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Abstract

Multimodal learning falls into the trap of the optimization dilemma due to the
modality imbalance phenomenon, leading to unsatisfactory performance in real
applications. A core reason for modality imbalance is that the models of each
modality converge at different rates. Many attempts naturally focus on adjusting
learning procedures adaptively. Essentially, the reason why models converge at
different rates is because the difficulty of fitting category labels is inconsistent for
each modality during learning. From the perspective of fitting labels, we find that
appropriate positive intervention label fitting can correct this difference in learning
ability. By exploiting the ability of contrastive learning to intervene in the learning
of category label fitting, we propose a novel multimodal learning approach that dy-
namically integrates unsupervised contrastive learning and supervised multimodal
learning to address the modality imbalance problem. We find that a simple yet
heuristic integration strategy can significantly alleviate the modality imbalance
phenomenon. Moreover, we design a learning-based integration strategy to inte-
grate two losses dynamically, further improving the performance. Experiments
on widely used datasets demonstrate the superiority of our method compared with
state-of-the-art (SOTA) multimodal learning approaches. The code is available at
https://github.com/njustkmg/NeurIPS24-LFM.

1 Introduction

Multimodal learning (MML) [3, 38, 47, 41, 10, 26, 31, 43, 13] integrates heterogeneous information
from different modalities to build an effective way to perceive the world. Over the past decades,
multimodal learning has made incredible progress [31, 10, 13] and become a hot research topic with a
wide range of real applications including image caption [6, 14], cross-modal retrieval [21, 44, 54, 37],
vision reasoning [32, 8], action recognition [23, 28], and so on.

In multimodal learning, several recent studies [38, 31] have revealed an interesting phenomenon, i.e.,
the performance of the multimodal model is far from the upper bound or even inferior to the uni-
modal in certain situations. The root of this problem lies in the existence of the modality imbalance
phenomenon [38]. Concretely, there commonly exists dominant modality and non-dominant modality
in heterogeneous multimodal data. Multimodal learning usually adopts a uniform objective. Due to
greediness [42], the optimization tends to dominant modality while neglecting the non-dominant one
during joint training, thus leading to unsatisfactory performance in real applications.

Recently, many impressive works [38, 11, 31, 13, 24] have been proposed to address the modality im-
balance problem. Early pioneering approaches, such as gradient blending (G-Blend) [38], on-the-fly
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gradient modulation (OGM) [31], adaptive gradient modulation (AGM) [24], and prototypical modal-
ity rebalance (PMR) [13], focus on designing customized learning strategies for different modalities
to adjust the optimization of dominant and non-dominant modality. These methods demonstrate
that suppressing the optimization of the dominant modality can alleviate the modality imbalance
problem to a certain extent. Besides, several attempts, including uni-modal teachers (UMT) [11]
and balanced multimodal learning [42], try to introduce extra networks as an auxiliary module to
facilitate multimodal learning.

LS 0.7LS + 0.3LU LU

0.2

0.4

0.6

0.8

66.92% 67.56%

24.64%

one-hot label label free

24.53% 10.36%

2.13%

A
cc

ur
ac

y
Audio-Video; Audio; Video

Figure 1: The influence of labels fitting on perfor-
mance gaps (best view in color), where LS and LU
denote the loss with one-hot labels and uniform
labels (label free).

Although the aforementioned approaches can
boost performance in MML, these solutions are
based on the phenomenon of inconsistent learn-
ing speed itself and do not study the underlying
causes of modality imbalance. We can’t help
but ask what is the essential reason behind this
phenomenon. Is there a bias in the process of
fitting category labels for different modalities?
We carry out a simple experiment on Kinetic-
sSounds dataset to seek answers. We adopt two
types of labels to explore the influence of fitting
labels. The first type is one-hot labels which
indicate the category of each sample, where the
loss is denoted as LS. The second type is la-
bel free, i.e., uniform label 1/c for all samples,
where c denotes the number of categories. The
second loss is defined as LU. Furthermore, we
define a mixed loss 0.7LS + 0.3LU, which is
actually the label smoothing [35] strategy, by
combining one-hot labels and uniform labels.
The accuracy is reported in Figure 1. From Fig-
ure 1, we can observe that with proper intervention by using uniform labels, the performance is
slightly better than the model that fits one-hot labels. More importantly, the performance gap becomes
smaller if we learn from uniform labels. This means that the difference between audio and video
modalities is smaller in feature space when we reduce the weight of one-hot labels. The experiment
inspires us that appropriate intervention label fitting can alleviate the difference in the learning ability
of different modalities. In this way, we can reduce the modality performance gap and further mitigate
the modality imbalance phenomenon as the smaller the difference in modality performance, the less
severe the modality imbalance [39, 20, 52]. This also implies that fitting category labels is a core
cause of modality imbalance in multimodal learning.

