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Abstract
In this paper, we question if well pre-trained vision transformer (ViT) models
could be used as teachers that exhibit scalable properties to advance cross archi-
tecture knowledge distillation research, in the context of adopting mainstream
large-scale visual recognition datasets for evaluation. To make this possible,
our analysis underlines the importance of seeking effective strategies to align
(1) feature computing paradigm differences, (2) model scale differences, and (3)
knowledge density differences. By combining three closely coupled components
namely cross attention projector, dual-view feature mimicking and teacher pa-
rameter perception tailored to address the alignment problems stated above, we
present a simple and effective knowledge distillation method, called ScaleKD. Our
method can train student backbones that span across a variety of convolutional
neural network (CNN), multi-layer perceptron (MLP), and ViT architectures on
image classification datasets, achieving state-of-the-art knowledge distillation per-
formance. For instance, taking a well pre-trained Swin-L as the teacher model,
our method gets 75.15%|82.03%|84.16%|78.63%|81.96%|83.93%|83.80%|85.53%
top-1 accuracies for MobileNet-V1|ResNet-50|ConvNeXt-T|Mixer-S/16|Mixer-
B/16|ViT-S/16|Swin-T|ViT-B/16 models trained on ImageNet-1K dataset from
scratch, showing 3.05%|3.39%|2.02%|4.61%|5.52%|4.03%|2.62%|3.73% absolute
gains to the individually trained counterparts. Intriguingly, when scaling up the size
of teacher models or their pre-training datasets, our method showcases the desired
scalable properties, bringing increasingly larger gains to student models. We also
empirically show that the student backbones trained by our method transfer well
on downstream MS-COCO and ADE20K datasets. More importantly, our method
could be used as a more efficient alternative to the time-intensive pre-training
paradigm for any target student model on large-scale datasets if a strong pre-trained
ViT is available, reducing the amount of viewed training samples up to 195×. The
code is available at https://github.com/deep-optimization/ScaleKD.

1 Introduction

Background. The great success of deep learning in computer vision (CV) has been driven by an
explosion of neural network architectures among which convolutional neural networks (CNNs) [1–3],
vision transformers (ViTs) [4, 5] and multi-layer perceptrons (MLPs) [6–8] are three major model
categories. While CNNs were the de facto models for about a decade, recent progress shows that large
ViT models have attained state-of-the-art performance on many visual recognition tasks such as image

∗ Core authors contributed to method formulation, experimental design and analysis.
† Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

63290 https://doi.org/10.52202/079017-2022

https://github.com/deep-optimization/ScaleKD


classification, image segmentation, and object detection. In principle, ViTs extend the philosophy
of predominant transformer architectures [9] in natural language processing (NLP) to vision tasks.
They convert an image into a sequence of equal-sized patches treated as tokens resembling words
in NLP, then apply the dot-product self-attention mechanism over the sequence of image patches.
ViTs designed in this way couple with a powerful data-hungry learning paradigm: models are
first pre-trained on massive datasets (with supervised or self-supervised [10, 11] or cross-modality
learning [12, 13]) and then fine-tuned on target datasets (with supervised learning). As the size of ViT
models or pre-training datasets increases, the pre-trained models tend to have improved generalization
performance. Despite this notable model performance scalability, the pre-training process of ViTs
leads to significantly huge expenses. Furthermore, large pre-trained ViTs are memory-hungry and
computationally intensive, prohibiting their deployment in many resource-constrained application
scenarios. In contrast, CNNs and MLPs are still widely used in industry, due to the wider availability
of effective implementations and optimizations compared to ViTs.

Motivation of This Work. In parallel, knowledge distillation (KD) has proven to be a promising
model compression pathway and has attracted lots of research interests. It relies on a teacher-student
framework that transfers the knowledge learned by a large teacher model to a compact student model,
aiming to make the student model can have improved performance to substitute the teacher model in
deployment. However, most existing KD methods [14–35] focus on CNN architectures, and usually
perform evaluation on small datasets with non-mainstream student models for industrial applications,
lagging far behind the evolution of neural network architectures. Although there have been few recent
efforts [36–39] on using ViT teachers, they explore narrow focuses that use small ViT teachers without
pre-training on massive datasets, following the ways previously studied in CNN-based KD methods.
In this paper, we attempt to connect knowledge distillation research with well pre-trained ViT models
that stand out for their remarkable scalability, via a new viewpoint. Specifically, we question whether
well pre-trained ViT models could be used as teachers that effectively transfer their scalable properties
to target student models having different typed architectures such as CNN and MLP or heterogeneous
ViT structures (we refer ‘cross architecture KD’ to such a more generalized formulation in this work),
in the context of using mainstream large-scale visual recognition benchmarks.

