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Abstract

Efficiently determining the satisfiability of a boolean equation — known as the
SAT problem for brevity — is crucial in various industrial problems. Recently, the
advent of deep learning methods has introduced significant potential for enhancing
SAT solving. However, a major barrier to the advancement of this field has been the
scarcity of large, realistic datasets. The majority of current public datasets are either
randomly generated or extremely limited, containing only a few examples from
unrelated problem families. These datasets are inadequate for meaningful training
of deep learning methods. In light of this, researchers have started exploring
generative techniques to create data that more accurately reflect SAT problems
encountered in practical situations. These methods have so far suffered from either
the inability to produce challenging SAT problems or time-scalability obstacles. In
this paper we address both by identifying and manipulating the key contributors to a
problem’s “hardness”, known as cores. Although some previous work has addressed
cores, the time costs are unacceptably high due to the expense of traditional
heuristic core detection techniques. We introduce a fast core detection procedure
that uses a graph neural network. Our empirical results demonstrate that we can
efficiently generate problems that remain hard to solve and retain key attributes
of the original example problems. We show via experiment that the generated
synthetic SAT problems can be used in a data augmentation setting to provide
improved prediction of solver runtimes2.

1 Introduction

The boolean satisfiability problem (the SAT problem) emerges in multiple industrial settings such
as circuit design (Goldberg et al., 2001), cryptoanalysis (Ramamoorthy and Jayagowri, 2023), and
scheduling (Habiby et al., 2021). While machine learning is not well suited for solving SAT problems
— solvers are typically required to have perfect accuracy and return correct proofs — it does have
applications in predicting wall-clock solving time for a given solver, which is important for algorithm
selection (Kadioglu et al., 2010; KhudaBukhsh et al., 2009) and benchmarking (Fuchs et al., 2023).
SAT has also been gaining attention in Large-Language-Model reasoning, as it is a natural tool for
interacting with the propositional-logical structure of many reasoning problems (Ye et al., 2023).

A major challenge for SAT-related learning is the scarcity of high quality, reasonably homogeneous,
real-structured data. The most commonly-used datasets have been compiled via a series of annual
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International SAT Competitions. The industrial origins of the compiled instances differ substantially,
so the dataset is highly heterogeneous. The data is a good test for heuristic SAT solvers but for
data-driven learning methods, this heterogeneous, sparse data is unsuitable. More complex models
are thus forced to use randomly generated data (Selsam and Bjørner, 2019). This is problematic
because the hardness-inducing dynamics in industrial data are very different from those in randomly
generated problems. Training or testing on most existing randomly generated data provides little
insight into how a model will perform on real industrial problems (Balyo et al., 2022).

Figure 1: Our method (HardCore) achieves the
best trade-off of inference cost and SAT-problem
hardness.

Recently, deep-learning methods have been in-
troduced to generate more realistic SAT in-
stances. Early models (Wu and Ramanujan,
2019; You et al., 2019; Garzón et al., 2022) can
generate instances that are structurally similar
to original instances, but the problems are con-
siderably easier to solve, a phenomenon called
hardness collapse. Preserving hardness is es-
sential, as generating only very easy problems
renders the resultant dataset ineffective for dis-
tinguishing the best-performing solver from the
worst. Additionally, such datasets fail to help the
model learn to predict real runtimes. A recent
study has succeeded in preserving hardness (Li

et al., 2023). Unfortunately, the resultant method is prohibitively computationally expensive for
synthetic data generation and augmentation for deep-learning. It can take over a week to generate a
limited number of new problem instances. We summarize the cost/hardness trade-offs in Figure 1.

In this work, we take advantage of the connection between a problem’s core and its hardness. The
core is comprised of the identifiable minimal subsets of a boolean SAT problem that are unsatisfiable
(UNSAT). Our strategy is to preserve the core of an original instance while iteratively adding random
clauses to construct similar, but sufficiently diverse, problem instances that can enhance learning.
To do this, we need to detect the core after each iteration. Unfortunately, traditional core detection
algorithms are slow and can take hundreds of seconds, as they often require to solve the SAT
problem (Wetzler et al., 2014). Clearly, such an algorithm is impractical for building a fast generator,
as core detection needs to be performed hundreds of times for every instance we generate.

To address this, we rephrase core detection as a binary node classification algorithm (core/not-core).
We train a graph neural network to perform the task. Importantly, we can circumvent the data
starvation issue, because our random data generation procedure generates hundreds of example
instances that can be used for training the core detection algorithm. We can also take advantage of the
fact that while it is important to identify the vast majority of clauses that belong to the core, we can
tolerate a relatively high number of false-alarms by post-processing with a fast pruning algorithm.

We make the following novel research contributions:

• We propose a novel method for SAT generation that is the first that can both (i) preserve hardness
and (ii) generate instances in a reasonable time frame. We can thus generate thousands of hard
instances to augment a dataset in minutes or hours.

• We demonstrate experimentally that our proposed procedure preserves the key aspects of the original
instances that impact solver runtimes. This hardness preservation is crucial when augmented dataset
is used to learn to predict solver times, a vital task for solver benchmarking and selection.

• We illustrate the value of our augmentation process for solver runtime prediction. On an example
dataset, our augmentation process reduces mean absolute error by 20-50 percent. In contrast, all
other generation algorithms achieve no statistically significant improvement.