How do we impose positive intervention in multimodal learning so that the impact of fitting labels on
modality imbalance is as low as possible without affecting the overall performance? For multimodal
learning, although the models are learned from the heterogeneous data, we hope that multimodal
data describing the same entity should be as close as possible in the feature space, which is usually
modeled as contrastive learning [33]. Contrastive learning aims to learn similar representations for
data pairs of different modalities [12], thus aligning the multimodal representations for all modalities.
Ideally, contrastive learning can also mitigate the effect of modality imbalance problem. Hence, we
introduce contrastive learning to impose positive intervention in multimodal learning to alleviate the
impact of fitting labels.

In this paper, we propose a novel multimodal learning approach by integrating unsupervised con-
trastive learning and supervised multimodal learning dynamically. Specifically, after demonstrating
the effectiveness of unsupervised contrastive learning in multimodal learning, we design two dynami-
cal integration strategies, i.e., a heuristic and a learning-based integration strategy. Our contributions
are outlined as follows: (1). We observe a key phenomenon: fitting category labels leads to a larger
performance gap between different modalities. To the best of our knowledge, this is the first time
that the modality imbalance problem has been analyzed from the perspective of category label fitting.
(2). We propose a novel multimodal learning approach by integrating unsupervised contrastive
learning and supervised multimodal learning. Two strategies are designed for dynamic integration.
(3). Extensive experiments on widely used datasets show that our proposed approach can significantly
outperform other baselines to achieve state-of-the-art performance.
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2 Related Work

2.1 Multimodal Learning

Multimodal learning aims to leverage multimodal data from different sources to improve model per-
formance. Based on the fusion strategy, multimodal learning approaches can be categorized into early
fusion [38, 46, 52, 50], late fusion [48, 47, 1, 27], and hybrid fusion [22, 53]. Early fusion methods
aim to integrate multimodal features to study the interrelationship between different modalities with
joint representations when features are extracted by encoders. Representative early fusion methods
include G-Blend [38], association-based fusion (AF) [26], and DOMFN [46]. On the contrary, late
fusion methods leverage the prediction of each model to make final decisions. Late fusion methods
can be divided into two categories, i.e., soft late fusion and hard late fusion, where the former utilizes
the confidence score to make decisions and the latter the category decision of each model. Pioneering
late fusion methods include modality-specific learning rate (MSLR) [47]. Hybrid fusion methods try
to amalgamate the advantages of both early and late fusion methods. Representative hybrid fusion
methods include multimodal transfer module (MMTM) [22] and balanced multi-modal learning [42].
Although these methods explore the algorithms and applications in multimodal learning, all of them
assume that each modality can make sufficient contributions to achieve satisfactory performance
during the training procedure.

2.2 Imbalanced Multimodal Learning

In reality, an obvious situation is that multimodal data and models are diverse, which naturally
leads to different contributions during the training procedure. Recent works [38, 31, 13, 24] have
shown that modality imbalance is a ubiquitous phenomenon and often results in unsatisfactory
performance or even worse than unimodal algorithms in some cases. Considering the existence
of dominant modality and non-dominant modality, early pioneering approaches [38, 31, 13] focus
on adjusting learning speed for different modalities with customized learning strategies to balance
the optimization of dominant and non-dominant modality. For instance, G-Blend [38] proposes to
minimize the overfitting-to-generalization ratio (OGR) by using a gradient blending technique based
on the modality’s overfitting behavior. OGM [31] utilizes an on-the-fly gradient modulation strategy
to control the modality’s optimization procedure. To achieve the purpose of balanced multimodal
learning, PMR [13] designs a prototypical modal rebalance strategy to facilitate the learning of
non-dominant modality. Other attempts [11, 42] try to utilize extra networks to facilitate multimodal
learning. Concretely, UMT [11] utilizes the teacher networks to distill the pretrained unimodal
features to the multimodal network to tackle the modality imbalance problem. Balanced multimodal
learning [42] utilizes the gradient norm and model parameters’ norm to define conditional learning
speed and uses it to guide the learning procedure. These methods alleviate the modality imbalance
problem to a certain extent.

