. The goal is to stack the blocks into a tower configuration. The agent needs
to learn pushing, picking, and stacking, as well as discovering intricate action paths to accomplish
the task within the environment. Previous solutions have relied on methods like demonstrations,
curriculum learning, or extensive simulator data, highlighting the task’s difficulty. The Gymnasium
Block Rotation and Pen Rotation tasks involve manipulating a block and a pen, respectively, to
achieve a random target rotation along all axes. Pen Rotation is particularly challenging due to the
pen’s thinness, requiring precise control to prevent it from dropping. For evaluation, we use the most
challenging goals, such as the farthest goal locations, in Point Maze, Ant Maze, Walker, and 3-Block
Stacking. In the other two environments, we utilize random goals as defined by the environment. For
more settings and information about the environments, please refer to the Appendix E.
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(a) Point Maze (b) Ant Maze (c) Walker

(d) 3-Block Stacking (e) Block Rotation (f) Pen Rotation

Figure 3: Experiment results comparing CE2 with the baselines over 5 random seeds.

4.2 Baselines

In the unsupervised GCRL setting, we compared CE2 with state-of-the-art methods based on the
Go-Explore strategy, which has demonstrated high efficiency in this setup: PEG (Hu et al., 2023)
and MEGA (Pitis et al., 2020)1. MEGA commands the agent to rarely seen states at the frontier by
using kernel density estimates (KDE) of state densities and chooses low-density goals from the replay
buffer. PEG selects goal commands to guide an agent’s goal-conditioned policy toward states with
the highest exploration potential given its current level of training. This potential is defined as the
expected accumulated exploration reward during the Explore-phase.

In scenarios where environment goal distributions are available to the agents, we compare CE2-G
with GC-Dreamer (illustrated in Sec. 2), PEG-G, MEGA-G and L3P. Similar to CE2-G, PEG-G
and MEGA-G augment GC-Dreamer with the PEG and MEGA Go-Explore strategies, respectively.
In these methods, the replay buffer D contains not only trajectories sampled by the goal-conditioned
policy πG commanded by environment goals but also exploratory trajectories sampled using the
corresponding Go-Explore strategies. L3P trains a latent space using temporal distances and performs
clustering in this latent space, similar to CE2-G. However, L3P does not employ a Go-Explore
strategy. Instead, it constructs a directed graph with cluster centroids as nodes and utilizes online
planning with graph search to determine subgoals for task execution.

4.3 Results

Figure 4: Comparison of exploration goals (repre-
sented as red points) generated by CE2, MEGA,
and PEG in the Ant Maze environment.

CE2 Results. Fig. 3 depicts the mean learning
performance of all the unsupervised GCRL tools
in terms of the agent’s goal-reaching success rate
averaged over 5 random seeds. The evaluation
goal distribution is revealed to the agent only at
test time. In all tasks except PointMaze, CE2

significantly outperforms PEG and MEGA in
terms of both learning performance and learning
speed. On PointMaze, CE2 performs compara-
bly with the baselines. Although MEGA can
set goal commands in sparsely explored areas

1Our model-based MEGA baseline is borrowed from Hu et al. (2023)
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(a) Walker (b) 3-Block Stacking (c) Block Rotation (d) Pen Rotation

Figure 5: Experiment results comparing CE2-G with the baselines over 5 random seeds.

Figure 6: Cluster evolution in CE2 as the training progresses. The red points means the goals picked
by CE2 to explore and other points in different colors represent the clusters CE2 learned.

of the state space to encourage exploration, unlike CE2, it lacks a systematic method to filter out
unachievable goals for the agent, which can result in inefficient exploration. Theoretically, PEG can
induce more exploration than MEGA because it can sample goal commands as any state within the
state space to initiate exploration, including those beyond the frontier of known states in the replay
buffer. However, because a learned world model is typically unfamiliar with rarely observed states, it
may select goal commands that appear to have high exploration potential in the model but perform
poorly in the real environment as shown in Fig. 4.

CE2-G Results. Fig. 5 depicts the mean learning performance of all the tools in terms of the agent’s
goal-reaching success rate averaged over 5 random seeds when the environment goal distribution is
revealed to the agent at training time. GC-Dreamer is the only tool that lacks a Go-Explore phase,
which may limit its exploration potential. Even so, it can sometimes outperform MEGA-G and
PEG-G (see block rotation and pen rotation). This indicates that, without reasonably accounting
the agent’s capability to reach selected goal commands, the Go-Explore strategy does not always
guarantee improved exploration. Suboptimal goal-setting during the "Go-phase" can even hinder
exploration (see 3 block stacking). Notably, for the challenging 3-block stacking task, CE2-G achieves
a high success rate exceeding 90%. In comparison, MEGA-G, PEG-G and GC-Dreamer only achieve
less than 40% success rates. Refer to Appendix H.4 for full results of CE2-G.

4.4 Exploration Process

Fig 6 shows the evolution of state clusters (learned in a latent space) during the training process
for Ant Maze (in different colors). The red points represent the selected goal commands used
to induce exploration. We observe that the self-directed exploration goals set by CE2 improve
progressively as the agent’s capabilities increase, consistently targeting the cluster edges that require
further exploration and are within the agent’s reach. We compare the exploration targets generated by
CE2 with those produced by the MEGA and PEG approaches throughout the training process in the
Ant Maze environment in Appendix H.2.