2 Background: Boolean Satisfiability

Definitions and Notation The Boolean Satisfiability Problem (SAT) is the problem of determining
whether there exists an assignment of variable values that satisfies the given Boolean formula,
rendering it true. Typically, a SAT instance is represented in Conjunctive Normal Form (CNF),
which is written as a conjunction (logical AND) of disjunctions (logical OR), for example f =
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(¬A ∨ B ∨ C) ∧ (A ∨ ¬C) ∧ (¬B ∨ C). The signed version of each variable that appears in the
formula is known as a literal. For example, A and ¬A are both literals of the variable A (Biere et al.,
2009, Chapter 2).

Another useful representation of a CNF is as a set of sets, where each set (referred to as a clause)
represents a disjunction in the CNF and contains the literals included in that disjunction. Denote the
i-th clause in the formula f by ci and the j-th literal in clause ci as lj . If there are nc clauses in f and
nli literals in clause ci, we can express the formula as ci =

⋃nli
j=1 lj , f =

⋃nc

i=1 ci.

Core Definition Given an unsatisfiable (UNSAT) instance U , there is a subset of clauses called
a Minimally Unsatisfiable Subset (MUS) or a Core. This subset is the smallest possible subset of
clauses from U that is UNSAT (Biere et al., 2009, Chapter 11).

Graph Representation of CNFs There are several common CNF graph representations. In this
work, we use the Literal-Clause Graph (LCG), an undirected and bipartite graph. Each node in the
first set of nodes represents a clause and each node in the second represents a literal. We construct
an edge for each occurrence of a literal in a clause; the set of undirected edges e is defined as
e =

⋃nc

i=1

⋃nli
j=0 (ljci , ci).

3 Related Work

3.1 Deep-learned SAT generation

The problem of learned generation for SAT problems was first established in 2019 with SATGEN
(Wu and Ramanujan, 2019), motivated by a lack of access to industrial SAT problems. SATGEN used
a graph generative adversarial network (GAN) to generate graph representations of SAT problems.

G2SAT (You et al., 2019) represents problems as graphs. The graphs are progressively split into small
trees, and a graph neural network (GNN) is trained to discern which trees should be merged to restore
the original graph. While innovative, the method is slow due to its need to sample many tree pairs
to form a SAT problem of sufficient size. The most recent improvement on the G2SAT framework,
HardSATGEN (Li et al., 2023), includes some domain-inspired considerations in its design, such
as communities and cores. HardSATGEN is the first deep-learned SAT generation method that can
generate problems which are not trivial to solve for solvers: often the generated problems take nearly
as long or even longer for a solver to solve than the corresponding seed problem. Unfortunately,
however, the core awareness aspects of the design cause HardSATGEN to be extremely slow, making
it challenging to use in any setting that needs many new instances.

W2SAT (Wen and Yu, 2023) follows an approach more similar to the original SATGEN. It employs
a low-cost general graph generation model, and obtains new SAT problems via graph decoding.
W2SAT is extremely efficient, but like G2SAT, it is incapable of generating hard problems. G2MILP
(Geng et al., 2023). is designed to generate Mixed Integer Linear Programs (MILPs), which are the
general case of SAT. A naive modification allows us to use G2MILP to generate SAT problems. The
method is nearly as efficient as W2SAT, but also struggles to generate hard instances.

3.2 Core Prediction

Core Detection can be a helpful tool for understanding UNSAT problems. Cores are often seen as a
strong indicator of the hardness of an UNSAT problem (Ansótegui et al., 2008). There are multiple
classical, verifiable methods for Core Detection, with the current standard being Drat-Trim (Wetzler
et al., 2014). Drat-trim requires that the problem be solved once by a SAT solver, which is very slow.
In response to this, Neurocore (Selsam and Bjørner, 2019) was designed to predict the core of a
SAT problem. Neurocore converts the input problem to a graph and uses a GNN to predict cores.
Strangely, however, Neurocore does this on variables rather than clauses. Cores are defined to be
subsets of clauses, rather than variables, and so this choice seems unnatural. Neurocore strives to be a
machine-learning based variable-selection heuristic for SAT solvers, which motivates the focus on
variables.

3
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Figure 2: Core Refinement. The core refinement process comes in two steps: (1) Core Prediction,
in which we use a GNN-based architecture to identify the core of the generated instance; and (2)
De-Coring, in which we add a non-conflicted literal to a clause in the core, rendering the core
satisfiable and giving rise to a new, harder minimal unsatisfiable subset (core). As steps (1) and (2)
are repeated, the easiest core of the problem is gradually refined, raising the hardness of the generated
instances.

4 Problem Statement

Given a training set of UNSAT CNFs S = {f1, f2, ..., fmS
}, and a corresponding set of label vectors

R = {r1, r2, ..., rmS
}, we wish to train a generative model G that can construct new examples. The

label vector r ∈ Rd represents the hardness of the SAT problem and we model it as a deterministic
mapping, i.e., r1 = g(f1). In our experiments, the vector is derived by recording the SAT solving
time for a pre-specified set of SAT solvers.

We assume that the mS CNFs in the training set are i.i.d. examples from an underlying distribution
D. We denote the generative model distribution by DG(S), highlighting that it is dependent on the
random training set S. We can obtain a new dataset of mG i.i.d. samples SG using the generative
model. The total number of samples in the augmented set S̃ is then mS +mG.

