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Abstract

Deep neural networks are ubiquitously adopted in many applications, such as
computer vision, natural language processing, and graph analytics. However, well-
trained neural networks can make prediction errors after deployment as the world
changes. Model editing involves updating the base model to correct prediction
errors with less accessible training data and computational resources. Despite
recent advances in model editors in computer vision and natural language process-
ing, editable training in graph neural networks (GNNs) is rarely explored. The
challenge with editable GNN training lies in the inherent information aggrega-
tion across neighbors, which can lead model editors to affect the predictions of
other nodes unintentionally. In this paper, we first observe the gradient of cross-
entropy loss for the target node and training nodes with significant inconsistency,
which indicates that directly fine-tuning the base model using the loss on the target
node deteriorates the performance on training nodes. Motivated by the gradient
inconsistency observation, we propose a simple yet effective Gradient Rewiring
method for Editable graph neural network training, named GRE. Specifically,
we first store the anchor gradient of the loss on training nodes to preserve the
locality. Subsequently, we rewire the gradient of the loss on the target node to
preserve performance on the training node using anchor gradient. Experiments
demonstrate the effectiveness of GRE on various model architectures and graph
datasets in terms of multiple editing situations. The source code is available at
https://github.com/zhimengj0326/Gradient_rewiring_editing.

1 Introduction

Graph Neural Networks (GNNs) have demonstrated exemplary performance for graph learning tasks,
such as recommendation, link prediction, molecule property analysis [1, 2, 3, 4, 5, 6, 7]. With
message passing, GNNs learn node representations by recursively aggregating the neighboring nodes’
representations. Once trained, GNN models are deployed to handle various high-stake tasks, such
as credit risk assessment in financial networks [8] and fake news detection in social networks [9].
However, the impact of erroneous decisions in such influential applications can be substantial. For
instance, misplaced credit trust in undetected fake news can lead to severe financial loss.

An ideal approach to tackle such errors should possess the following properties: 1) the ability to
rectify severe errors in the model’s predictions, 2) the capacity to generalize these corrections to
other similar instances of misclassified samples, and 3) the ability to preserve the model’s prediction
accuracy for all other unrelated inputs. To achieve these goals, various model editing frameworks
have been developed to rectify errors by dynamically adjusting the model’s behavior when errors are
detected [10, 11]. The core principle is to implement minimal changes to the model to correct the
error while keeping the rest of the model’s behavior intact. However, model editing is not a simple
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plug-and-play solution. These frameworks often require an additional training phase to prepare for
editing before they can be used effectively for editing [10, 11, 12, 13]. Although model editing
techniques have shown significant utility in computer vision and language models, there is rare work
focused on rectifying critical errors in graph data. The unique challenge arises from the inherent
message-passing mechanism in GNNs when edits involve densely interconnected nodes [14, 15].
Specifically, editing the behavior of a single node can unintentionally induce a ripple effect, causing
changes that propagate throughout the entire graph. [14] theoretically and empirically demonstrate the
complexity of editing GNNs through the lens of the loss landscape of the Kullback-Lieber divergence
between the pre-trained node features and edited final node embeddings. Moreover, a simple yet
effective model structure, named EGNN, is proposed with stitched peer multi-layer perception (MLP),
where only the stitched MLP is trained during model editing.

In this work, we investigate the model editing problem for GNNs from a brand-new gradient
perspective, which is compatible with existing work [14]. Specifically, we first found a considerable
inconsistency between the gradients of the cross-entropy loss for the target node and the training
nodes for GNNs. Such inconsistency implies that direct fine-tuning of the base model using the loss
of the target node can lead to a deterioration in the performance on the training nodes. Motivated
by the above observation, we propose a simple yet effective Gradient Rewiring method for Editable
graph neural network training, named GRE. Specifically, we first calculate and store the anchor
gradient of the loss on the training nodes. This anchor gradient represents the original learning
direction that we wish to preserve. Then, during the editing process, we adjust the gradient of the loss
on the target node based on the stored anchor gradient. This adjustment, or “rewiring”, ensures that
the changes made to the target node do not adversely affect the performance on the training nodes.
Experiments demonstrate the effectiveness of our proposed method for various model structures and
graph datasets. Moreover, the proposed method is compatible with the existing EGNN baseline and
further improves the performance.

FlickrCora Arxiv A-photo

Figure 1: (a) Top: RMSE distance between the gradients of cross-entropy loss over training datasets and over
the targeted sample for different architectures. (b) Middle: Cross-entropy loss over training datasets when the
model is updated using target loss. (c) Bottom: Cross-entropy loss over the targeted sample when the model is
updated using target loss.

2 Preliminary and Related Work

We first introduce the notations used throughout this paper. A graph is given by G = (V, E) ,where
V = (v1, · · · , vN ) is the set of nodes indexed from 1 to n, and E = (e1, · · · , em) ⊆ V × V is the set
of edges. n = |V| and m = |E| are the numbers of nodes and edges, respectively. Let X ∈ Rn×d be
the node feature matrix, where d is the dimension of node features. A ∈ Rn×n is the graph adjacency
matrix, where Ai,j = 1 if (vi, vj) ∈ E else Ai,j = 0. Ã = D̃− 1

2 (A + I)D̃− 1
2 is the normalized
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adjacency matrix, where D̃ is the degree matrix of A+ I . The node label is defined as yi for node
vi. We consider node classification tasks with C classes in this paper.

2.1 Graph Neural Networks

Graph Neural Networks have been successfully applied across various domains/tasks, including
knowledge graphs [16, 17], graph condensation [18, 19, 20], event extraction [21], and entity relation
tasks [22]. Most graph neural networks follow a neighborhood aggregation procedure to learn
node representation via propagating representations of neighbors and then follow up with feature
transformation [23]. The l-th layer of graph neural networks is given by:

a
(l)
i = PROPAGATION(l)

({
x
(l−1)
i ,x

(l−1)
j |j ∈ Ni

})
,

x
(l)
i = TRANSFORMATION(l)

(
a
(l)
i

)
,

where x
(l)
i is the representation of node vi at l-th layer and x

(0)
i is initialized as node feature xi,

i..e, the i-th row at node feature matrix X . Many GNNs, such as GCN [24], GraphSAGE [25], and
GAT [26], can be defined under this computation paradigm via adopting the different propagation
and transformation operations. For example, the l-th layer in GCN can be defined as:

X(l) = σ(ÃX(l−1)W (l)), (1)

where X(l) ∈ Rn×d and X(l−1) ∈ Rn×d are the node representation matrix containing the hv for
each node v at the layer l and layer l − 1, respectively. W (l) ∈ Rd×d is a layer-specific trainable
weight matrix, and σ(·) is a non-linear activation function (e.g., ReLU).

2.2 Model Editing

Model editing aims to modify a base model’s responses for a misclassified sample xtg and its analogs.
This is typically achieved by fine-tuning the model using only a single pair of input xtg and the
desired output ytg, while preserving the model’s responses to unrelated inputs [10, 11, 12, 14].
Our contribution lies in the novel application of model editing to graph data, a domain where
misclassifications on a few pivotal nodes can trigger substantial financial losses, fairness issues, or
even the propagation of adversarial attacks. Consider the scenario of node classification where a
well-trained GNN incorrectly predicts a particular node. Model editing can be employed to rectify
this erroneous prediction. By leveraging the node’s characteristics and the desired label, the model
can be updated to correct such behavior. The ideal outcome of model editing is twofold: first, the
updated model should correctly predict the specific node and its similar instances; second, the model
should maintain its original behavior on unrelated inputs. It is important to note that some model
editors require a preparatory training phase before they can be applied effectively [10, 13, 12, 11].
This crucial step ensures that the model editing process is both precise and effective in its application.