3 Methodology

We present our proposed method in this section. Specifically, we first present the problem definition
of multimodal learning. Then, we introduce unsupervised contrastive learning to impose positive
intervention in multimodal learning and propose two dynamical integration strategies to maximize
the learning collaboration of unsupervised contrastive learning and supervised multimodal learning.

3.1 Preliminary

For the sake of simplicity, we use boldface lowercase letters like a and boldface uppercase letters like
A to denote vectors and tensors, respectively. The i-th element of a is denoted as ai. Furthermore,
we use ∥ · ∥2 to denote L2 norm of the vectors.

The goal of multimodal learning is to train a model to predict the category labels for given multimodal
data. Without any loss of generality, we use X = {xi}ni=1 to denote the training data points, where
each data point is with m modalities, i.e., xi = {x(j)

i }mj=1. The category labels are represented as
Y = {yi | yi ∈ {0, 1}c}ni=1, where c denotes the number of category labels.

3
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For deep learning based multimodal approaches, we usually adopt a deep neural network to extract
representation from original space into feature space. We utilize ϕ(j)(·) to denote the feature
extraction function for j-th modality. Given data point x(j)

i , the feature extraction can be formed as:

z
(j)
i = ϕ(j)(x

(j)
i ; Φ(j)),

where z
(j)
i ∈ Rd denotes the d-dimension feature vector of x(j)

i , and Φ(j) denotes the parameters of
j-th encoder. After vectors for all modalities are extracted, we adopt a fusion function f(·) to fuse
the different feature vectors. Then, we leverage a fully-connected layer to map the vector into Rc.
This procedure can be formed as:

zi = f(z
(1)
i , · · · , z(m)

i ), ŷi = softmax(Wzi + b).

Here, W ∈ Rc×D, b ∈ Rc denote the weights and bias of the last fully-connected layer, respectively,
and D denotes the dimension of zi. Then, the objective function of multimodal learning can be
formulated as:

LCLS(X,Y ) = − 1

n

n∑
i=1

y⊤
i log ŷi.

3.2 Integrating Unsupervised Contrastive Learning in MML

To bridge the heterogeneous data in feature space, we utilize contrastive learning [33] in multimodal
learning. For a pair of data points {x(j)

i ,x
(l)
k }, we define the similarity as:

s(x
(j)
i ,x

(l)
k ) =

[z
(j)
i ]⊤z

(l)
k

∥z(j)
i ∥2∥z(l)

k ∥2
.

The modality matching objective function can be written as:

LMM(X) = − 1

2nb

nb∑
i

[
log

( exp(s(x
(j)
i ,x

(l)
i )/τ)∑

k exp(s(x
(j)
i ,x

(l)
k )/τ)

)
+ log

( exp(s(x
(j)
i ,x

(l)
i )/τ)∑

k exp(s(x
(j)
k ,x

(l)
i )/τ)

)]
,

where τ is the temperature parameter and nb denotes the batch size. By integrating the classification
loss and modality matching loss, we can get the following objective function:

LTotal = (1− α)LCLS(X,Y ) + αLMM(X), (1)

where α denotes the weighted parameter between two losses.

3.3 Dynamic Integration

Although a fixed value of α allows the model to take into account both classification loss and modality
matching loss, it cannot dynamically evaluate the weight of two losses during training. Hence, we
propose two strategies to adjust α dynamically to balance two losses.

Firstly, we utilize a monotonically decreasing function to adjust the impact of category labels. The
definition of the function can be written as: αt = ω(t), where t denotes the number of training
epochs. In this paper, we set ω(t) = 1− e−

1
t .

Then, we further exploit a learning-based integration method by utilizing bi-level optimization
strategy [36]. Specifically, while considering optimizing the multimodal classification loss LCLS, we
use the minimum value of the total loss LTotal to restrict the feasible region of the parameters θ. In
other words, we require the parameters not just to minimize classification loss but also to comply
with a precisely defined constraint, i.e., simultaneously minimize a composite loss function—a
strategically engineered combination of modality matching loss and multimodal classification loss.
The specific formula is defined as follows:

min
0≤α≤1

LCLS(θ
∗(α)) s.t. θ∗(α) ∈ argmin

θ

{
(1− α)LCLS(θ) + αLMM(θ)

}
. (2)