Problem Analysis. To answer the question in our motivation, we think the knowledge transfer
difficulties are rooted in the following three aspects of differences: (1) Differences in feature com-
puting paradigm. In terms of semantic units, ViTs operate on a sequence of equal-sized image
patches added with positional embeddings, whereas CNNs operate on regular grids of pixels. In
terms of core operations, ViTs rely on self-attention operations to model global feature dependencies,
whereas CNNs rely on convolution operations to model local features. Although MLPs also use a
patchify stem as ViTs, they rely on fully connected operations instead of self-attention operations
and do not use positional embeddings, showing inferior feature learning ability. These differences in
feature computing paradigm pose the first knowledge transfer barrier to overcome. (2) Differences
in model scale. On the micro scale, model scale differences among ViTs, CNNs, and MLPs lie in
network width, network depth, building blocks, etc. On the macro scale, model scale differences
come from the capability of scaling the model size for ViTs, CNNs and MLPs towards better per-
formance and generalization ability. As a result, these differences in model scale make the capacity
of different network architectures typically vary significantly, emerging as the second knowledge
transfer barrier to address. (3) Differences in knowledge density. Under the prevalent pre-training and
fine-tuning paradigm, when scaling up pre-training datasets, large ViTs usually exhibit obviously
superior performance scalability than top-performing CNNs and MLPs in terms of fine-tuning on
both upstream image classification tasks and downstream dense prediction tasks [40, 41]. As for
knowledge distillation in this work, we assume that pre-training datasets are no longer accessible and
only well pre-trained ViT teacher models are available, avoiding the expensive pre-training process
and making the setting well suited for real applications. Under this context, when training student
models on upstream image classification datasets like ImageNet-1K, the knowledge density between
teacher and student models is different, which appears as the third barrier to handle. From the
above analysis, we can conclude that the design of effective schemes to align (1) feature computing
paradigm differences, (2) model scale differences, and (3) knowledge density differences between the
pre-trained ViT teacher and target student models, plays the key role to attain our goal.

Design Insights and Contributions. Accordingly, we present Scalable Knowledge Distillation
(ScaleKD), a simple and effective cross architecture KD method, which addresses the above difficul-
ties in a progressive manner. Fundamentally, to bridge the feature computing paradigm differences
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Figure 1: Overview of three core components in our ScaleKD, which are (a) cross attention projector,
(b) dual-view feature mimicking, and (c) teacher parameter perception. Note that the teacher model
is frozen in the distillation process and there is no modification to the student’s model at inference.

between ViT and the other heterogeneous architectures, we propose cross attention projector (CAP,
shown in Figure 1(a)), motivated by some previous works [42–44] that utilize cross attention mecha-
nisms to align different modalities. For semantic unit differences, CAP utilizes positional embeddings
and a patchify stem to transform the semantic units of CNN and MLP into transformer-like tokens.
To further bridge core operation differences, CAP employs cross-attention operation and trainable
queries that share the same attributes as the teacher’s features to model global interdependencies on
the student’s features. In this way, CAP could align computing paradigm differences between the ViT
teacher and the heterogeneous student in form, serving as the base component in our method.

Different from feature computing paradigm differences, model scale differences and knowledge
density differences are not explicitly and separately modeled in the KD process, as they are intertwined
under the prevailing pre-training and fine-tuning paradigm and are finally encoded in teacher and
student models’ feature space and parameter space. In light of this, we investigate both feature and
parameter spaces of teacher and student models and observe two critical phenomena:

• Feature Space: As shown in Figure 2 and Figure 5, the frequency distributions of the features
for the pre-trained ViTs are extremely imbalanced, where the direct component (zero frequency)
response is dominant among all frequencies. This indicates that conducting feature distillation
under such an imbalanced distribution may neglect the features of all other alternative components.

• Parameter Space: As the parameters of the pre-trained ViTs in the fine-tuning stage are slightly
changed, their pre-training knowledge remains in the parameter space. Although the pre-training
datasets are not accessible in this work, the student still has the opportunity to obtain the pre-training
knowledge by aligning its parameter space to the teacher’s.