4.5 Ablation Study

In the ablation experiment, our goal is to determine the individual contributions of each component
to our method’s overall performance. The "Go-phase" of the Go-Explore procedure in CE2 consists
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(a) Ant Maze (b) 3-Block Stacking (c) Block Rotation (d) Pen Rotation

Figure 7: Ablation study on the importance of each component of CE2 over 5 random seeds.

of two main steps for selecting a goal command g to initiate exploration: (a) sampling environment
states at the boundaries of its trained latent state clusters, and (b) selecting the goal command g
with the highest exploration potential from the sampled states. Our first ablation, CE2-noPEG,
only performs step (a). It randomly samples g from the latent state clusters without considering
its exploration potential. The second ablation only performs step (b) and is identical to the PEG
baseline. It can sample any state within the state space for the goal command g, without the constraint
of directing the agent to states at the boundaries of known regions like CE2 and MEGA. We also
include MEGA and MEGA-wPEG as two baselines to solely compare the exploration strategy-step
(a)-in CE2 with MEGA’s strategy to command the agent to rarely seen states. MEGA-wPEG first
uses MEGA to sample a batch of candidate goals, all with low density in the replay buffer. Then,
their exploration potential is evaluated using PEG (step (b)), and the most valuable one is selected as
the exploratory goal. We conduct the ablation experiments in a purely unsupervised setting without
revealing any test goals at training time.

Fig. 7 confirms that both step (a) and step (b) in CE2 are important. CE2 significantly outperforms
CE2-noPEG and PEG in 3-block stacking and the Ant maze tasks. Notably, even without step
(b), CE2-noPEG performs well across all experiments, especially in the challenging block and pen
rotation tasks. This indicates that the goal commands sampled at the edges of latent state clusters
already possess high exploration potential and can guide the agent to traverse unseen state spaces.
The superior performance of CE2-noPEG compared to both MEGA and MEGA-wPEG further
reinforces this. Block Rotation is the only environment where CE2-noPEG outperforms CE2. In
this environment, the CE2 agent often pursues states where the block falls from the palm, due to
their "high" exploration potential determined by the exploration policy value functions. In contrast,
CE2-noPEG agent explores the state space more evenly, gaining more in-hand manipulation skills,
which is crucial for achieving the block-rotation goals revealed at test time. MEGA achieves similar
or better performance compared to MEGA-wPEG, indicating that PEG’s effectiveness relies on the
quality of the candidate goal set. The exploratory goals sampled from the lowest-density regions in
the replay buffer might be beyond the agent’s capability, leading PEG to assess the true exploration
potential of the candidate goals inaccurately.

We also conducted experiments in the CE2 with different numbers of latent state clusters Nc and
observed that CE2 is insensitive to this hyperparameter. See Appendix H.5 for more discussion.

5 Related Work

Our method addresses the challenging and inefficient exploration problem inherent in goal-
conditioned reinforcement learning (RL) settings with sparse rewards, commonly used in robotics
and control fields (Ghosh et al., 2019; Liu et al., 2022; Plappert et al., 2018). In goal-conditioned RL,
agents are trained to achieve various goals based on predefined commands, with rewards typically
being binary, indicating positive feedback from the environment only upon reaching the specified goal.
This sparse reward setting significantly complicates achieving sample efficiency and effective learning
processes (Ren et al., 2019; Florensa et al., 2018; Trott et al., 2019). To mitigate this challenge,
various methods have been proposed. Some reshape the sparse reward function into a denser form by
incorporating metrics such as distance between achieved and desired goals (Trott et al., 2019) or tem-
poral distance (Hartikainen et al., 2019; Mendonca et al., 2021). Additionally, exploration strategies
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often include rewards aimed at incentivizing visits to states with low visitation frequencies (Bellemare
et al., 2016; Burda et al., 2018). These approaches typically involve identifying states with infrequent
occurrences within the replay buffer and targeting them for exploration, thus facilitating the discovery
of unknown regions in the environment. Furthermore, some research emphasizes the exploration
of states with high variance between ensemble predictions of future states (McCarthy et al., 2021;
Oudeyer et al., 2007; Pathak et al., 2017; Henaff, 2019; Shyam et al., 2019; Sekar et al., 2020).

In addition to reshaping the exploration reward function, goal-directed exploration represents a widely
employed strategy that sets exploration goals distinct from the final task objective. Essentially, this
approach aims to select goals that present challenges to the current policy while remaining achievable.
Prior works have proposed various methods to generate goals for goal-directed exploration. Zhang
et al. (2020) proposed to do automatic curriculum generation of goals based on the epistemic uncer-
tainty of value functions. Florensa et al. (2018) use generative adversarial training to automatically
generate goals, leveraging goal difficulty as a guiding factor. Pong et al. (2019) and Pitis et al. (2020)
proposed to use the maximum entropy of achieved goal distribution to guide goal selection. Ecoffet
et al. (2019) introduce a more efficient exploration methodology known as Go-Explore. This approach
initially employs the goal-conditioned policy (Go-phase), followed by the rollout of the exploration
policy from the terminal state of the goal-conditioned phase (Explore-phase). Go-Explore facilitates
exploration initiation from a state area accessible by the current capabilities of the goal-conditioned
policy.