Our primary goal is to derive a generative procedure that produces sufficiently representative but
also diverse samples such that the error obtained by training a model on the augmented dataset S̃ is
less than that obtained by training on the original dataset S. As an example task, we consider the
prediction of runtime for a candidate solver. In this case, the appropriate loss function is the absolute
error between the predicted time and the true time.

Beyond this, we are also interested in the distance between the distributions D and DG. We examine
this through the lens of hardness label vectors. The application of g to the CNF descriptors generated
according to D or DG induces distributions in Rd. To evaluate the similarity of the original and
generated instances, we calculate the empirical maximum mean discrepancy (MMD) distance between
these induced distributions.

5 Methodology

Our generation strategy can be broken into three steps: (1) extraction of the core from a seed instance;
(2) addition of random new clauses, generated with low cost; and (3) iterative core refinement. Figure
2 provides an overview of the key core refinement procedure. It consists of a two-step cycle of (a)
high-speed core extraction using our novel GNN-based method; and (b) unconflicted literal addition
to break any undesirably easy core.

5.1 Generating Hard Instances

Trivial Cores Cores are the primary underlying hardness providers in UNSAT instances, because a
solver must only determine that a subset of a CNF is UNSAT for the whole CNF to be UNSAT, and
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a core is the smallest subset of clauses of a CNF that is UNSAT. Small cores with few clauses are
generally easier to solve due to less variable assignment combinations. An example of a trivial core
is (A ∨B)∧ (¬A ∨B)∧ (A ∨ ¬B)∧ (¬A ∨ ¬B).

Whenever we add a new random clause to an UNSAT instance, there is the danger of creating a
trivial core. For example, consider an UNSAT instance which includes three of the clauses from the
example above: (A ∨ B)∧ (¬A ∨ B)∧ (A ∨ ¬B). If during generation we unknowingly add the
clause (¬A ∨ ¬B), the UNSAT instance’s large (hard) core will be replaced by a trivial one, leading
to hardness collapse. Maintaining awareness of cores and potential cores in a CNF as we perform
modifications is challenging. We take a different approach, which we refer to as Core Refinement.

Figure 3: Core Prediction GNN Architecture.
We construct our GNN using three parallel mes-
sage passing neural networks (MPNN) whose cal-
culated node embeddings are aggregated at each
layer to form the layer’s node embeddings. Read-
out is done by taking the sigmoid of a fully-
connected layer on clause node embeddings and
thresholding. Training is supervised by taking a bi-
nary classification loss between the true core labels
and the clause nodes’ core prediction probabilities.

Core Refinement The Core Refinement pro-
cess is made up of two steps that are repeated
n times, where n is the number of generated
clauses. The procedure is depicted in Figure 2.
The first step of the process is to identify the
core of the generated instance. The addition of
random clauses during generation is very likely
to create a core that is trivially easy to solve and
it may not be the same as the core of the original
instance. Once we have detected this easy core,
we make it satisfiable by adding a new literal to
a clause in the core. The addition of a single,
flexible literal eliminates the constraints of the
core and makes it possible to satisfy.

Returning to the previous example, the UN-
SAT CNF (A ∨ B)∧ (¬A ∨ B)∧ (A ∨ ¬B)∧
(¬A∨¬B) can be made satisfiable by modifying
any of the clauses in this fashion: (A∨B∨C)∧
(¬A ∨ B)∧ (A ∨ ¬B)∧ (¬A ∨ ¬B). The in-
troduction of literal C in the first clause means
that (A = 0, B = 0, C = 1) is now a satisfying
solution.

As these two steps are repeated, the core of the
instance gradually becomes larger and is likely
to be more difficult. The process ends after a
fixed number of iterations. In our experiments,
we choose this to be the number of generated
clauses. Since the hardness of the core is the
hardness of the instance (Ansótegui et al., 2008),
the refinement process can be seen as progres-
sively raising the hardness of the problem.

Underlying Hard Core Guarantee The Core
Refinement process is designed to repeatedly eliminate easy cores, so after each iteration, the core
becomes harder. Finally, after many iterations, we hope that the remaining core is as hard as the
original instance. This process can only be guaranteed to lead to a hard core if an underlying hard
core exists in the instance at the start of the refinement process. Refinement then whittles away easy
cores until only the hard one remains.

There is a possibility of creating a hard core through the random generation of clauses, but we cannot
rely on this. We must introduce an element to our design to ensure there is a hard core. To achieve
this we identify cores from the original instances and include them in the generated instances.

5.2 Core Prediction

We have two critical objectives for our method: low cost and hard outputs. While the Core Refinement
process serves us well in generating hard instances, a naive implementation using existing core
detection algorithms is unacceptably expensive in terms of computation requirements. Current core
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detection algorithms first solve the SAT problem, making Core Detection NP-Complete (Wetzler
et al., 2014).

We adopt the strategy of approximating the Core Detection algorithm. Since an instance can be
naturally represented using a bipartite graph, and the goal of core detection is binary classification of
each clause, we expect that a graph neural network is a promising approach.

Graph Construction We represent each instance as a graph as outlined in Section 2. We make
two changes: (a) we add message-passing edges to connect matching positive and negative literals
(e.g, ¬A and A); (b) we replace each undirected edge with two directed edges. These changes are
designed to facilitate the diffusion of information in the GNN. We denote the set of literal-literal
message passing edges by Ell =

⋃nv

i=1(li+, li−), where nv is the number of variables in the instance.
We denote the set of literal-to-clause directed edges by Elc =

⋃nc

i=1

⋃nlci
j=0 (ljci , ci). We denote the set

of clause-to-literal directed edges by Ecl =
⋃nc

i=1

⋃nlci
j=0 (ci, ljci ).

