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Abstract

Transduction is a powerful paradigm that leverages the structure of unlabeled
data to boost predictive accuracy. We present TransCLIP, a novel and compu-
tationally efficient transductive approach designed for Vision-Language Models
(VLMs). TransCLIP is applicable as a plug-and-play module on top of popular
inductive zero- and few-shot models, consistently improving their performances.
Our new objective function can be viewed as a regularized maximum-likelihood
estimation, constrained by a KL divergence penalty that integrates the text-encoder
knowledge and guides the transductive learning process. We further derive an
iterative Block Majorize-Minimize (BMM) procedure for optimizing our objec-
tive, with guaranteed convergence and decoupled sample-assignment updates,
yielding computationally efficient transduction for large-scale datasets. We report
comprehensive evaluations, comparisons, and ablation studies that demonstrate:
(i) Transduction can greatly enhance the generalization capabilities of inductive
pretrained zero- and few-shot VLMs; (ii) TransCLIP substantially outperforms
standard transductive few-shot learning methods relying solely on vision features,
notably due to the KL-based language constraint.

1 Introduction
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Figure 1: TransCLIP improves significantly the averaged top-1 accuracy on 11 datasets when used
on top of inductive zero-shot CLIP, 2-shot CoOp prompt tuning and 2-shot TaskRes adapter for
various encoder sizes.
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Combining vision and language modalities can greatly enhance expressiveness and reduce ambiguities
in the understanding and interpretation of our environment. This principle is central in the develop-
ment of Vision-Language Models (VLMs), such as CLIP [50], which learns visual representations
through natural-language supervision. In the pre-training phase, an input image x and associated text
description c are encoded by separate vision and text encoders. This yields feature representations
f = 6,(x) and t = 6,(c), which can be aligned by contrastive learning. Such a joint embedding
space for the visual and textual modalities facilitates zero-shot recognition and yields powerful
adaptation capabilities for a large variety of tasks. The recent literature on adapting VLMs has
grown substantially, in both the zero-shot and few-shot learning settings [[73| [72, (16} (70, [74} 25 143]].
However, so far, these techniques predominantly align with induction, i.e., inference for each test
sample is performed independently from the other samples within the target dataset.

In contrast, transduction performs joint inference on all the test samples of a task, leveraging the
statistics of the target unlabeled data [58| 27, [71]. In the context of standard vision-based classifiers,
this has enabled transductive methods to outperform inductive-inference approaches as evidenced by
benchmarks over large-scale datasets such as ImageNet [2].

Within the scope of deep learning, transduction has mainly been explored for few-shot learning to
address the inherent challenges of training under limited supervision. This recent and quite abundant
few-shot literature, e.g., [ 13} 134} 37, 144, 76| 24, [75], among others, has focused on adopting
standard vision-based pre-training models (such as ImageNet pre-training). However, as we will
show in our experiments (Table ), the direct application of existing transductive few-shot methods to
VLMs yields poor performances, sometimes underperforming the inductive zero-shot predictions.
This might explain why the transductive paradigm has been overlooked in zero-shot and few-shot
learning for VLMs so far. The low performance of current transductive few-shot methods in the
context of VLMs could be explained by the fact that the underlying objective functions do not
account for the text knowledge. In this new multi-modal paradigm, additional supervision could
be leveraged from the textual descriptions of the classes (prompts) [50], e.g., ¢y, =a photo of a
[kth class name], along with their corresponding representation t;, = 6;(cy) derived from the
language encoder. We utilize the interleaved representation of text prompts and images with their
cosin similarity f ' t, which yields text-based prediction ¥, thereby guiding our transductive
optimization procedure with text-encoder knowledge. Our method optimizes a new objective function
integrating a text-driven penalty. Optimization is carried out efficiently w.r.t the assignment variables
associated with the unlabeled samples, which are then used as final predictions.

Adapting VLMs has recently attracted wide attention in the literature, predominantly focusing on
inductive methods. Motivated by findings in NLP, which indicate that better prompt strategies could
enhance performance [53| 26l 22], substantial efforts were directed towards prompt tuning [35]
for VLMs, with CoOp [[73] standing out as the pioneering work along this line. Following CoOp,
prompt tuning has become the favorite strategy for adapting VLMs in a variety of contexts, including
unsupervised [25} 43} [15 141} [1]] and few-shot [[73} [72} 140, [12} |65 |6l |74 (8| |9} |29} 130, 167]] learning.
Meanwhile, there have been a few efforts towards computationally more efficient adapters [[70, 148, 166]].
Our transduction formulation aligns with this initiative. By operating solely on the output embeddings
(i.e., in a black-box setting), TransCLIP is computationally efficient and does not make assumptions
on the underlying encoder architectures. Still, our method is orthogonal to these design choices and
could be applied atop any of the above-mentioned inductive approaches.

Main contributions. (i) We introduce a transductive formulation that enhances the zero-shot
and few-shot generalization capabilities of VLMs by leveraging the structure of unlabeled data
(Figure[T). Our new objective function can be viewed as a regularized maximum-likelihood estimation,
constrained by a Kullback-Leibler (KL) divergence penalty integrating the text-encoder knowledge
and guiding the transductive learning process. We further derive an iterative Block Majorize-Minimize
(BMM) procedure for optimizing our objective, with guaranteed convergence and decoupled sample-
assignment updates, yielding computationally efficient transduction for large-scale datasets, such
as ImageNet. (ii) Our method can be used as a plug-and-play module on top of current inductive
zero-shot models and few-shot learning methods, consistently boosting their performance. Also, (iii)
our approach substantially outperforms recent transductive few-shot methods in the literature, notably
due to the KL-based language supervision as a critical success factor.

’In VLMs, such as CLIP [50], both visual and text embeddings are normalized (i.e., are withing the unit
hyper-sphere). Thus, the cosine similarity corresponds to the dot product.
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2 Related Work

Transduction for vision-only classifiers. The use of unlabeled test data at inference time has
received attention lately in rapidly emerging subjects, such as few-shot learning and unsupervised test-
time adaptation. Examples include adjusting batch normalization layer statistics [46l] and minimizing
the entropy of predictions [[60], which can be supplemented by pseudo-labeling strategies [36]]. In
the few-shot literature solely based on vision models, transduction leverages both the few labeled
samples and unlabeled test data, outperforming inductive methods [76, |3, 24, 37, [75]. One of
the first works introducing transduction in vision-based few-shot learning proposes propagating
the labels from the support (labeled) to the query (unlabeled) set with a meta-learned graph [39]].
Building on this idea, another work proposes to iteratively augment the support set to improve label
propagation [34]. LaplacianShot [76] also exploits the inherent structure of the data through a graph-
Laplacian clustering, which discourages disparate class predictions for samples with close features,
while matching each query set point to the nearest support prototype. Alternative approaches propose
directly learning the class prototypes. For instance, Transductive Fine-Tuning (TF) [13] uses the
prediction entropy on the query samples as a regularization term, while TIM and its variants [5,59]
employ the mutual information between the query samples and their predictions. BD-CSPN [37]
refines the class prototypes by reducing the feature biases between the support set and the most
confident query samples. An additional group of methods performs clustering in the feature space,
for instance, by solving an optimal transport problem like PT-MAP [24], by projecting features into
sub-spaces to facilitate clustering [75]], or by revisiting the standard K-means with an additional
partition-complexity regularizer to control the number of predicted classes [44].

Zero- and few-shot learning in VLMs. Thanks to their extensive pre-training, VLMs exhibit
stronger generalization capabilities than vision-only models but may also fail [50,169,/57]. In response,
substantial recent efforts have been directed towards using their general knowledge and adapting
them on more specific tasks [63} 73 [70]. Arguably, the most popular strategy is prompt tuning [35],
which is explored both in the unsupervised [43 15,41} 1] and few-shot [[73, (72} 40, 12165} 16} (74! |8,
91129, 130] settings. The pioneering work, CoOp [73], updates input text-prompt tokens by leveraging
the context provided by the few labeled samples (i.e., the support set). Building on this success,
various strategies have been developed to enhance this approach, especially through additional
regularization. For instance, ProGrad [[74] guides the prompts towards the original hand-crafted ones
by gradient projection. Prompt tuning has also been explored in the zero-shot setting, e.g., using
the predictive confidence to generate pseudo-labels [25,41]]. Despite its popularity, prompt tuning
remains tedious in terms of computations, due to the many back-propagations through the text encoder.
This challenge is compounded in the recent developments, which introduce visual tokens [29, 30]]
alongside the text tokens. In contrast, there has been limited efforts so far in developing black-box
methods [48| 17, 16l 166, 62]], which only access the final embedding states. These methods often
rely on the so-called adapters [23|], like Tip-Adapter(-F) [[70], which adds a classifier at the output of
the vision encoder, in the form of a cache model involving the few-shot samples. Lately, a strong
baseline based on Gaussian discriminant analysis clustering [62]] demonstrates VLMs’ adaptation
abilities with a Gaussian hypothesis on the embedding space.

Transductive inference in VLMs. Despite the growing interest in unsupervised, zero-shot and
few-shot learning for VLMs, the transductive-inference paradigm has not been explored so far in this
new multi-modal context, except for the very recent work in [45], which was deployed for small-size
tasks (=~ 10? test samples). However, the method in [45] may not be computationally tractable
for large-scale query sets, due to expensive inner loops for estimating the Dirichlet distribution’s
parameters. We provide a computationally efficient solution, which can scale up to large target
datasets (such as ImageNet), while being easily amenable as a plug-and-play module on top of
state-of-the-art inductive methods. It is worth mentioning that test-time adaptation methods also
employ the transduction paradigm, but their settings are very different from those studied in this
work. For instance, SwapPrompt [41] has been designed to make batch predictions on-the-fly, and
has continual-learning mechanisms such as an exponential moving average prompt across batches.
TPT [43] work on a single sample with many data augmentations to train one prompt per image. Both
methods require access to model weights for training (i.e., do not operate in a black-box setting) and
an expensive training procedure. We also note that prompt tuning does not scale well with the model
size and is even impractical on very large models such as EVA-CLIP-8B [55]]. We still report the
performances of this class of methods in the Appendix (Table[9).
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3 TransCLIP: Transduction for Vision-Language Models

In this section, we describe our objective function for transductive inference in vision-language
models, and derive a block majorize-minimize (BMM) algorithm for minimizing it, with guaranteed
convergence and decoupled sample-assignment updates. When dealing with a zero-shot classification
problem based on a vision-language model, such as CLIP, and given a set of K candidate classes,
one creates textual descriptions, the so-called prompts [38]], each corresponding to a class, e.g., ¢,
=a photo of al[kth class name], k =1,..., K. Let t; = 6;(cy) denotes the corresponding
normalized (unit hyper-sphere) embedding representation, with 8, representing the language encoder.
Similarly, each test image x;, ¢ = 1,..., N, is projected onto a normalized embedding space of
the same dimension, using visual encoder 6,: f; = 6,(x;). In the standard inductive zero-shot
inference, classification of a given image x; is done by evaluating the cosine similarity between these
two encoded modalities and predicting the class corresponding to the most similar text embedding:
k= argmax;, f;"t;. Furthermore, one can compute pseudo-labels corresponding to these zero-
shot predictions by applying the softmax function with a temperature scalinﬁ 7, which yields the
following probability-simplex vector for each sample:

exp(7f;" ty)
> exp(7f," t;)
where Ak denotes the probability simplex. Let D ={i e N: 1 <i < N} =S U Q denotes the
samples indices of the target dataset, with Q the set of unlabeled query samples indices, i.e., those for

which we want to make a prediction, and S the set of labeled support samples indices in the few-shot
setting.

Vi= Jix)i<i<x € Ax; Gk = (1)

Note that, in the zero-shot setting, S = (). We define a Gaussian Mixture Model-clustering (GMM)
term in our objective function by modeling the likelihood of these target data as a balanced mixture
of multivariate Gaussian distributions, each representing a class k and parameterized by mean vector
p, and a diagonal covariance matrix X:

Pk = Pt ks ) o () exp (<56~ ) TG~ ) )
Notation p; j, is introduced here to simplify the equations in the sequel. Notice that, unlike standard
GMMs, we deploy a common diagonal covariance matrix X across all classes. Interestingly, in
our experiments, we found this simplifying choice improves the performance while reducing the
computational load as there are substantially fewer parameters to learn. This is particularly the case
when dealing with large numbers of classes as in large-scale target datasets such as ImageNet.

3.1 Proposed objective function

Our objective function depends on two types of variables: (i) Sample-to-class assignment variables
within the probability simplex: z; = (2 k)1<k<x € Ag, ¢ € Q; and (ii) GMM parameters
p = (py)1<k<k and X.

We propose to minimize the following objective, which integrates a GMM-clustering term, a Laplacian
regularizer and a Kullback-Leibler (KL) divergence penalty encoding the text-encoder knowledge
and guiding the transductive learning process:

‘E’ZERO-SHOT(Zv M, E) = - Z ZzT IOg(pi) - Z Z wijz;rzj + Z KL)\(ZiHyi) (2)

i€Q i€D j€D i€Q

GMM clustering Laplacian reg. Text knowledge

where p; = (p;.x)1<k<k € Ak concatenates the GMM probabilities, w;; denotes some measure
of affinity between visual embeddings f; and f;, and the sample-wise parameterize(ﬂ KL terms are
given by:

KL (z||y:) = ziT log z; — )\ziT logy;, 1€Q; A>0 3)
In the following, we describe the effect of each term in our objective function in (2):

3Note that each CLIP version comes with a temperature scaling factor 7, which is optimized along with the
learnable parameters during pre-training.
“Notice that, for A = 1, the expression in (@) corresponds to the KL divergence.
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* GMM-based clustering: This unsupervised-learning term is akin to the GMM-based
maximum-likelihood estimation objective in the standard EM algorithm [3]]. By taking
the negative logarithm, its minimization corresponds to maximizing the likelihood of the
data. It can also be viewed as a probabilistic generalization of the K-means clustering
objective [28]]. Indeed, assuming 3 is the identity matrix reduces the first term in (2)) to the
K-means objective.