PEG (Hu et al., 2023) proposes computing the exploration potential by simulating Go-Explore trajec-
tories using a world model to identify goals characterized by elevated average exploration rewards in
the Explore-phase. This metric incorporates anticipated exploration rewards of the Explore-phase,
providing an advantage for Go-Explore. However, the goals sampled for evaluating this exploration
potential metric in PEG are drawn from a distribution updated by the MPPI method (Williams et al.,
2015; Nagabandi et al., 2020) directly in the observation space. L3P (Zhang et al., 2021) employs
temporal distance to train a latent space, facilitating clustering within this space to delineate key state
areas based on reachability. Our approach proposes exploration from the periphery of these key state
regions, aiming to balance exploration of unknown territories while constraining exploration starting
points to the edges of key state regions, thus avoiding meaningless exploration from widely sampled
points from observation space. See Appendix A, B for more related work discussion.

6 Conclusion

We present CE2, a novel Go-Explore mechanism designed to tackle hard exploration problems in
unsupervised goal-conditioned reinforcement learning tasks. While CE2 outperforms prior explo-
ration approaches in challenging robotics scenarios, the requirement to learn state clusters to identify
frontier states and the reliance on world models to determine exploration potential introduce nontrivial
computational costs. Exploring whether CE2’s Go-Explore strategy can be effectively applied to
model-free GCRL settings remains an interesting avenue for future work.

Reproducibility Statement

The codebase of CE2 is provided on https://github.com/RU-Automated-Reasoning-Group/
CE2. For hyperparameter settings and the baseline pesudocode, please refer to Appendix F and G.3.
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Appendix
A Discussion

Why does CE2 perform better than the original Go-Explore mechanism?

Our algorithm, CE2, tackles the core challenge in the Go-Explore mechanism: how to select an
exploration-inducing goal command g and effectively guide the agent to g? Previous approaches,
such as MEGA, set exploratory goals at rarely visited regions of the state space. However, in these
approaches, the policies under training may have limited capability of reaching the chosen rare
goals, leading to less effective exploration. Our contribution is a novel goal selection algorithm that
prioritizes goal states in sparsely explored areas of the state space, provided they remain accessible
to the agent. This is the key factor in why CE2 outperforms the MEGA and PEG baselines in our
benchmark suite in Fig. 3. As visualized in Fig. 11 in the appendix for the Ant Maze environment,
CE2 enhances exploration efficiency by consistently setting exploratory goals within the current
policy’s capabilities. In contrast, MEGA and PEG often set goals that are unlikely to be reachable by
the current agent.

Why did we not choose the original Go-Explore as a direct baseline?

As discussed above, the core challenge in the Go-Explore mechanism lies in selecting goal states
that effectively trigger further exploration upon being reached. However, the original Go-Explore
method (Ecoffet et al., 2019) does not prescribe a general goal selection method, instead opting for a
hand-engineered novelty bonus for each task (e.g. task-specific pseudo-count tables). CE2 is more
related to recent instantiations of Go-Explore that automatically selects exploration-inducing goals in
less-visited areas of the state space to broaden the range of reachable states, e.g. MEGA and PEG.
Therefore, we compare our method with these tools instead of Ecoffet et al. (2019) in environments
where these tools are applicable, to evaluate the strength of our goal selection method.

Why does our clustering algorithm not structure the latent space in the learning process?

While our clustering algorithm does not directly structure the latent space, it requires the latent
space to be organized in a specific manner to be effective. In other words, the latent space learning
algorithm is a key prerequisite for the latent state clustering algorithm. Specifically, our latent space
learning algorithm structures the latent space such that states easily reachable from one another in the
real environment (as determined by the learned temporal distance network as Equation 1) are also
close together in the latent space. The clustering algorithm leverages this structure-property to ensure
that the latent state cluster boundaries align with the frontier of previously explored states. As such,
CE2 can efficiently generate exploratory goals at the frontier at training time.

B Extended Related Work

Model-based reinforcement learning (MBRL) has seen significant advancements in recent years,
driven by the development of sophisticated world models and planning algorithms. One notable
approach is Stochastic Ensemble Value Expansion (STEVE) (Buckman et al., 2018), which enhances
sample efficiency by leveraging ensemble models to reduce overfitting and uncertainty in value
estimates. Similarly, the work by Chua et al. (2018) demonstrates that probabilistic dynamics models
can be effectively used to achieve high performance in a small number of trials. In the realm of
combining model-based and model-free methods, Deisenroth and Rasmussen (2011) introduced
PILCO, a data-efficient policy search method that uses Gaussian processes for dynamics modeling.
More recent advancements include the integration of large pre-trained models for world model
construction and task planning, as explored by Guan et al. (2023). The Dreamer framework by Hafner
et al. (2019a) utilizes latent imagination to learn behaviors directly from pixel observations, and its
extensions (Hafner et al., 2020, 2023) have shown impressive results in mastering diverse domains.
The Recurrent World Models by Ha and Schmidhuber (2018) also contribute to this line of work by
facilitating policy evolution through latent space planning. Several approaches focus on improving
exploration strategies within MBRL. For instance, the use of cross-entropy methods for Monte-Carlo
Tree Search (Chaslot et al., 2008) and the Curious Replay mechanism (Kauvar et al., 2023) have
been proposed to enhance exploration efficiency. The work by Wagenmaker et al. (2024) further
explores optimal exploration strategies in nonlinear systems. Additionally, transformers have been
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leveraged for their sample efficiency in world modeling (Micheli et al., 2022; Zhang et al., 2024),
demonstrating their potential in complex environments. The integration of demonstrations into visual
model-based reinforcement learning, as seen in MoDem (Hansen et al., 2022), showcases another
avenue for improving learning efficiency. Luo et al. (2018) provide a comprehensive framework with
theoretical guarantees, while Janner et al. (2019) address the critical question of when to trust the
learned models.