3 Methodology

In this section, we first provide the preliminary experimental results as the motivation to rewire
gradients for model editing. Subsequently, we propose our gradient rewiring method for editable
graph neural networks training (GRE) and an advanced version (GRE+) to improve the effectiveness
of model editing, respectively.

3.1 Motivation

In the preliminary experiments, we first pre-train GCN, GraphSAGE, and MLP on the training
dataset Vtrain (e.g., Cora, Flickr, ogbn-arxiv, and Amazon Photo datasets) using cross-entropy loss.
Subsequently, we find the misclassified samples in the validation dataset and randomly select one
sample as the target sample (xtg, ytg). During the model editing, we update the pre-trained model
using cross-entropy loss over the target sample using gradient descent, i.e., the models are trained
inductively. Following previous work [10, 12, 14], we perform 50 independent edits and report the
averaged metrics.

3
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It is well-known that model editing incurs training performance degradation [11, 10, 12] 1 for
many model architectures. To deeply delve into the underlying reason, we investigate performance
degradation from a model gradient perspective. We further define the training loss as Ltrain =

1
|Vtrain|

∑
i∈Vtrain

CE(fθ(xi), yi), where fθ(·) ∈ RC is a prediction model parameterized with
θ ∈ RL, C and L are the number of classes and model parameters, CE(·, ·) is the cross-entropy loss,
the target loss is given by Ltg = CE(fθ(xtg), ytg). For example, model fθ(·) can be instantiated by
GNNs with the number of layers defined in Eq. (1) or a simple MLP. For model editing, the gradient
for training and target loss is given by gtrain = ∂Ltrain

∂θ ∈ RL and gtg =
∂Ltg

∂θ ∈ RL, respectively.
To investigate why the model editing leads to training performance degradation, we use gradient
RMSE (Root-Mean-Squared-Error), i.e., GradRMSE =

√
∥gtrain − gtg∥22, to measure the model

editing discrepancy for training datasets and target sample.

The model editing curves for gradient RMSE 2, training loss, and target loss across various model
architectures (GCN, GraphSAGE, and MLP) are shown in Figure 1. Although the gradient RMSE
for training datasets and target sample is close to 0, the model parameters demonstrate significant
inconsistent behavior in terms of training loss due to large gradient discrepancy in the initial editing
stage. We observe that: 1) Even though the target loss decreases during model editing, the training
loss increases significantly. 2) The increasing rates of training loss for GCN and GraphSAGE are
significantly higher than that of MLP. The above observations imply that editing training for graph
neural networks is more challenging due to higher gradient discrepancy between the training dataset
and the target sample.

3.2 Gradient Rewiring Approach

Preliminary results show a high discrepancy in training loss and target loss for GNNs, which implies
that the vanilla model editing hampers the performance on the overall training dataset and thus results
in a high accuracy drop for node classification tasks. Therefore, we aim to tackle the training dataset
performance degradation from the gradient rewiring approach.

GRE We propose a simple yet effective gradient rewiring approach for editable graph neural
network training, named GRE. We first formulate a constrained optimization problem to regulate
model editing and then solve the constrained optimization problem via gradient rewiring.

Model editing aims to correct the prediction for the target sample while maintaining the prediction
accuracy on the training nodes. The objective function focuses on minimizing the loss at the target
node. To preserve the predictions on the training nodes, we introduce two constraints: (1) the training
loss should not exceed its value prior to model editing (see Eq. (3)); and (2) the differences in model
predictions after editing should remain within a predefined range (see Eq. (4)). Define θ0 and θ′

as the model parameters before and after model editing. Then we have the following constrained
optimization problem:

min
θ

Ltg

(
fθ(xtg), ytg

)
(2)

s.t. Ltrain

(
fθ′ ,Vtrain

)
≤ Ltrain

(
fθ0 ,Vtrain

)
(3)

∥ 1

|Vtrain|
∑

i∈Vtrain

fθ′(xi)− fθ0(xi)∥2 ≤ δ′, (4)

where θ and θ′ represent the model parameters before and after model editing, respectively, the
hyperparameter δ′ represents the maximum average prediction difference on training nodes. Notice
that the model parameters update adopts gradient descent using target loss without any constraints,
i.e., θ′ = θ0−αgtg , where α is step size in model editing. The key idea of our proposed solution is to
rewire gradient gtg as g, which is obtained by satisfying the involved constraints. Note that the model
editing usually corrects the model prediction on the target sample within a few steps, i.e. there are no
significant model parameter differences, thus we adopt Taylor expansion to tackle such constrained

1The reason for focusing on the training set is that during model editing, we can only use the training set and
not the test set.

2There is no variance for gradient estimation since gradient calculation is based on backpropagation. The
large variance in model performance and gradient discrepancy derives from the randomly selected target node.
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optimization problem. For target loss Ltg , we can approximate it as:

Ltg

(
fθ′(xtg), ytg

)
≈ Ltg

(
fθ0(xtg), ytg

)
+ g⊤tg(θ

′ − θ0)

= Ltg

(
fθ0(xtg), ytg

)
− αg⊤tgg. (5)

To optimize the objective function Eq. (2), it is easy to conclude that the gradient cosine similarity
g⊤tgg should be maximized. Given the gradient before/after model editing is fixed, the maximization
of gradient cosine similarity g⊤tgg is equivalent to the minimization of ∥gtg − g∥2. To satisfy Eq. (3),
we also adopt Taylor expansion on Ltrain and it is easy to obtain that the gradient cosine similarity
should be positive, i.e., g⊤tgg ≥ 0. As for the constraint in Eq. (4), similarly, a Taylor expansion is
used to express the relationship between the model predictions before and after the model editing, as
follows:

fθ′(xi) ≈ fθ0(xi) +
∂fθ0(xi)

∂θ

⊤
(θ′ − θ) = fθ0(xi)−

∂fθ0(xi)

∂θ

⊤
· αg, (6)

Therefore, we can obtain the following approximation on Eq. (4):

∥ 1

|Vtrain|
∑

i∈Vtrain

fθ′(xi)− fθ0(xi)∥2 ≈ ∥ĝ⊤train(−αg)∥2 ≤ δ′, (7)

where gradient for a model prediction is defined as ĝtrain =
∂ 1

|Vtrain|
∑

i∈Vtrain
fθ0 (xi)

∂θ

∥∥
θ=θ0

∈
RL×C . Therefore, the model prediction difference constraint can be transformed into ∥ĝ⊤traing∥2 ≤
∥ĝtrain∥2spect∥g∥2 ≤ δ, where ∥ · ∥spect represents matrix spectrum norm and ∥ĝtrain∥spect is fixed
in model editing, and δ = δ′