* Laplacian regularization: The second term in (2) is the Laplacian regularizer, widely used
in the context of graph/spectral clustering [S6] and semi-supervised learning [7]]. This term
encourages nearby samples in the visual-embedding space (i.e., pairs of samples with high
affinity w; ;) to have similar z assignments. In our case, we propose to build a positive semi-
definite (PSD) affinity matrix based on the cosine similarities as w;; = fiT f; (Gram matrix).
As we see below, this PSD condition is important to obtain a convergent Majorize-Minimize
optimizer with decoupled (parallel) sample-wise updates for the z-assignments, yielding a
highly efficient transduction for large-scale target datasets (such as ImageNet).

* Text-guided KL divergence: This term is dedicated to vision-language models and, as we
will see in our experiments (ablation studies in TablesE]and @), has a substantial effect on
performance. It encourages the prediction not to deviate significantly from the zero-shot
predictions, thereby providing text supervision to the other two unsupervised-learning terms.
Furthermore, being convex over z;, i € Q, this term facilitates the optimization of the
objective w.r.t the assignment variables.

3.2 Extension to the few-shot setting

Our zero-shot formulation naturally extends to the few-shot setting. We integrate supervision from
the labeled-support samples, in the form of a cross-entropy, which corresponds to minimizing the
following overall loss:

EFEW-SHOT(Z? Nv = Z z; IOg pz

£ Ero-SHot\Z, M, D) “
RSP Lrsno-suon(2, 18, 3)

| Q

Note that, in the first term, the z; are fixed, with z; = y;, 7 € S and y; the one-hot ground-truth label
associated with the corresponding shot.

3.3 Block Majorize-Minimize (BMM) optimization

As our objective depends on three types of variables (z, i, 33), we proceed with a BMM procedure,
alternating three sub-step optimizers. Each sub-step optimizes over one block of variables while
the other two are fixed, ensuring the overall objective does not increase. Importantly, the obtained
z-updates (Eq. (B)) are decoupled, yielding computationally efficient transduction for large-scale
datasets. Also, our overall procedure is guaranteed to converge (Theorem |T)).

Majorize-Minimize (MM) with respect to the z-block When p and ¥ are fixed, both the GMM-
and KL-based terms are convex w.r.t z;. However, the Lapla01an term is concaveE] (for PSD matrix
W). Therefore, we proceed with inner iterations, each minimizing a linear and tight upper bound,
the so-called majorizing function in the MM-optimization literature [33| 21} [31]], which guarantees
the overall objective does not increase. To obtain the tight linear bound, let us write the Laplacian
term conveniently in the following matrix form: z! Wz, with & = —W ® I, where ® denotes the
Kronecker product and I is the N x N identity matrix. Note that ¥ is negative semi-definite for a
positive semi-definite W. Therefore, z " Wz is a concave function with respect to z, and its first-order
approximation at current solution z' (I being the iteration index) gives the following tigh upper
bound on the Laplacian term:

z' Wz < (z))" Wz + (P2 (z - 2)

Replacing the quadratic Laplacian term by this linear bound yields a majorizing function on our
overall objective. Importantly, this majorizing function is a sum of decoupled objectives, each

>This makes the overall sub-problem non-convex and there is no closed-form solution.
8- Tight” means that the upper bound is equal to the original objective at the current solution z'.
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corresponding to one assignment variable z;, yielding a highly efficient optimizer for large-scale
target datasets. Indeed, using simplex constraints z; € Ag,i € Q, and solving the Karush-Kuhn-
Tucker (KKT) conditions independently for each z;, we obtain the following decoupled update rules
for the z-block:

y !
L0 ¥ © exp(log(p;) + > jeD wijzg ))
P = — z
(3 @ exp(log(ps) + Y ep wijz))) 1k

&)

Closed-form updates of ;1 and 3 When both z and X are fixed, our objective in (4) is convex. It
can be minimized by setting its gradient w.r.t each p,, to zero, which yields the following closed-form
updates:

J T Cf
18T >ics Zikfi + 0] > ico Zikfi

6)
T (
31 2ies Zik + T3] 2uicq Fik

M

Similarly, when both z and p are fixed, the following closed-form updates minimize the overall
objective w.r.t 3:

B |%| Zies Zk Zi,k(fi - Nk)Q =+ ﬁ Zieg Zk Zi,k(fi - Nk)Q
B v+1

The complete procedure is summarized in Appendix [B] Note that, after convergence, we use the
sample-to-class assignment variables z; as predictions for each sample 7 of the query set Q using the
argmax operation for conventional classification.

diag(X) (N

3.4 Convergence

Our optimizer can be viewed as an instance of the general Block Majorize-Minimize paradigm
for optimization [51]], which optimizes a majorizing function for each block of variables. The
convergence of general BMM procedures is well studied in the optimization community [S1]. Indeed,
under certain conditions (such as the strong convexity of the block-wise majorizing functions), we
can establish convergence of our procedure using the following result (more details in Appendix [A):

Theorem 1 (Convergence of BMM [51]]) Assume that, for each block, the majorizing function is
quasi-convex, and its first-order behavior is the same as the original objective locally. Furthermore,
assume that the sub-problem solved for each block has a unique solution. Then, every limit point of
the iterates generated by BMM is a coordinate-wise minimum of the overall objective.

4 Experiments

Datasets. Following the setting of previous works [73}43]], we assess TransCLIP on ImageNet [[11]]
and ten datasets for fine-grained classification of scenes (SUN397 [64])), aircraft types (Aircraft [42]),
satellite imagery (EuroSAT [18]), automobiles (Cars [32]), food items (Food [4]), pet breeds
(Pets [49])), flowers (Flowers [47]), general objects (Caltech101 [[14]), textures (DTD [10]) and
human actions (UCF101 [54]). We additionally measure performance on four variants of ImageNet
(Adversarial [20], ImageNetV2 [52], Rendition [19], Sketch [61]). Numerical results are reported in
terms of the top-1 accuracy with the ViT-B/16 encoder, averaged over three random seeds.

Benchmarks. We aim to show the breadth of potential applications of transduction in the context of
VLMs. Notably, employing supervised fine-tuning, followed by transduction with TransCLIP on the
unlabeled test samples, emerges as a powerful and efficient solution. This is particularly convenient
when the labeled samples (the support set) and/or computational power are not accessible at inference
(i.e., test) timeﬂ To this end, we first study the applicability of our zero-shot formulation TransCLIP-
ZS (Eq. (2)) across three settings: (i) on top of inductive zero-shot learning and popular few-shot
learning methods; (ii) on top of 16-shot ImageNet pretraining for cross-dataset transferability, and

"This application is hardly discussed in the transductive literature. We make all zero-shot- and few-shot text
and image embeddings publicly available, to ease future works without resorting to heavy computations.
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Table 1: TransCLIP atop inductive vision-language zero-shot and popular few-shot methods.

& ) . S & > Nz S S o
Method < § §q < é-é* @%v @bo o@ o 4@’\\ @5\\ Q&o 6@ f&
& S ot < %@o <© < o> N ¥
2 CLIP-VIT'B/16 66.6 62.5 24.7 483 65.6 85.9 89.1 70.7 93.2 435 67.5 65.3
| +TransCLIP-ZS 703,37 689,63 269,55 651,568 694,38 871,55 926,35 767,59 92705 495,60 74469 703,51
CoOp wev22) 65.7 66.9 207 56.4 67.6 84.3 90.2 78.2 92.5 50.1 71.2 67.6
+ TransCLIP-ZS 693,36 715,46 238,31 653,89 719,43 863,509 919,18 898,115 938,13 554,54 777,65 72448
TIP-Adapter-F gcevay 695 67.2 28.8 67.8 67.1 85.8 90.6 83.7 94.0 51.6 734 70.9
»  +TransCLIP-ZS 720,55 718,46 307,59 769,91 710,39 869,51 9.4 928,97 9595 577,61 800,67 751,43
£ PLOT acrm) 66.9 67.0 289 72.8 68.5 84.9 91.9 81.8 94.0 52.8 74.7 713
<+ TransCLIP-ZS 758,89 703,33 28108 788,60 700,16 853,04 Ollgg 932,114 94000 567,39 8ld 7 750,37
TaskRes (cve 23 69.6 68.1 312 65.6 69.1 84.5 90.2 81.6 93.6 534 71.8 70.8
+ TransCLIP-ZS 720,55 725,44 3ldgs 137,81 Tl6o4 865,50 916,55 907,97 940,04 94,60 764,46 745,37
ProGrad accv 23 67.0 67.0 28.7 57.0 68.2 84.9 91.4 80.8 93.5 52.8 733 69.5
+ TransCLIP-ZS 701,31 716,46 305,58 709,139 723,41 865,16 927,44 915,007 941,07 579,51 793,61 743448
CoOp wicv22) 68.8 69.7 30.8 69.6 74.4 84.5 92.5 922 94.5 59.4 715 74.0
+ TransCLIP-ZS T4, 733,35 331,03 772,75 717,35 865,09 936,11 953,37 951,06 630,36 818,43 771,37
TIP-Adapter-F gcevay  70.7 70.8 35.7 76.8 74.1 86.5 91.9 92.1 94.8 59.8 78.1 75.6
~  +TransCLIP-ZS 727,19 T44,35 361,05 797,59 759,18 874,99 92,43 955,33 951,03 640,45 833,55 779,53
£ PLOT qcir2y 70.0 71.8 34.8 84.7 76.6 83.5 92.8 93.2 94.9 61.0 79.7 76.6
<+ TransCLIP-ZS 712,75 135,07 33999 818,59 75848 856,55 92503 958,56 948¢; 636,56 833,36 780,14
TaskRes (cver 23 71.0 72.8 333 738 76.1 86.1 91.9 85.0 94.9 59.7 75.5 74.6
+ TransCLIP-ZS 730,50 753,55 344,01 T8l.44  T12.0q 873,05 930,57 924,74 951,05 643,46 792,37 772,57
ProGrad accv 23 702 71.7 34.0 69.5 75.0 85.4 92.0 911 94.4 59.8 77.9 74.6
+ TransCLIP-ZS 723,51 750,33 355,16 749,53 719,59 870,15 937,17 953,45 951,08 648,51 832,54 777,31
CoOp wev 2 719 74.9 433 85.0 82.8 84.2 91.9 96.8 95.8 69.7 83.1 79.9
+ TransCLIP-ZS 733,04 166,18 42904 860,10 830,05 863,51 92,05 975,48 959,01 713,07 854,53 S8Llq;
TIP-Adapter-F ecovay 733 76.0 44.6 85.9 82.3 86.8 92.6 96.2 95.7 70.8 83.9 80.7
% +TransCLIP-ZS 742,09 768,08 449,03 85207 827,04 874,06 935,09 969,97 95701 69215 856,17 Sllgg
Z PLOT qcir 2y 72.5 76.0 46.8 92.1 84.6 85.6 92.5 97.1 96.0 71.1 84.8 81.7
&+ TransCLIP-ZS 718,53 75040 41849 846495 19649 859,02 92204 973,01 95010 68754 857,09 80314
TaskRes cver 23 73.0 76.0 44.8 80.7 835 86.9 92.5 97.3 95.9 70.9 83.4 80.5
+ TransCLIP-ZS 7410 769,08 43615 80503 82847 875,06 929,04 976,03 960,015 70207 862,55 808,03
ProGrad accv 23 72.1 75.1 4238 83.6 82.9 85.8 92.9 96.6 95.9 68.9 82.6 79.9
+ TransCLIP-ZS 735,04 168,17 42800 837,05 8.l.s 872,03 9BTg 97408 960,01 7Tldns 861,34 SLlqg

Table 2: Cross-Dataset transferability evaluation. Few-shot learning methods are trained on 16-shot
ImageNet and evaluate on the ten other fine-grained datasets. Average excludes ImageNet.

Source Target
&
& & S o S & N N o
Method ,§§ Qé\q -4&& @G"v r@"b oé\Q Qz\% 4‘0\ @8‘0\ Q&Q Cf‘\u 4"&0
& S At ¥ %\é‘ <° < & N
CoOp ey 22 71.9 62.0 15.7 44.6 62.1 84.3 88.3 67.1 92.7 39.5 64.1 62.0
+ TransCLIP-ZS 733,14 674,54 171,94 545,99 668,48 863,50 894,11 742,95 94 g7 421,36 699,57 661,47
g CoCoOp cver-2y 71.1 67.0 22.7 44.6 64.9 86.2 90.7 71.6 93.9 45.2 68.8 65.6
g + TransCLIP-ZS 768,57 696,57 22601 592,146 670,51 85498 89899 790,74 943,93 506,54 745,57 692,34
=] MaPLE cver 23 70.5 67.3 24.4 45.8 65.7 86.4 90.4 72.0 93.7 46.3 68.7 66.1
% + TransCLIP-ZS 766,61 698,25 245,02 595,137 668,15 8479 89797 780,60 943,06 494,31 74456 692,37
& ProGrad accv 2 72.1 63.9 21.6 38.9 64.0 85.9 90.2 67.8 92.9 43.2 65.9 63.4
+ TransCLIP-ZS 735,14 686,47 227,11 552,164 679,38 870,52 913,11 739,61 940,53 466,34 735,76 681,46
PromptSRC accv 23 71.4 67.3 24.1 45.0 65.6 86.5 90.1 70.5 93.8 46.2 68.9 65.8

+TransCLIP-ZS 769,55 699,56 249,08 94,144 676,50 85315 89497 767,65 92,04 Sllsg 760,79 694,37

(iii) on top of 16-shot ImageNet pretraining for domain generalization on the four ImageNet variants.
Secondly, we compare our few-shot extension TransCLIP-FS (Eq. (@) to transductive few-shot
learning methods. As for TransCLIP-ZS, we operate in a black-box setting (i.e., using only the output
embeddings, without training the model parameters).