C Extended Background

C.1 Dreamer World Model

We use the world model structure M̂ of recurrent state-space model (RSSM) of Dreamer (Hafner
et al., 2019a,b, 2020, 2023) to learn the dynamics. The complete model state of the RSSM is the
concatenation of deterministic states and stochastic states, with the latter being generated by the
former. The deterministic state ht can used to get the prior state ẑt and posterior state zt. The ẑt
aims to predict the posterior without access to the current input state xt while the posterior state zt is
concluded by integrating the encoded information of current input state xt. The deterministic state ht

is updated by the recurrent transition function fϕ using the concatenation (ht, zt) or (ht, ẑt) as input.
The world model is summarized in Fig 8, and the formulas of components are shown in Equation 8:

Figure 8: RSSM Structure

Encoder: et = fE(et|xt)

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Representation model: zt ∼ qϕ(zt|ht, et)

Transition predictor: ẑt ∼ pϕ(ẑt|ht)

Decoder: x̂t ∼ fD(x̂t|ht, zt)

(8)

C.2 Temporal Distance Training in LEXA

The goal-reaching reward rG is defined by the self-supervised temporal distance objective (Mendonca
et al., 2021) which aims to minimize the number of action steps needed to transition from the current
state to a goal state within imagined rollouts. We use bt to denote the concatenate of the deterministic
state ht and the posterior state zt at time step t.

bt = (ht, zt) (9)

The temporal distance Dt is trained by sampling pairs of imagined states bt, bt+k from imagined
rollouts and predicting the action steps number k between the embedding of them, with a predicted
embedding êt from bt to approximate the true embedding et of the observation xt.
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Figure 9: Illustration of differences between our mothod CE2-G and other exploration methods.

Predicted embedding: emb(bt) = êt ≈ et, where et = fE(xt) (10)

Temporal distance: Dt(êt, êt+k) ≈ k/H where êt = emb(bt) êt+k = emb(bt+k) (11)

rGt (bt, bt+k) = −Dt(êt, êt+k) (12)

D Limitations and Future Work

Our method clusters in the latent space, which necessitates a well-trained latent space. This latent
space must not only accurately reconstruct the original state space and facilitate dynamic prediction
but also reflect the reachable distances between different states. Therefore, training this latent space
requires a temporal distance predictor that can accurately estimate the number of action steps needed
between two states. We utilize the temporal distance predictor network from LEXA, which constructs
intrinsic goal-conditioned rewards, and this network is trained using simulated trajectories. Compared
to training the temporal distance predictor with real trajectories, using simulated trajectories offers
greater stability. Our method requires the temporal distance predictor to reliably estimate the number
of action steps needed to transition from one state to another, which is a crucial prerequisite for
ensuring the effectiveness of CE2.

Our realization of CE2 is based on Dreamer, a model-based reinforcement learning (MBRL) agent
known for its higher sample efficiency but greater computational demands compared to model-free
alternatives. This increased resource requirement stems from the necessity to develop a world model.
In CE2, this world model is utilized to train policies and value functions through simulated trajectories.
At the same time, CE2 use the PEG as the filter of exploration potential, which rely on world model
to select goals that guide exploration. Creating a model-free version of CE2 would simplify both its
computational and conceptual aspects, a task we plan to undertake in future research.

E Environments

E.1 3-Block Stacking

In this task, a robot is required to stack three blocks into a tower. In PEG, evaluations are conducted
on goals of varying difficulty levels, including 3 easy goals(picking up a single block), 6 medium
goals(stacking two blocks), and 6 hard goals(stacking three blocks). We evaluate our agent solely on
the 6 hard goals. At the same time, we use only 3 hard goals provided by the training environment as
guiding goals for CE2-G. Relying solely on the most challenging goals for training and evaluation
presents a heightened challenge for both CE2 and CE2-G. However, we observed that CE2 and
CE2-G are capable of spontaneously discovering additional easy and medium difficulty goals through
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clustering in latent space, as these serve as crucial transitional states towards the hard goals. The
environment features a 14-dimensional state and goal space: the first five dimensions capture the
gripper’s state, while the remaining nine dimensions correspond to the xyz positions of each block.
The action space is 4-dimensional, with three dimensions dedicated to the xyz movements of the
gripper and the fourth dimension controlling the gripper’s finger movement. The robot achieves
success when the L2 distance between each block’s xyz position and its target position is less than 3
cm. This environment is a modified version of the FetchStack3 environment from Pitis et al. (2020),
incorporating adjustments to better test the robot’s precision in stacking.