Inspired by these two insightful observations, we formulate our method from two new perspectives.
Based on the observation in feature space, we design dual-view feature mimicking (DFM, shown
in Figure 1(b)), whose key insight is to complement the neglected alternative features in the KD
process. Specifically, DFM employs CAP as the feature projector and incorporates two feature
mimicking paths. In the first path, DFM conducts feature mimicking in the original space to learn the
teacher’s global features. In the second path, by removing the direct component in frequency space,
DFM highlights the subtle alternative responses in feature mimicking, thus avoiding the neglect of
these features. As a result, the two paths are complementary to each other, jointly promoting the
feature space alignment. Based on the observation in parameter space, we propose teacher parameter
perception (TPP, shown in Figure 1(c)), whose target is to transfer the pre-training knowledge by
establishing a connection between teacher’s and student’s parameter spaces. Thanks to the aligned
feature computing paradigm by CAP, TPP could bridge the student’s early stages to the teacher’s later
stages and form a proxy feature processing path, where their parameter spaces join hands for KD
optimization. By applying feature distillation in this path, the student’s parameter space tends to be
gradually aligned with the teacher’s, and the pre-training knowledge would be transferred from the
teacher to the student. Since the distillation learning processes in feature space and parameter space
are the two sides of the same coin, DFM and TPP could naturally reinforce each other in essence.

Benefited from the progressive designs, CAP, DFM, and TPP can be seamlessly integrated into a neat
and effective cross architecture knowledge distillation method, called ScaleKD, which addresses the
above three problems as a whole. Although ScaleKD has multiple feature mimicking paths, they only
exist in the training stage. That is, ScaleKD does not alter the student’s structure and introduces no
additional cost in the inference stage. By conducting systematic experiments on several mainstream
large-scale vision benchmarks, we validate the effectiveness and generalization ability of our method.
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2 Method

Figure 2: Feature distribution of
BEiT-L/14 [41] in the frequency
domain, where the direct compo-
nent response is dominant. De-
tails on drawing this figure are
shown in Figure 5.

Given a pre-trained ViT teacher having m stages and a target
student (CNN or MLP or ViT) having n stages, let F si and F tj

denote features from i-th stage of the student and j-th of the
teacher, respectively. In what follows, we formulate all three com-
ponents of ScaleKD in the form of performing feature distillation,
for better clarifying their tightly coupled relationships.

2.1 Three Core Components in ScaleKD

Cross Attention Projector. As shown in Figure 1(a), CAP adopts
the structure of a standard transformer decoder block, consisting
of a transformer decoder layer and an MLP layer, but incorpo-
rates three critical modifications. For brevity, taking CNN as an
example, our modifications include: i) patchifying regular grids
of pixels in CNN; ii) adding positional embeddings; iii) setting
queries in the transformer decoder block as trainable variables
that share the same resolution with the teacher’s features. The
first two modifications intend to narrow the discrepancy between
different semantic units of the pre-trained ViT teacher and the CNN student, while the last modifica-
tion endows the employed transformer decoder block with great flexibility to align feature semantics
and spatial resolution. For MLP and ViT students, we adopt the same CAP structure as to CNN
students for simple implementation but they can adapt CAP with fewer modifications when necessary.
Based on these modifications, the cross-attention operation further models global dependencies on
the projected student features. With CAP, the feature distillation loss is defined as:

LCAP = αL(F t, fp(F
s; q)) = α||F t − fp(F

s; q)||22, (1)

where fp, q, α(≥ 0), and L(·) denote the CAP, the trainable queries, the loss weight, and the
L2-normed distance, respectively.

Dual-view Feature Mimicking. As shown in Figure 1(b), building upon CAP, DFM contains two
feature mimicking paths. As we stated in Section 1, the first path aims to learn the teacher’s global
features and the second path aims to excite and mimic the alternative features (neglected by existing
KD methods). Specifically, in the first path, DFM conducts feature mimicking in the teacher’s original
feature space, which is formulated as: Lori = αL(F t, fp1

(F s, q1)), where fp1
and q1 denote the

CAP and its trainable queries in the first path, respectively. In the second path, the dominant direct
component should be removed. To achieve this goal, we first employ discrete cosine transform (DCT),
which maps the features from the spatial domain to the frequency domain: DCT : X → Z. We then
define an operator ϕ that removes direct component response from the features:

ϕ(x) = DCT−1(σ(DCT (x))) s.t. σ(z) =

{
0, z = 0
z, z ̸= 0

. (2)

Next, feature mimicking in the second path is formulated as: Lalt = αL(ϕ(F t), ϕ(fp2
(F s; q2))),

where fp2
and q2 denote the CAP and its trainable queries in the second path, respectively. Now, the

feature distillation loss of DFM is formulated as:

LDFM = βLori + (1− β)Lalt, (3)

where β ∈ [0, 1] denotes the balancing weight.