α2 . In a nutshell, our goal is to correct the target sample (i.e., minimize
∥gtg − g∥2) and minimize gradient discrepancy for model prediction among training dataset and
target sample (i.e., ∥g∥2), while guaranteeing non-increased training loss (i.e., g⊤traing ≥ 0). The
original constraint optimization problem is simplified as gradient rewiring, i.e.,

min
g

1

2
∥g − gtg∥2 +

λ

2
∥g∥2 = min

g

1 + λ

2
g⊤g − g⊤tgg +

1

2
g⊤tggtg s.t. g⊤traing ≥ 0, (8)

where λ ≥ 0 is the hyperparameter to control the balance between target sample correction and
gradient discrepancy for model prediction. It is easy to obtain that Eq.(8) is a quadratic program (QP)
in L-variables (the number of model parameters is usually high in neural networks). Fortunately, we
can effectively solve this problem in the dual space via transforming as a smaller QP problem with only
one variable v [27], where the relation between primal and dual variable is gtrainv−(1+λ)g = −gtg .
Then we have the following problem:

min
v

(1 + λ)−1

2
(gtrainv + gtg)

⊤(gtrainv + gtg) s.t. v ≥ 0. (9)

It is easy to obtain the optimal dual variable v∗ = −min{ g⊤
traingtg

gtrain⊤gtrain
, 0} and the optimal rewired

gradient g∗ = (1 + λ)−1
(
gtg − v∗gtrain

)
. In other words, the gradient rewiring procedure is quite

simple: for the gradient of the target loss gtg, reduce its projection component on gtrain and then
scale it by (1 + λ)−1.

Additionally, we highlight that the gradient for training loss gtrain must be stored before model
editing. In this way, gradient rewiring can be conducted to remove the harmful gradient component
on target loss that increases training loss. Since shallow GNNs model performs well in practice [28],
the model size of GNNs is small and the memory cost O(L) for storing anchor gradient is negligible.

GRE+ In GRE, the training loss after model editing is required not to be larger than that before
model editing. However, it is still possible that the training loss on specific sub-training sets
performs worse after model editing. At the same time, the training loss for the whole training
dataset, after model editing, is on par with or even lower than that of before editing. To tackle
this issue, we proposed an advanced gradient rewiring approach, named GRE+, via applying loss
constraint on multiple disjoint sub-training sets. Specifically, we split training dataset Vtrain into K

sub-training sets {V1
train,V2

train, · · · ,VK
train}. Similarly, we define gktrain =

∂Lk
train

∂θ ∈ RL, where
Lk
train = 1

|Vk
train|

∑
i∈Vk

train
CE(fθ(xi), yi).

5

61817 https://doi.org/10.52202/079017-1975



Following the derivative clue in GRE, we can replace the training loss constraint on the whole training
dataset with multiple training loss constraints on training subsets, and obtain the advanced gradient
rewiring approach as follows:

min
g

1

2
∥g − gtg∥2 +

λ

2
∥g∥2 = min

g

1 + λ

2
g⊤g − g⊤tgg +

1

2
g⊤tggtg

s.t. (gktrain)
⊤g ≥ 0, for any 1 ≤ k ≤ K. (10)

Notice that Eq.(10) is a quadratic program (QP) in L-variables (the number of model parameters
are usually high in neural networks), and we can effectively solve this problem in the dual space via
transforming as a smaller QP problem with only K variables v ∈ RK [27]. Define gradient matrix as
G = [g1train, g

2
train, · · · , gKtrain]⊤ ∈ RK×L, then the relation between primal and dual variable is

given by Gv − (1 + λ)g = −gtg. The original optimization problem can be transformed into the
following dual problem:

min
v

(1 + λ)−1

2
v⊤GG⊤v + (1 + λ)−1g⊤tgG

⊤v + (1 + λ)−1g⊤tggtg

s.t. vk ≥ 0, for any 1 ≤ k ≤ K. (11)

The dual problem is a QP with K ≪ L variables, and we usually consider the value of K to be smaller
than 5 in practice. Once we tackle dual QP problem (11) for v∗, we can recover the rewired gradient
as g = (1 + λ)−1(Gv + gtg). Similarly, the gradient for training loss gktrain, where 1 ≤ k ≤ K, is
required to be stored before model editing. The corresponding memory cost is given by O(KL).

Table 1: The results on four small-scale datasets after applying one single edit. The reported number is averaged
over 50 independent edits. SR is the edit success rate, Acc is the test accuracy after editing, and DD are the test
drawdown, respectively. “OOM” is the out-of-memory error. The best/second-best results are highlighted in
boldface/underlined, respectively.

Editor Cora A-computers A-photo Coauthor-CS
Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

MLP

GD 68.15±0.33 3.85±0.33 0.98 73.22±0.48 6.78±0.48 1.00 83.19±0.91 6.81±0.91 1.00 93.59±0.05 0.41±0.05 1.00
ENN 37.16±3.80 52.24±4.76 1.00 15.51±10.99 72.36±10.87 1.00 16.71±14.81 77.07±15.20 1.00 4.94±3.78 89.43±3.34 1.00
GRE 69.41±0.44 2.59±0.44 0.96 61.21±1.26 18.79±1.26 1.00 73.56±1.41 16.44±1.41 1.00 93.27±0.09 0.73±0.09 1.00

GRE+ 71.19±0.28 0.61±0.28 0.96 61.27±1.15 18.73±1.15 1.00 78.26±1.15 11.74±1.15 1.00 93.73±0.07 0.27±0.07 1.00

GCN

GD 84.37±5.84 5.03±6.40 1.00 44.78±22.41 43.09±22.32 1.00 28.70±21.26 65.08±20.13 1.00 91.07±3.23 3.30±2.22 1.00
ENN 37.16±3.80 52.24±4.76 1.00 15.51±10.99 72.36±10.87 1.00 16.71±14.81 77.07±15.20 1.00 4.94±3.78 89.43±3.34 1.00
GRE 84.98±0.47 4.02±0.47 0.96 46.28±3.47 51.72±3.47 0.98 35.88±2.26 58.12±2.26 0.99 89.46±0.29 4.54±0.29 1.00

GRE+ 88.84±0.35 0.56±0.35 0.98 47.75±0.45 40.25±0.45 1.00 50.13±1.36 43.87±1.36 1.00 91.99±0.30 2.01±0.30 1.00

Graph-
SAGE

GD 82.06±4.33 4.54±5.32 1.00 21.68±20.98 61.15±20.33 1.00 38.98±30.24 55.32±29.35 1.00 90.15±5.58 5.01±5.32 1.00
ENN 33.16±1.45 53.44±2.23 1.00 16.89±16.98 65.94±16.75 1.00 15.06±11.92 79.24±11.25 1.00 13.71±2.73 81.45±2.11 1.00
GRE 83.64±0.20 3.36±0.20 1.00 20.11±2.30 62.89±2.30 0.96 41.96±1.57 52.04±1.57 0.98 91.07±0.44 3.93±0.44 1.00

GRE+ 86.59±0.07 0.41±0.07 1.00 22.23±1.60 60.77±1.60 0.97 44.05±0.83 50.32±0.83 1.00 91.75±0.43 3.25±0.43 1.00

EGNN-
GCN

GD 87.58±0.31 1.42±0.31 1.00 87.27±0.14 0.73±0.14 0.78 93.24±0.59 0.76±0.59 0.77 93.99±0.02 0.01±0.02 0.91
GRE 87.47±0.41 1.53±0.41 1.00 83.38±1.20 4.62±1.20 0.87 88.01±1.20 5.99±1.20 0.86 93.92±0.07 0.08±0.07 0.94