Here, θ denotes the parameters of multimodal models, and α emerges as a key parameter, delicately
balancing modality matching loss and multimodal classification loss to direct the model toward an
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Algorithm 1: The Proposed Algorithm.
Input :Training set X , labels Y , method.
Output :Learned parameters {θ} of all models.
INIT initialize parameters θ, parameter α, maximum iterations T , learning rate ηα.
for t = 1 to T do

/* updating neural network parameters θ. */
for i = 1 to Inner_Iters do

Calculate total loss LTotal by forward phase.
Update parameters θ according to its gradient.

end
/* updating weighting parameters α based on the chosen method. */
if method == ‘learning-based’ then

Calculate gradient appriximation:
∇LCLS(θ(α)) = −∇2

α,θLTotal · [∇2
θ,θLTotal]

−1 · ∇θLCLS(X,Y ).
Update α according to: α = α− ηα∇LCLS(θ(α)).
Clip α into [0, 1]: α := max(0, min(1, α)).

else if method == ‘heuristic’ then
Update α according to: α = 1− e−1/t.

end
end

optimal balance where both types of loss are effectively managed. The optimal parameter set, θ∗(α),
thus represents a fine-tuned balance that, for any chosen α, strategically minimizes this composite
loss. Within Equation (2), LCLS is pivotal for guiding classification accuracy, while LMM enhances
the model’s ability to establish meaningful connections across different modalities.

We utilize an approximation method proposed by [16] to solve bi-level optimization problem (2)
efficiently. Specifically, the gradient of LCLS(θ(α)) with respect to α can be approximated by:

∇LCLS(θ(α)) = −∇2
α,θLTotal[∇2

θ,θLTotal]
−1∇θLCLS(X,Y ). (3)

Based on the approximation Equation in (3), we can use the gradient descent method to optimize α.

After defining the updating strategy for α, we utilize an alternating algorithm between model
parameters θ and α to perform model learning. Specifically, our algorithmic process iteratively refines
the model parameters θ and the parameter α, employing a nested loop structure where the inner loop
focuses on the currently given α to minimize total loss to update θ, and the outer loop updates α by
function or bi-level policy to minimize classification losses. Through this structured optimization,
the model achieves a delicate balance between multimodal matching and classification losses. The
overall algorithm of our model is outlined in Algorithm (1), where we utilize method to indicate the
chosen updating strategy in practice. Moreover, the complexity of bi-level optimization [16] and our
algorithm in Algorithm (1) is O(n), which makes our approach highly practical.

4 Experiments

4.1 Experimental Setup

Datasets: We select six widely used datasets, including KineticsSounds [2], CREMA-D [5], Sar-
casm [4], Twitter2015 [49], NVGesture [42], and VGGSound [7] datasets, to validate our proposed
method. Among these datasets, the KineticsSounds, CREMA-D and VGGSound datasets consist
of both audio and video modalities. The KineticsSounds dataset, which contains 19,000 video clips
categorized into 31 distinct actions, aims to advance video action recognition. It is divided into
a training set of 15,000 clips, a validation set of 1,900 clips, and a test set of 1,900 clips. The
CREMA-D dataset, encompassing 7,442 clips, is divided into six emotional categories to enhance
speech emotion analysis, with 6,698 clips in the training set and 744 clips in the test set. The
VGGSound dataset, which contains 310 classes and a wide range of audio events in everyday life, is a
relatively large dataset. It includes 168,618 videos for training and validation, and 13,954 videos for
testing. Furthermore, the Sarcasm and Twitter2015 datasets consist of image and text modalities. The
Sarcasm dataset offers a compilation of 24,635 text-image pairs, divided into 19,816 for the training
set, 2,410 for the validation set, and 2,409 for the test set. The Twitter2015 dataset contains 5,338
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Table 1: Comparison with SOTA multimodal learning methods. The best results are highlighted in
bold. The underlining symbol denotes the second best performance. The results with gray background
are based on MML but perform worse than the best unimodal approach.

