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2600 image-question pairs Text retrieval: 11121 text, 1000 images
Image retrieval: 5000 text, 6323 images

I2T with 
Sample-specific 

distractors

…

T2I with sample-specific distractors

…

1000 images – 5000 captions

10 Cross-referencing Categories

…

Example

1. The image depicts an elephant
with a unique building entry and a
wall clock incorporated on its body,
situated in the middle of a desert.
2. An elephant is seen bearing
elements of architecture, with a
door and a clock tower on its body,
in a desert backdrop. … 5. The
picture is of an elephant showing a
case of surrealism featuring a built-
in clock tower and door, standing
alone amidst the sand dunes.

ExampleExample

Are the man's 
earring made 
out of gold or 
silver?

What color are 
the shoes worn 
by the woman 
in the red dress?

Example

False Premise 
Prompt

Insufficient 
Context

Is the man 
sitting on a 
stool or a chair?

Visually 
Challenging 

Images

The cats are standing on their hind 
legs and appear to be dancing 
outdoors.
The cats are standing on four of 
their legs and dancing.
The cats are all wearing traditional 
kimonos of the same color.
…

The cats are standing on their hind legs 
and appear to be dancing outdoors.

7748 image – question pairs

CAPTIONING
Imaginary Image Captioning

MULTI-IMAGE REASONING
Multi-image VQA

VISUAL QUESTION 
ANSWERING

VQA with Hallucination Triggers

CROSS-MODAL RETRIEVAL
Fine-grained Retrieval with 
Sample-specific Distractors

ARITHMETIC REASONING
Complementary Multimodal 

Chain-Of-Thought

Example

11 Categories

316 image-question pairs
GPT-4o: 62.18% (accuracy) GPT-4o: 57.89% (accuracy) GPT-4o: 32.56 (CIDEr) GPT-4o: 68.10% (accuracy)

…

11 Categories

Unexpected Behavior Misplacement

Fictional Environment

3 Categories

External Knowledge

Arithmetic Reasoning

Cause & EffectDistractors

External KnowledgeOCR

Hallucination

3 Categories

Insufficient Context False Premise

Visually Challenging Images

Kylar went to the store to buy
glasses for his new apartment.
One glass costs $5, but every
second glass costs only 60% of
the price. Kylar wants to buy the
number of glass held by the
heroes plus twice the number of
glasses held by the villains as in
the pictures. How much does he
need to pay for them?

Eliza's pay for the first 40
hours she works each week is
the same value of the money
bills in the picture. She also
receives an overtime pay of
1.2 times her regular hourly
rate. If Eliza worked for 45
hours this week, how much
are her earnings for this
week?

Figure 1: JourneyBench Tasks with Fine-grained Categories and Example Data. JourneyBench
includes five fundamental vision-language understanding tasks with unconventional imaginary images
to test the limits of models’ biases, hallucination tendencies, and fine-grained perception abilities.

Abstract

Existing vision-language understanding benchmarks largely consist of images of
objects in their usual contexts. As a consequence, recent multimodal large language
models can perform well with only a shallow visual understanding by relying on
background language biases. Thus, strong performance on these benchmarks does
not necessarily correlate with strong visual understanding. In this paper, we release
JourneyBench, a comprehensive human-annotated benchmark of generated images
designed to assess the model’s fine-grained multimodal reasoning abilities across
five tasks: complementary multimodal chain of thought, multi-image VQA, imagi-
nary image captioning, VQA with hallucination triggers, and fine-grained retrieval
with sample-specific distractors. Unlike existing benchmarks, JourneyBench ex-
plicitly requires fine-grained multimodal reasoning in unusual imaginary scenarios
where language bias and holistic image gist are insufficient. We benchmark state-
of-the-art models on JourneyBench and analyze performance along a number of
fine-grained dimensions. Results across all five tasks show that JourneyBench is
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exceptionally challenging for even the best models, indicating that models’ visual
reasoning abilities are not as strong as they first appear. We discuss the implications
of our findings and propose avenues for further research.

1 Introduction

Multimodal large language models (MLLMs) combine the reasoning capabilities of LLMs with
visual (and/or other) modalities, enabling them to tackle a wide array of tasks requiring multimodal
understanding, such as visual question answering (VQA) (20; 61; 23), multimodal chain-of-thought
reasoning (8; 64), text-to-image generation (59; 42) image captioning (10; 58), and so on. Their im-
pressive performance has led to rapid adoption in our daily life for various tasks such as mathematical
reasoning (35; 36), navigation (65; 9), and robotic control (18; 16). This necessitates their rigorous
evaluation before deployment in production systems.