Implementation details. The main component of our transductive formulation is the text-guided
KL divergence penalty. We fix A = 1 for all our zero-shot experiments (see ablation study in Table[6),
and A = 0.5 in all the few-shot experiments to reduce the impact of the text-driven regularization.
Another component of our optimization problem is the Laplacian regularization, which enforces
consistent predictions for close instances. We truncate the affinity matrix to the 3 nearest-neighbors,
making it sparse. g is initialized with the top-8 most confident samples of each class for the zero-shot
setting. For the few-shot setting, we use the class-wise average over the shot embeddings.

4.1 Main results

Transduction improvements. Table [I] and 2] demonstrate the advantages of our transductive
approach in zero-shot, few-shot, and cross-dataset transferability. TransCLIP enhances the zero-shot
top-1 accuracy by over 5% and popular few-shot methods by 4% (1-shot) on average, without the
need for additional labels. Table 3] further highlights that TransCLIP can be applied on top of prompt
tuning and adapter fine-tuning solutions, enhancing performance for both in-domain and domain
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Table 3: Domain Generalization evaluation with improved manual prompting strategy (custom
templates are given in Table @), 16-shot prompt-tuning and 16-shot adapter.

Source Target

Method ImageNet  Adversarial ImageNetV2 Rendition  Sketch Average  Average OOD
. CLIP-ViT-B/16 w/ a photo of a 66.6 479 60.6 73.8 46.0 59.0 57.1
% + TransCLIP-ZS 703,37 495,17 623,17 75.0413 497,37 614,54 59.2,51
< CLIP-ViT-B/16 w/ custom templates 68.8 50.6 62.3 71.8 48.4 61.6 59.8

+ TransCLIP-ZS 715,57 521,14 63.4411 781,02 5llip7 632.16 611,43
& CLIP-ViT-B/16 w/ prompt tuning (CoOp) 71.9 49.4 64.1 75.1 472 61.5 59.0
£+ TransCLIP-ZS 73.3:1.4 50.8,1.4 64.6,¢.5 758,07 503,371 630,15 60.4,7 4
g CLIP-ViT-B/16 w/ adapter (TaskRes) 73.0 503 65.6 77.8 49.2 63.2 60.7
&+ TransCLIP-ZS 41,11 519,16 65.4 0 784,06 516,24 643,11 61.8,1.1

Table 4: Transductive few-shot learning evaluation. w/o text denotes A = 0 in Eq. (3).

& N < S & N NS > N o

Shots  Method & S & \@é & ;@&o S & \@é‘\ & & &

& S ot <X %@ <° ~ I N N

0 CLIP-ViT-B/16 666 625 247 483 65.6 859 891 707 B2 435 615 653
TF 3] 297 381 192 460 325 435 382 678 755 316 488 428
BD-CSPN [37] 354 457 20 457 20 542 529 829 835 347 80 506
LaplacianShot [76] M9 w5 21 521 411 530 522 831 834 358 573 509

1 PTMAP[24] 01 526 238 597 484 644 618 694 541 418 635 527
TIM [5 375 483 228 482 4438 657 539 864 751 358 627 528
TransCLIP-FS w/o text 302 434 237 566 410 509 543 835 777 369 545 502
TransCLIP-FS 698 706 299 725 70.9 879 938 848 931 533 784 732

TF 3] 511 610 303 649 56.8 710 659 909 915 37 6719 641
BD-CSPN (37 538 625 305 648 585 753 720 925 920 521 709 659
LaplacianShot [76] 535 65 296 743 585 757 734 9238 920 527 717 610

4 PTMAP[A 576 681 312 749 63.1 811 795 762 602 584 739 658
TIM [5 574 670 328 7193 658 835 823 934 885 581 765 713
TransCLIP-FS wo text 539 638 342 794 63.5 767 767 933 28 570 748 696
TransCLIP-FS 703 719 340 794 74.0 864 916 936 940  6L1 791 759

TF (3] 618 701 383 743 712 807 795 954 936 629 760 731
BD-CSPN [37 617 604 377 734 707 802 812 9048 933 613 760 727
LaplacianShot [76] 609 683 361 781 69.2 812 817 048 931 586 763 726

16 PT-MAP 24] 640 720 374 756 7.0 827 861 785 637 67 763 702
TIM 5] 678 736 406 836 795 849 887 954 24 675 821 718
TransCLIP-FS wo text 659 726 419 8L 770 832 861 952 946 653 800 766
TransCLIP-FS 718 747 386 830 79.8 869 924 944 940 651 821 784

generalization tasks. However, we observe in Table |I|that transductive gains sometimes decrease
with the number of shots, presumably because data structure information can be partially captured in
the shots. These results underline the value of considering the structure of the unlabeled test samples
during prediction, especially on top of zero- and low-shot models or when facing domain shifts, an
aspect not leveraged by the current zero- and few-shot VLM literature. More detailed results for five
different backbone architectures and comparisons with unsupervised non-transductive methods are
provided in Appendix [C.I] for the zero-shot setting, in Appendix [C.2|for TransCLIP on top of popular
few-shot methods, in Appendix [C.3]for cross-dataset transferability and in Appendix [C.4]for domain
generalization. With its hyper-parameters unchanged, TransCLIP exhibits strong generalization from
convolutional networks to transformer-based models, as also depicted in Figure[T}

Transductive few-shot learning. We compare TransCLIP-FS, TransCLIP-FS without text
regularization (i.e., A = 0) and state-of-the-art transductive few-shot methods. It is important to
note that these few-shot methods were primarily developed for vision-centric tasks. Hence, they
rely on visual information, omitting the textual elements. This allows us to study the impact of
our text-based regularization term. Table ] shows that incorporating language in the transductive
paradigm boosts the performance over vision-only methods. Especially for the 1- to 4-shot settings,
our language-driven KL penalty enhances the performance by a large margin on many tasks (e.g.,
ImageNet, SUN397, StanfordCars, DTD). As the number of shots increases, the text-driven penalty
becomes less useful, especially for the datasets capitalizing on the visual shots rather than the
text-encoder knowledge (e.g., EuroSat and Flowers). This points to promising future directions
involving more flexible text regularization (e.g., an adaptable A taking into account the number of
shots and the quality of the text embeddings). Detailed results for five different encoder architectures
are provided in Appendix [C.3] consistently showing similar conclusions.
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Table 5: Performance and runtime comparison between TransCLIP and prompt learning solutions
on average over ImageNet and the 10 fine-grained classification datasets. UPL* is a transductive
adaptation of the original unsupervised procedure in [25], more details in Appendices [C.I]and|C.5]

(a) Zero-shot setting. (b) Few-shot setting (4-shot).
Performance  Runtime Performance Runtime
UPL* 69.8 >150 min CoOp+UPL* 74.4 >12h
TransCLIP-ZS 70.3 14.4 sec TransCLIP-FS 75.9 35.3 sec

Table 6: Analysis on the components and sensitivity to hyper-parameters of TransCLIP-ZS.

(a) Components of the procedure. (b) Text regularization hyper-parameter .
Update . Update X Lapl. w ImageNet SUN397 Aircraft EuroSAT A ImageNet SUN397  Aircraft EuroSAT
X v v 69.7 67.5 25.5 63.9 0.1 56.3 58.6 26.0 65.5
V4 X v 68.7 66.0 25.1 51.6 0.5 69.8 69.3 26.6 65.6
v v X 69.9 68.8 27.0 64.5 1 703 68.9 26.9 65.1
X X v/ 68.6 65.9 252 61.8 2 69.5 67.6 26.2 64.1
v v v 70.3 68.9 26.9 65.1 5 682 65.2 52 S12
(c) Number of nearest-neighbors. (d) Impact of an isotropic 3.
#neighbors ImageNet SUN397 Aircraft EuroSAT ImageNet SUN397 Aircraft EuroSAT
3 70.3 68.9 26.9 65.1 3 (ours) 70.3 68.9 26.9 65.1
5 70.3 68.9 26.8 65.1 3 isotropic 69.4 68.0 26.4 64.1
10 70.2 68.8 26.9 65.2 A -0.9 -0.9 -0.5 -1.0

Comparison with prompt learning. Following current VLMs literature, adapting the input prompt
instead of GMM parameters could be seen as a more straightforward solution. For a fair comparison,
we adapt Unsupervised Prompt Learning (UPL) [25]] for the transductive setting and reevaluate its
main hyper-parameter (see Appendix [C.I)). Table [5|shows clearly that TransCLIP outperforms UPL
while being two to three orders of magnitude faster. Additional details on runtime are provided in
Table [8]of the Appendix.

4.2 Ablation studies

Components of TransCLIP. We study the impact of the principal components involved in the
TransCLIP procedure over four diverse datasets. Table |6a] shows that updating g and 3 allows to
significantly boost TransCLIP’s performance. This indicates the importance of having a dynamic
parametric model instead of a fixed one. Table [6b]demonstrates the critical role of text-driven penalty
for TransCLIP in the zero-shot setting. Additional results on the sensitivity of A in the few-shot setting
are depicted in Figure|2| of the Appendix. Alongside the prior findings from Table 4] it is evident that
incorporating text information is key to the success of TransCLIP and its wide applicability across the
zero- and few-shot learning scenarios. The number of nearest-neighbors considered in the Laplacian
term (Eq. (Z)) does not make a significant difference in TransCLIP’s performance as suggested by
Table However, removing the Laplacian regularization (Table [6a) leads to inferior results on
some datasets such as ImageNet and EuroSAT. We choose to consider 3 nearest-neighbors to make
the affinity matrix W sparse and reduce memory consumption. We also investigate the diagonal
covariance matrix design by restricting it to be isotropic (i.e., & = 021, with I; the identity matrix).
Table [6d] shows that a non-isotropic 3 performs better without significantly increasing the amount of
trainable parameters.

Scaling to larger VLMs. We report TransCLIP-ZS performance on EVA-CLIP 8 billion parameter
version [S5]] (approximately 42 times larger than the CLIP-ViT-B/16). It is worth mentioning that
TransCLIP is easily applicable to multi-billion parameter models since it does not necessitate gradient
computation or model parameter training (i.e., it only requires the memory needed for single-sample
inference because the whole dataset processing can be performed one sample at a time). Table[7]shows
that transduction can also bring significant improvements to larger models (details in Appendix [C.1).
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Table 7: Performance of TransCLIP-ZS for increasingly large VLMs. Relative A is the improvement
normalized by the zero-shot error: (ACCrranscrip - ACCzero-suor) / (100 - ACCzero-shor)-

ImageNet Average (11 datasets)
#Params  Zero-shot w/ TransCLIP-ZS relative A Zero-shot ~w/ TransCLIP-ZS relative A
CLIP-ViT-B/16 177TM 66.6 70.3,37 +11 % 65.3 70.3,5.0 +14 %
CLIP-ViT-L/14  427M 72.9 772,43 +16 % 72.5 774,49 +18 %
EVA-CLIP-8B 7.5B 82.5 84.6.7 1 +12 % 81.5 858,43 +23 %

5 Conclusion

In this work, we studied the transductive paradigm in the context of Vision-Language Models and
proposed the TransCLIP method. Our algorithm is highly efficient, as it operates solely in the output
embedding space (i.e., black-box setting), making it suitable for a wide range of models, including
very large ones. This also enables TransCLIP to be compatible with models that are accessible
only through APIs. We first showed how TransCLIP can bring transduction to the inductive zero-
shot setting, achieving consistent gains without additional supervision. Then, we proposed a new
setting that applies transduction on top of popular few-shot methods, offering a convenient strategy
to combine computationally intensive supervised fine-tuning with efficient test-time transduction.
Finally, we highlighted the limitations of current transductive few-shot methods and proposed a
simple extension of TransCLIP to incorporate labeled samples. In all our experiments, TransCLIP’s
text-guided KL divergence term appears as a key factor in its success. Future work may focus
on further enhancing this regularization term, for example, by making it more resilient (e.g., with
adaptive class-wise weighting) when text prompts are less reliable.
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A More details on convergence

As mentioned in the main paper, our derived block-wise optimization procedure in Egs. (3), (6)
and can be viewed as an instance of the the general Block Majorize-Minimize paradigm for
non-convex optimization, also referred to as the Block Successive Minimization (BSUM) method [51]].
We update each block of variables, with the other blocks fixed, by minimizing a tight upper bound
(majorizing function), thereby guaranteeing the overall objective does not increase at each step. In
the steps with respect to p and X, we optimize directly the objective in closed-form, which could be
also viewed as a particular case of optimizing a tight upper bound. The convergence of the general
BSUM procedure is well studied in the optimization community [51]]. Indeed, under the following
assumptions for each block of variables, one can establish convergence results for the application of
BSUM to non-convex problems [51]:

* Al: The majorizing function is a tight upper bound, i.e., equal to the objective at the current
solution.

* A2: The first-order behavior of the majorizing function is the same as the original objective
locally.