GNN Architecture Given the heterogeneous nature of our graph, arising from different node and
edge types, we use three Graph Message Passing models (one for each edge type), as described in
Figure 3. We couple these models by averaging their embeddings after each layer. We define a single
layer where σ is a non-linear activation function. Finally, we obtain a core membership probability for
each clause node by passing the embeddings through a fully connected linear readout layer followed
by a sigmoid function to the clause node embeddings. We threshold the values to obtain positive and
negative classifications of core membership:

hl+1 = σ(
1

3
(GNN(V, Ecl, hl) +GNN(V, Elc, hl) +GNN(V, Ell, hl))) , (1)

out = 1>0.5(σ(xh
L
c + b)) . (2)

Training Our augmentation process is motivated by a scarcity of data. We must therefore address
this when training the core detection GNN. We achieve augmentation of the available data by
executing the generation pipeline described above for a small number of instances, using a slow,
traditional but proof-providing tool for Core Detection in the Core Refinement process. By saving
the instance-core pair after each iteration of the core refinement process, we can construct sufficient
supervision data for training the Core Prediction GNN model. Although the instance-core pairs we
construct this way are correlated, there is sufficient variability for the GNN model to generalize well
to other instances. We train the model using the standard binary cross-entropy loss function. For
experimental results showing the performance of our Core Prediction model, see row titled “LEC” in
Table 4 in the Appendix B.

6 Experiments and Results

6.1 Experimental Setting

Proprietary Circuit Data (LEC Internal) This LEC Internal data is a set of UNSAT instances
which are created and solved during the Logic Equivalence Checking (LEC) step of circuit design.
LEC needs to be performed after certain circuit optimization steps to ensure that the optimization
process has not corrupted the logic of the circuit. If the logic is uncorrupted, the created SAT problem
will be UNSAT. Since it is extremely rare that these optimizations in fact corrupt the circuit, more
than 99% of LEC instances are UNSAT. For each generative method, we will generate 5 problems for
each problem in the data.

Synthetic Data (K-SAT Random) Acknowledging the importance of reproducibility, we also
provide results on synthetic data. This data is generated by randomly sampling a CNF with m clauses
of k literals over n variables. Clauses are sampled without replacement. We have previously argued
that random data differs from real data in important ways that make it unsuitable for machine learning
applied to real problems. Holding to this view, we use this data primarily to provide a surrogate to
the internal data for experimental reproduction purposes, rather than to present results on a second
dataset. For each generative method, we will generate 5 problems for each problem in the data. For
details concerning both the LEC Internal and K-SAT data, see Table 3 in the Appendix.

6
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Note on Public Competition Data A large and commonly-used public dataset for SAT is the SAT
Competition data (Heule et al., 2019). Unfortunately, as argued previously, this data is generally
ill-positioned for machine learning as it is highly heterogeneous. Despite this, we recognize its value
and importance as a widely accepted dataset. Thus, we include in Tables 5 and 6 of Appendix B
final results on the Data Augmentation experiment done below, done on the “Tseitin” and “FDMUS”
families found in the public competition data. Our method shows improvement on the un-augmented
data consistent with our findings on the synthetic and proprietary data prosented in this section.

Data splits for training the HardCore GNN and the runtime-prediction model There are three
separate groupings of the dataset: (i) Core Prediction training data, (ii) generation seeding data, and
(iii) the remaining data. This split is chosen randomly. Core Prediction training data can be small (we
used 15 problems), because we use each problem as a seed instance 5 times for generation followed
by core-refinement with a traditional core detector. Saving problem-core pairs at each step, we obtain
15,000 training pairs for the core-predictor model. The seeding data are used to seed HardCore once
the core predictor is trained in order to obtain generations to evaluate. These generations are then
compared against the seed data for runtime similarity. Finally, these generations (and their seeds) are
used to train a runtime-predictor model, which is evaluated on the remaining un-used data.

SAT Solvers We select 7 solvers for hardness analysis: Kissat3 (Biere et al., 2020), Bulky (Fleury
and Biere, 2022), UCB (Cherif et al., 2022), ESA (Cherif et al., 2022), MABGB (Cherif et al., 2022),
moss (Cherif et al., 2022) and hywalk (Chowdhury, 2023). These solvers exhibit complementary
performance characteristics: when some of these solvers perform well on certain instances, some
perform very poorly. This results in a diverse runtime distributions in our analysis. We run our
experiments on a Intel(R) Xeon(R) Platinum 8276 CPU @ 2.20GHz cpu and 3 Nvidia Tesla V100
GPUs.

We compare to the following baselines:

• HardSATGEN (Li et al., 2023): A high-cost split-merge generator with community structure and
core detection that is capable of generating hard instances.

• W2SAT (Wen and Yu, 2023): A low-cost generative method that utilizes a less common SAT
graph representation which was reported to generate very easy problems.

• G2MILP (Geng et al., 2023): A low-cost VAE-based generative model designed for the general
case of SAT: MILPs.

6.2 Research Questions

Our work is motivated by the goal of fast generation of hard and realistic UNSAT datasets for
data augmentation. Given these goals, we now establish our strategy for evaluating our model,
identifying the key research questions that our experiments explore.