E.2 Walker

In this environment, a 2D walker robot is trained and evaluated the locomotion capabilities of on
a flat surface. The environment code is sourced from Mendonca et al. (2021). In order to fully
evaluate the agent’s ability and accuracy to travel to longer distances, we increased the number of
evaluation goals in PEG from 4(±7,±12) to 12(±13,±16,±19,±22,±25,±28) along the x axis
from its initial position. Noting that, in CE2-G, we only use goals at ±13,±16 as the training goals
returned by environments, but evaluate on all 12 goals. Success is determined by checking if the
agent’s x position falls within a small margin of the target x position. The state and goal space are
nine-dimensional, encompassing the walker’s xz positions and joint angles.

E.3 Ant Maze

This environment is adapted from the Ant Maze described in Pitis et al. (2020). Like PEG, we
set the goal space to be same with state space which including the ant’s xyz positions along with
joint positions and velocities, and an additional room was added in the top left to introduce a more
challenging goal. In this complex environment, a high-dimensional ant robot must navigate from
the bottom left to the top left of a maze, passing through hallways. The task is challenging due to
its long duration, with episodes lasting 500 timesteps, and the considerable distance to be traversed.
Compared to evaluation on goals both in top left room and in the central hallway in PEG, our
evaluation only focuses on the ant reaching the most difficult four goals in the top left room. Besides,
we use all 32 goals of different positions in the maze to be the training goals returned by environment
for CE2-G. The maze itself measures approximately 6 x 8 meters. Success is determined by ensuring
the L2 distance between the ant’s xy position and the goal is less than 1.0 meter, roughly the width
of a cell in the maze. The Ant Maze environment features the highest dimensional state and goal
spaces, totaling 29 dimensions. These include the ant’s position, joint angles, and joint velocities.
Specifically, the first three dimensions represent the xyz position, the next 12 dimensions correspond
to the joint angles of the ant’s four limbs, and the remaining 14 dimensions capture the velocities in
the xy plane and of each joint. The action space consists of 8 dimensions, controlling the hip and
ankle actuators of the ant’s limbs.

E.4 Point Maze

The 2D point agent starts at the bottom left corner of a 10 x 10 maze and is tasked with reaching
the top right corner within 50 timesteps. The state space and action space are both two-dimensional,
corresponding to the agent’s position and velocity on the plane. Success is determined if the L2
distance between the agent’s position and the goal is less than 0.15. This environment is borrowed
from Pitis et al. (2020). In CE2-G, the training goals are randomly chosen from 11 goals in different
positions of the maze.

E.5 Block and Pen Rotation

The hand must manipulate both a thin pen or a block to achieve target rotations. Manipulating
the thin pen presents a greater challenge than manipulating the block due to the pen’s tendency to
slip, requiring more precise control. We utilize variant versions of the gymnasium environments:
"HandManipulatePenRotate-v1" and "HandManipulateBlockRotateXYZ-v1". These environments
introduce randomized target rotations for all axes of the block and x, y axes of the pen in each
episode. The state space for both tasks consists of 61 dimensions, providing details on the robot’s
joint and object states, as well as goal information. The goal space remains consistent at 7 dimensions,
indicating the target pose information. During evaluation, the latest policy is evaluated across 50
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episodes for each task, with each episode featuring a distinct random goal. In CE2-G, the training
goals from environments is also randomly generated. Pen Rotation is particularly challenging due to
the pen’s thin structure, which requires precise control to prevent it from dropping. We intended to
convey that this is the most difficult benchmark (with 61 observation space dimensions and 20 action
space dimensions) in our test suite.

F Baselines

In this section, we present the pseudocode for all baseline methods. Note that, except for L3P, each
baseline employs a different strategy for sampling data in the real environment within this framework.
Therefore, we first display the general training framework for MBRL and subsequently provide the
pseudocode for each baseline’s data sampling method in the real environment.

Algorithm 4 General MBRL Training Framework

1: Input: Policy πG, πE , Environment Goal Distribution G, World Model M̂ , reward function rG,
rE

2: D ← {} Initialize buffer.
3: for Episode i = 1 to Ntrain do
4: τ ← Collect trajectories(. . .)
5: D ← D ∪ τ
6: Update model M̂ with (st, at, st+1) ∼ D
7: Update πG in imagination with M̂ to maximize rG

8: Update πE in imagination with M̂ to maximize rE

F.1 Go-Explore

To enhance the exploration area of the explorer, we adopt the Go-Explore strategy (Ecoffet et al.,
2019). This approach initially employs a goal-conditioned policy, πG, to approach a specified goal g
as closely as possible, a process referred to as the Go-phase. Following this, the explorer, πE , is used
to further explore the environment starting from the terminal state of the Go-phase, known as the
Explore-phase.