GRE+ 88.99±0.21 0.05±0.21 1.00 88.10±1.21 0.51±1.21 1.00 94.22±0.98 −0.21±0.98 1.00 94.32±0.06 −0.32±0.06 1.00

EGNN-
SAGE

GD 85.05±0.11 0.95±0.11 1.00 85.93±0.08 0.07±0.08 0.90 93.87±0.20 0.13±0.20 0.81 95.0±0.01 0.00±0.01 0.99
GRE 84.79±0.19 1.21±0.19 1.00 81.94±1.71 4.06±1.71 0.96 88.55±1.19 5.45±1.19 0.95 94.85±0.05 0.15±0.05 1.00

GRE+ 86.24±1.43 −0.24±1.43 1.00 85.97±0.83 −0.16±0.83 1.00 94.07±0.03 −0.07±0.03 0.98 95.07±0.03 −0.07±0.03 1.00

4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of our proposed GRE and GRE+,
with the goal of answering the following three research questions. RQ1: Can the proposed solution
correct the wrong model prediction with a lower accuracy drop after model editing in the independent
and sequential editing setting? RQ2: What’s the tradeoff performance between accuracy drop and
success rate in the independent editing setting? RQ3: How sensitive are the proposed GRE and
GRE+ methods to the key hyperparameter λ?

4.1 Experimental Setting

We follow the standard experimental setting for GNNs [14]. Specifically, we first randomly split
the train/validation/test dataset. Then, we ensure that each class has 20 samples in the training and
30 samples in the validation sets. The remaining samples are used for the test set. The target node
is randomly selected 50 times from the validation set and the well-trained model makes the wrong
prediction. The average model editing performance (e.g., success rate, drawdown) is reported for
evaluation.

6
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Datasets and Models. In our experiments, we utilize a selection of eight graph datasets from diverse
domains, split evenly between small-scale and large-scale datasets. The small-scale datasets include
Cora, A-computers [29], A-photo [29], and Coauthor-CS [29]. On the other hand, the large-scale
datasets encompass Reddit [25], Flickr [2], ogbn-arxiv [3], and ogbn-products [3]. Note that our
approach is based on gradient rewiring, which is orthogonal to model architectures. We adopt two
prevalent models GCN [24] and GraphSAGE [25], where both of them are trained with the entire
graph at each step. We evaluate our method under the inductive setting, which means the model is
trained on a subgraph containing only the training node, and evaluated on the whole graph.

Baselines. Our methods are evaluated against three notable baselines: the traditional gradient
descent editor (GD), the Editable Neural Network editor (ENN) [10], and editable training for
GNNs[14]. 3 The GD editor is a straightforward application using gradient descent on the target
loss with respect to the GNNs model parameters until the desired prediction outcome is achieved.
ENN adopts a different approach by initially training the GNN parameters for a few steps to prime
the model for subsequent edits. After this preparatory phase, ENN, like GD, applies the gradient
descent on the parameters of GNN until the correct prediction is attained. EGNN [14] stitches a peer
MLP and only trains MLP during model editing. Note that our method is compatible with EGNN,
and different GNN architectures integrated with EGNN (e.g., EGNN-GCN, EGNN-GraphSAGE) are
treated as distinct architectures.

Independent, sequential, and batch editing. All independent, sequential, and batch editing
processes involve well-trained GNN models using training datasets, with target samples randomly
selected multiple times from misclassified instances in the validation dataset. The key differences
lie in the base model that needs to be edited. For independent editing, the same well-trained model
using the training datasets is edited multiple times. In contrast, for sequential editing, the model is
edited iteratively, with each editing step using the previously edited model from the last target sample,
incorporating both the training datasets and partial samples from the validation dataset. For batch
editing, all batched samples are edited simultaneously in one editing process. 4

Evaluation Metrics. Consistent with preceding studies [10, 12, 11], we assess the effectiveness of
the various methods using two primary metrics: (1) Accuracy (Acc): We use accuracy for the test
dataset to evaluate the effectiveness after model editing. (2) DrawDown (DD): This metric measures
the mean absolute difference in test accuracy before and after model editing. A lower drawdown
value signifies a superior editor locality. (3) Success Rate (SR): This metric evaluates the proportion
of edits in which the editor successfully amends the model’s prediction. Both metrics offer a different
perspective on the effectiveness of the editing process.

Table 2: The results on four large-scale datasets after applying one single edit. “OOM” is the out-of-memory
error. The best/second-best results are highlighted in boldface/underlined, respectively. The results for more
backbones (e.g., MLP, EGNN-GCN, EGNN-SAGE) are in Appendix D.1.

Editor Flickr Reddit ogbn-
arxiv

ogbn-
products

Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

GCN

GD 13.95±11.00 37.25±10.20 1.00 75.20±12.30 20.32±11.30 1.00 23.71±16.90 46.50±14.90 1.00 53.29±0.94 20.71±0.94 1.00
ENN 25.82±14.90 25.38±16.90 1.00 11.16±5.10 84.36±3.10 1.00 16.59±7.70 53.62±6.70 1.00 OOM OOM OOM
GRE 17.36±1.50 33.64±1.50 0.98 24.74±1.92 45.26±1.92 1.00 77.84±1.16 18.16±1.16 1.00 53.99±0.60 20.01±0.60 1.00

GRE+ 22.9±0.67 28.1±0.67 0.97 34.15±1.33 35.85±1.33 1.00 80.61±1.10 15.39±1.10 1.00 57.43±1.30 16.89±1.30 1.00

Graph-
SAGE

GD 17.16±12.20 31.88±12.20 1.00 55.85±22.50 40.71±20.30 1.00 19.07±14.10 36.68±10.10 1.00 62.16±2.10 4.38±2.10 1.00
ENN 28.73±5.60 20.31±5.60 1.00 5.88±3.90 90.68±4.30 1.00 8.14±8.60 47.61±7.60 1.00 OOM OOM OOM
GRE 20.69±1.62 28.31±1.62 0.99 21.93±0.94 47.07±0.94 1.00 47.16±1.22 48.84±1.22 1.00 61.96±1.02 4.58±1.02 1.00

GRE+ 38.41±1.17 10.59±1.17 0.82 29.26±2.10 39.74±2.10 1.00 58.29±2.35 37.71±2.35 1.00 63.25±2.25 3.29±2.25 1.00

4.2 Experimental Results in the Independent and Sequential Editing Setting

In many real-world scenarios, well-trained models often produce inaccurate predictions on unseen
data. To evaluate the practical effectiveness of editors for independent editing (RQ1), we randomly
choose nodes from the validation set that were misclassified during the training. The editor is then

3MEND [11] and SERAC [12] are tailed for NLP application and are hard to extend to the graph area. MEND
requires caching the input to each weight. Unfortunately, for graph data, the model edits cannot be done in
a mini-batch way since the inference still runs in whole-batch, i.e., MEND requires caching the whole graph
embedding at each layer.

4The experimental results on batch editing are in Appendix D.4.
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applied to rectify the model’s predictions for these misclassified nodes, and we evaluate the drawdown
and edit success rate on the test set.