While existing Visual Language Understanding (VLU) benchmarks (60; 19; 34) have driven sig-
nificant progress, they mostly contain limited visual diversity and less complex scenarios than
encountered in daily life. For example, many benchmarks restrict their image distribution to resources
like COCO (10) or Flickr (58) due to copyright constraints on internet-harvested images. As a
result, these benchmarks tend to emphasize commonly occurring subjects, predicates, and objects,
over unusual or abstract scenes. This enables models to excel by leveraging previously acquired
common-world knowledge without necessarily understanding the actual content of the images. While
this bias might inflate scores on academic benchmarks, it can lead to significant challenges when
transitioning to real-world applications (43). Moreover, benchmarks curated to evaluate Multimodal
Chain-of-Thought (MCOT) reasoning such as (36), often feature redundant visual content (i.e. not
needed to answer the question), as illustrated in Figure 3. Current MCOT benchmarks also fail to
adequately address critical issues like hallucination (32) and prediction consistency. On retrieval
benchmarks, models’ performance is saturating near human-level (10; 58), making it challenging to
distinguish between models. This saturation is partly due to the lack of fine-grained detail in current
retrieval benchmarks, which do not sufficiently challenge today’s powerful models (47).

The rise of prompt-based generated images presents a unique opportunity for a comprehensive
multimodal benchmark. Unlike real images, these generated images bypass copyright issues and
offer diverse visual content, enabling more challenging and nuanced testing scenarios. Generated
images can combine uncommon concepts, such as “elephant on macaroons” which are rare in
traditional datasets but critical for evaluating a model’s true understanding of visual concepts. For
example, COCO contains object relations found in ConceptNet (33) 68% of the time vs. only 6%
in the generated images we collect. Further, as generated images become increasingly realistic
and proliferate online, incorporating them into benchmarks for assessing models’ capabilities to
understand and interpret diverse visual scenes will become increasingly important. By leveraging
prompt-based generated images, we can address the limitations of existing benchmarks, providing
better controllability and diversity in visual content. This approach enables rigorous testing of models’
hallucination tendencies, consistency, and ability to function effectively in varied and unpredictable
environments.

With this insight, we present JourneyBench, a comprehensive VLU benchmark leveraging prompt-
based generated images within a novel human-machine-in-the-loop (HMIL) framework. While some
recent works leveraging generated images have been proposed, they are either on a small scale (6)
(e.g.~1K samples) or not challenging and comprehensive enough (40). In contrast, JourneyBench is
large (~13.5K samples) and evaluates models’ advanced reasoning capabilities across five challenging
tasks: MCOT, multi-image MCOT (MMCOT), fine-grained cross-modal retrieval (CR), open-ended
visual question answering (VQA) with hallucination triggers2, and imaginary image captioning.
It specifically assesses models’ hallucination tendencies, prediction consistency, and ability to
understand and differentiate fine-grained details. Our contributions are as follows:

• We introduce JourneyBench, a comprehensive, expertly annotated, challenging VLU benchmark
of imaginary images to rigorously test models’ capabilities across five tasks.

2Similar to other recent benchmarks (35), JourneyBench builds on top of a prior, unpublished benchmark
(by the authors) for VQA with hallucination triggers called HaloQuest. We include a complete write-up in our
supp. and do not repeat details here. All other components of JourneyBench are new and described herein.
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• To the best of our knowledge, for the first time, we address VLU evaluation with imaginary
(unusual or fictional) images on a large scale. We further contribute the challenging complementary
MCOT, nvoel multi-image MCOT and fine-grained retrieval tasks with generated images.

• We develop a novel adversarial HMIL framework to scale up the generation of high-quality data.
• We conduct detailed analyses to provide insights into model performance, behavior and limitations.

For instance, even the powerful model GPT-4, achieves only 57.89% accuracy on multi-image VQA
and struggles with co-referencing across modalities in MCOT, achieving just 62.18% accuracy.