Method KineticsSounds CREMA-D Sarcasm Twitter2015 NVGesture

ACC MAP ACC MAP ACC F1 ACC F1 ACC F1

Unimodal-1 54.12% 56.69% 63.17% 68.61% 81.36% 80.65% 73.67% 68.49% 78.22% 78.33%
Unimodal-2 55.62% 58.37% 45.83% 58.79% 71.81% 70.73% 58.63% 43.33% 78.63% 78.65%
Unimodal-3 − − − − − − − − 81.54% 81.83%

Concat 64.55% 71.31% 63.31% 68.41% 82.86% 82.43% 70.11% 63.86% 81.33% 81.47%
Affine 64.24% 69.31% 66.26% 71.93% 82.47% 81.88% 72.03% 59.92% 82.78% 82.81%

Channel 63.51% 68.66% 66.13% 71.75% − − − − 81.54% 81.57%
ML-LSTM 63.84% 69.02% 62.94% 64.73% 82.05% 70.73% 70.68% 65.64% 83.20% 83.30%

Sum 64.97% 71.03% 63.44% 69.08% 82.94% 82.47% 73.12% 66.61% 82.99% 83.05%
Weight 65.33% 71.33% 66.53% 73.26% 82.65% 82.19% 72.42% 65.16% 83.42% 83.57%
ETMC 65.67% 71.19% 65.86% 71.34% 83.69% 83.23% 73.96% 67.39% 83.61% 83.69%
MSES 64.71% 72.52% 61.56% 66.83% 84.18% 83.60% 71.84% 66.55% 81.12% 81.47%

G-Blend 67.12% 71.39% 64.65% 68.54% 83.35% 82.71% 74.35% 68.69% 82.99% 83.05%
OGM 66.06% 71.44% 66.94% 71.73% 83.23% 82.66% 74.92% 68.74% − −

Greedy 66.52% 72.81% 66.64% 72.64% − − − − 82.74% 82.69%
DOMFN 66.25% 72.44% 67.34% 73.72% 83.56% 82.62% 74.45% 68.57% − −
MSLR 65.91% 71.96% 65.46% 71.38% 84.23% 83.69% 72.52% 64.39% 82.86% 82.92%
PMR 66.56% 71.93% 66.59% 70.36% 83.61% 82.49% 74.25% 68.62% − −
AGM 66.02% 72.52% 67.07% 73.58% 84.28% 83.44% 74.83% 69.11% 82.78% 82.82%
MLA 70.04% 74.13% 79.43% 85.72% 84.26% 83.48% 73.52% 67.13% 83.73% 83.87%

ReconBoost 70.85% 74.24% 74.84% 81.24% 84.37% 83.17% 74.42% 68.34% 84.13% 86.32%
MMPareto 70.00% 78.50% 74.87% 75.15% 83.48% 82.84% 73.58% 67.29% 83.82% 84.24%

Ours-H 69.05% 72.97% 72.15% 80.45% 84.12% 83.98% 73.87% 69.17% 83.24% 83.87%
±0.15% ±0.43% ±0.32% ±0.85% ±0.17% ±0.22% ±0.35% ±0.26% ±0.07% ±0.18%

Ours-LB 72.53% 78.38% 83.62% 90.06% 84.97% 84.57% 75.01% 70.57% 84.36% 84.68%
±0.31% ±0.37% ±0.11% ±1.09% ±0.27% ±0.18% ±0.16% ±0.28% ±0.14% ±0.24%

text-image combinations from Twitter, with 3,179 in the training set, 1,122 in the validation set, and
1,037 in the test set. Lastly, the NVGesture dataset is used to construct research that goes beyond the
limitation of two modalities. In this paper, we use RGB, Depth, and optical flow (OF) modalities for
experiments, with 1,050 samples in the training set and 482 samples in the test set.

Baselines: We select a wide range of baselines for comparison. These baselines can be divided
into two categories, i.e., traditional MML approaches and fusion methods with modal rebalancing
strategies. The former category encompasses techniques like feature concatenation (CONCAT), affine
transformation (Affine) [32], channel-wise fusion (Channel) [22], multi-layer LSTM fusion (ML-
LSTM) [30], prediction summation (Sum), prediction weighting (Weight) [45], and enhanced trust
modal combination (ETMC) [17]. And the latter category includes MSES [15], G-Blend [38],
OGM [31], Greedy [41], DOMFN [46], MSLR [47], PMR [13], AGM [24], MLA [52], Recon-
Boost [19], and MMPareto [40]. Other baselines including UMT [11] and QMF [51] are not adopted
as these two methods have been found to be outperformed by the adopted baseline ReconBoost.

Evaluation Metrics: Following [31], we use accuracy (ACC) and mean Average Precision (MAP)
as evaluation metrics for audio-video datasets. For text-image datasets, we adopt ACC and Macro
F1-score (F1) [4]. ACC measures the proportion of correct predictions to total predictions, indicating
the overall predictive accuracy. Macro F1 calculates the average of F1 scores across all categories,
balancing precision and recall to evaluate performance evenly across classes. MAP represents the
average precision across all categories, assessing the model’s ranking ability for each category.