6.2.1 Question 1: Is the method able to generate hard instances?

In order to quantify ‘hardness’, we choose the wall-clock solving time for each solver as a metric.
We deem a set of generated instances ‘hard’ if the average solver runtime is at minimum 80% of the
original dataset’s average hardness. If average solver time for the set of generated instances is below
5%, we consider that hardness collapse has occurred.

In Table 1 we compare generated with original hardness. W2SAT and G2MILP both suffer hardness
collapse, whereas HardSATGEN and HardCore generate hard instances.

6.2.2 Question 2: Is the method fast?

We measure generation speed by the time required to generate an instance (in seconds). We evaluate
this by measuring the wall-clock time of each model during inference and dividing by the number of
generated instances. Generally, a method should be able to generate hundreds of instances per hour
so that we can augment a dataset in a reasonable time frame.

In Table 1, the division between fast and slow procedures is very clear: W2SAT, G2MILP, and
HardCore all exhibit similar instance generation times, with W2SAT being the fastest. In contrast,
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Table 1: Evaluation of generated datasets on LEC data. Hardness level (%): percentage of runtime of
generated dataset relative to original dataset, closer to 100% is better. Speed (s): average time cost
to generate one instance, lower is better. Maximum Mean Discrepancy (MMD): distance between
distributions of generated and original datasets, lower is better.

W2SAT HardSATGEN G2MILP HardCore

Hardness (%) ∼0 267 ∼0 176
Time per instance (s) 1.2 6441 3.3 4.3
Similarity (MMD) — 0.492 — 0.004

Figure 4: HardCore (Left) and HardSATGEN (Right). Boxplots of runtimes per solver for Original
(Green) and Generated (Blue) instances on LEC data. HardCore appears to produce per-solver
distributions which are much closer to the original than HardSATGEN, which tends to produce
high-variance and on-average much harder problems than the original.

HardSATGEN takes close to 2 hours to generate a single instance. To generate 1000 LEC instances
at this speed we would need 75 days.

6.2.3 Question 3: Is the method able to generate datasets that are similar to the original
datasets in terms of hardness distribution?

Although past work such as Li et al. (2023); Wen and Yu (2023); You et al. (2019) has examined
graph statistics such as modularity and clustering coefficients, we find little evidence that these
are indicative of the hardness of generated instances. Instead, we focus on the similarity of the
distributions of the hardness vectors because hardness is of primary importance when working with
SAT problems.

Figure 5: LEC Internal Rank 1 Solvers. We compare original and synthetic best-solver observations
for HardCore (left) and HardSATGEN (right).

8
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As G2MILP and W2SAT exhibit hardness collapse, we only compare HardSATGEN and HardCore
for runtime distribution analysis. Note that due to HardSATGEN’s high cost, we can only generate
50 LEC instances and 50 K-SAT instances within 3 days. In the following experiments, we compare
“original” and “generated” data. Here, “original” refers to only those instances used as seeds
during inference for each model; “generated” refers to the outputs. Hence, the “original” sets for
HardSATGEN and HardCore are different because the number of seed instances is different (due to
time constraints we are limited in how many HardSATGEN instances we can generate). We evaluate
the similarity between original and generated data through the Maximum Mean Discrepancy (MMD)
metric, the runtime distribution, and the best solver distribution.

As shown in Table 1, HardCore achieves runtime distributions far closer to the original distributions
compared to HardSATGEN with respect to the MMD metric. We calculate these values by taking
the MMD between the set of instances used as seeds during generation (a subset of the training set)
and the corresponding set of generated instances. We note that while HardCore achieves low MMD,
the solving time of individual instances is considerably different from that of their associated seeds.
This implies that low MMD of HardCore is not achieved by replicating or barely modifying seed
instances. Our later experiments investigating augmentation suggest that there is sufficient diversity
being injected in the generated instances.

In Figure 4, we visually compare the per-solver runtime distribution of HardCore’s generated datasets
to the corresponding original datasets. HardCore produces per-solver distributions which are visibly
much closer to the original distributions than HardSATGEN. In Figure 5, we see a striking similarity
between the HardCore distribution of best-performing solvers and the original distribution, indicating
that the HardCore synthetic instances are solved most efficiently by the same solvers as the original
instances, in a distributional sense. Meanwhile, a greater discrepancy can be seen between original
and HardSATGEN-generated data, particularly for solvers 5 and 6. A full histogram of LEC solver
ranks is shown in Figure 6 of Appendix B.

6.2.4 Question 4: Can we successfully augment training data with the method’s generated
data for machine learning?

We address the task of runtime prediction and compare the performance of two models: one trained
on only original data and the other trained on a dataset augmented with generated instances. We train
the SATzilla model to predict solver runtime of one specific solver on a given instance. We repeat
this for each of the 7 solvers. We calculate the MAE of the predicted total runtime for each solver
and average over the solvers. We compare HardCore, W2SAT and two versions of HardSATGEN:
(i) HardSATGEN-Strict and (ii) HardSATGEN-N . For HardSATGEN-Strict, we only generate as
many instances as possible in the time it takes HardCore to generate the desired number of instances.
For HardSATGEN-N , we generated N instances, where N was selected as the number that could be
generated in approximately 3 days of computation. We also compare to the un-augmented training
sets and refer to it as Original.