2 Related Works

VLU evaluation has been a crucial tool in assessing AI performance across various tasks(63), including
cross-modal retrieval (10; 58; 14), MCOT (36; 8; 35; 64; 60), image captioning (10; 58), visual
question answering (VQA) (20; 23; 61; 38; 45; 5), and multi-image visual reasoning (56; 25; 51).
Despite their significance, there have been limited efforts (6; 40) to leverage generated images
in VLU evaluation. These attempts have not fully exploited the controllability, convenience, and
strengths of prompt-based generated images (44; 4) to address more challenging issues such as
MCOT, fine-grained cross-modal retrieval (48; 68), and multi-image visual reasoning (56; 25; 51).
Cross-modal retrieval is a fundamental capability of AI with applications in many domains (67).
However, recent models’ performances have plateaued on existing benchmarks (10; 58; 14), which
primarily focus on differentiating non-related image-text pairs. This allows models to succeed by
memorizing holistic styles or content without paying attention to fine-grained visual details (48; 68).
Our fine-grained multimodal retrieval task, on the other hand, uses prompt-based generated images
to create sample-specific distractors, challenging models to differentiate intricate details. MCOT is
another challenging task that involves reasoning across visual and textual modalities. Existing VQA
and MCOT datasets often include redundant images, allowing models to solve problems using text
inputs alone (53; 36; 35). Furthermore, these datasets fail to address hallucination and consistency
issues in real-world math problems (21; 37; 24; 22; 64). To tackle these limitations, we develop
complementary MCOT questions that require the integration of information from both modalities.
Additionally, by pairing the same math reasoning question with different visual contexts, we can
assess models’ consistency and behavior, leveraging the flexibility of generated images. While many
existing datasets for image captioning (10; 58; 14) and VQA (20; 23; 61; 38; 45; 5) focus on everyday
scenarios with real images, our tasks—imaginary image captioning and HaloQuest (52) —aim to
evaluate models’ understanding of imaginary images, including unusual and fictional visual scenes.
By harnessing the strengths of prompt-based generated images, we enhance these popular VLU tasks
to push the boundaries of benchmarking high-performing models.

3 JourneyBench

In this section, we discuss the procedure for constructing JourneyBench. We first describe our
approach to collecting high-quality, diverse, and interesting images. Then, we detail the annotation
process for each of the five tasks. We include further details of our dataset, like quality assurance
via multiple rounds of annotations, consistency checks, and dataset statistics, in the appendix.
Collectively, JourneyBench’s curation involved over 2,200 hours of human annotation effort.

3.1 Data acquisition and filtering

Retrieving generated images. We aim to create a VLU benchmark containing challenging and diverse
imaginary images, including unusual, abstract, and complex ones by leveraging the advantages of
prompt-based generated images. However, generated images tend to suffer from low quality and
biased distribution. To prevent that, we instead retrieve popular prompt-based generated images from
Midjourney (4) - a large crowd-based platform - using web scraping tools with metadata information.
We ensure the diversity of image content by adopting the strategy from (52) – combining 17 topic
words and 15 attribute words to form the query used to retrieve images. This approach results in
a significantly larger and more diverse set of topic words for image content compared to previous
image-text datasets 3.

3Detailed analysis in Section 4.4 and appendix.
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Initial Caption

Prompt

Human Interpreter

What are they doing?

Is the man holding
anything?

Using the initial caption, generate
questions that can create a
comprehensive and detailed

description of the image.

Questioner (LLM)

Answerer (VLM)

All existing
Sub-Questions
Sub-Answers 

Generated
Sub-Questions

They are sitting and
eating dinner

They are sitting and
eating their dinner, the
man is holding a wine

glass.
What are they doing

sitting at a table?

Can you describe the
size or shape of the

gun that the
character is holding?

The man is holding a
gun.

The gun held by the
man in the background

is small and slender,
with a short barrel.

They are sitting and eating their
dinner.

The gun held by the man is small
and slender, with a short barrel.

The man is holding a wine glass.
The man is holding a gun.

Sub-Questions Sub-Answers

Iter 1

Iter 2

Iter 3

Iter 4

Iter n ...

Select &
Modify

Path of 1st
Iteration

Path of nth
Iteration

...

...

...

...

Hallucinated Statements

(B)(A)

IMAGINARY IMAGES

Unusual Images Fictional Images
Generated

Sub-Answers

Figure 2: Examples of Imaginary Images and Human-Machine-in-the-Loop Pipeline.

Image filtering. Human annotators select images from the retrieved pool that are: unusual, fictional
(unrealistic), and contain visually comprehensible concepts. Unusual images depict scenarios outside
of everyday experiences, feature unexpected juxtapositions of objects, or include visually striking
elements. Fictional images present unrealistic or impossible scenes (e.g., an elephant standing on
macaroons). Comprehensibility ensures that images are free of artifacts and understandable to
humans. This balances the fine dynamics between creating challenging scenarios and ensuring legible
visual concepts to reliably test models. We present annotators with a set of questions to help them
identify if images fulfill these three criteria. To address human subjectivity in this task , we employ
at least four Amazon Mechanical Turk (MTurk) annotators for each image. They achieve 100%
agreement in over 72% of cases. Detailed information about the user interface, data filtering process,
and questions are provided in the appendix.