Indeed, when assumptions Al and A2 are verified for each block, we have the result in Theoremﬂ] [511.

As for our case of alternating Egs. (3, (6) and (7)), it is straightforward to verify that Assumptions Al
and A2 are satisfied for each block of variables. Furthermore, the majorizing functions are convex and
thus quasi-convex. Also, the sub-problem solved for each block has a unique solution. In particular,
for the z-updates, the majorizing function is the sum of a linear and a strongly convex function (the
negative entropy). Therefore, it is strongly convex. As for the p- and X-updates, the solutions are
obtained in closed form (hence unique).

Algorithm 1 TransCLIP

Require: A set of image embeddings (f;)1<;<n, a set of textual class embeddings (tx)i<k<k, T
the temperature of the CLIP model.

1w« 518 Vij > Affinity measure, truncated with top-3 values
2.y o(rft)) Vi > Initial predictions, ¢ the softmax function
3: py, < mean{f; sty =k,i € S}[ﬂ VEk > Class centroids initialization
4: diag(X) < 1% > Covariance matrix initialization, d is the emb. dim.
5:2;<y; Vi > Initial assignments
6: while (1), (2) and (3) not converged do > Block-wise updates loop
7: while (1) not converged do > z-update loop
ISN
. ) i exp(log(pi, i)+ jep WijZj,k) . )
8: Zik >k f/j\u exp(log(p;,x/)+2 jep Wij 25, 11) Vivk >z step
9: end whiwlez L5
137 2ies Zi kit o7 2ico Zikfi )
10 P = %Zies Zz‘,k‘f‘@ Zieg Zi,k vk l>(2) K Step
. & Sies o zik (i) 2+ 157 Yico Xk zik (fi—my)?
. [S] 2<i€S 2k [Q] 2-«icQ 2«4k
11: diag(X) + sL=1< T > (3) X-step
12: end while
13: return argmax, (z) > Prediction with assignment variables

B Further details on TransCLIP implementation

This section aims to provide an additional pseudo-algorithm to supplement Section [3] as well
as more details on TransCLIP hyper-parameters presented in Section ] Our code is available
at https://github.com/MaxZanella/transduction-for-vlms and a pseudo-code in Algo-
rithm T| summarizes the main steps of the TransCLIP algorithm.

8For the zero-shot setting, we use the embedding of top-8 most confident initial predictions for each class as
explained in Section 4
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Hardware. All our experiments were conducted on a single A100-40 GB. In terms of memory,
TransCLIP consumes 16.9 GB when inferring on ImageNet, and can therefore process large datasets
on a smaller 24 GB GPU.

Hyper-parameters. In practice, TransCLIP performs 10 iterations of z, 1, 32 block-wise updates.
For each z-update, we perform 5 iterations, as we found it sufficient for convergence. In the zero-shot
setting, we set A = 1 and v = 0 (as there are no support samples). In the few-shot setting, we set
A = 0.5 and search for the value of «y in {0.002, 0.01,0.02,0.2}. The number of validation shots is
set at min(4, #shots), and we build a 1-nearest neighbor classifier with the query samples and their
final class assignment to predict the class of each validation sample.

Prompt templates. We employ the prompt templates detailed in Table 24a]for all our experiments
in zero-shot setting unless otherwise explicitly specified. Only when specified, we utilize the custom
template ensembling for ImageNet as in [70] (see Table .

C Additional results.

We provide detailed results for all the studied vision backbones of CLIP over the 11 datasets to
support the transferability of TransCLIP across both convolutional networks and transformer-based
models. We additionally report other methods that do not fit into the transductive setting.

C.1 Zero-shot

In Table[9] We report performances of 5 CLIP encoders as well as the 8 billion parameter EVA-
CLIP [55]. We compare TransCLIP-ZS to unsupervised methods namely TPT [43]], MTA [68I],
SwapPrompt [41], and UPL [25]]. Note that TPT and MTA are two test-time augmentation methods
working on a single image at a time, thus they differ from our transductive setting, still we report
their performance for informational purposes.

UPL*. As mentioned in Sectiond] we slightly modify UPL to apply it to the test set in a transductive
manner (transductive UPL is denoted UPL*). Indeed, UPL relies on the generation of N = 16 hard
pseudo-labels per class from a training set, after what a cross-entropy loss function on soft tokens is
minimized. Instead, UPL* generates the pseudo-labels directly from the test set. For fairness, we
reevaluated the number of pseudo-labels to select and still found that 16 per class yields the best
results on average, as seen in Table @

C.2 TransCLIP-ZS on top of few-shot methods

In Tables[I0} [T} [T2} [T3]and[T4] We report the performance of TransCLIP-ZS on top of CoOp [73],
Tip-Adapter-F [70], PLOT [8]], TaskRes [66] and ProGrad [74] for five encoders. The results are
consistent with the main findings of Section 4] and indicate their generalization for several encoder
architectures.

C.3 Cross-Dataset transferability

In Table @ We report the performance of TransCLIP-ZS on top of CoOp [73], CoCoOp [72],
ProGrad [[74]], PromptSRC [30] and MaPLE[29]. We additionally report PromptAlign [[1]], which
is working on a single image at a time and thus differs from our transductive setting. Note that
PromptSRC and MaPLE introduce learnable vision tokens, and are therefore not compatible with
convolutional-based encoders. The results are similar to those of Section

C.4 Domain Generalization

In Tables[I6]and[T7] We extend the results from Table[3]to five encoders. These results support those
of Section4|and show that TransCLIP can improve both zero- and few-shot model generalization for
various encoders.
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C.5 Transductive few-shot learning

In Tables [I8] [T9] 20} [21] and 22] we implemented transductive methods from the traditional few-
shot literature that align the most with our work in terms of computational efficiency and wide
applicability: TIM [3]], LaplacianShot [76], BD-CSPN [37]], TF [13], and PT-MAP [24]. Additionally,
due to the lack of transductive methods in Vision-Language and to ensure more comprehensive
comparisons, we introduce a hybrid method named CoOp+UPL. This method combines prompt
learning with both labeled shots and selected pseudo-labels following the methodology of UPL [23].
More details on each method and their validation procedure are outlined below. Methods with tunable
hyper-parameters are fine-tuned using the validation split provided with each dataset. In line with
other work [48]], validation is performed for each dataset and for every shot number, setting the
number of validation shots at min(4, #shots). Hyper-parameters are then optimized through a grid
search to maximize accuracy on the validation set. Note that we only search for ~ across 4 values for
TransCLIP. More details on the grid search for each method is given below. Detailed results for the
five architectures studied in this paper are available in Table Now we describe the
implementation details for each reported transductive few-shot methods.

Transductive Fine-Tuning. We follow the original implementation of Transductive Fine-
Tuning [[13]. The authors kept the hyper-parameters fixed for all datasets since the goal was to
propose a simple baseline, with a temperature set to 1 and the number of training steps to 25. How-
ever, they pointed out possible improvements if the hyper-parameters were tuned for each dataset.
Therefore, we search for the optimal temperature value by validation in {0.25,0.5, 1, 2,4} and the
number of iterations in {10, 15, 20, 25, 30, 35, 40}.

BD-CSPN. We follow the original implementation of BD-CSPN [37]. Regarding the hyper-
parameters, this method generates Z pseudo-labels per class from the query set to augment the
support set and to build the K prototype vectors. They also introduce a temperature scaling parameter
¢ for the computation of the prototype vectors. The authors set Z to 8 and the temperature scaling ¢
to 10. We search for the value of Z in {0,1,2,3,4,5,6,7,8,9,10} and € in {2.5, 5, 10, 20, 40} by
validation.

LaplacianShot. We follow the original implementation of LaplacianShot [[76]. They balanced
the Laplacian regularization term with a factor A and used k-nearest neighbors consistency.
We follow the proposed ranges to find the hyper-parameter values by validation, with A in
{0.1,0.3,0.5,0.7,0.8,1,1.2, 1.5} and the number of neighbors to consider k in {3, 5, 10}.

PT-MAP. We follow the original implementation of PT-MAP [24]. In their work, the authors show
a small performance sensitivity to the learning rate o used to update the class prototypes through
iterative adaptation. Following their discussion, we search « in {0.2,0.4}.

TIM. We follow the original implementation of TIM [5]. The authors proposed two solvers to
find the solution to the minimization problem: gradient-descent TIM (TIM-GD) and alternating-
direction method (TIM-ADM). We decide to focus on the second approach since there are fewer
hyper-parameters to tune. They set the weighting factors of the cross-entropy, the marginal entropy,
and the conditional entropy terms to 0.1, 1 and 0.1, respectively. They also introduced a temperature
parameter 7 in their classifier and set it to 15. We search for the values of the cross-entropy and the
conditional entropy factors in {0.05,0.1,0.4,0.7, 1} and the temperature in {5, 10, 15, 30,60} by
validation.

CoOp+UPL. We implement a natural extension of CoOp to include the pseudo-labels proposed by
UPL. As in UPL, N = 16 hard pseudo-labels per class are generated according to the prediction’s
confidence. Pseudo-labels from the query set P C Q and labeled shots from S are unified into a
single learning set S U P. To separate the contribution of the pseudo-labels from the labeled shots,
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we split the cross-entropy loss function into two terms:

Lsop(VI{xhI™) = i " Looon(Vixy) ®)
JES
L X B e|0,1
|,P|j%7:3 UPL | J [ ]

Where V denotes the vector of learnable context token embeddings. Despite increased computational
needs, we search for the value of 8 in {0.1,0.3,0.5,0.7,0.9} by validation for the sake of fairness.
The number of epochs, the learning rate and its schedule, the optimizer and the context tokens
initialization follow exactly the CoOp implementation.

D Limitations

As discussed in Section ] the gain of TransCLIP-ZS on top of few-shot methods tends to decrease
when the number of shots is high (e.g., 16 shots) and future works may investigate this aspect.

Secondly, as TransCLIP’s performance relies greatly on its text-regularization term, TransCLIP is
subject to some biases. One notable bias pertains to the quality of text embeddings within each class.
Recent literature has highlighted that these embeddings exhibit a preference for more frequently
occurring concepts [57]. However, this issue may be mitigated through our proposed few-shot
extension (e.g., introducing labels for more challenging classes).
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Figure 2: Sensitivity analysis of A\. Lower values reduce penalty towards zero-shot prediction and are
more appropriate for higher number of shots. Top-1 accuracy averaged over 11 datasets is reported.

Table 8: Runtime and performance comparison between TransCLIP-ZS and zero-shot prompt learning.
UPL* is a transductive adaptation of the original unsupervised procedure in [25]. "Prediction" refers
to similarity measurement for CLIP and UPL*, and to the iterative procedure for TransCLIP-ZS.

Dataset #samples Training Images + Texts encoding  Prediction Total Top-1 accuracy
CLIP / 58.7 sec ~0 sec 58.7 sec 66.6
ImageNet 50,000 UPL* 151 min 58.7 sec ~0 sec 152 min 69.6
TransCLIP-ZS / 58.7 sec 14.4sec  73.1sec 70.3
CLIP / 49.2 sec ~0 sec 49.2 sec 62.5
SUN397 19,850  UPL* 39 min 49.2 sec ~0 sec 40 min 67.4
TransCLIP-ZS / 49.2 sec 2.6 sec 51.8 sec 68.9
CLIP / 20.5 sec ~0 sec 20.5 sec 65.6
StanfordCars 8,041 UPL* 20 min 20.5 sec ~0 sec 20 min 71.1
TransCLIP-ZS / 20.5 sec 0.7 sec 21.2 sec 69.4
CLIP / 4.8 sec ~0 sec 4.8 sec 70.7
Flowers 2,463 UPL* 9 min 4.8 sec ~0 sec 9 min 73.5
TransCLIP-ZS / 4.8 sec 0.2 sec 5.0 sec 76.7
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Table 9: Adaptation of CLIP on 11 classification datasets with zero-shot methods.

&
& A & S & > & & > o
S Q S > Q
Method § S & & & S <& & & O & &
& B ¥ & & ) &S N S ¥
CLIP-ResNet-50 58.0 58.8 17.0 36.2 55.7 77.4 85.8 66.0 85.7 429 61.9 58.7
+ TransCLIP-ZS 608,28 642,54 16604 596,934 579,55 780,06 893,36 722,62 886,30 478,50 688,60 640,53
TPTw/a photo of a  60.7 615 176 283 58.5 749 84.5 62.7 87.0 408 60.8 57.9
UPL* 61.6 63.3 167 52.1 63.1 78.0 89.1 69.3 85.7 470 65.8 62.9
SwapPrompt 61.8 639 180 46.6 59.6 75.1 89.1 7022 899 473 65.7 62.5
CLIP-ResNet-101 60.6 59.0 17.9 32.7 63.2 80.7 87.0 64.4 89.9 37.2 61.1 59.4
+ TransCLIP-ZS 648,45 651,60 192,13 593,266 686,54 819,15 898,57 726,55 930,37 429,57 689,75 660,46
UPL* 63.7 63.5 18.1 613 69.5 80.9 90.0 67.3 88.3 4238 67.3 64.8
CLIP-ViT-B/32 61.9 62.1 19.1 452 60.2 80.4 87.4 66.5 915 427 636 61.9
+ TransCLIP-ZS 649,30 676,55 203,13 590,138 633,32 815, 890,17 74479 918,03 504,77 687,51 665,46
UPL* 64.6 66.4 19.1 59.3 64.8 81.0 89.8 69.7 89.8 483 67.8 65.5
CLIP-ViT-B/16 66.6 62.5 24.7 483 65.6 85.9 89.1 70.7 93.2 435 67.5 65.3
+ TransCLIP-ZS 703,37 689,63 2695, 651,168 694,38 81,2 926,35 767,59 92705 495,60 T44i6o 703,51
TPTw/a photo of a  69.0 65.5 248 424 66.9 84.7 87.8 69.0 94.2 478 68.0 65.5
MTA W/ a photo of a 693 65.0 253 38.7 68.1 85.0 88.2 68.3 94.1 456 68.1 65.1
UPL* 69.6 674 247 69.5 711 85.8 924 73.5 91.9 477 73.7 69.8
CLIP-ViT-L/14 72.9 67.7 326 60.3 76.9 90.9 93.5 79.5 95.2 53.5 74.9 72.5
+ TransCLIP-ZS 712,43 3559 353,27 159156 19001 919,40 947,15 853,53 974,23 600,65 817,67 Tl4.40
UPL” 76.6 7.2 35.1 61.7 82.6 90.9 95.2 83.7 94.9 572 80.1 75.5
EVA-CLIP-8B 825 764 57.9 625 948 935 96.3 86.8 98.0 63.6 844 815
+ TransCLIP-ZS 846,51 800,37 594,15 819404 950,02 93904 963,00 918,50 983,03 686,50 96,05 858,43

Table 10: TransCLIP atop inductive vision-language zero-shot and popular few-shot methods for
ResNet-50 vision encoder.