In order to observe performance over varying sizes of training data, we conduct this experiment for
several quantities of original training instances, which is denoted Data Size. Three augmentation
instances are generated per original instance, and augmentation is only allowed by using the original
instances in the training set. Validation sets are selected from the original data only, with an 80/20
split train/validation split. For LEC the test-set is made up of 10000 randomly selected problems
which were not selected for training or validation. For K-SAT the test-set is made up of the problems
which were not picked for train/validation from the 1351 original instances.

Table 2 shows that for both K-SAT random data and LEC Internal dataset, training on data augmented
using HardCore leads to a 20-50 percent reduction in MAE. The gain of data augmentation increases
with larger data size. In contrast, no other data generation method leads to a comparable improvement.

6.3 GNN generalization to other datasets: do we have to re-train for new unseen circuits?

In order to measure GNN generalization to new data without re-training, we create a new split of
the LEC data. Each problem in the LEC data can be traced back to one of 29 circuits. By randomly
splitting circuits into training circuits and test circuits (and then building training and evaluation sets
with their respective problems), we can measure generalizability. Note that we would not expect the
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Table 2: MAE of Runtime Prediction averaged across 7 solvers and 15 trials. Asterisks are placed at
the best result which passes the Wilcoxon pairwise ranking test against the second-best for p < 0.05.
For a boxplot visualization showing each trials result, see Appendix Figure 7

K-SAT Random LEC Internal

Data Size 10 20 30 40 100 200 300 400 500

HardSATGEN-N 2416 2306 2172 2182 666 797 605 617 463
HardSATGEN-Strict 2179 2578 2488 2456 627 742 565 638 513
W2SAT 2606 2046 1807 1377 724 704 634 611 535
Original 2750 2743 2109 1449 707 795 557 606 526
HardCore 2156 1796* 1615 930* 514 481* 369* 282* 338*

model to generalize to problems derived from a completely different application domain (although
fine-tuning a previously model in a domain adaptation strategy might be interesting to explore).

In row titled “Circuit-Split LEC” in Table 4 of Appendix B we report the GNN performance on this
experiment. In the paper we discussed that Core recovery is the priority, because if we falsely classify
true-positives then we may be unable to de-core the current core (since the necessary clause may be
undetected, whereas if we mis-classify true-negatives then we will simply de-core a non-core clause.
Given enough iterations of core-refinement, a true-positive clause will eventually be selected for
de-coring (since the clause for de-coring is randomly selected from among the detected clauses). With
this in mind, the threshold hyper-parameter which is used on the sigmoid outputs at model readout
becomes a useful parameter in cases where classification performance is weakened: we can boost
Core Recovery (recall) by lowering the threshold. Tuning this threshold is very low-cost: testing a
thousand problems takes 500 seconds on a GPU. We find that by testing values [0.1, 0.3, 0.5, 0.7, 0.9]
— which takes 25 minutes — we can tune the threshold to provide similar recall to the in-distribution
model.

7 Limitations

The primary limitation of our work is that it is restricted to UNSAT problems. While some SAT
applications are almost entirely UNSAT (e.g., circuit design), many are not. With our proposed
approach, this limitation is unavoidable because cores are only present in UNSAT problems. However,
there is a concept for SAT problems analogous to the core, known as a backbone. Focusing on
preserving the backbone is a potential avenue for an analogous method for satisfiable SAT problems.

Another limitation is that our work relies solely upon empirical results to demonstrate its efficacy,
and these results are only presented on two datasets, one of which is synthetic. To partially address
this concern, we conducted several trials and statistical significance testing to ensure the reliability of
our empirical analysis.

Another limitation is that our method struggles to scale to extremely large SAT problems. As the
size of the SAT problem increases, memory and computation costs scale in polynomial complexity,
meaning that SAT problems which have millions of clauses are currently out of reach for this method.
For a more in-depth discussion of scaling, please see the Scaling subsection A.3 in Appendix A.

8 Conclusion

We present a fast method for generating UNSAT problems that preserves hardness. Existing deep-
learned SAT generation algorithms either (1) are incapable of generating problems that are even 5%
as hard as the example input problems; or (2) can generate hard problems but take many hours for
each instance. Our proposed method targets the core of a SAT problem and iteratively performs
refinement using a GNN-based core detection procedure. Our experiments demonstrate that the
method generates instances with a similar solver runtime distribution as the original instances. For a
more challenging industrial dataset, we show that data augmentation using our proposed technique
leads to a significant reduction in runtime prediction error.
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A Appendix

A.1 Data

Table 3: Data Statistics. Note that LEC is a much larger dataset than Tseitin in every regard: average
variable and clause counts, average hardness on Kissat solver and dataset size.

var. clause runtimes (s) count

LEC 1328 5167 388 78730
K-SAT 398 1751 2700 1351

A.2 Hyper-parameters

In our design process, given the cost of running experiments — in particular measuring runtime of
generated instances — we did not conduct exhaustive hyperparameter searches. Hyperparameters
were set following design considerations and rationales, which will be discussed here.

• The random generation method we use is Popularity-Similarity. This has several hyper-parameters:
average clause size, βc, βv and T . Average clause size determines the average number of literals
per generated clause, βc and βv are constants in the probability distribution for clause and variable
selection, respectively, and T is a constant in the exponent of the probability of an edge existing
between clause and variable. Conducting an exhaustive search over these hyperparameters is
expensive because the evaluation of each configuration is via runtime-measurement, which requires
the solving of a large number of SAT problems by multiple solvers. We communicated with the
authors of the paper which presented HardSATGEN, and were able to obtain their hyperparameter
configuration for Popularity-Similarity (PS), which was included among their reported baselines.
For continuity with previous work and in the interest of reducing the computational budget, we
used the provided configuration.