We edit one random single node 50 times and report the mean and standard deviation results in Tables
1 and 2 for small-scale and large-scale graph datasets, respectively. Our observations are made below:

GCN SAGE

Figure 2: The test accuracy drawdown in sequential editing setting for GCN and GraphSAGE on various datasets.
The units for y-axis are percentages (%).
❶ Contrasting model editing on textual data [11, 12, 30], all editors can effectively rectify model
predictions in the graph domain. As shown in Table 1, all editors achieve a high success rate (typically
from 96% ∼ 100%) after editing GNNs, which is highly different from transformers with below 50%
SR. This finding indicates that GNNs, unlike transformers, can be more easily adjusted to produce
correct predictions. However, this improvement comes at the expense of substantial drawdown on
other unrelated nodes, underscoring the key challenge of maintaining prediction locality for unrelated
nodes before and after editing.

❷ Our proposed GRE and GRE+ notably surpass both GD and ENN in terms of test drawdown. This
advantage stems mainly from the rewired gradient based on the pre-stored training loss gradient,
which facilitates target sample correction while preserving the training loss. GD and ENN attempt to
rectify model predictions by updating the parameters of GNNs without incorporating training loss
information. In contrast, GRE and GRE+ maintain much better test accuracy after model editing. For
example, for Amazon-photos, the accuracy drop dwindles from roughly 65.08% to around 43.87%, a
43.9% improvement over the baseline. This is due to the gradient rewiring approach that facilitates
target sample correction while preserving the training loss. Interestingly, when applied to GNNs,
ENN performs markedly worse than the basic editor GD. Moreover, GD performs well in MLP,
which is consistent with the low gradient discrepancy of MLP.

❸ Our proposed GRE and GRE+ are compatible with EGNN and further improve the performance.
We observe that while GRE occasionally underperforms, GRE+ consistently shows better performance
than GD in reducing accuracy. For instance, when the A-computers dataset is evaluated with EGNN-
GCN, GRE, and GRE+ exhibit an average accuracy drop of 4.62% and 0.51%, respectively, whereas
GD shows a decrease of 0.73%. Notably, we find that for 7 out of 8 datasets, GRE+ with EGNN-
SAGE shows a negative drop in accuracy, meaning that the test accuracy actually increases after
model editing. This points towards the superior performance of the EGNN-SAGE model architecture.

In the sequential editing setting, we select a sequence of nodes from the validation set that were
misclassified during the training phase. The editor is then used to iteratively correct the model’s
predictions for these sequentially misclassified nodes, and we measure the resulting drawdown and
success rate of edits on the test set.

In Figure 2, we report the test accuracy drawdown in the sequential setting, a more challenging
scenario that warrants further investigation. In particular, we plot the test accuracy drawdown
compared to GD across various GNN architectures and graph datasets. Our observations are as
follows: ❹ The proposed GRE and GRE+ consistently outperform GD in the sequential setting.
However, the drawdown is significantly higher than in the single edit setting. For instance, GRE+
exhibits a 43.87% drawdown for GCN on the A-photo dataset in the single edit setting, which
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escalates up to a 65% drawdown in the sequential edit setting. These results also highlight the
challenge of maintaining the locality of GNN prediction in sequential editing. ❺ The improvement of
GRE+ over GRE is quite limited in the sequential setting. For example, GRE+ exhibits a 24.52%
drawdown over GRE for GCN on the A-photo dataset in the single edit setting while is on par with
GRE in the sequential edit setting. These results further verify the difficulty of sequential editing and
indicate more comprehensive training subset selection may be promising.

Cora A-photos ogbn-arxivFlickr

GCN

Graph-
SAGE

Figure 3: The success rate and test accuracy drawdown tradeoff in independent editing setting for GCN
and GraphSAGE on various datasets. The trade-off curve close to the top left corner means better trade-off
performance. The units for x- and y-axis are percentages (%).

4.3 Trade-off Performance Comparison

We further compare the trade-off between the accuracy drawdown and the success rate of our method
on various GNN architectures and graph datasets. As shown in Figure 3, we plot Pareto front
curves by assigning different hyperparameters for the proposed methods. The upper-left corner point
represents the ideal performance, i.e., the highest SR and lowest accuracy drawdown. The results
show that GRE+ achieves better trade-off results compared to GRE, and all methods consistently
maintain a high success rate on various GNN architectures and graph datasets.

GCN

Graph
-SAGE

Cora ogbn-arxivFlickr

Figure 4: The hyperparameter study on test accuracy drawdown in independent editing setting w.r.t. λ.

4.4 Hyperparameter Study

In this experiment, we investigate the sensitivity of our proposed method w.r.t. λ across a va-
riety of GNN architectures and graph datasets. Specifically, we search for λ from the set of
{0.0, 0.1, 1.0, 10.0, 50.0}. As shown in Figure 4, the test accuracy drop remains relatively sta-
ble despite variations in λ, suggesting that meticulous tuning of this parameter may not be crucial.
For the ogbn-arxiv dataset, an uptick in accuracy drop corresponds with an increase in λ, reflecting
the inherent difficulty of this dataset. Intriguingly, in the case of GRE+5 with 5 training subsets,
the test accuracy drop exceeds that of GRE+2 and GRE+3, a pattern that diverges from the trend
observed in other datasets.
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5 Conclusion

In this paper, we explore the editing of graph neural networks from a new gradient perspective.
Through empirical observations, we discover that conventional model editing techniques often
underperform due to the gradient discrepancy between the training loss and target loss in GNNs. To
address this issue, we propose a gradient rewiring approach. Specifically, we formulate a constrained
optimization problem to regulate the model performance during model editing and identify a simple
yet effective gradient rewiring approach to explicitly satisfy the constraints. In this way, the proposed
approach can correct the target sample while preventing an increase in training loss. Experiments
demonstrate the effectiveness of our approach, and our proposed method is also compatible with
the existing baseline EGNN and can further improve performance. Future work includes more
comprehensive training subset selection in GRE+ and a tailed approach for editable graph neural
networks training in the sequential editing setting.
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A Experimental Setting

A.1 More details on EGNN

We provide more details on editable graph neural networks (EGNN), a method free of neighborhood
propagation, designed specifically for correcting misclassified node predictions [14]. EGNN uniquely
integrates a peer MLP (matching in the number of hidden units and layers) with GNNs (such as
GCN and GraphSAGE), and trains solely the MLP model using the target loss during model editing.
This strategy enables EGNN to leverage the propagation-free advantages of MLPs for model editing.
However, it’s important to note that EGNN is incompatible with EGNN, as the model editing in EGNN
refines a stitched MLP, which is not employed during model training. Our proposed methodologies,
GRE and GRE+, are founded on gradient rewiring, which is orthogonal to the EGNN approach. In
the appendix, we illustrate how our proposed methodologies can further augment the effectiveness of
the EGNN approach and MLP models.

Table 3: Statistics information for datasets used for node classification.

Datasets Cora A-computers A-photo Coauthor-CS Flickr Reddit ogbn-arxiv ogbn-products

# Nodes 2,485 13,381 7,487 18,333 89,250 232,965 169,343 2,449,029
# GREes 5,069 245,778 119, 81,894 899,756 23,213,838 1,166,243 61,859,140
# Classes 7 10 8 15 7 41 40 47
# Feat 1433 767 745 6805 500 602 128 218

A.2 Datasets

The statistical information of all datasets is summarized in Table 3. The details of the datasets utilized
for node classification are described as follows:

• Cora [31]: This citation network comprises 2,708 publications interconnected by 5,429 links. Each
publication is characterized by a 1,433-dimensional binary vector that signifies the presence or
absence of specific words from a predetermined vocabulary.