The effectiveness of the trajectories generated by the Go-Explore strategy heavily depends on the
choice of the goal g during the Go-phase. Thus, establishing an efficient goal selection mechanism
for the Go-phase is crucial. If the chosen goal g is too easy, the explorer will not sufficiently explore
the environment. Conversely, if the goal g is too difficult, the goal-reaching policy πG will be unable
to approach it effectively. Therefore, the objective is to develop a goal selection mechanism that
identifies a goal g capable of guiding the agent to a region with high exploration potential during the
Go-phase. Below, we provide the pseudocode for the Go-Explore strategy.

Algorithm 5 Go Explore Framework
1: function GO-EXPLORE(g, πG, πE )
2: s0 ← env.reset()
3: τ ← {s0}
4: for Step t = 1 to TGo do
5: st ← env.step(πG(st−1, g))
6: τ ← τ ∪ {st}
7: if agent reach g then
8: break
9: te = t

10: for Step t = te to te + TExplore do
11: st ← env.step(πE(st−1))
12: τ ← τ ∪ {st}
13: return τ
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F.2 GC-Dreamer

GC-Dreamer follows a goal-conditioned approach where trajectories are collected by goal-conditioned
policy πG, and the goals are returned from the training environment.

Algorithm 6 GC-Dreamer Goal Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: g ← Returned by environment
3: τ ← Sample a trajectories by πG using goal g
4: return τ

F.3 PEG

PEG adopts a strategy where trajectories are collected by optimizing a specific equation using the
MPPI method. The optimized goal is then used to guide exploration through the GO-EXPLORE
algorithm.

Algorithm 7 PEG Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: g ← Optimize Equation 7 with MPPI
3: τ ← GO-EXPLORE(g, πG, πE)
4: return τ

F.4 PEG-G

PEG-G combines the utilization of goals from the environment with those generated by optimizing
the equation using MPPI. This approach alternates between the two strategies based on the episode
index.

Algorithm 8 PEG-G Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: if episode i%2 = 0 then
3: g ← Optimize Equation 7 with MPPI
4: τ ← GO-EXPLORE(g, πG, πE)
5: else
6: g ← Returned by environment
7: τ ← Sample a trajectories by πG using goal g
8: return τ

F.5 MEGA

For model-based MEGA, we directly utilize the implementation method described in the PEG paper.
This involves transplanting MEGA’s KDE model and using a goal-conditioned value function within
the LEXA framework to filter goals based on reachability. The PEG paper has demonstrated that their
implementation of MEGA achieves superior performance compared to the original MEGA baseline.

Algorithm 9 MEGA Goal Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: g ← ming∈D p̂(g)
3: τ ← GO-EXPLORE(g, πG, πE)
4: return τ
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F.6 MEGA-G

Similar to PEG-G, MEGA-G alternates between using goals from the environment and MEGA goal
picking strategy.

Algorithm 10 MEGA-G Goal Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: if episode i%2 = 0 then
3: g ← ming∈D p̂(g)
4: τ ← GO-EXPLORE(g, πG, πE)
5: else
6: g ← Returned by environment
7: τ ← Sample a trajectories by πG using goal g
8: return τ

F.7 MEGA+PEG

MEGA+PEG combines the strategies of MEGA and PEG. this baseline firstly employs MEGA to
sample a batch of candidate goals, all of which have low density in the replay buffer. Subsequently,
their exploration potential is evaluated using PEG, with the most valuable one selected as the
exploration goal.

Algorithm 11 MEGA+PEG Goal Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: G← Top-10 smallest p̂(g) for g ∈ D
3: g ← Optimize Equation 7 for g ∈ G
4: τ ← GO-EXPLORE(g, πG, πE)
5: return τ

F.8 CE2-noPEG

CE2-noPEG utilizes a goal-picking strategy based on Gaussian Mixture Model (GMM) clustering to
generate goals for exploration without employing PEG optimization. The goal picked by this method
is sampled at the edge of our latent space clusters, which is the main contribution of our paper.

Algorithm 12 CE2-noPEG Goal Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: Dexp ← {}
3: for episode i = 1 to Nτ do
4: Gcandidate ← Sample Ncandidate points from GMM
5: Gedge ← Nedge points in Gcandidate with the smallest total probability of the GMM .
6: gE ← Randomly select a g from Gedge

7: τ ← GO-EXPLORE(gE , πG, πE)
8: return τ

F.9 L3P

Our implementation of L3P follows the original code provided in the L3P paper (Zhang et al., 2021).
For more details on the pseudocode and specific implementation, please refer to the descriptions in
their paper.
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G Implementation Details

G.1 Farthest Point Sampling (FPS) Algorithm

Algorithm 13 Farthest Point Sampling (FPS)
1: function FPS(points, num_samples)
2: sampled_points← [ ]
3: first_point← random.choice(points)
4: sampled_points.append(first_point)
5: min_distances← [float(’inf’)] × len(points)
6: for each point p in points do
7: min_distances[p]← distance(p, first_point)
8: for iteration i = 1 to num_samples-1 do
9: farthest_point_index← argmax(min_distances)

10: farthest_point← points[farthest_point_index]
11: sampled_points.append(farthest_point)
12: for each point p in points do
13: min_distances[p]← min(min_distances[p], distance(p, farthest_point))
14: return sampled_points