• The GCN backbone within our core prediction module has two hyperparameters, namely the
number of hidden dimensions and the number of layers. Three potential values were chosen for
initial exploration of layer size: [3, 4, 15]. In many applications, GCN networks are configured to
have only 3 or 4 layers. This is because GNN networks in general are prone to over-smoothing as
the number of layers increases. 15 layers was added to validate this behavior within our context.
For hidden dimension size we chose two potential values: [32, 64]. Our findings were that as the
model size increased via additional layers and hidden feature size, there was minimal improvement
in performance. Thus, we selected the smallest defined configuration of 3 layers and hidden
dimension of 32.

• Finally, there is the Core-Refinement hyperparameter that specifies the number of iterations. This
value can be set in terms of the number of generated clauses, since one clause is modified at each
iteration. The safest setting is to set the number of iterations to be equal to the number of generated
clauses, such that, if necessary, the method is allowed to modify every generated clause. In practice,
this was the setting we used.

A.3 Scaling

Memory limitations are the primary challenge for our proposed method, due to the need to store
the graph. For our experimental hardware (32GB GPU) and our implementation of the graph
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building/storage (O(nm) for a problem with n clauses and m variables), a problem with 256,000
variables and 1,000,000 clauses would require 256, 000× 1, 000, 000× 1 = 256× 109 bits, or 32
gigabytes. Given a GPU with 32GB of memory, this would be a breaking point for the method. Of
course, this is the worst case, which only occurs for a completely dense graph representation. In
practice, clauses in the LEC data, for example, tend to have on average 3 or 4 variables. Since in the
LCG clause nodes are only connected to the variables of which they consist, each clause node would
then only have degree of 3 or 4, meaning the graph is very sparse. Thus, in practice the primary
memory cost of our model scales more so according to O(dn), assuming average number of variables
in a clause is d, and assuming the implementation is adapted to leverage the sparse structure (using
edge-lists instead of dense adjacency matrix, for example).

In cases where the problem is large and dense, another option might be the use of more specialized
GNN methods that are specially designed to handle very large graphs. For example, by sampling
from neighbourhoods or loading portions of the graph from storage.

For time-cost scaling, the primary point in the pipeline in which we suffer scaling challenges is during
pre-processing. We build graphs from the text-file representation of the problems. The time-cost
of this step is linear with the problem size, measured in terms of the number of clauses. Given this,
time-cost is not a major factor in the scaling issue.

We will add text to clarify the scalability considerations outlined above and specify the precise nature
of an “extremely large” problem that would challenge our proposed generative model.

A.4 HardCore GNN Core Prediction Implementation Details

We implement HardCore in DGL using 3 Graph Convolutional Network layers combined into a hetero-
GNN, where outputs of each layer are aggregated with a mean using the hererograph package
in DGL. We train using 15 problems from the dataset, and we obtain training cnf-core pairs using
Drat-Trim in the Core Refinement step for 200 iterations per instance. We train for 1 epoch using
Binary Cross Entropy loss.

A.5 K-SAT Random Generation
Algorithm 1 Algorithm for generating 1 K-SAT Random instance.

m ∼ N(µm, σm)
c ∼ N(µc, σc)
n← int(mc)
cnf← randkcnf(3, m, n)

▷ where randkcnf(k, m, n) returns cnf m with k-var clauses from n variables.

Algorithm 1 shows the process by which we generated K-SAT Random instances as discussed in
Section 6.1. We randomly sample hyper-parameters (number of clauses, number of variables) from
a small window in order to introduce some additional variety into the dataset, and generate by
randomly sampling sets of 3 variables without replacement. In our work we chose m ∼ N(400, 100),
c ∼ N(4.4, 0.05).

B Supplementary Results

Figure 6 shows stacked histograms of the rankings for each solver, following up on the rank-1
histogram shown in Figure 5. The top row allows us to compare the ranking distribution of original
LEC instances and HardCore’s generations. The bottom row allows us the same for HardSATGEN.
Note that the original distributions are different for HardSATGEN and HardCore because the methods
were fed different quantities of data. Given HardSATGEN’s cost, only 10 instances could be used
for generation (to generate 50 instances), whereas HardCore is given 1445 instances and generates
5780. On inspection of the figure, we note the similarity of the original and HardCore ranking
distributions. For example in HardCore, solver 1’s distribution of rankings shows a very similar
proportion of rank ranks 2-6, with perhaps slightly higher rank 1 (and lower rank 7) than original. In
contrast, HardSATGEN shows very different distribution than the data it was given. For exmaple,
we see density in rank 1 for solvers 1, 5 and 7 where there was none in the original data given to
HardSATGEN. Even comparing to the true original distribution of which the top-left histogram is
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Figure 6: HardCore (top) and HardSATGEN (bottom) Comparison of Solver Ranking Histograms for
Original and Generated LEC data.

representative (HardCore was given enough data to be considered a representative sample of the
whole dataset), we see start differences in that solver 2 has no rank-1 density from HardSATGEN and
that HardSATGEN seems to prefer solver 4 more frequently than 5 whereas the Original data favors
5 over 4 as rank-1 solver.