• A-computers [29]: This dataset is a segment of the Amazon co-purchase graph. In this network,
nodes denote goods, and GREes represent frequent co-purchases of two goods. Node features are
encoded as bag-of-words product reviews.

• A-photo [29]: Similar to A-computers, this is another segment of the Amazon co-purchase graph.
Node features are also bag-of-words encoded product reviews.

• Coauthor-CS [29]: Derived from the Microsoft Academic Graph from the KDD Cup 2016 challenge
3, this co-authorship graph has nodes representing authors who are linked if they have co-authored
a paper. Node features denote paper keywords for each author’s publications, while class labels
indicate an author’s most active fields of study.

• Reddit [25]: This dataset is formulated from Reddit posts, with each node representing a post
associated with different communities.

• ogbn-arxiv [3]: This dataset represents the citation network among all arXiv papers. Each node
denotes a paper, and each GREe signifies a citation between two papers. Node features are generated
from the average 128-dimensional word vector of each paper’s title and abstract.

• ogbn-products [3]: This is an Amazon product co-purchasing network, where nodes represent
Amazon products and GREes denote co-purchases of two products. Node features are created from
low-dimensional representations of product description text.

A.3 Implementation Details

The hyperparameters for model architecture, learning rate, dropout rate, and training epochs are
shown in Table 4. For EGNN, we also adopt GNNs and MLPs with hyperparameters in Table 4.
For GRE, we use the hyperparameters γ = {0.0, 0.1, 1.0, 10.0, 50.0}. For GRE+, we also select
hyperparameters γ = {0.0, 0.1, 1.0, 10.0, 50.0} and K = {1, 2, 3, 5}. As for QP problem Eq. (11),
we use a standard package qpsolvers with version 3.4.0 to tackle this QP problem with ecos solver.
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Table 4: Training hyperparameters configurations in the experiments

Model Configuration Cora A-computers A-photo Coauthor-CS Flickr Reddit ogbn-arxiv ogbn-products

Graph-
SAGE

#Layers 2 2 2 2 2 2 3 3
#Hidden 32 32 32 32 256 256 128 256
lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.002
Dropout 0.1 0.1 0.1 0.1 0.3 0.5 0.5 0.5
Epoch 200 400 400 400 400 400 500 500

GCN

#Layers 2 2 2 4 2 2 3 3
#Hidden 32 32 32 32 256 256 128 256
lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.002
Dropout 0.1 0.1 0.1 0.1 0.3 0.5 0.5 0.5
Epoch 200 400 400 400 400 400 500 500

MLP

#Layers 2 2 2 4 2 2 3 3
#Hidden 32 32 32 32 256 256 128 256
lr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.002
Dropout 0.1 0.1 0.1 0.1 0.3 0.5 0.5 0.5
Epoch 200 400 400 400 400 400 500 500

A.4 Running Environment

For hardware configuration, all experiments are executed on a server with 251GB main memory,
24 AMD EPYC 7282 16-core processor CPUs, and a single NVIDIA GeForce-RTX 3090 (24GB).
For software configuration, we use CUDA=11.3.1, python=3.8.0, pytorch=1.12.1, higher=0.2.1,
torch-geometric=1.7.2, torch-sparse=0.6.16 in the software environment. Additionally, we use the
package of higher in https://github.com/eric-mitchell/mend for ENN implementation.

B Limitations and Discussions

While our proposed GRE and GRE+ methods effectively mitigate the accuracy dropdown compared
to conventional gradient descent algorithms, the success of our approaches is largely contingent on the
precision of the pre-stored gradient for training loss. Despite the relatively few required model edit
steps for single node editing, the accuracy of the pre-stored gradient may not sustain over long-term
model editing, as the pre-stored gradient for training loss could exhibit significant discrepancy from
the gradient of training loss for the edited model. To address such discrepancy, a straightforward
strategy could involve leveraging critical training samples to estimate the true gradient of training
loss for the edited model. Another possible direction is to identify critical samples instead of random
samples for GRE+ with the aim of further constraining the model’s behavior before and after model
editing.

Notice that the proposed gradient rewiring method is not inherently specific to graphs, the gradient
rewiring method is particularly suitable in the graph domain due to the small model size. Specifically,
graph models are typically a few layers and thus are smaller in model size compared to models (e.g.,
Transformers) used in NLP and CV tasks. This results in lower computational and storage costs for
gradients, making our strategy particularly suitable for the graph domain. Additionally, it is more
challenging to edit nodes in a graph due to the inherent propagation process within neighborhoods.
Such propagation may lead to significant gradient discrepancies within the graph domain.

C Algorithms

We show the algorithms of GRE and GRE+ during model editing in Algorithm 1 and 2, respectively.

D More Experimental Results

In this section, we present experimental results to showcase the improved efficacy of our proposed
methods, GRE and GRE+. These techniques enhance the performance of EGNN, a specifically
designed editable graph neural network, across both independent and sequential editing settings.
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Algorithm 1 Gradient Rewiring Editable (GRE) Graph Neural Networks Training

1: Input: Target samples (xtg,ytg), hyperparameter λ, well-trained GNN model fθ(·), and its
corresponding gradient for the training subgraph.

2: Output: Updated GNN model fθ′(·).
3: while fθ(xtg) ̸= ytg do
4: Compute the model gradient gtg for the target loss Ltg.
5: Rewire the target loss gradient gtg by reducing the projection component on gtrain, then scale

with (1 + λ)−1:
6: g∗ = (1 + λ)−1 (gtg − v∗gtrain).
7: Replace gtg with g∗ and update the model parameters using the optimizer to obtain θ′.
8: end while

Algorithm 2 Gradient Rewiring Editable Plus (GRE+) Graph Neural Networks Training

1: Input: Target samples (xtg,ytg), hyperparameters λ, well-trained GNNs model fθ(·), and its
corresponding model gradient for training subgraph.

2: Output: Editable GNNs model fθ′ (·).
3: while fθ(xtg)! = ytg do
4: Compute model gradient gtg for target loss Ltg .
5: Solve QP problem Eq. (11) via standard QP solver package and obtain the optimal dual

variable v∗.
6: Calculate the rewired gradient using g∗ = (1 + λ)−1(Gv∗ + gtg).
7: Replace gtg with g∗ and then adopt optimizer to update model parameters as θ

′
.

8: end while

D.1 More results on Model Architectures for Independent Editing

In this section, we conduct a sequence of 50 single-node edits and present the mean and standard de-
viation results in Tables 5 for large-scale graph datasets. Similarly, GRE occasionally underperforms,
and GRE+ consistently shows better performance than GD with respect to the reduction in accuracy.
For instance, when the Reddit dataset is evaluated with EGNN-GCN, GRE and GRE+ exhibit an
average accuracy drop of 1.48% and −0.21%, respectively, whereas GD shows a decrease of 1.28%.
Moreover, GRE+ with EGNN-SAGE shows a negative drop in accuracy among 6 out of 8 datasets,
i.e., the test accuracy actually increases after model editing.

Table 5: The results on four large scale datasets after applying one single edit. “OOM” is the out-of-memory
error.