Categories of imaginary images Providing a fine-grained categorization of imaginary images can
assist in our understanding of models’ behaviors across categories of unfamiliar scenarios. Hence, we
categorize our images based on how unusual or how unrealistic they are. Because of the subjective
nature of this problem, we hire four experienced co-author annotators who collectively converged
on 15 categories of unusualness and unrealisticness across images, as listed in the axes of Figure 4,
which were then used to annotate the dataset.

We next present how we use imaginary images to form challenging VLU tasks within JourneyBench.

3.2 Imaginary Image Captioning

While captioning is a standard task for VLU benchmarking, we seek to test models’ abilities to
understand and caption imaginary images in JourneyBench. To this end, we require models to
generate a single-sentence description of an image highlighting elements that make it imaginary. The
ground truth annotation of each collected imaginary image is written by eight MTurk annotators to
describe the most unusual or fictional part of the image. Then the captions are verified by another
four experienced MTurk annotators to avoid subjective biases among annotators. The user interfaces
and detailed procedures during the annotation process are in the appendix.

3.3 Fine-grained Cross-modal Retrieval

Cross-modal retrieval is a fundamental VLU task included in many benchmarks (10; 58; 14). Given
an image, the objective is to retrieve the matching text, and vice versa. This capability is critical
for AI models in various domains, including search engines. However, the performance of existing
models on popular cross-modal retrieval benchmarks such as MS-COCO (10) and Flickr30K (58)
has reached saturation (27). These benchmarks primarily involve real images and focus on largely
discriminating between pairs holistically. For example, in image-to-text retrieval, other images’
matching texts are treated as distractors (i.e. negatives), even though they are largely irrelevant
to the target image, making the task easier. However, for models to accurately retrieve relevant
content, it is crucial to be able to differentiate image-text pairs at a fine-grained level. Thus, to
challenge models’ ability to perform fine-grained differentiation across similar images, we propose an
adversarial HMIL framework to create sample-specific distractors, i.e. hard negatives which require
fine-grained discrimination to overcome, for each query sample. For instance, as illustrated in the
rightmost examples in Figure 1, our framework creates challenging scenarios requiring models to
focus on intricate details to successfully retrieve the correct image-text pairs. We next describe our
data curation and annotation approach below for each retrieval direction.
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0 Stormtroopers

Hallucination 
Prompt

Cross-referencing with External 
Knowledge

Sample Question

number of people living there
including Brianna is the same as the
number of Stormtroopers as in the
image.

Cross-referencing
Solution

2 flashlights per 
room for 8 
rooms,  8*2 = 
16 flashlights. x
Stormtroopers, 
x*1 = x 
flashlights. 4 
rooms, 4 small 
candles each 
4*4=16, 4 
rooms, 5 
medium candles 
each, 4*5=20. 
Total flashlights 
and candles = 
<16+x+16+20>
= 52+x

Answer
x=4, 
<<52+4>>
=56

x=0, 
<<52+0>>
=52

REDUNDANT REDUNDANT

How many miles per
gallon do the average
motorcycle get on the
highway?

Question

The force is a pull.

Answer

Which type of
force from the
baby's hand opens
the cabinet door?

Question
The baby’s hand
applies a force
to the door, and
the door opens.

Context

The answer is 50 miles 
per gallon.

Answer

Brianna’s house has 4 people living there
including Brianna, and has 8 rooms.
There’s a flashlight for every person, and two
for each room. There are 4 small candles each
for half the rooms and 5 medium candles each
for the remaining rooms. How many candles
and flashlights are Brianna's family using when
the lights go out?

Visualizable Component

Strictly Complementary MCOTMathVistaScienceQA

Answer

Figure 3: Comparison between ScienceQA, MathVista (left), and our Strictly Complementary
MCOT (right) with Examples. While ScienceQA and MathVista images provide redundant visual
information, Journeybench provides complimentary visual information that is necessary to answer
the question. This ensures a more rigorous evaluation of multimodal reasoning capabilities.

Image-to-Text retrieval. We experiment with two HMIL approaches to scale up and generate
distractors. In the first one, we feed the ground-truth caption (Sec.3.2) into MLLMs like GPT-
4V and prompt them to generate relevant but conflicting hallucinated statements using in-context
examples. Human annotators then verify these generated distractors. This approach is effective but
has limitations. It performs well when the image is easily comprehensible by the MLLMs and the
ground-truth caption is detailed. However, the generated distractors are often not challenging enough
and somewhat obvious, as the conflicting elements are “guessed” by the generation model, which
itself introduces bias. We find in cases where the image is complex, or the ground-truth text is not
detailed, the model often introduces irrelevant elements into the distractors, reducing their quality.