Implementation Details: In our experiments, we utilize raw data for experiments. Following [31, 13],
for the KineticsSounds and CREMA-D datasets, ResNet18 [18] serves as the foundational architecture
for processing both audio and video data. For video analysis, we select 10 frames from each clip
and subsequently sample three frames uniformly as inputs. We adapt ResNet18’s input channels
from three to one to accommodate our data format [7]. In terms of audio, we transform our sound
recordings into spectrograms measuring 257×1004 for KineticsSounds and 257×299 for CREMA-D,
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employing the librosa [29] library for conversion. For text-image datasets, our framework incorporates
ResNet50 for images and BERT [9] for text processing. We resize images to 224 × 224 and limit
text sequences to a maximum length of 128 characters. Optimization for the audio-video datasets is
conducted using stochastic gradient descent (SGD) with a momentum set to 0.9 and a weight decay
parameter of 10−1. We initialize the learning rate to 10−2, progressively reducing it by a factor of ten
upon observing a plateau in loss reduction, with a batch size of 256. For text-image datasets [4, 49],
we employ the Adam optimizer starting with a learning rate of 10−4, with a batch size of 128. For
our methods, we run the experiment three times with different random seeds and present the detailed
performance with mean and std. values to remove randomness. All models are trained on a single
RTX 3090 GPU.

4.2 Comparison with SOTA MML Baselines

Table 2: Results on VGGSound dataset.

Method ACC MAP

AGM 47.11% 51.98%
MLA 51.65% 54.73%

ReconBoost 50.97% 53.87%
MMPareto 51.25% 54.74%

Ours-H 50.42% 53.62%
Ours-LB 52.74% 55.98%

The main results for all datasets, except VGGSound, are
presented in Table 1, where “Our-H” and “Ours-LB” de-
note the proposed method based on heuristic strategy
and learning-based strategy, respectively. In Table 1,
Unimodal-1 and Unimodal-2 refer to the audio and video
modalities for audio-video datasets, and the image and
text modalities for image-text datasets, respectively. For
NVGesture dataset, Unimodal-1/2/3 respectively denote
the RGB/OF/Depth. From the results, we can derive the
following observation: (1). Compared with all baselines
including traditional multimodal learning approaches and
fusion methods with modal rebalancing strategies, our pro-
posed method with learning-based strategy can achieve
best performance by a large margin in almost all cases. We can also find that the model with learning-
based strategy can achieve better performance than that with heuristic strategy. (2). Across the
Twitter2015 dataset, there is a discernible trend where the optimal unimodal performance outstrips
that of multimodal joint learning. Additionally, in other datasets, fusion methodologies devoid
of rebalancing mechanisms manifest negligible enhancements relative to the foremost unimodal
performance, notably on the CREMA-D and Sarcasm datasets. This shortfall originates from the
prevalent challenge of modal imbalance. (3). Every modality rebalancing technique demonstrates
significant improvements over traditional feature concatenation fusion. This finding not only un-
derscores the detrimental impact of modal imbalance on performance but also corroborates the
efficacy of the modality rebalancing approach. (4). For NVGesture dataset, differing from modal
rebalancing methods restricted to scenarios with only two modalities, such as Greedy, our approach
with learning-based strategy can address challenges in scenarios involving more than two modalities
and achieve best results. And our proposed method can outperform all baselines in most cases.

For the relatively large dataset VGGSound, we select a set of recent algorithms, including AGM [24],
MLA [52], ReconBoost [19], and MMPareto [40], for experimental evaluation. The results are shown
in Table 2. From Table 2, we can see that our proposed methods can achieve the best performance in
all cases compared with recent SOTA baselines on VGGSound dataset.

4.3 Ablation Study

To comprehensively assess the effectiveness of our proposed method, we conduct experiments to
study the influence of main components, i.e., contrastive learning (CL) and dynamic integration (DI).
The results are shown in Table 3, where the “CL” and “DI” denote that whether the contrastive
learning and dynamic integration are applied during training. The unimodal MAP results are based on
audio and video modalities for KineticsSounds and CREMA-D datasets, and unimodal F1 results are
based on image and text modalities for Sarcasm and Twitter2015 datasets. Please note that dynamic
integration depends on the contrastive learning loss. Hence the method with dynamic integration but
without contrastive learning cannot be performed. From Table 3, we can see that both contrastive
learning and dynamic integration can boost performance in multimodal learning. Moreover, by
integrating contrastive learning into multimodal learning, the performance gap between audio and
video is greatly reduced.
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Table 3: Results of ablation study. The symbols “CL” and “DI” denote that whether the contrastive
learning and dynamic integration are applied during training.