The Farthest Point Selection (FPS) algorithm, commonly employed in various applications including
point cloud simplification and image sampling, initializes by creating an empty list termed ’sam-
pled_points’ to retain the selected points. The process initiates by randomly selecting an initial point
from the input point set, designated as ’points’, and appending it to ’sampled_points’. Subsequently,
’min_distances’ is initialized to track the minimum distance from each point to any of the sampled
points, with initial values set to infinity. The core procedure entails iteratively selecting points until
reaching the desired number of samples. At each iteration, the algorithm identifies the point in
’points’ with the maximum minimum distance to the previously sampled points and includes it in
’sampled_points’. Concurrently, ’min_distances’ is updated to reflect the recalculated minimum dis-
tance of each point to any of the sampled points. The algorithm incorporates two auxiliary functions:
’distance(point1, point2)’, facilitating the computation of the Euclidean distance between two points,
and ’argmax(array)’, which returns the index of the maximum value within an array. See pseudocode
Algorithm 13 for more details about FPS.

G.2 Runtime

Table 1: Runtimes per experiment.

Total Runtime (Hours) Total Steps Episode Length Seconds per Episode

3-Block Stacking 60 1e6 150 31.34
Walker 36 1e6 150 18.62
Ant Maze 56 1e6 500 96.91
Point Maze 36 1e6 50 5.60
Block Rotation 58 1e6 150 30.74
Pen Rotation 58 1e6 150 30.42

We conduct each experiment on GPU Nvidia A100 and require about 5GB of GPU memory. See
Table 1 for specific running time of CE2 for different task. The running time of CE2-G has no big
difference with CE2. The neural network updates of the policies and world model take most of
runtime. However, CE2 takes more time in goal selection compared to PEG and MEGA. This is
because CE2 need evaluate the exploration potential of candidate goals sampled at the edge of latent
clusters every time it picks a goal for exploration. In the PEG algorithm, the MPPI parameters are
only updated at fixed intervals of multiple episodes. This means that the exploration potential is
assessed for a batch of data after a certain number of episodes have been completed. In contrast,
our method evaluates the exploration potential for a batch of candidate goals at each episode when
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sampling exploration goals. However, we can also follow the PEG by evaluating the exploration
potential of a batch of candidate goals after multiple episodes. Between these updates, we can select
exploration goals from the previously evaluated set of candidate goals. While this may sacrifice some
algorithm performance, it can significantly reduce the time CE2 requires to select goals. We tried
this setting and compared the computation time needed to optimize goal states for launching the
Go-Explore procedure among our CE2 and the baseline methods MEGA and PEG in the 3-Block
Stacking environment. The average wall clock time are recorded in the Table 2.

Table 2: Computation time needed to optimize goal states

Method Seconds/Episode

CE2 0.56
PEG 0.53
MEGA 0.47

G.3 Hyperparameters

Similar to PEG, we use the default hyperparameters of the LEXA backbone MBRL agent (e.g.,
learning rate, optimizer, network architecture) and keep them consistent across all baselines. For the
Gaussian Mixture Model(GMM), we set the learning rate to be 3e-4, optimizer to be Adam. We also
test result of different cluster number(10, 30, 50) setting as we show in ablation experiment. Every
time we sample points in the GMM, we set the point number Ncandidate = 1000 and we set the edge
point number Nedge = 100. After then, we evaluate the exploration potential of these 100 points and
pick the point as goal state which have largest exploration potential value. In addition, to improve
clustering in the latent space, we reduced the latent space dimension from 400(LEXA setting) to 50.
We tested the training speed and results with both a latent space dimension of 400 and 50. We found
that a latent space dimension of 50 allows for faster clustering and accelerates the training process.
Meanwhile, although a latent space dimension of 400 reduces the training speed a little, it does not
affect the final success rate.

H Additional Experiments

H.1 Space explored image for 3-Block Stacking

Figure 10: Space explored by CE2 and PEG in the 3-Block Stacking environment at 1M steps. X-axis:
the sum of the three sides of the triangle projected on the x-y plane by the three block-connected
triangles. Y-axis: sum of heights (z-coordinates) of the three blocks. Red points: evaluation goals.
Other points: observations of trajectories sampled in real environment. Color from green to yellow
means to be sampled more recent.
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In 3-Block Stacking, we innovatively designed a method based on the coordinates of three blocks to
demonstrate the degree of exploration in the environment, showed in Fig 10. Firstly, we establish
connections between the coordinates of three blocks in three-dimensional space, forming a spatial
triangle. This spatial triangle serves to express the relative positions and distances of the three blocks
within the space. Subsequently, we project this spatial triangle onto the xy-plane. The summation of
the lengths of the sides of the projected triangle on the xy-plane reflects the dispersal of the three
blocks within the xy-plane, while the total sum of the z-coordinates of the three blocks indicates their
relative positions in height Utilizing the former as the x-axis and the latter as the y-axis, we depict a
schematic illustration of the spatial exploration of 3-Block Stacking. We observe that CE2 exhibits
a more targeted and in-depth exploration around the target space (highlighted within the red box)
compared to PEG. Simultaneously, we observed that PEG tends to conduct numerous explorations
in the upper-left region of the exploration graph, which are often futile and irrelevant to the goal of
completing block stacking. This highlights the advantage of CE2, which benefits from the constraints
imposed by clustering and avoids blindly exploring areas. Moreover, sampling at the edges of clusters
ensures the profitability of exploration, enabling more efficient exploration of the vicinity of the goal
space compared to PEG.