Editor Flickr Reddit ogbn-
arxiv

ogbn-
products

Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

MLP

GD 35.84±1.23 11.16±1.23 0.83 45.27±0.97 7.73±0.97 0.99 70.31±0.40 2.69±0.40 1.00 74.19±3.40 0.20±3.40 1.00
ENN 25.82±14.90 25.38±16.90 1.00 11.16±5.10 84.36±3.10 1.00 16.59±7.70 53.62±6.70 1.00 OOM OOM 0
GRE 36.47±0.57 10.53±0.57 0.81 35.85±2.60 17.15±2.60 1.00 62.20±0.94 10.80±0.94 1.00 53.99±0.60 20.01±0.60 1.00

GRE+ 43.23±0.17 3.77±0.17 0.84 41.33±0.87 11.67±0.87 0.99 64.11±0.95 8.40±0.95 1.00 57.43±1.30 16.89±1.30 1.00

EGNN-
GCN

GD 46.10±0.91 4.90±0.91 0.93 68.72±0.55 1.28±0.55 1.00 86.08±0.83 -0.08±0.17 1.00 73.73±0.12 0.27±0.12 1.00
GRE 45.70±0.97 5.30±0.97 0.94 68.52±0.51 1.48±0.51 1.00 89.22±0.34 −3.22±1.34 1.00 73.65±0.16 0.35±0.16 1.00

GRE+ 50.60±0.15 0.40±0.15 0.99 69.97±0.38 −0.21±0.38 1.00 88.51±0.57 −2.51±0.43 1.00 74.06±0.45 −0.80±0.45 1.00

EGNN-
SAGE

GD 45.68±1.15 2.32±1.15 0.95 67.76±0.53 1.24±0.53 1.00 95.99±0.02 0.01±0.02 0.98 75.89±0.06 0.11±0.06 1.00
GRE 42.25±1.64 5.75±1.64 1.00 67.34±0.35 1.66±0.35 0.99 94.09±1.29 1.91±1.29 1.00 75.90±0.05 0.10±0.05 1.00

GRE+ 49.06±1.42 −1.05±1.42 1.00 68.48±0.78 0.11±0.78 1.00 96.06±0.10 −0.06±0.10 0.95 76.26±0.21 −0.17±0.21 1.00

D.2 Experimental Results on other Model Architectures for Sequential Editing Setting

In the sequential editing setting, we take a sequence of 50 misclassified nodes and use the editor to
iteratively correct the model’s predictions for EGNN across different GNN architectures. The test
accuracy drop associated with various model editing methods for different graph datasets is reported
in Figure 7. Our observations indicate that the proposed GRE and GRE+ methods consistently
outshine GD in this sequential setting. For instance, with the Coauthor-CS dataset and EGNN-GCN,
our proposed methods achieve virtually no decrease in accuracy, while GD exhibits a drop of over
7%. Another compelling observation is that the improvement demonstrated by our methods over GD
for EGNN is markedly larger than for GNNs. This suggests potential synergies between optimizer
selection and model architecture design.
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Figure 5: The success rate and test accuracy dropdown tradeoff in independent editing setting for EGNN-GCN
and EGNN-SAGE on various datasets. The trade-off curve close to the top left corner means better trade-off
performance. The units for the x- and y-axis are percentages (%).

D.3 Trade-off Performance Comparison on other Model Architectures

We extend our evaluation by comparing the trade-off between the accuracy drop and success rate of
our method on EGNN across various graph datasets. By adjusting different hyperparameters for the
proposed methods, we construct Pareto front curves as shown in Figure 5. The results underscore
that both GRE+ and GRE outperform GD in achieving superior trade-off outcomes. Importantly, our
proposed methods exhibit robust preservation of the success rate across various GNN architectures
and graph datasets.

D.4 More Experimental results on Batch Editing

In this section, we present the experimental results of applying batch editing on four small-scale
datasets (Table 6) and four large-scale datasets (Table 7).

For the small-scale datasets, our proposed methods, GRE and GRE+, consistently outperform the
baseline methods. For example, on the Cora dataset, GRE+ achieves the highest accuracy with
a minimal drawdown and a high success rate. Specifically, GRE+ can reduce 56.9% and 30.3%
drawdown compared with 2nd best baseline in GCN and GraphSAGE architectures, respectively. For
the large-scale datasets, GRE+ again demonstrates superior performance. On ogbn-products datasets
GRE+ can reduce 2.5% and 0.5% drawdown compared with 2nd best baseline GRE in GCN and
GraphSAGE architectures, respectively, while maintaining a high success rate.

Table 6: The results on four small-scale datasets after applying batch edit. SR is the edit success rate, Acc is
the test accuracy after editing, and DD are the test drawdown, respectively. The best/second-best results are
highlighted in boldface/underlined, respectively.

Editor Cora A-computers A-photo Coauthor-CS
Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

GCN

GD 81.72±5.24 7.28±4.04 0.77 60.98±22.41 27.02±3.89 0.53 44.32±11.26 49.64±11.54 0.52 67.64±6.23 26.36±7.05 1.00
ENN 32.16±2.75 46.12±1.84 0.93 25.91±13.01 27.09±14.51 0.25 9.99±0.81 -0.99±0.99 0.06 45.59±13.21 -43.59±15.54 0.62
GRE 82.96±2.47 6.04±3.29 0.96 64.67±3.47 23.33±13.85 0.63 54.66±26.26 39.34±28.82 0.34 76.24±5.29 17.76±5.87 1.00

GRE+ 86.40±0.76 2.60±0.55 0.97 65.25±0.35 22.70±0.65 0.62 57.83±1.36 36.13±9.25 0.50 76.80±9.56 17.20±9.93 1.00

Graph-
SAGE

GD 78.48±4.33 8.52±1.70 1.00 29.95±18.28 53.08±9.55 0.53 46.98±15.24 47.02±17.52 0.50 67.64±7.58 23.27±7.97 1.00
ENN 32.16±2.21 45.88±1.68 0.99 0.99±0.00 0.08±0.01 0.08 14.81±7.92 -4.81±18.23 0.17 77.55±2.12 −15.55±2.07 1.00
GRE 80.68±1.17 6.32±1.17 0.99 46.58±2.25 36.42±10.43 0.54 56.95±18.27 37.05±20.18 0.46 75.68±8.44 19.32±8.99 1.00

GRE+ 82.60±0.87 4.40±1.07 1.00 51.24±12.87 32.51±15.77 0.62 62.60±11.82 31.40±12.93 0.52 76.51±6.21 18.49±6.80 1.00

Table 7: The results on four large-scale datasets after applying batch edit. “OOM” is the out-of-memory error.
The best/second-best results are highlighted in boldface/underlined, respectively.