&> a 9 < & S g > &
Method s & E & & & & S & & &
& & 8 & e s = R <
E CLIPResNet:50 580 588 170 362 557 774 858 66.0 857 929 619 587
F TanCLIPZS 608,35 642,54 16604 96,34 7905 T80, 8936 22,6, 886,30 418,50 688,59 640,53
CoOp 574 600 85 494 558 742 8509 9.0 73 451 629 596
+TansCLIPZS 602,55 653,53 93,08 STlig 88,30 7107 869,15 S8l6p6 887,54 525, 6.1, 64347
. TIP-AdaperF  6L1 621 186 502 50.2 71 863 78.1 883 476 647 630
E oTmCLIPZS 623,55 665,43 192,06 664,562 603,11 718,07 892,59 891410 88906 528,55 L0653 676,46
% TaskRes 6l €20 209 50.8 50.4 748 844 75.4 885 496 645 637
+TrnsCLIPZS 624,10 664,44 20405 694,05 602,00 Tll,3 STln; Skigg 88303 5687, 693,45 674,37
ProGrad 578 609 189 55.0 58.6 763 880 722 8.1 464 6kl 624
+TransCLIPZS 605,57 660,51 18404 694,544 605,00 717,13 §7900 838,116 $87.06 Sl8isa 718177 670,46
CoOp 59.8 63.5 20.5 71.3 62.9 73.8 87.0 85.7 89.3 54.0 67.6 66.8
+TansCLIPZS 617,19 681,46 208,53 743y 640,q; 769,3; 889,59 Oldsg 905,53 596,57 783 0133
. TIP-AdaperF 626 656 254 70.5 63.4 79 867 §75 oLl 554 709 688
E TanCLIPZS 630,04 85,9 24607 10904 820 Tlg, 80,4 24l 03y 9743 T6T,s5 06,y
3 TaskRes 628 667 231 703 663 768 867 793 %06 574 619 680
+TrnsCLIP-ZS 633,05 692,55 21745 722,49 64545 7194, 889, 85lsg %dg; 609,35 Thdes 699,
ProGrad 625 03 23 741 65.1 77 896 o1.7 %08 598 762 709
+TrnsCLIP-ZS 625,15 693,33 23104 Thlag 65003 7175 896,55 Ol74 908,50 598,55 762,74 70959
CoOp 63.0 69.4 314 82.2 73.6 74.5 86.6 94.6 91.8 63.3 74.4 73.2
+TransCLIPZS 635,05 7llq; 299,5 8ligg 70535 715,50 886, 949,03 9ldgs 6574 sy 008
» TIP-AdperF 652 712 339 833 743 789 890 92.7 025 660 765 749
2 TansCLIPZS 64645 7100, 33307 805,85 72045 T8dgs $94gs by 9015 65505 19934 7463
€ TuskRes 644 708 201 75.5 9.8 786 893 04.7 005 647 M4 733
+TrnsCLIP-ZS 644, 708,05 20139 75545 69850 786,01 893,05 4T3 05,5 64T, 4 B,
ProGrad 634 09 318 819 73.9 70 882 04.2 023" 66 754 138
+TransCLIPZS 635,05 712,13 29055 98,5 70237 784,44 892,10 45,03 9043 657,50 945 79,
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Table 11: TransCLIP atop inductive vision-language zero-shot and popular few-shot methods for
ResNet-101 vision encoder.

&
& N < S & Q> & N S o
Method Q,Qge §9 & @%V' & S & & & Q&Q & A@@"ﬂ
& S ¥ ¥ e <° S & N
2 CLIP-ResNet-101 606 59.0 17.9 327 63.2 80.7 87.0 64.4 89.9 37.2 61.1 59.4
3 +TransCLIP-ZS 648,45 6510 192,93 593,266 68654 81912 898,37 726,58, 930,37 429,57 68973 660,56
CoOp 60.8 61.3 14.8 51.0 64.5 76.9 86.5 69.5 89.8 443 65.7 62.3
_ +TansCLIPZS 643,35 663,49 163,16 582,75, 702,57 798,59 891,56 806,111 9258 499,55 727,69 673,50
2 TIP-Adapter-F 63.6 61.4 19.2 46.3 64.8 80.2 87.2 71.5 91.7 46.3 65.9 64.0
% 4+ TransCLIP-ZS 664,55 671,57 210,15 661,595 706,57 818,16 903,37 884,09 928,51y 5L7,54 73173 699,50
TaskRes 63.6 62.6 225 529 66.4 782 86.3 74.8 91.2 49.2 67.3 65.0
+TransCLIP-ZS ~ 66.6,39 679,53 233,08 640,111 703,39 807,24 897,33 854,106 921,08 335,43 742,69 698,48
CoOp 63.0 65.9 26.8 67.4 703 77.8 87.4 85.5 923 55.5 723 69.5
_ +TansCLIPZS 660,39 697,38 277,19 7l4gy 738,35 805,57 90.1,7 94,55 938,45 597,41 773,49 72934
2 TIP-Adapter-F 65.0 65.3 274 68.6 70.9 81.2 88.4 90.1 93.0 583 74.1 71.1
% +TransCLIP-ZS 674,54 698,44 286,11 708,55 740,35 822,19 906,55 935,33 936,06 620,37 792.5; 738,57
TaskRes 65.3 68.0 243 61.9 724 80.4 88.0 78.6 92.9 56.5 71.0 69.0
+TransCLIP-ZS  67.7,54 713,33 254,11 685,65 749,55 818,14 909,55 869,83 938,99 616,50 785,75 728,38
CoOp 66.5 71.0 34.8 83.4 79.1 78.9 89.0 95.1 93.5 65.1 78.1 75.9
-~ +TransCLIPZS 685,50 730,50 349,01 83004 798,958 8Ll3 909,59 958,97 936,91 682,3; 812,37 773,14
-E TIP-Adapter-F 68.3 72.8 36.2 82.0 80.5 81.9 89.9 94.4 93.9 67.6 79.4 77.0
& +TransCLIP-ZS 692,09 735,07 366,04 80059 8l3,g 824,05 9L7.8 953,09 942,03 680,03 8l9,6 77747
TaskRes 67.6 72.1 35.5 74.9 80.6 81.9 89.5 94.9 94.6 68.1 79.5 76.3

+TransCLIPZS 693,17 733,15 3808 73910 808,05 826,07 909,14 955,06 94501 683,02 828,33 710507

Table 12: TransCLIP atop inductive vision-language zero-shot and popular few-shot methods for
ViT-B/32 vision encoder.

&
& 3 & S & > . & RN S o
Method g & & & R & ¥ & & & & &
& S v < ey < ® & N v

E CLIP-VITB32 619 62.1 19.1 452 60.2 80.4 87.4 66.5 915 427 63.6 61.9

F +TransCLIPZS 649,39 676,55 203,53 590,538 633,32 815,05 890,17 T4dgo 918,03 0477 687,51 66546
CoOp 60.8 633 15.6 519 59.5 75.7 87.7 715 91.8 47.1 66.0 62.8
+TransCLIP-ZS 639,31 683,50 177,50 649,130 634,39 788,30 892,15 843,58 922,04 53ls9 719,59 6805

5 TIP-AdapterF 64.3 65.4 222 59.7 61.1 80.4 87.5 811 92.4 509 66.5 66.5

2 +TransCLIP-ZS 665,51 699,45 233,51 718121 648,37 8ldyg 895,49 86,55 9235 559,50 72559 707,41

£ TaskRes 64.6 65.3 238 60.8 62.4 79.0 84.6 717 912 527 675 663
+TransCLIP-ZS ~ 66.7,51 698,45 239,01 734,126 042,18 807,17 882,35 866,39 O9l8,95 570,43 728,53 705.4]
ProGrad 62.0 64.8 21.1 535 60.5 78.2 87.9 74.4 91.5 51.1 66.6 64.7
+TransCLIP-ZS 649,509 692,44 222,11 633,98 636,37 802,50 896,17 864,120 921,06 558,47 720,54 690,43
CoOp 63.2 67.1 24.1 67.8 66.4 75.5 88.8 87.6 92.9 55.1 74.9 69.4
+TransCLIP-ZS 657,56 707,37 253,13 712,94 694,30 788,33 905,17 920,44 945 593,45 793,44 72935

~ TIP-Adapter-F 65.8 68.3 28.8 71.5 67.6 80.9 88.6 88.9 94.6 58.0 75.1 71.6

e

£ +TransCLIP-ZS 675,57 720,37 28503 768,53 685,09 8l7.,8 902,46 92535 93845 62141 78535 738,

4 TaskRes 66.1 70.1 253 68.8 69.5 80.4 873 81.8 93.9 57.9 717 702
+TransCLIP-ZS  67.8,17 727,56 256,04 711,83 703,08 8L6,; 900,57 883,65 942,03 619,40 76144 732,39
ProGrad 65.2 9.6 248 63.0 66.5 79.2 89.4 87.7 93.4 56.1 73.7 69.9
+TransCLIP-ZS 671,19 727,30 256,08 740,110 695,209 809,57 9L,z 927,50 92805 612,51 780,43 732,34
CoOp 66.8 723 328 82.4 76.1 78.6 88.8 95.5 94.9 64.9 78.5 75.6
+TransCLIP-ZS 684,16 742,09 3275 840,16 711,00 807,55 902,54 95500 954,05 673,24 81257 770,14

2 TIP-Adapter-F 68.4 74.1 3438 83.4 77.0 81.7 90.4 943 95.1 68.0 80.5 77.1

£ +TransCLIPZS 690,05 748,07 350,02 84lg7 773,03 820,03 90,06 953,50 9%lgg 67406 825,59 776,05

& TaskRes 68.2 73.5 37.0 76.9 78.1 81.4 89.4 95.5 95.6 68.1 803 76.7
+TransCLIP-ZS 692,11 746,70 35347 803,34 77208 820,06 907,53 9.lgg 94809 67804 823,20 772,05
ProGrad 66.9 732 332 80.6 762 80.2 89.4 95.1 95.0 653 80.0 75.9

+TransCLIPZS 684,15 748,15 33200 828,25 Tlligo 816,04 4,10 953,03 %305 67825 $27.25 7111,
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Table 13: TransCLIP atop inductive vision-language zero-shot and popular few-shot methods for
ViT-B/16 vision encoder.