To address these limitations, we develop a more effective HMIL system inspired by (57) that
introduces a dialogue between an LLM and an MLLM. As in Figure 2, the process begins by feeding
the initial ground-truth caption and the prompt into the LLM, which generates questions about the
image that are answered by the MLLM. With each iteration, the MLLM-LLM’s errors propagate,
making the hallucinated predictions more difficult to overturn and thus revealing “blind spots” to
humans. These “blind spots” are not merely imagined by the generators but empirically demonstrated
on the task. Human annotators then pinpoint these spots, collecting hallucinated answers or statements
as potential distractors. We found this HMIL approach generates high-quality distractors with relevant
but conflicting details that are challenging for models to notice.

Text-to-Image retrieval. Similar to image-to-text retrieval, for each target text, we use the matching
ground-truth image to obtain sample-specific image distractors. We employ a group of expert
annotators to query the Midjourney platform to retrieve relevant but conflicting image distractors for
each sample. During this process, annotators are asked to find image distractors based on two criteria:
the subject, the composition, or both. For example, as illustrated in the bottom rightmost image in
Figure 1, for the subject criterion, annotators should find image distractors that also feature three
cats. For the composition criterion, they should find image distractors where there are three animals
positioned side by side and facing the camera. By adhering to these criteria, we ensure that annotators
collect high-quality image distractors that cannot be easily differentiated without fine-grained details.
On average, for each target text, we obtain about five sample-specific distractors.

3.4 Complementary Multimodal Chain-of-Thought

In the MCOT task, the input consists of an image and a question which requires the model to
integrate information from both modalities. However, existing MCOT resources like MathVista
(35) and ScienceQA (36) often contain redundant visual information, allowing models to answer
questions using only the language input. To address this, we aim to build a Strictly Complementary
MCOT dataset that requires multimodal reasoning. In this dataset, visual and text information
will be complementary, ensuring models must co-reference both modalities for chain-of-thought
reasoning. Our experiments reveal that multimodal co-referencing during the chain-of-thought
process is very challenging for existing models. For example, GPT-4 achieves over 90% accuracy on
the text-only version of our COT questions, GSM8K (15), but only 49.34% and 61.2% in our strictly
complementary MCOT setting for GPT-4V and GPT-4o, respectively. This significant drop highlights
the importance of our complementary MCOT dataset in evaluating multimodal reasoning capabilities.
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Visualizing text-only MCOT. We scale up the generation of strictly complementary MCOT data by
converting the text-only COT benchmark, GSM8K (15), into MCOT using prompt-based generated
images. As shown in Figure 3, the process begins by identifying visualizable text components and
converting them into prompts to generate images. These images replace the identified text components
with new text requiring co-referencing the image. This method rapidly scales up the creation of
high-quality, complementary MCOT data which allows testing of models’ multimodal reasoning
capabilities in solving arithmetic problems.

Co-referencing categories. Generated images’ controllability allows us to test each question with
diverse visual contexts all requiring the same arithmetic reasoning logic to better understand models’
abilities. As shown in Figure 5, we evaluate models’ ability to co-reference visual content requir-
ing external knowledge for arithmetic problems and assess hallucination tendencies by omitting
referenced objects. Despite recent MLLM progress in MCOT benchmarks, co-referencing remains
extremely challenging. We categorize types of co-referencing to analyze models’ weaknesses in
Figure 5. Our appendix contains detailed definitions of each type shown. Our findings indicate
models struggle with hallucination and using external knowledge in the MCOT task, highlighting the
need for further research.

3.5 Multi-image Visual Question Answering
Recently, benchmarks for multi-image VQA have been proposed (25; 46), requiring models to reason
over multiple images for VQA. However, due to limited real image resources, existing datasets
primarily test basic abilities like color matching, image-text matching, and object counting. In
contrast, our multi-image VQA task evaluates three specific and challenging reasoning categories:
arithmetic reasoning, applying external knowledge to visual reasoning, and identifying cause and
effect, as shown in the example of Figure 1.

For multi-image VQA data requiring arithmetic reasoning, we use a similar approach to our single-
image MCOT data collection. For data requiring external knowledge, we engage six expert annotators
to identify and collect high-quality Midjourney images that require external knowledge to understand.
These annotators then generate multi-image visual questions based on these images. For the cause-
and-effect category, we use prompt-based generated images to convert the text-only cause-and-effect
dataset, COPA (7). Each COPA sample contains two text events representing cause and effect.
Annotators identify samples with visualizable events and obtain corresponding generated images,
which are then compiled into multi-image samples to test if models can identify the cause or effect
between visual events. Our multi-image VQA setting challenges even the best models with complex
reasoning tasks requiring co-referencing, applying external knowledge, and understanding cause-and-
effect relationships across multiple images.