Dataset Module MAP/F1

CL DI Multiple Audio/Image Video/Text GAP

× × 69.32% 48.82% 27.19% 21.63%
KineticsSounds ✓ × 71.76% 51.05% 47.05% 3.80%

✓ ✓ 78.97% 58.40% 60.42% 2.02%
× × 76.07% 70.97% 34.15% 36.82%

CREMA-D ✓ × 86.32% 72.11% 52.51% 19.06%
✓ ✓ 90.06% 75.27% 67.36% 7.91%
× × 82.43% 62.81% 77.96% 15.15%

Sarcasm ✓ × 83.10% 68.74% 80.72% 11.98%
✓ ✓ 84.57% 74.53% 83.03% 8.50%
× × 63.86% 40.99% 68.38% 27.39%

Twitter2015 ✓ × 65.33% 46.84% 69.04% 22.20%
✓ ✓ 70.57% 53.43% 69.68% 16.25%

Table 4: Comparison of dynamic integration strategy on KineticsSounds and CREMA-D datasets.

Dataset Modality Constant Stepwise Dynamic

0 0.5 1 h(0) h(1) h(0.05)h(0.95) Ours-H Ours-LB

Multiple 64.55% 64.70% 28.67% 65.17% 66.92% 66.01% 67.41% 69.32% 72.89%
KineticsSounds Audio 49.17% 46.30% 34.11% 51.12% 52.34% 52.21% 53.41% 53.89% 54.32%

Video 24.64% 44.02% 28.41% 41.21% 41.45% 42.31% 46.72% 49.18% 54.17%

Multiple 63.31% 70.45% 26.49% 66.45% 70.24% 69.11% 71.45% 72.39% 84.11%
CREMA-D Audio 55.65% 60.17% 33.15% 56.19% 57.38% 58.09% 60.18% 61.89% 65.13%

Video 18.68% 42.54% 20.42% 45.14% 49.97% 46.41% 55.32% 57.14% 64.89%

4.4 Effectiveness of Integration Learning

Analysis of Integration Strategy: We further study the impact of different integration strategies
for contrastive loss and classification loss. Specifically, we analyze three categories of integration
strategy, i.e., constant, stepwise and dynamic strategy. For constant strategy, we assign a constant
value to α for the experiment and run three sets of experiments by setting α = 0, α = 0.5, and
α = 1. Here, “α = 0” denotes that we only perform supervised multimodal learning. Similarly,
“α = 1” denotes that we only perform unsupervised contrastive learning. For stepwise strategy, we
define an indicator function h(p), where h(p) denotes that α = p if the current epoch is less than half
of the total epochs, otherwise α = 1− p. For dynamic strategy, we assign value to α by heuristic
strategy (Ours-H) and learning-based strategy (Ours-LB).

The experimental results are shown in Table 4. From Table 4, we can draw the following observations:
(1). Integrating multimodal learning and contrastive learning simultaneously with a constant ratio
can slightly boost performance in some cases and greatly reduce the performance gap between audio
and video. (2). In general, the model with a stepwise strategy can outperform the model with a
constant strategy. Furthermore, we can find that the performance of the model with two-stage training,
i.e., h(0) or h(1), is worse than that of the model which combines two losses with a constant value,
i.e., h(0.05) or h(0.95). (3). The overall performance of the model with the dynamic strategy is
better than that with the other strategy. Moreover, the model with the learning-based strategy can
achieve the best performance. And the performance gap of this model is nil or negligible. The
experimental results prove that the smaller the performance gap of the uni-modals, the better the
overall performance of the model.