& N > > <
Method & 6&% ! \p& & @&Q NS & & & N &S &
& S ¥ < & <° < o N A3

% CLIP-ViT-B/16 66.6 62.5 24.7 48.3 65.6 85.9 89.1 70.7 93.2 43.5 67.5 65.3

F +TmnsCLIPZS 703,37 689,63 2695 651.168 694,38 8T1ga 926,35 767,59 92705 495,60 T44eo 703,51
CoOp 65.7 66.9 20.7 56.4 67.6 843 90.2 78.2 92.5 50.1 71.2 67.6
+TransCLIP-ZS 693,36 715,46 238,31 653,80 719,43 863,50 919,15 898,115 938,13 554,54 717.65 72448
TIP-Adapter-F 69.5 67.2 28.8 67.8 67.1 85.8 90.6 83.7 94.0 51.6 734 70.9

. +TransCLIP-ZS 720,55 718,46 307,509 769,95 710,39 869,51 9314 928,97 93505 577,61 800,67 75l

% PLOT 66.9 67.0 28.9 72.8 68.5 84.9 91.9 81.8 94.0 52.8 74.7 71.3

£ 4 TransCLIP-ZS 758,59 703,33 28.1gg 788,60 700,16 853,04 Ollgs 932,114 %4009 567,39 8ldgy; 750,37
TaskRes 69.6 68.1 31.2 65.6 69.1 84.5 90.2 81.6 93.6 534 71.8 70.8
+TransCLIP-ZS 720,55 725,44 3ldygn 737,81 Tlb4 865,50 916,05 907,95 940,04 94,60 76446 745,37
ProGrad 67.0 67.0 28.7 57.0 68.2 84.9 91.4 80.8 93.5 52.8 73.3 69.5
+TransCLIP-ZS  70.1,37 716,46 305,18 709,130 723,41 865,06 927,14 915,07 %107 57951 793,61 74343
CoOp 68.8 69.7 30.8 69.6 74.4 84.5 92.5 92.2 94.5 59.4 77.5 74.0
+TransCLIP-ZS  7ld,56 733,35 330,03 71275 717,35 865,09 936,11 953,35 951,06 630,36 818,43 77131
TIP-Adapter-F 70.7 70.8 35.7 76.8 74.1 86.5 91.9 92.1 94.8 59.8 78.1 75.6

. +TansCLIP-ZS 727,19 744,35 361,05 797.09 759,18 874,00 932,13 955,33 951,03 640,45 833,55 779,53

£ PLOT 70.0 71.8 34.8 84.7 76.6 83.5 92.8 93.2 94.9 61.0 79.7 76.6

$ A TnsCLIPZS 772,75, 735,57 33909 81859 75805 856,25 92503 958,56 94801 636,06 833,36 780,14
TaskRes 71.0 72.8 333 73.8 76.1 86.1 91.9 85.0 94.9 59.7 75.5 74.6
+TransCLIP-ZS 730,50 753,25 34,1y T81ygq 772,01 873,02 930,01 924,74 951,05 643,46 792,37 712,27
ProGrad 70.2 717 34.0 69.5 75.0 85.4 92.0 91.1 94.4 59.8 77.9 74.6
+TransCLIP-ZS 723,51 750,33 355,16 74953 7190 870,15 97,57 953,45 95.l.0g 648,51 832,54 777,34
CoOp 71.9 74.9 433 85.0 82.8 84.2 91.9 96.8 95.8 69.7 83.1 79.9
+TransCLIP-ZS 733,14 766,15 42904 860,10 830,02 863,01 92,5 975,08 95901 713,17 854,23 8Ll
TIP-Adapter-F 73.3 76.0 44.6 85.9 823 86.8 92.6 96.2 95.7 70.8 83.9 80.7

= +TransCLIPZS 742,09 768,05 449,03 85207 827,04 87406 93,00 99,07 9705 69255 856,57 8ligy

% pLOT 725 76.0 46.8 9.1 84.6 85.6 925 97.1 9.0 711 84.8 81.7

€ 4 TrnsCLIPZS 778,53 75040 41849 84675 79649 859,02 92204 973,014 95050 687,4 857,00 80314
TaskRes 73.0 76.0 44.8 80.7 83.5 86.9 9.5 973 95.9 70.9 83.4 80.5
+TransCLIP-ZS 741,10 769,08 4365, 80503 82807 875,06 929,04 976,03 960,07 70297 862,55 808,03
ProGrad 72.1 75.1 42.8 83.6 82.9 85.8 92.9 96.6 95.9 68.9 82.6 79.9
+TransCLIP-ZS 735,14 768,17 42800 837,02 831,02 872,03 97,08 9408 960,07 7lds 861,34 8Ll g

Table 14: TransCLIP atop inductive vision-language zero-shot and popular few-shot methods for
ViT-L/14 vision encoder.

& 3 & S & N & > N o
Method § Q&q . \@'”\ & ;@&C °z>\° <& & @6“\ Q&C é‘@ &
& S < o < <} & ©
€ CLIP-VILLA4 729 677 326 0.3 769 90.9 93.5 79.5 95.2 53.5 749 725
F +TansCLIPZS 772,43 735,59 3327 759456 P0aq 9910 %72 85355 943 600,65 81767 Tldgy
CoOp 715 689 369 684 78.8 89.0 94.0 872 95.0 58.6 78.7 752
+TransCLIP-ZS 759,45 743,54 380,10 804,110 815,58 910,57 953,14 950,75 963,13 64liss 835,45 796,44
. TIP-Adapter-F 764 710 38.5 67.8 79.2 91.0 93.2 90.9 95.3 59.3 779 764
2 +TansCLIPZS 788,54 755,45 409,54 75577 80543 9909 9lgg s 9696 64955 Bsy 800,36
2 TaskRes 76.2 714 39.6 71.8 79.9 89.8 93.5 87.4 95.0 60.1 771 76.6
+TransCLIPZS 788,55 759,45 412,16 820,702 Slligas 9156 949,14 947,75 962,15 657,56 88.61 805,30
ProGrad 73.6 71.1 384 714 80.0 90.5 94.4 89.0 95.7 58.8 80.2 76.6
+TransCLIP-ZS 769,33 758,47 4llg 787,73 Sllyy 917,15 956,15 975,55 964,07 65970 840,35 804,35
CoOp 749 731 36 76.2 833 88.8 946 95.9 96.7 64.1 83.0 795
+TransCLIP-ZS 779,30 769,35 440,05 S8l6,s5 840,07 91254 958,15 973,14 94i07 61736 859,30 818,23
. TIP-Adapter-F 77.0 74.1 474 814 82.3 91.2 94.0 95.5 96.5 644 83.9 80.7
2 +TansCLIPZS 190,50 77235 476,02 830, 829,06 91907 948.0g 98S.39 97545 690,46 8737 826,59
3 TuskRes 77.1 749 425 7.3 83.6 90.6 94.4 90.1 96.6 65.1 80.0 793
+TransCLIPZS 794,55 785,36 #4954 S8ldrg; 83203 918.1 957,13 95,64 977.11 680,29 861,61 S21g
ProGrad 76.5 749 445 793 83.9 90.6 948 95.6 96.7 66.1 83.9 80.6
+TransCLIP-ZS 788,53 782,35 468,53 826,33 840,01 918,15 958,11 97953 974,06 703,45 877,35 828,25
CoOp 782 775 554 87.2 89.1 89.8 94.6 99.1 972 741 872 845
+TransCLIP-ZS 795,13 798,53 546407 905,34 88045 9157 954,05 94,04 9l.ge 753,15 890,15 856,11
5 TIP-Adapter-F 793 79.6 55.8 86.1 88.1 91.6 94.6 98.3 97.5 74.0 87.4 84.7
£ +TransCLIPZS  80.0,009 800,04 560,05 888,27 87407 919,04 957,11 %lige 97904 73901 888,14 854,07
©  TaskRes 78.1 76.7 55.0 83.7 87.6 91.5 94.6 97.7 972 74.2 86.2 83.9
+TransCLIPZS 798,17 794,57 52955 853,16 85455 920,05 953,07 994,17 978,06 72615 889,26 S4di0c
ProGrad 78.4 78.3 556 88.5 88.7 90.8 94.8 98.8 973 73.7 87.9 84.8
+TransCLIP-ZS 796,15 800,15 54254 907,25 87344 91951 958,10 9406 978:05 751i13 900,51 856,05

https://doi.org/10.52202/079017-1988

62244



Table 15: Cross-Dataset transferability evaluation for five encoders. Few-shot learning methods are
trained on 16-shot ImageNet and evaluate on the ten other fine-grained datasets. Average excludes
ImageNet.

Source Target
& o . < & > & S N o
Method q,ef S o .\@“é @%v ;@&Q §>\Q Q?"% «Xé\ @5\\ Q&Q Cf‘\g 4&%
& & IS & s & < &8 & N v

CoOp 63.0 56.5 13.8 22.7 53.1 73.6 84.2 56.7 85.7 345 56.9 53.8
%+ TransCLIP-ZS 635,05 624,50 142,04 386,060 561,30 762, 847,05 662,95 874,17 383,37 62556 587,49
] CoCoOp 63.2 61.5 16.5 27.1 55.9 78.1 88.2 65.5 88.6 39.6 61.1 58.2
% +TransCLIP-ZS 665,35 632,17 16501 360,89 572,53 74735 86l,; 708,53 885, 433,37 650,39 60.1.59
& ProGrad 63.4 58.4 13.5 242 52.6 75.9 859 61.8 85.9 36.1 57.6 55.2

+ TransCLIP-ZS 635,02 633,49 141,96 3724430 557,309 772413 875.1¢6¢ 700,85 885,56 421,609 62549 598,46
§ CoOp 66.5 584 14.2 25.3 59.5 79.1 86.0 60.4 88.3 342 56.4 56.2
T +TransCLIP-ZS 685,50 637,53 152,10 309,56 652,57 8L0,19 869,09 697,94 903,19 379,37 637,73 604,43
Z. CoCoOp 65.2 62.9 17.8 25.8 62.8 81.4 87.2 64.0 91.3 39.8 61.1 59.4
& + TransCLIP-ZS 734,81 656,37 17891 452,193 673,44 799415 87193 Tlbi7g 90994 400,93 674,63 633,39

CoOp 66.8 60.6 14.2 31.8 56.9 78.8 85.6 58.9 90.3 35.9 61.8 57.5

+ TransCLIP-ZS 684,16 657,50 149,07 495,177 604,35 804,15 865,09 680,90 929,56 404,45 676,55 626.5;
«  CoCoOp 66.0 64.6 17.8 40.5 59.6 80.8 88.2 65.4 92.1 42.7 64.9 61.7
E + TransCLIP-ZS 79,59 674,28 178,99 544,139 610,75 790419 8575 739,85 924,93 478,57 710,509 650,34
= ProGrad 66.9 61.9 13.5 334 56.3 79.6 86.3 60.8 91.4 38.0 62.5 58.4
£+ TransCLIP-ZS 684,15 665,45 142,97 S17.484 598,35 808,73 869,96 709.701 925.10 425,45 678,53 634,59

MaPLE 65.7 65.0 18.1 41.0 60.6 80.8 88.4 65.5 91.6 423 63.6 61.7

+ TransCLIP-ZS Tld,sg 617,57 185,04 546,136 604gs 787,55 85439 72540 922,06 468,45 689,53 646,59

MaPLE w/ PromptAlign / 66.1 18.8 39.7 63.5 82.1 88.4 66.1 92.1 42.5 65.6 62.5

CoOp 71.9 62.0 15.7 44.6 62.1 84.3 88.3 67.1 92.7 39.5 64.1 62.0

+ TransCLIP-ZS 733,14 674,54 171,74 545,99 668,48 863,50 894,51 42,7, 934,97 41,6 699,57 661,47

CoCoOp 71.1 67.0 22.7 44.6 64.9 86.2 90.7 71.6 93.9 452 68.8 65.6
o+ TransCLIP-ZS 768,57 696,57 22647 92,046 670,5; 85405 89809 790,74 943,03 506,54 745,57 692,36
E ProGrad 72.1 63.9 21.6 38.9 64.0 85.9 90.2 67.8 92.9 432 65.9 63.4
£+ TransCLIP-ZS 735,14 686,47 227,01 552,064 679,38 870,15 O9l3,5; 739,61 940,1; 466,34 73546 68.l4e
z PromptSRC 71.4 67.3 24.1 45.0 65.6 86.5 90.1 70.5 93.8 46.2 68.9 65.8

+ TransCLIP-ZS 769,55 699,06 249,08 94,144 676,00 85312 89407 167,65 942,04 Sllsg 760,79 694,37

MaPLE 70.5 67.3 24.4 45.8 65.7 86.4 90.4 72.0 93.7 46.3 68.7 66.1

+ TransCLIP-ZS 766,61 698,25 245,07 595,437 668,15 854,09 89797 780,69 943,06 494,31 T4d5¢ 692,34

Maple w/ PromptAlign / 67.5 24.8 479 68.5 86.7 90.8 72.4 94.0 47.2 69.5 66.9

CoOp 78.2 64.9 21.6 51.4 75.5 89.3 91.0 68.9 93.6 43.6 68.8 66.9

+ TransCLIP-ZS 795,14 706,57 243,58 72713 790,34 Ollgg 936,56 T8l9s 96255 48246 753,65 72960
= CoCoOp 718 70.8 31.0 47.4 71.9 91.4 94.1 76.2 97.1 50.7 74.1 71.1
=+ TransCLIP-ZS 819,41 738,39 332,57 763,589 787,98 90698 944,93 8ldsy 971,97 555,47 792,51 760,49
E ProGrad 8.4 66.9 24.8 45.4 75.9 90.4 93.1 73.4 95.3 458 71.8 68.3

+ TransCLIP-ZS 796,15 724,55 268,50 672,17 787,58 916,15 956,55 14,60 966,03 519,60 78466 T38ise

MaPLE 77.2 71.6 30.2 55.7 71.3 91.3 93.1 76.7 96.2 53.8 74.9 72.1

+ TransCLIP-ZS 816,44 T4ls 328,96 752,006 783,50 90508 942,11 830,63 974,15 562,54 8l0g; 763,42

Table 16: Domain Generalization evaluation for five encoders with manual prompting strategies.