H.2 More Exploration Process

Figure 11: Comparison of exploration goals generated by CE2, MEGA and PEG

We present a comparison of exploration targets generated by CE2, MEGA and PEG approaches over
the training process in the Ant Maze environment. In the Fig 11, red points represent the generated
exploration targets by different methods. We observe that the exploration targets generated by CE2 are
significantly superior to those generated by MEGA and PEG. Specifically, CE2 consistently generates
points located at the forefront of agent exploration and within the agent’s reachable capability
range. In contrast, the targets generated by MEGA exhibit greater dispersion and sparsity, which
are disadvantageous for concentrated exploration of forefront regions. Moreover, PEG consistently
generates targets outside the Maze channels, rendering these exploration targets not only far beyond
the agent’s capability range but also meaningless.

H.3 Centroids Visualization

By decoding the centroids of GMMs in latent space, we can visualize some centroids of GMMs in
CE2, showing in Fig. 12

H.4 Full results for CE2-G

Please see Fig. 13
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Figure 12: some centroids visualization of GMMs in CE2.

H.5 More Ablation Experiments

We conducted experiments in the CE2 with different numbers (10, 30, 50) of clusters to observe if the
results are sensitive to the number of clusters. The results are shown in Fig 14. We found that the
performance of CE2 is not strongly correlated with the number of clusters; as long as the number of
clusters is sufficient to represent key state regions, the results tend to be stable, which demonstrates
the robustness of our approach.
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(a) Point Maze (b) Ant Maze (c) Walker

(d) 3-Block Stacking (e) Block Rotation (f) Pen Rotation

Figure 13: Full experiment Results comparing CE2-G with the baselines in six environments.

(a) 3 Block (b) Ant Maze (c) Point Maze

(d) Block Rotation (e) Pen Rotation (f) Walker

Figure 14: Ablation Study with Different Cluster Number.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly articulate the primary claims of the
paper, specifically focusing on the development and implementation of the CE2 algorithm
for goal-directed exploration in goal-conditioned reinforcement learning (GCRL). The
introduction outlines the main contributions, including the proposal of a new exploration
mechanism, the clustering strategy to prioritize accessible goals, and the validation of CE2

in various challenging robotics environments. These claims are aligned with the theoretical
framework and experimental results presented in the paper, ensuring they accurately reflect
the contributions and scope of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our paper clearly outlines several limitations of the proposed CE2 algorithm
in Appendix. Firstly, it emphasizes the dependency on a well-trained latent space, which
must accurately reflect reachable distances between states and facilitate dynamic prediction.
Training this latent space requires a robust temporal distance predictor, which we address
by using the predictor network from LEXA, trained with simulated trajectories for stability.
Additionally, we discuss that CE2 may face challenges with more complex tasks such as peg
insertion or fluid tasks in ManiSkill2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Experiment section and appendix of our paper, we provide detailed
descriptions of our experimental procedures and configurations. This includes elucidating the
origins and modifications made to all testing environments. We also present the pseudocode
and implementation methods for all baseline models. Additionally, we specify the devices
and memory resources utilized, as well as enumerate the exact numerical values of the
hyperparameters employed. Moreover, we have made our code openly accessible. For
further details, please refer to the Reproducibility Statement section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: As we answer in the previous question. We have open source our code and
provide detailed instructions to reproduce the main experimental results. We illustrate the
benchmark source, baseline settings and CE2 implementation details.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed descriptions of the hyperparameters used for CE2 in
Appendix, such as varying cluster numbers and latent space dimensions. We also desbribe
the setting of training, including learning rates, optimizers, and network architectures. This
information is crucial for understanding and reproducing our experimental results.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeated each experiment at least five times using different random seeds,
and when plotting the results. As we showing in the Experiment section, we displayed the
experimental error. The solid line represents the average success rate, while the shaded
region represents the standard deviation between the repeated experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly specifies the computer resources(Nvidia A100 GPU) and the
amount of GPU memory required (approximately 5GB) in Appendix. Additionally, we
provides detailed information on the runtime of each experiment, including specific time
metrics such as episode length and seconds per episode.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in our paper aligns with the NeurIPS Code of Ethics.
We have reviewed the guidelines and ensured that our research adheres to ethical standards.
Additionally, we have taken measures to preserve anonymity and comply with relevant laws
and regulations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our study focuses on solving exploration issues in the GCRL environment. At
this stage, it remains largely theoretical and has negligible societal implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper properly credits the creators or original owners of assets used,
including code, data, and models. The licenses and terms of use are explicitly respected.
Specifically, we cite the original papers for code packages or datasets used, state the version
of the assets, and include URLs where possible.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have documented our code and provided detailed instructions on its usage,
licenses, and permissible scope of use. Additionally, we have included the documentation
alongside the assets to ensure accessibility and clarity for users.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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