4 Experiment

4.1 Evaluation Metrics

For cross-modal retrieval, we report Recall@k (R@k) for k ∈ 1, 5, 10. For captioning, we report
the standard BLEU, ROUGE, CIDEr, and Meteor scores. For our MCOT and multi-image VQA
tasks, we use Llama-3-8B (3) to extract the answers from the models’ generated solutions and then
again ask Llama-3-8B to determine if the answer is correct by providing the question and ground
truth answer with the prompt. We then use Llama-3-70B for solution verification by asking Llama to
verify if the generated solution follows the logic of the ground truth solution. We manually verified a
subset of Llama-3’s responses to ensure quality. In the appendix, we provide additional details of our
evaluation setup, along with the prompts used.

4.2 Baseline Models

For our retrieval tasks, we employ SOTA retrieval pre-trained models, including ALBEF (30), CLIP
(41), X2-VLM (Large) (62), BEiT3 (50), BLIP2 (29), OpenCLIP-Coca (13), and InternVL (12).
In the case of MCOT, multi-image VQA, and captioning tasks, we leverage current SOTA vision-
language generative models in a zero-shot manner, along with GPT-4o (1) and GPT-4V (2) . The
models utilized for these tasks include LLaVA-NeXT (28), VILA (31), BLIP-2 (29), Mantis (25),
InternVL (11), MiniGPT-4 (66), mPLUG-Owl (54), mPlug-Owl2 (55), Idefics2 (26), and CogVLM2
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(49). We use different versions and sizes of these models with our fixed prompts, and the details can
be found in the appendix.

Text Retrieval Image Retrieval

Model
Flickr30K(1K) MS-COCO(1K)

JourneyBench(1K)
w/o distractors

JourneyBench(1K)
w/ distractors

Flickr30K(1K) MS-COCO(1K)
JourneyBench(1K)

w/o distractors
JourneyBench(1K)

w/ distractors
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

ALBEF-210M (30) 88.50 98.50 89.10 98.30 72.30 86.10 65.36 83.75 75.90 92.60 72.28 94.18 66.12 88.65 50.02 75.46

CLIP-430M (41) 85.30 97.90 75.60 93.20 70.60 85.70 60.80 83.30 64.90 87.20 54.50 81.80 66.80 88.80 51.20 76.50

X2-VLM-Large-590M (62) 98.80 100.00 93.60 99.50 78.54 92.78 64.97 90.47 91.80 98.60 83.32 96.86 75.04 93.16 61.02 85.00
BEiT3-674M (50) 89.50 98.80 81.10 96.60 74.10 87.80 65.90 86.10 75.94 93.34 66.40 89.50 68.00 90.30 56.20 79.90

BLIP2-12B (29) 92.80 99.90 91.30 99.10 81.29 95.17 63.78 87.76 89.70 98.10 78.78 94.92 75.77 91.66 59.97 82.48

OpenCLIP-CoCa-13B (13) 92.50 99.50 75.89 93.63 70.43 85.41 60.04 83.32 80.40 95.70 59.30 85.51 65.83 86.66 48.70 72.56

InternVL-C-13B (12) 94.70 99.60 85.34 96.86 78.22 89.21 67.73 86.41 81.70 96.00 71.43 91.50 75.84 93.34 62.29 83.44

InternVL-G-14B (12) 95.70 99.70 87.58 97.64 78.52 89.81 67.53 86.51 85.00 97.00 75.64 93.77 76.80 93.80 63.71 84.84

Table 1: Zero-shot Evaluation of Cross-modal Retrieval. The best and second-best results are
bolded and underlined. The performance of baseline models on JourneyBench without distractors is
comparable to that of existing cross-modal retrieval tasks of similar scale, indicating their generaliz-
ability to generated images. However, there is a notable decline in performance when distractors are
added, highlighting the critical role of sample-specific distractors in enhancing the challenge of the
tasks. Additional results available in appendix.

4.3 Quantitative Analysis
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Figure 4: Zero-shot Evaluation on Fine-grained Categories of Retrieval and Captioning. I2T
(left), T2I (center), and Imaginary Image Captioning (right) are measured by Recall@1, Recall@1,
and CIDEr respectively. Models particularly struggle with “Unusual Construction" subcategory.