Source Target
Method ImageNet Adversarial ImageNetV2 Rendition  Sketch Average  Average OOD
& W/ a photo of a 58.0 22.0 51.2 56.1 333 44.1 40.7
‘;j + TransCLIP-ZS 608+28 21.5_0_4 51.4+0.1 5248_3.3 35. 1+1.8 44.3+0.2 40.2_0_5
% w/ custom templates 60.3 23.8 53.4 60.5 355 46.7 43.3
o  + TransCLIP-ZS 61 .7+1'4 23.4_0'5 52'6-0.8 56.4_4'2 36.6_‘_1‘1 46'1-0.6 42,2_1.1
§ w/ a photo of a 60.6 28.2 54.3 64.2 38.0 49.1 46.2
‘qu + TransCLIP-ZS 64.8+4_2 29.2+1'0 56.2_*_1‘9 65. 1+1‘0 42.2_*_4‘3 51.5+2‘5 48.2_'_2'0
Z. w/ custom templates 62.5 29.8 56.1 67.7 40.6 514 48.6
é’ + TransCLIP-ZS 656+30 30'6+0.8 57.0+0.9 68.2+0.5 44.0+3.4 53. 1+1.7 49.9+1.4
Q w/ a photo of a 61.9 29.9 54.7 66.8 40.8 50.8 48.1
Ef + TransCLIP-ZS 64.9+3.0 30‘5+0.6 55.7+1‘1 67.0+0‘2 43'6+2.8 52.4+1‘5 49‘2+1‘2
&= w/ custom templates 63.8 32.1 56.3 69.5 42.1 52.8 50.0
> + TransCLIP-ZS 66.2+2_5 32.4+0‘3 56.6_'_0‘2 69.2_0‘3 44.3+2‘1 53.7+1‘0 50'6+0.6
> w/a photo of a 66.6 479 60.6 73.8 46.0 59.0 57.1
af + TransCLIP-ZS 703,37 495,17 623,17 750,13 497,37 6l4m4 591421
&= w/ custom templates 68.8 50.6 62.3 71.8 48.4 61.6 59.8
- + TransCLIP-ZS 71.5+2'7 52‘l+1‘4 63.4+1_1 78.1+0_2 51.1+2_7 63'2+1.6 61‘2+1'4
= w/ a photo of a 729 68.4 67.2 85.3 574 70.2 69.6
E. + TransCLIP-ZS 77.2+4_3 71.4+3'0 69. 1+1.8 87. 1+1.8 60'0+2.6 72.9+2'7 71.9+2'3
= w/ custom templates 75.9 70.9 70.2 87.8 59.7 72.9 722
» 4+ TransCLIP-ZS 786,27 736,27 70.8.0.5 89.0,11 619,25 748,18 73.841.6
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Table 17: Domain Generalization evaluation for five encoders. Few-shot learning methods are trained
on 16-shot ImageNet and evaluated on the 4 other variants.

Source Target
Method ImageNet Adversarial ImageNetV2 Rendition  Sketch Average  Average OOD
& CoOp 63.0 22.0 55.0 55.0 32.8 455 41.2
*;I, + TransCLIP-ZS 63.5_'_0.5 21.0_1‘0 53.6_1.4 52.3_2.7 34.8+2.0 45.0_0‘5 40'4—0.8
% TaskRes 64.6 229 56.4 60.8 359 48.1 44.0
7 + TransCLIP-ZS 64.4_0‘2 21.7_1_2 54‘8—1.6 56'2—4.6 36.9+1‘0 46.8_1‘3 42'4—1.6
S CoOp 66.5 29.5 58.3 63.6 39.0 51.4 47.6
:; + TransCLIP-ZS 68.5_'_2.0 29.9_'_0.5 58.6+0_2 64.8+1'2 42.3+3.3 52.8+1_4 48.9+1.3
7. TaskRes 67.6 30.0 59.6 68.4 41.8 53.5 49.9
é + TransCLIP-ZS 69.3_'_1.7 30.2_'_0'2 59.3_0.4 68‘8_'_0‘4 44.6+2.9 54A4+1_0 50‘7+0.8
Q CoOp 66.8 31.2 58.5 65.2 40.1 52.3 48.7
a + TransCLIP-ZS 68'4+1.6 3143_‘_0'1 58.3_0'2 65.5+0'3 42'7+2.6 53.2+0_9 49.4+0.7
B TaskRes 68.2 31.3 59.3 69.5 42.5 54.2 50.6
> 4+ TransCLIP-ZS 692,11 313,91 9192 69303 #4954 548,06 512,05
e CoOp 71.9 49.4 64.1 75.1 47.1 61.5 58.9
g + TransCLIP-ZS 73.3+1'4 50.8+1'3 64.6+0‘4 75.7+0‘7 50.3+3‘2 62.9+1'4 60.4+1.4
= TaskRes 73.0 50.3 65.6 71.8 49.2 63.2 60.7
> + TransCLIP-ZS 74.1+1'0 51'9+1.6 65.4_0'2 78‘4+0.6 51.6_‘_2.4 64.3+1'1 61.8_‘_1.1
x CoOp 78.2 69.4 70.8 85.4 57.5 72.3 70.8
E. + TransCLIP-ZS 79.5+1.3 71'9+2.6 71‘1+0‘3 86‘9_'_1‘5 60.0_'_2.5 73A9+1_6 72.5+1.7
= TaskRes 78.1 71.3 71.6 87.9 60.1 73.8 72.7
> + TransCLIP-ZS 79.8+1.7 74.2+3.0 71 .8+0‘2 88.9_'_1‘1 62.0+1.9 75'4+1.6 74.2+1.5

Table 18: Detailed results of transductive methods in the few-shot setting for the 11 datasets with
ResNet-50 as visual backbone.

& a S & > & S > o
Shots  Method {begé §q . \‘c‘& @C’v ;@&o ob\Q Qe\% 4@%‘5\ &c\ Q&Q é{@ \\é‘bqﬂ
& S Aot <X %\r&\ <° Q® 0‘25 N v
TF 20.6 31.2 13.1 39.0 21.8 28.3 272 53.6 66.1 27.7 38.1 333
BD-CSPN 24.7 36.9 139 40.3 27.2 34.1 34.1 66.7 74.3 32.8 434 38.9
LaplacianShot 23.8 355 14.0 423 27.0 347 3713 66.6 72.4 328 432 39.1
1 PT-MAP 29.4 429 15.7 48.0 33.8 448 565 61.4 46.9 386 522 427
TIM 26.1 40.0 13.4 425 27.3 414 350 69.1 623 31.7 469 39.6
CoOp + UPL 59.6 63.4 17.5 54.7 56.4 753 828 735 87.4 483  66.1 62.3
TransCLIP-FS 55.7 63.5 20.6 70.3 56.2 712 86.9 83.7 87.4 51.3 70.7 65.8
TF 29.6 43.1 16.6 572 323 414 40.1 68.4 715 414 513 454
BD-CSPN 332 48.1 17.8 58.6 36.2 474 50.0 77.0 80.7 432 54.1 49.7
LaplacianShot 33.1 47.8 17.7 60.0 36.1 48.7 50.4 71.5 81.0 433 55.2 50.1
2 PT-MAP 39.3 54.6 19.3 61.4 435 60.1 67.0 68.9 51.5 50.4 61.9 525
TIM 355 522 18.2 60.2 38.1 57.2 51.7 79.7 76.1 44.2 59.6 52.1
CoOp + UPL 59.8 64.0 19.3 62.9 59.2 748 812 80.5 88.1 49.5  68.0 64.3
TransCLIP-FS 59.3 66.2 20.3 71.5 587 712 86.0 87.1 87.8 552 728 67.5
TF 38.5 53.1 20.4 64.9 428 525 493 80.7 83.6 484 593 54.0
BD-CSPN 40.7 549 20.2 65.4 434 56.6 543 83.7 84.0 48.1 59.8 55.6
LaplacianShot 40.5 549 19.7 68.0 433 580 555 842 839 479  60.1 56.0
4 PT-MAP 46.8 61.4 2238 69.5 50.7 66.6  70.0 71.0 54.6 563  68.0 58.0
TIM 433 59.1 229 71.0 49.6 64.0 58.8 87.6 79.1 532 65.8 59.5
CoOp + UPL 60.3 65.7 233 71.0 63.0 75.8 83.6 87.3 88.0 55.2 69.1 67.5
TransCLIP-FS 59.3 66.5 25.0 73.8 61.4 766  81.6 88.4 88.2 576 733 68.4
TF 45.1 59.7 24.1 66.8 512 61.1 61.7 86.4 86.3 559 65.1 60.3
BD-CSPN 45.6 59.6 22.9 66.2 50.4 624 657 87.5 85.5 546 651 60.5
LaplacianShot 452 59.1 22.4 69.1 49.6 634 657 87.6 85.8 539 659 60.7
8 PT-MAP 50.6 64.2 234 66.7 559 69.6 769 729 54.8 604  70.6 60.5
TIM 499 63.4 25.0 69.5 59.7 700 718 89.9 829 59.1 70.8 64.7
CoOp + UPL 60.9 67.0 26.0 71.7 66.5 755 827 91.2 88.3 590 714 69.1
TransCLIP-FS 59.9 68.3 28.0 745 67.6 76.9 86.6 90.4 88.7 62.1 76.1 70.8
TF 50.0 632 26.6 71.8 577 66.1 66.4 90.3 873 588 677 64.2
BD-CSPN 49.7 62.4 25.5 713 56.6 66.0 66.2 89.6 86.7 57.8 67.2 63.5
LaplacianShot 48.9 61.5 24.6 715 54.8 66.7 67.5 89.5 86.4 56.2 67.5 63.2
16 PT-MAP 54.1 66.1 25.6 68.1 61.1 70.6  79.0 75.2 57.0 624 710 62.7
TIM 55.5 66.8 30.8 81.6 68.0 724 750 88.9 85.7 63.1 74.4 69.3
CoOp + UPL 60.9 69.4 31.6 78.0 71.4 762 835 93.6 89.1 628 735 71.8
TransCLIP-FS 62.6 70.4 303 71.6 71.5 77.1 873 925 88.7 644 717 727
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Table 19: Detailed results of transductive methods in the few-shot setting for the 11 datasets with
ResNet-101 as visual backbone.

& A S & & & S > o
Shots  Method &;o% Qe“’q . \@”& & ;@&O R & O & &
&S ¥ & & X
F 249 33 160 385 294 343 371 570 716 297 435 378
BD-CSPN 299 402 168 395 35.1 26 510 700 796 321 518 444
LaplacianShot ~ 30.0 400  17.1 4056 372 438 518 717 794 349 521 453
1 PTMAP 343 462 181 493 440 530 695 650 516 3901 589 4.1
TIM 35 M2 166 429 39.0 549 518 776 665 361 562 470
CoOp+UPL 627 645 208 636 617 778 838 728 896 470 691 649
TransCLIP-FS 643 666 196 672 700 829 915 804 912 470 701 683
TF 348 466 196 537 412 491 511 738 831 423 563 501
BD-CSPN 399 517 203 542 46.7 577 604 808 855 455 594 547
LaplacianShot 399 518 209 593 46.9 50 632 819 8§59 455 598 558
2 PLMAP 43 574 208 620 52.9 657 766 710 562 525 658 569
TIM 024 556 199 635 50.2 62 673 855 815 490 626 588
CoOp+UPL 630 654 236 664 66.6 778 852 812 894 514 709 674
TransCLIP-FS 646 672 227 683 70.7 808 891 852 915 498 728 693
TF 449 569 237 628 53.4 616 6L1 837 875 515 654 593
BD-CSPN 478 588 237 62 544 660 701  86.1 877 512 654 612
LaplacianShot 477 589 234 719 543 673 709 868 877 511 658 623
4 PTMAP 517 638 255 680 603 716 799 746 564 574 710 618
TIM 512 632 251 736 614 758 768 870 878 553 717 663
CoOp+UPL 639 674 254 708 9.3 795 855 8§74 903 556 732 692
TransCLIP-FS 651 687 262 737 716 813 901 886 917 564 732 715
TF 515 629 270 633 61.5 6.0 723 8.1 897 582 702 650
BD-CSPN 527 61 273 627 61.0 709 768 895 894 570 703 655
LaplacianShot 523 628 268 684 60.7 717 773 8956 892 560 703 659
8  PLMAP 555 665 281 670 64.6 737 846 766 594 6L1 722 645
TIM 566 673 281 743 700 770 853 915 886 605 717 701
CoOp+UPL 646 690 283 779 735 795 858 921 907 612 758 726
TransCLIP-FS 650 9.6 279 712 744 815 903 890 917 617 761 726
F 563 668 307 680 680 736 763 920 909 619 726 688
BD-CSPN 564 661 308 660 67.2 734 764 918 908 605 724 683
LaplacianShot 560 655 294 712 65.8 744 786 917 902 588 723 685
16 PTMAP 586 683 309 695 69.2 753 853 782 615 629 T34 666
TIM 614 706 346 792 75.8 788 844 918 889 672 764 736
CoOp+UPL 646 711 349 821 776 795 857 940 920 652 711 749
TransCLIP-FS 664 711 284 738 77.1 816 906 908 923 615 768 737

Table 20: Detailed results of transductive methods in the few-shot setting for the 11 datasets with
ViT-B/32 as visual backbone.