Editor Flickr Reddit ogbn-
arxiv

ogbn-
products

Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

GCN

GD 19.79±12.12 31.21±12.55 0.29 37.64±5.30 58.36±5.20 1.00 38.61±4.91 31.39±5.57 0.83 41.83±5.94 32.17±4.50 1.00
ENN 42.82±1.92 0.00±1.90 0.00 65.70±3.11 −59.70±3.24 1.00 24.47±1.77 -18.41±1.81 0.77 OOM OOM 0
GRE 24.90±5.51 26.10±5.31 0.39 24.74±1.92 45.26±1.92 1.00 41.96±7.26 29.04±7.51 0.62 42.52±4.60 31.48±4.86 1.00

GRE+ 25.10±6.67 25.90±6.47 0.42 52.61±4.23 43.59±5.81 1.00 41.13±4.10 28.87±5.04 0.80 42.60±4.89 31.40±5.03 1.00

Graph-
SAGE

GD 20.71±11.20 18.29±10.05 0.27 29.65±22.5 66.35±5.20 1.00 41.05±6.81 27.95±7.87 0.77 49.33±4.18 17.15±5.21 0.94
ENN 41.89±0.60 −16.89±0.03 0.56 17.10±4.90 -15.10±5.56 0.24 13.82±2.68 8.18±6.52 0.26 OOM OOM 0
GRE 26.92±2.62 22.08±3.06 0.59 31.40±8.94 64.60±9.76 0.93 38.65±7.22 30.35±8.84 0.70 50.21±3.82 16.33±4.92 0.92

GRE+ 27.97±1.17 21.03±7.97 0.42 38.01±7.32 56.99±6.88 0.95 42.76±4.31 26.24±8.47 0.79 50.30±5.83 16.24±6.25 0.90

17

61829 https://doi.org/10.52202/079017-1975



D.5 The Edit Time and Memory Comparison for Editing Methods

In this section, we present the experimental results of the edit time and memory required for editing
across four large-scale datasets (Table 8).

We observe that GRE+ takes 1.5 2.5× wall-clock editing time than the GD/GRE editor in terms of
the wall-clock edit time. This is because GRE+ requires QP solver to obtain the rewired gradient. In
terms of memory consumption, the overall memory overhead is insignificant. For example, GRE+
(5) requires 17.9% GPU memory than GD editor in obgn-products dataset and GCN architecture.
The reason is that the anchor gradient is required to store in memory and QP solver computation in
memory.

Table 8: The edit time and memory required for editing. ET (ms) and PM (MB) represent the edit time in
milliseconds and peak memory in megabytes, respectively.

Editor Flickr Reddit ogbn-arxiv ogbn-products
ET (ms) PM (MB) ET (ms) PM (MB) ET (ms) PM (MB) ET (ms) PM (MB)

GCN

GD 67.46 707.0 345.23 3244.8 94.58 786.2 2374.15 14701.7
ENN 109.82 666.8 405.24 3244.8 242.85 786.2 – OOM
GRE 63.93 695.8 391.54 3491.3 84.74 956.9 2400.78 17336.6
GRE+ (2) 100.45 696.0 457.08 3493.2 121.11 957.8 2413.69 17338.7
GRE+ (3) 115.29 697.9 509.44 3493.9 131.06 957.9 2471.23 17338.9
GRE+ (5) 155.05 698.6 603.85 3495.6 162.24 958.3 2591.06 17339.2

Graph-
SAGE

GD 117.74 843.0 1024.12 4416.53 107.63 891.3 2125.07 13832.2
ENN 134.50 843.0 2597.21 4416.5 277.29 891.3 – OOM
GRE 116.03 952.4 1089.29 4955.4 100.09 1072.5 2132.02 16254.1
GRE+ (2) 167.17 954.5 1267.13 4959.0 136.28 1073.7 2135.88 16255.9
GRE+ (3) 176.66 955.5 1363.53 4960.7 154.29 1074.0 2211.63 16256.0
GRE+ (5) 219.81 957.5 1603.03 4964.2 180.73 1075.5 2275.72 16256.3

D.6 More Test Accuracy Results on Sequential Editing

In this subsection, we present the after-editing test accuracy results of applying sequential editing on
various datasets for both GCN and GraphSAGE models in Figure 6. The test accuracy is reported as
a percentage for each dataset.

Overall, our proposed methods, GRE and GRE+, consistently outperform the baseline methods
GD and ENN across all datasets in terms of test accuracy. For example, on the Reddit dataset, the
proposed methods can achieve more than 100% improvement over GD and ENN in terms of accuracy.
Besides, compared with GRE and GRE+, the improvement is marginal on most occasions except
A-computer dataset in GraphSAGE, which indicates the limited effectiveness of the fine-grained
gradient rewiring in GRE+.

E More Related Work

Gradient-based method for other tasks. The existing literature on gradient modification mainly
incorporates continual learning and meta learning. In continual learning, work [32] proposes gradient
projection methods to update the model with gradients in the orthogonal directions of old tasks,
without access to old task data. GPM [33] identifies the bases of these subspaces by examining
network representations after learning each task using Singular Value Decomposition (SVD) in
a single-shot manner and stores them in memory as gradient projection memory. Class gradient
projection is proposed in [34] to address the class deviation in gradient projection. In meta-learning,
work [35] proposes a meta-learning algorithm to learn to modulate the gradient in the absence
of abundant data. The implicit model-agnostic meta-learning (iMAML) algorithm is developed
in [36] for optimization-based meta-learning with deep neural networks that remove the need for
differentiating through the optimization path. [37] provides a theoretical framework for designing
and understanding practical meta-learning methods that integrate sophisticated formalizations of
task-similarity.
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Figure 6: The test accuracy in sequential editing setting for GCN and GraphSAGE on various datasets. The
units for y-axis are percentages (%).

F More discussion

Comparison with Curriculum Learning. Curriculum learning and model editing are two distinct
approaches in the field of machine learning. Curriculum learning is an approach where the network is
trained in a structured manner, starting with simpler tasks and gradually introducing more complex
ones. This method aims to improve the learning process by mimicking how humans learn. Model
editing is a fast and efficient approach to patch the well-trained model prediction for several failed
test cases. Although both are multi-stage training stages, there are several key differences: (1) Goals:
Curriculum Learning aims to improve the overall learning process by structuring the training data in
a way that mimics human learning. In contrast, model editing aims to make targeted adjustments
to a pre-trained model to correct undesirable behaviors. (2) Approach: curriculum learning mainly
focuses on the sequence and complexity of the training data. Model editing typically modifies the
model’s parameters or architecture to correct undesirable behavior goals. (3) Additional information
in the multi-stage process. Model editing requires failure feedback for well-trained models as the
target samples to patch, e.g., test failure cases after production is launched. In other words, such
feedback can only be obtained after model pertaining. In curriculum learning, all information is
given in multi-stage training. In summary, curriculum learning focuses on structuring the training
process to improve overall learning, while model editing focuses on making targeted adjustments to a
pre-trained model to correct specific behaviors. Both approaches can be complementary and used
together to achieve better model performance.

Comparison with Domain Adaptation. To the best of our knowledge, many existing methods
in domain adaptation (DA) [38, 39] integrate source and target gradients in the loss function. For
example, [38] aims to minimize the gradient discrepancy for unsupervised DA, and [39] aligns
gradient distribution for better adversarial DA. However, these methods can not be applied in graph
model editing since (1) gradient discrepancy is required to successfully edit model prediction; (2)
model editing collapses (i.e., no gradient discrepancy) at the initial stage; (3) regulating gradient
behavior is insufficient for model editing task since the main problem is how to get an edited
model instead of cross-domain generalization. To this end, we rewire the gradient before the model
parameters update, and derive a closed-form, instead of a learning-based, gradient rewiring method
to accelerate model editing.
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Figure 7: The test accuracy dropdown in sequential editing setting for EGNN-GCN and EGNN-SAGE on various
datasets. The units for the y-axis are percentages (%).
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provided alongside the assets?
Answer: [Yes]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjec
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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