Table 4: GNN Core Prediction Performance
↑ Core Recovery Ratio TP

P ↓ Core Size Discrepancy |TP−P |
P+N ↑Accuracy TP+TN

P+N

Circuit-Split LEC 0.97 0.05 0.65
LEC 0.960 0.009 0.940

In table 4 row-title “Circuit-Split LEC” we consider the GNN’s performance on a test-set of problems
originating from circuits which were not represented in the GNN’s training set, as described in
subsection 6.3. We note a very high recall, at the cost of acuracy and a trivial hyper-paramter tuning
cost. In Table 4 row-title “LEC” we examine the classification performance of the Core Prediction
GNN module. We calculate Core Recovery (which is Recall), a Size Discrepancy metric due to an
observation during the design process that the Core Prediction module had a tendency to grossly
over-predict and Accuracy. We find that the module performs impressively. The Core Prediction is
able to identify 96% of the Core, meaning a core clause is highly unlikely to be completely missed
over multiple iterations. At the same time, Accuracy is also quite high. This is important because
false positives could mean the selected clause for De-Coring is in fact not a part of the core. With an
accuracy of 94%, de-coring on non-core clauses will be very rare.

In Section 6.2.4 We compare the performance of two runtime prediction models: one trained on only
original data and the other trained on a dataset augmented with generated instances.

To observe performance over differing levels of data availability, we conduct this experiment for
several quantities of original training instances — denoted Data Size. 3 Augmentation instances are
allowed per original, and augmentation is only allowed by using the original instances in the training
set. Validation sets are selected from the original data only, with an 80/20 split train/validation split.

In Figure 7 we can that while there is considerable overlap with whiskers of the other methods,
HardCore outperforms all other methods on all data sizes by at least one quartile of results. In
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Figure 7: Mean MAE on Runtime Prediction. Boxplot-view of results presented in Table 2 for LEC
data.

addition to increased prediction accuracy (lower MAE), HardCore demonstrates a tendency to reduce
variance in performance, which we note by the lower whisker-to-whisker spread of the boxplots.
This effect is especially notable in data-size 200, but can also be seen relative to other augmentation
methods for data size 300.

In the table below we show data augmentation experimental results. Since there are only 135
problems, and our focus is on data-scarce settings, we use small datasets to train the SATZilla-based
predictor. In the table, we see that for all datasets aside from the smallest one, using HardCore to
generate an augmented dataset leads to a 4%-6% reduction in MAE compared to training using the
original data.

Table 5: Data Augmentation experiment: MAE of Runtime Prediction averaged across 7 solvers and
15 trials. We train a runtime prediction model according to the experimental setting in 6.4.2 of the
paper. Columns in the table indicate the number of original problems used in the training set (we
generate 4 times per original problem in the training set). Results in the “HardCore” row are MAE
for a runtime prediction model trained on HardCore-augmented data, whereas “Original” indicates
un-augmented performance.

Tseitin Dataset Size

Training Data 10 20 30 40 50

HardCore-Augmented 3618.9 3410.0 3311.4 3417.7 3419.4
Original (Un-Augmented) 3369.6 3581.9 3576.1 3544.7 3608.5
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Table 6: Data Augmentation experiment: MAE of Runtime Prediction averaged across 7 solvers and
15 trials. We train a runtime prediction model according to the experimental setting in 6.4.2 of the
paper. Columns in the table indicate the number of original problems used in the training set (we
generate 4 times per original problem in the training set). Results in the “HardCore” row are MAE
for a runtime prediction model trained on HardCore-augmented data, whereas “Original” indicates
un-augmented performance.

FDMUS Dataset Size

Training Data 100 200 300 400 500

HardCore-Augmented 0.220 0.197 0.162 0.142 0.142
Original (Un-Augmented) 0.246 0.213 0.184 0.173 0.145
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim to propose a method which can generate SAT problems at low
time-cost while still providing challenging problems. Our experimental results are carefully
designed to demonstrate these attributes.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed computational complexity and the limited scope of the
method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not provide theoritcal results in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We make our best efforts to ensure our results are reproducible. We provide
our source code along with clear README instructions in the supplementary material.
We introduce the full pipeline of our method as well as each component design in the
methodology section 5. Moreover, we also provide sufficient experiment details in the
experimental setting 6.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code is provided in the GitHub link provided on the first page,
along with clear README instructions to ensure our code can run with minimal effort from
users.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and testing details are included in experiment setting sec-
tion 6.1. We provide additional details regarding the data, the hyperparameter selection and
the implementation details in, appendix A.1,A.2, A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct a thorough Wilcoxon pair-rank statistical significance tests on
our key result table in 2, asterisks are placed at the best result which passes the Wilcoxon
pairwise ranking test against the second-best for p < 0.05.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss the processing units used in experimental setting section 6.1, as
well as wall-clock computation time in 6.2.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and confirm our work fully complies with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not believe this work represents significant potential societal impacts,
either positive or negative.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our experimental data is either proprietary or synthetic, and is of low risk level
to people as it is generally circuit-design data
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The codes we used as basic bricks to build our method, particularly Hard-
SATGEN, are properly cited in our code (Readme file). No license restriction noticed for
HardSATGEN code. All the datasets we used in the experiments are also cited and follow
the license from the original source.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: In the source code and data provided in the supplementary materials, we
explicitly state that they are released under the CC BY-NC 4.0 license to encourage academic
usage.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not involved with crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not require research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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