Change of α for Learning-based Strategy: To further observe the change of the optimal α during
training, we illustrate the change of α on all datasets. The results are shown in Figure 3, where α
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Figure 2: Visualizations of the modality gap dis-
tance on the CREMA-D dataset.
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Figure 3: Change of α on different datasets. We
illustrate the value of the heuristic integration
strategy for comparison.

is calculated by learning-based strategy, and ω(t) denotes the heuristic based strategy. As the total
epochs for different datasets are different, we change the x-axis as the proportion of the current epoch,
i.e., #epoch/#total_epochs. From Figure 3, we can draw the following observations: (1). The general
trend of the change for α is roughly the same on different datasets. (2). The customized function ω(t)
is close to the actual changes to some extent, but there is still a gap between the customized function
and the actual changes. In practice, it is difficult to fit the change of parameter α perfectly. Hence, we
can see that our method has good adaptability in different scenarios. Furthermore, by comparing the
trend of ω(t) with other curves, a natural question arises: if the curve of the heuristic algorithm aligns
more closely with the trend of the change curve based on the learning-based strategy, will the effect be
better? The answer is yes. This issue can be easily verified by using a third-order polynomial function
to approximate the learning-based curve. Specifically, by substituting the ω(t) as the polynomial
function ω̂(t) = at3+bt2+ct+d, where a = 1.5×10−4, b = −6.5×10−3, c = 3.2×10−2, d = 1,
we can achieve higher accuracy with 71.22% and MAP with 76.28% on KineticsSounds dataset
compared with ours-H. However, this strategy can only be applied once the actual changing trend of
α is observed.

4.5 Further Analysis

Analysis of Modality Gap: As mentioned in the paper [25], modality gap characterizes the corre-
lation between different modalities in multimodal learning. And large modality gap leads to better
performance in some situations. We further illustrate the modality gap for CONCAT, G-Blend, MLA,
and our method. The results are shown in Figure 2. From Figure 2, we can find that our method can
learn more discriminative representations and results in higher accuracy with a large modality gap
compared with other methods.

Robustness Analysis of the Pretrained Model: We further exploit the robustness of the large-scale
language vision pretrained model CLIP [33] model on Sarcasm and Twitter2015 datasets. We replace
the encoders for image and text as the corresponding encoders pretrained by CLIP and fine-tune the
model on Sarcasm and Twitter2015 datasets respectively. The results are shown in Table 5, where
“CLIP+MLA” and “CLIP+Ours” present that we apply the MLA’s and ours algorithm, respectively.
From Table 5, we can draw the following observations: (1). Both CLIP+MLA and CLIP+Ours can
outperform CLIP in all cases. (2). With the help of dynamic integration, the performance of our
method is better than that of MLA.

Visualization: We utilize GradCAM [34] to showcase the visualization of image regions that attract
the weak modality’s focus during training. By using GradCAM, the importance scores are assigned
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Table 5: Results on the Sarcasm and Twitter2015 datasets achieved by using the CLIP pre-trained
model as encoders.

Method Sarcasm Twitter2015

Image Text Multiple Image Text Multiple

CLIP 74.82% 82.15% 83.11% 54.48% 71.75% 72.52%
CLIP+MLA 77.45% 83.19% 84.45% 56.53% 72.37% 73.95%

CLIP+Ours 79.78% 83.67% 85.42% 64.67% 72.59% 74.43%

CONCAT epoch = 1 epoch = 7 epoch = 15

Ours-LB epoch = 1 epoch = 7 epoch = 15

Figure 4: Visualization on Twitter2015 dataset. Our proposed method tends to perform feature
learning first and then fit the learned features to the category labels.

to every pixel in each feature map, aiding in identifying the image regions critical for the model’s
predictions. We compare the visualization for CONCAT and our proposed method. The visualization
results are presented in Figure 4, where the second, the third, and the last columns denote the results of
the first, the seventh, and the last epoch, respectively. The category label for this image is “Negative”
and the corresponding text is “Crazy hair day ! T is a contender.”. By comparing our method with
CONCAT, we can see that our method focuses on the textual information from text modality, and
then fits the learned features to the category labels.

5 Conclusion

In this paper, we discuss a core reason for modality imbalance in multimodal learning, i.e., fitting
category labels. We find that appropriate positive intervention label fitting can correct the difference
in learning ability for different modalities, thus alleviating the modality imbalance phenomenon.
Based on this observation, we propose a novel multimodal learning approach to overcome modality
imbalance problem by dynamically integrating unsupervised contrastive learning and supervised
multimodal learning. We design a heuristic strategy and a learning based strategy to perform
integration dynamically. Experiments on various datasets demonstrate that our method can boost
performance in multimodal learning.

Limitations: For the limitations of our proposed method, the root cause of modality imbalance
phenomenon caused by fitting category labels is worth discussing in depth. Does the specific category
label contain attributes that are more suitable for fitting a certain modality? We leave it as a future
work.
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