We experimented with various SOTA models on our newly introduced JourneyBench datasets with
a range of different experiments, including cross-modal fine-grained retrieval, imaginary image
captioning, and multimodal chain-of-thought and multi-image VQA.

Models struggle with differentiating fine-grained visual details. We selected a diverse set of
models that have previously exhibited strong performance on established cross-modal retrieval
datasets (58; 10; 14). Table 1 presents the results of existing SOTA retrieval models on these datasets
and our fine-grained cross-modal retrieval dataset. Among these models, InternVL (12) and BLIP2
(29) achieve the highest R@1 score of 67.63% and 81.29% for text retrieval with and without
distractors, respectively. Regarding image retrieval, with and without distractors, InternVL-G-14B
(12) achieved the highest R@1 scores. However, as depicted in Figure 4, the performance of these
models on our dataset reveals significant challenges and limitations, with the majority of scores
clustered around 60% and failing to surpass the 80% mark across all categories.

The lower recall scores in JourneyBench compared to MS-COCO (10) and Flickr30k (58) demonstrate
that models encounter greater challenges in retrieving text and images from our dataset. For instance,
the highest R@1 performance for text retrieval in MS-COCO-1k is 93.6%, whereas in JourneyBench
with and without distractors, it was only 70.1% and 81.29%, respectively. Similarly, for image
retrieval, the highest R@1 score on MS-COCO-1k is 83.32%, which is notably higher than the 76.8%
and 63.71% scores in our dataset. This disparity highlights the models’ struggle in differentiating
fine-grained visual and textual details, especially with sample-specific distractors in JourneyBench.
The varying performance gaps across categories suggest that certain types of image-text relationships
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are more challenging to capture and align, with categories like "Unusual Construction" and "Strange
Scene" requiring more sophisticated understanding and reasoning abilities to bridge the semantic gap
between the visual and textual modalities.

Model BLEU1-4 CIDEr METEOR Rouge
MiniGPT4-Lama2-7B (66) 19.60 20.91 18.07 28.76
mPLUG-Owl-7.2B (54) 19.53 14.68 19.32 27.66
LLaVA-Next-Llama3-8B (28) 20.01 28.69 15.01 26.38
mPLUG-Owl (v2)-9.2B (54) 24.31 26.74 20.51 30.97
Blip-2-12B (29) 17.75 26.00 22.00 37.00
InstructBLIP-12B (17) 10.23 00.46 17.19 19.51
OpenCLIP-CoCa-13B (13) 18.79 21.59 12.02 24.40
MiniGPT4-Vicuna-13B (66) 12.79 16.21 17.10 24.51
CogVLM v2 (lama3)-17B (49) 21.86 30.31 18.63 28.67
LLaVA-Next-Qwen110B (28) 19.73 27.18 14.96 26.61
GPT-4o 21.86 32.56 18.56 28.37
GPT-4V 17.36 11.24 19.47 26.75

Table 2: Zero-shot Evaluation on Imaginary Image
Captioning. The best and second-best results are
bolded and underlined. The low scores on the
metrics indicate the baselines struggle to describe
imaginary images.

Models are not used to imaginary visual sce-
narios. We conducted experiments that in-
cluded various SOTA models for visual under-
standing, such as LLaVA-NeXT (28), MiniGPT-
4 (66), mPlug-Owl (54; 55), GPT-4o, etc. for the
captioning task. In Table 2 and Figure 4, most of
the models performed poorly on JourneyBench
compared to their performance on other caption-
ing datasets (58; 10; 14), with the majority of
the models achieving CIDEr scores less than 30.

Co-referencing across modalities is challeng-
ing in arithmetic reasoning. Figure 5 illus-
trates the performance of SOTA methods across
fine-grained categories of the JourneyBench
MCOT dataset. Our complementary MCOT task

proves to be highly challenging, with GPT-4o achieving only 62.18% accuracy. Most other models,
except GPTs and LLaVAs, score below 10%. Notably, GPT-4V and GPT-4o struggle with consis-
tency, hallucination, and co-referencing in visual contexts with numerous objects. Additionally,
smaller VLMs also find it difficult to utilize external knowledge when solving MCOT questions.
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Unusual Properties 
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Relevant Objects
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Knowledge

Total
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Blip-2-FlanXXL-12B

InstructBLIP-Flan-T5-XXL-12B

MiniGPT4-Vicuna-13B
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Human Score

mPLUG-Owl (v2)-9.2B

MiniGPT4-LLama2-7B

LLaVA-Next-Qwen 110b

Figure 5: Zero-shot Evaluation on Fine-grained Cate-
gories of MCOT. Models struggle to get high accuracy in all
categories, especially for image-question pairs with halluci-
nations or with large numbers of objects.