& N & S & > & S N <
Shots  Method @eg/é §Q . \@&K @c}’ @@O ob\m Q@\% sz}%\ < > Q&Q C/Q\Q 4@&%
& S ¥ & %\@\ <9 N o> N v
TF 25.1 36.1 14.6 44.4 26.7 344 333 60.0 74.4 29.0 464 38.6
BD-CSPN 30.1 429 16.2 457 33.8 412 439 73.1 80.2 308 526 44.6
LaplacianShot 29.2 41.7 16.1 48.6 332 43.1 43.8 73.3 80.6 32.7 529 45.0
1 PT-MAP 33.1 48.8 17.0 54.8 38.6 49.8 50.9 62.4 52.5 379 57.0 45.7
TIM 315 47.6 16.6 552 36.4 51.4 48.4 76.8 71.5 35.6 57.6 48.1
CoOp + UPL 63.0 66.2 21.0 64.0 58.1 78.8  84.0 74.4 89.7 520 683 65.4
TransCLIP-FS 64.3 68.9 22.7 63.5 63.7 822  90.1 83.2 92.2 523 69.5 68.4
TF 34.7 49.5 19.3 56.5 374 48.7 474 75.1 83.9 44.5 57.7 50.4
BD-CSPN 39.2 53.1 20.7 57.2 42.1 555 552 82.4 86.8 456  61.6 545
LaplacianShot 39.1 53.9 20.4 58.3 424 577 5713 82.5 86.7 459  62.6 552
2 PT-MAP 426 60.1 22.3 63.7 46.0 639 640 69.5 55.6 504  66.8 55.0
TIM 41.1 59.0 21.1 68.9 44.1 662  60.1 86.5 81.5 486  68.1 58.7
CoOp + UPL 63.4 66.6 22.8 719 60.8 785 85.0 81.0 90.1 53.5 70.2 67.6
TransCLIP-FS 64.8 69.5 22.9 76.9 63.8 81.2 89.9 854 92.1 529 71.0 70.0
TF 44.5 59.4 232 62.1 48.6 60.8 579 85.2 89.1 52.6 65.2 59.0
BD-CSPN 47.0 61.1 23.4 64.2 49.1 65.3 64.8 87.2 89.4 52.0 67.0 61.0
LaplacianShot 46.8 61.1 23.6 68.4 492 65.6  66.6 87.6 89.3 514 675 61.6
4 PT-MAP 50.1 65.5 24.1 68.9 523 703 69.0 73.3 57.3 56.1 70.1 59.7
TIM 50.4 65.0 24.7 70.0 56.1 73.0 744 90.5 88.7 559 718 65.5
CoOp + UPL 63.9 68.8 26.6 72.6 63.7 782 852 88.8 90.1 554 731 69.7
TransCLIP-FS 64.7 70.1 26.4 78.0 66.5 803 872 88.7 92.2 580 743 715
TF 50.9 64.7 27.1 67.6 57.1 685  68.0 89.4 90.5 582 707 64.8
BD-CSPN 512 64.8 27.4 66.5 56.9 69.6 717 90.0 89.6 563 710 65.0
LaplacianShot 51.0 64.3 26.4 70.0 559 704 73.7 90.2 90.1 55.4 70.8 65.3
8 PT-MAP 53.7 68.3 274 70.9 585 72.8 754 752 59.7 59.4 71.5 63.0
TIM 56.2 69.0 284 75.8 65.1 76.1 79.6 923 87.4 63.3 754 69.9
CoOp + UPL 64.8 69.7 30.0 79.6 68.9 793 855 91.6 91.8 62.1 73.9 72.5
TransCLIP-FS 65.5 71.3 28.0 782 70.8 81.0 894 90.0 92.3 61.1  77.0 732
TF 55.6 68.0 29.7 69.7 62.9 726 737 92.0 91.6 61.6 731 68.2
BD-CSPN 553 67.5 29.8 69.5 62.3 729 742 91.9 91.7 59.6 733 68.0
LaplacianShot 54.8 66.7 28.4 71.2 60.9 732 753 91.3 91.3 583 729 67.7
16 PT-MAP 56.9 69.9 29.2 71.3 63.1 74.1 8.7 77.1 60.7 61.9 72.9 65.1
TIM 60.5 71.8 33.0 794 722 78.1 85.0 92.8 88.4 66.6 78.1 733
CoOp + UPL 64.8 71.9 34.1 84.3 73.6 79.0 85.8 94.2 92.4 64.8 78.3 74.8
TransCLIP-FS 66.6 72.6 30.1 78.9 732 81.1 895 90.9 94.4 627 712 74.3
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Table 21: Detailed results of transductive methods in the few-shot setting for the 11 datasets with
ViT-B/16 as visual backbone.

& A S & & & S > o
Shots  Method &;o% Qe“’q . \@”& & ;@&O R & O & &
&S ¥ & & X
F 297 381 192 460 325 535 382 6718 755 316 488 428
BD-CSPN 354 457 220 457 420 542 529 829 835 347 580 506
LaplacianShot 349 445 221 521 411 530 522 831 834 358 573 509
1 PTMAP 401 526 238 597 484 644 618 694 sal 418 635 527
TIM 375 483 228 482 4438 657 539 864 750 358 627 528
CoOp+UPL 688 685 272 700 68.9 836 906 8§17 927 513 731 706
TransCLIP-FS 698 706 299 725 709 879 938 8438 931 533 784 732
TF 405 516 253 63l 451 538 548 832 870 473 594 560
BD-CSPN 461 561 267 647 50.7 675 646 896 896 489 640 608
LaplacianShot 458 559 271 682 511 682 660 897 896 489 651 614
2 PLMAP 507 6.1 286 717 575 775 757 739 59.1 538 687 619
TIM 479 607 281 758 55.7 787 706 914 866 523 664 649
CoOp+UPL 692 692 301 734 71.0 838 884 879 933 539 758 724
TransCLIP-FS 703 709 300  77.1 717 870 917 906 935 551 785 742
TF ST 610 303 649 56.8 710 659 909 915 537 679 64l
BD-CSPN 538 625 305 6438 58.5 753 720 925 920 521 709 659
LaplacianShot 535 625 296 743 585 757 734 928 920 527 717 670
4 PTMAP 576 681 312 749 63.1 811 795 762 602 584 739 658
TIM 574 670 328 793 65.8 835 823 934 885 581 765 713
CoOp+UPL 697 714 326 740 74.6 838 913 ol 932 589 769 744
TransCLIP-FS 703 719 340 794 74.0 864 916 936 940  6L1 791 759
TF 572 668 347 685 654 774 743 938 24 603 738 695
BD-CSPN 579 665 341 683 64.6 780 772 932 924 500 742 696
LaplacianShot ~ 57.6 659 334 732 64.7 793 793 933 923 565 746 700
8  PTMAP 610 706 341 750 685 820 845 772 621 624 756 685
TIM 626 713 359 798 744 843 874 940 907 636 802 749
CoOp+UPL 705 728 386  79.1 78.3 845 904 944 933 606 796 766
TransCLIP-FS 705 732 364 797 76.9 867 919 939 942 657 815 713
F 618 701 383 743 712 807 795 954 936 629 760 731
BD-CSPN 617 64 3717 134 0.7 802 812 948 933 613 760 727
LaplacianShot 609 683 361  78.1 9.2 8§12 817 948 931 586 763 726
16 PTMAP 640 20 374 756 72.0 827 861 785 637 637 763 702
TIM 678 736 406 836 795 849 887 954 924 675 821 778
CoOp+UPL 716 750 432 830 823 850 904 958 943 687 804 791
TransCLIP-FS 718 747 386 830 79.8 869 924 044 940 651 821 784

Table 22: Detailed results of transductive methods in the few-shot setting for the 11 datasets with
ViT-L/14 as visual backbone.

& N & S & > & S N <
Shots  Method ?egé > . \@‘0} o ¥ @@O ob\m o Sz‘&\ < > Q&Q C/Q\Q 4@&%
& S ¥ & %\@\ <9 N o> N v
TF 36.6 412 26.3 49.8 452 53.9 45.8 81.8 79.7 35.8 58.3 50.4
BD-CSPN 453 50.5 28.9 533 575 67.3 66.7 934 88.4 39.6 67.2 59.8
LaplacianShot 435 484 30.9 56.6 56.1 69.3 65.8 93.3 87.9 40.1 66.2 59.8
1 PT-MAP 49.8 58.1 33.1 65.6 60.6 80.1 78.1 75.2 58.5 45.7 69.7 61.3
TIM 47.7 56.0 31.1 62.8 61.1 79.7 74.2 95.4 80.1 41.7 71.5 63.8
CoOp + UPL 76.0 72.6 35.8 72.7 79.2 89.5 93.2 86.8 94.9 60.3 81.1 76.6
TransCLIP-FS 75.9 74.5 37.9 77.4 78.8 922 95.4 95.9 95.6 61.3 833 78.9
TF 50.1 56.6 335 71.7 58.3 71.6 65.7 93.0 90.5 49.8 69.4 64.6
BD-CSPN 57.0 61.2 35.6 72.6 65.1 79.9 772 95.7 92.8 523 74.7 69.5
LaplacianShot 56.5 61.3 359 76.8 65.4 80.3 77.4 96.2 933 524 74.8 70.0
2 PT-MAP 61.3 68.0 37.0 78.4 68.4 87.3 86.7 77.9 61.1 56.5 75.2 68.9
TIM 59.7 67.6 354 822 69.3 87.4 85.5 95.1 91.4 53.2 78.6 732
CoOp + UPL 76.1 734 39.9 72.3 814 90.3 92,5 94.0 94.7 62.0 82.2 78.1
TransCLIP-FS 76.8 75.1 40.0 82.1 79.9 91.8 95.0 96.6 95.9 62.6 83.2 79.9
TF 61.6 66.5 40.6 71.4 69.6 81.9 79.0 96.4 94.4 58.5 71.5 72.5
BD-CSPN 64.3 67.8 40.6 71.4 722 84.7 82.8 96.7 95.2 56.9 79.6 73.8
LaplacianShot 63.8 67.6 40.0 78.9 72.0 854 85.7 97.3 95.2 56.7 79.6 74.7
4 PT-MAP 68.0 72.7 41.7 774 73.8 88.9 89.9 78.3 62.9 60.1 79.2 72.1
TIM 68.9 72.7 42.0 78.4 77.8 90.0 92.3 97.4 91.1 63.5 83.7 78.0
CoOp + UPL 76.5 75.1 44.1 79.3 83.1 90.1 92.6 95.2 95.3 65.8 83.9 80.1
TransCLIP-FS 76.9 76.2 459 81.5 81.2 914 94.3 98.2 96.1 66.8 84.9 81.2
TF 67.4 72.0 45.6 76.1 76.5 86.2 85.1 97.2 95.1 65.1 81.5 77.1
BD-CSPN 68.0 71.5 44.8 76.1 76.5 86.8 86.8 97.3 94.9 63.8 81.3 71.1
LaplacianShot 67.3 70.4 43.6 78.2 75.9 87.3 88.3 97.0 94.9 61.2 80.8 76.8
8 PT-MAP 70.7 74.6 44.1 78.4 77.1 89.2 91.3 79.5 64.5 65.1 79.7 74.0
TIM 73.1 76.4 46.7 86.8 83.2 89.5 92.7 96.9 94.4 70.2 81.3 81.0
CoOp + UPL 76.9 75.8 49.6 81.7 85.5 90.1 93.2 95.9 95.3 65.6 84.0 81.2
TransCLIP-FS 77.2 77.3 50.0 82.6 84.1 91.6 94.5 98.5 97.0 70.7 86.0 82.7
TF 71.1 74.9 50.1 78.6 81.5 88.1 88.6 98.5 96.1 67.3 83.0 79.8
BD-CSPN 71.1 74.4 49.4 78.1 81.2 88.0 89.8 98.4 95.8 66.5 82.5 79.6
LaplacianShot 69.8 72.7 47.0 81.7 80.2 88.0 90.1 98.0 95.7 63.3 82.8 79.0
16 PT-MAP 729 75.9 48.1 79.1 79.9 89.4 92.0 80.5 66.0 65.6 80.5 75.4
TIM 76.4 78.7 52.5 89.4 86.5 91.0 92.0 98.2 94.5 73.2 84.8 83.4
CoOp + UPL 76.9 77.2 54.1 85.9 87.8 90.6 93.2 97.1 95.6 72.8 86.2 83.4
TransCLIP-FS 71.8 78.7 53.0 84.4 86.3 91.6 94.8 98.8 97.3 71.2 86.5 83.7
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Table 23: UPL* top-1 accuracy on ImageNet for 8, 16 and 32 top-confidence pseudo-labels drawn

from the test set.

Architecture N =8 N=16 N =32
ResNet-50 60.60 61.60 59.66
ViT-B/16 68.92 69.62 68.87

Table 24: Prompt templates for each dataset.

(b) Custom prompt templates for ImageNet

(a) Prompt templates used in the experiments unless
dataset [50]].

otherwise specified.

Dataset Prompt template "itap of a [1."
ImageNet "a photo of a []." "a bad photo of the []."
SUN397 "a photo of a []." " . . "
Aircraft ~ "a photo of a [], a type of aircraft.", " a origami []. "
EuroSAT "a centered satellite photo of [].", a phOtO of the large .

Cars "a photo of a [].", "a [] in a video game."
Fol())dllol ”,',3 p};:)tto off [EI], a ttype off footd."", "art of the []."

ets a photo o , a type of pet.", " "

Flowerl02 ~ "a photo of a [1, a type of flower.", a photo of the small [].
Caltech101 "a photo of a [].",

DTD "[] texture.",

UCF101 "a photo of a person doing [].",
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claim i) from the abstract is discussed and supported by results in Tables [I] 2]
and[3] and claim (ii) is discussed and supported by results ind] The contributions announced
in the introduction: (i) is presented in Section [3] (ii) is supported by Tables [I] [2] and [3]
and (iii) is supported by Table [d] More results are also available in the Appendix for five
encoders.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are presented in Appendix [D]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The convergence of our algorithm is proved and assumptions are enumerated
in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The hyper-parameter values are stated in Section [d] and in Appendix [B] A
complete pseudo-code is provided in Appendix [B] with further implementation details.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided at the following link: https://github.com/
MaxZanella/transduction-for-vlms.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For the datasets used in our experiments, we follow the settings of previous
works, as stated in Section[d] The implementation of transductive methods is detailed in
Appendix [C.3] If not specified, the exact hyper-parameters from the initial implementations
are used for other cited methods.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Every numerical accuracy is an average over three random seeds. Our experi-
ments cover 15 datasets and 6 encoder architectures.

Guidelines:

* The answer NA means that the paper does not include experiments.

https://doi.org/10.52202/079017-1988 62252


https://github.com/MaxZanella/transduction-for-vlms
https://github.com/MaxZanella/transduction-for-vlms
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware used for the experiments is presented in Appendix B} and
runtime is discussed in Section [] (Table3).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work aligns with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is not tied to specific application.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All models and methods are credited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new asset is released.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing nor research with human subject was involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing nor research with human subject was involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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