To demonstrate the complementary
nature of our image-question pairs
in MCOT, we tested a language-
only GPT-4o model on our dataset,
which resulted in just 16.64% accu-
racy. In contrast, language-only GPT-
4o achieved 83.9% on ScienceQA
(36). This significant difference under-
scores the importance of complemen-
tary visual and textual information
in multimodal reasoning tasks. The
red star in Figure 5 indicates human
performance at 84%, suggesting that
there is still significant room for im-
provement even for the SOTA LLMs.

Model
Multi-Image VQA Mantis

EvalAll MMCOT Cause
and

EffectAll
Arithmetic
Reasoning

External
Knowledge

Solution
Verification

VILA-8B (31) 24.20 6.14 3.73 8.65 3.77 53.92 51.15
Idefics2-8B (26) 27.82 6.61 2.81 10.57 4.95 65.03 48.85
Mantis-Idefics2-8B (25) 19.90 3.30 3.71 2.88 7.26 49.02 57.14
Mantis-SigLIP-8B (25) 23.29 4.72 5.98 3.41 7.82 55.88 59.45
GPT-4V 48.70 32.54 32.88 32.2 36.31 77.06 62.67
GPT-4o 56.39 41.03 52.04 29.61 43.39 83.33 73.42
Human 78.90 71.40 86.00 55.80 - 92.00 -

Table 3: Zero-shot Evaluation on Multi-Image Visual
Reasoning. The best and second-best results are bolded
and underlined. Models like GPT-4o perform worse on our
Multi-image VQA or MMCOT than on Mantis-Eval. Note
that most models on Cause and Effect - being a binary-choice
question - have an accuracy of nearly random guessing.

Co-referencing across multiple im-
ages is extremely challenging. Ta-
ble 3 presents the performance of dif-
ferent SOTA VLMs on our proposed
multi-image VQA dataset across var-
ious categories, as well as on the
Mantis-Eval dataset. Overall, mod-
els encountered greater challenges in
co-referencing across multiple images
in JourneyBench, with low scores in
the range of 39.04% ± 18.85%. Espe-
cially concerning MMCOT VQA, per-
formance is even lower in the range
of 23.58% ± 19.81% across different
SOTA VLMs. Meanwhile, all the models achieved much higher accuracy scores in the range of
61.13% ± 12.29% on the Mantis-Eval dataset. For instance, GPT-4o achieved an accuracy of 73.42%
on the Mantis-Eval dataset, which is approximately 32 % and 17% higher than its performance,
41.03% on our MMCOT and 56.39% on our multi-image VQA. Similar to our MCOT task, we also
conduct a human evaluation to obtain an estimation of the expected maximum performance. As
shown in the figure, the arithmetic reason is similar to MCOT, suggesting humans are indifferent to
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multiple images. However, since we restrict access to the internet during the human test, the low
external knowledge result causes a significant drawback to the overall score.

4.4 Qualitative Analysis

Figure 6: Low-dimensional Representation of Journey-
Bench, MS COCO, MathVista, and ScienceQA Images.
JourneyBench shows a more diverse distribution.

Image Diversity Visualization. Fig-
ure 6 shows the result of dimension re-
duction using UMAP (39) on CLIP’s
embedding space, sampling an equal
number of images from each dataset.
In the top figure, JourneyBench’s dis-
tribution is not only more expansive
but also encompasses the majority of
COCO’s data distribution, suggest-
ing a richer semantic diversity. The
bottom figure shows JourneyBench’s
MCOT images have a similarly di-

verse distribution. Compared to existing MCOT benchmarks like MathVista (35), and ScienceQA
(36), JourneyBench MCOT displays significantly greater diversity. Despite sampling an equal number
of images from each dataset, JourneyBench appears more populated in the graph. This is because
images in MathVista and ScienceQA are often very similar, such as maps, tables, and illustrations
that change only slightly, resulting in densely overlapping data points in the UMAP visualization.

5 Conclusion

We introduce JourneyBench, a new benchmark that tests models’ understanding of unusual or fictional
images across various tasks, including multimodal chain-of-thought, multi-image VQA, image
captioning, visual question answering, and cross-modal retrieval. JourneyBench’s tasks consistently
yield lower evaluation scores from all tested baseline models, underscoring the challenges posed
by its unusual or fictional image subjects, strategically designed distractors, hallucination-inducing
questions, and questions that require cross-modal referencing. This makes JourneyBench an ideal
tool for assessing the capabilities of advanced MM-LLMs, pushing the boundaries of what these
models can understand and interpret.
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