Teacher Parameter Perception. As we stated in Section 1, TPP establishes a proxy feature
processing path by connecting the student’s early stages to the teacher’s later stages through a CAP.
In our implementation, the proxy path consists of the student’s first n−1 stages and the teacher’s last
stage, as illustrated in Figure 1(c). By feature mimicking in this proxy path, the parameters of the
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student part are gradually aligned with the parameters of the teacher part, thus enabling the transfer
of the teacher’s pre-training knowledge. Let F st = gtm(fst

p (F sn−1 ; q)) be the output features of the
proxy path, where gtm and fst

p denote the teacher’s last stage and the CAP in this path, respectively.
The feature mimicking in the proxy path is formulated as: Lst = αL(F t, F st). We further introduce
F st as input-dependent queries for the CAP in the original path. This feature mimicking design aims
to enhance the capability of CAP as such queries contain more teacher-related information, and its
corresponding loss is formulated as Ls = αL(F t, fs

p (F
sn ;F st)). With a simple principle of equal

treatment to the two feature mimicking paths, the feature distillation loss of TPP is defined as:

LTPP = Ls +Lst. (4)

2.2 Overall Formulation

From a general perspective, the progressive designs of our above three components are naturally
coupled. As CAP serves as the basic component in DFM and TPP, we further introduce how to apply
DFM in TPP and get a neat formulation of our method, ScaleKD. Specifically, if treating DFM as an
improved version of traditional feature mimicking, it can substitute the original feature mimicking in
each path of TPP. In this way, we formulate the overall design of ScaleKD, whose loss is defined as:

LScaleKD = Ltask + βLs
ori + (1− β)Ls

alt︸ ︷︷ ︸
DFM for TPP Student Path

+βLst
ori + (1− β)Lst

alt︸ ︷︷ ︸
DFM for TPP Teacher Path

+Lkd,
(5)

where β ∈ [0, 1] is the balancing weight, Ltask is the cross-entropy loss, and Lkd is the vanilla
logits-based KD loss [14] widely used in previous KD research. As the features are standardized, we
set α = 1 for loss terms in DFM as the default. Hence, our method has only one hyper-parameter β.

3 Main Experiments

We perform comprehensive experiments to systematically validate the efficacy of our method and
answer the question in our motivation. Specifically, our experimental verification contains six parts:
i) validating the effectiveness of our method under basic settings; ii) conducting main experiments
on ImageNet-1K [45] (IN-1K) dataset with various student backbones and showing the promising
performance gains of our method against individually trained counterparts; iii) verifying whether
our method could transfer the scalable properties of the teacher to the target student; iv) conducting
transfer learning on downstream tasks with MS-COCO [46] and ADE20K [47] datasets to examine
whether the performance gains from our method could be well preserved; v) comparing our method
with recent top KD methods; vi) showing the potential impact of our method on model engineering.

Unless otherwise stated, in experiments, the student backbones are trained on IN-1K from scratch,
without the pre-training on other upstream datasets. Experimental details are in Appendix A and B.

3.1 Pilot Experiments under Basic Settings

As we mentioned in Section 1, ScaleKD is tailored for: i) transferring the pre-trained ViT teacher’s
knowledge to the student having different model architectures; ii) making the student inherit the
teacher’s scalability. Therefore, we first perform the following two pilot experiments.

Cross Architecture Knowledge Distillation. To illustrate the difficulty of cross architecture feature
distillation and validate the efficacy of ScaleKD under this setting, we compare ScaleKD with
traditional feature distillation (FD) [15] on two different cross architecture teacher-student network
pairs. From the results shown in Table 1, we can observe: i) due to architecture gaps between
the teacher and the student, traditional FD shows limited performance gains; ii) comparatively,
our ScaleKD achieves significantly better performance, bringing 2.75%|3.22% absolute top-1 gain
for ResNet-50|Mixer-S. With the above experiments, we preliminarily verify that ScaleKD could
effectively handle cross architecture feature distillation, which is difficult for traditional FD.

Large Pre-trained ViTs as Teachers. With ResNet-50 as the student, we examine the rationality
of selecting large pre-trained ViTs as teachers in ScaleKD. Specifically, we gradually scale up the
teacher’s model capability (first from Swin-S to Swin-B, and then to Swin-L) and perform experiments
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Table 1: Pilot experiments on cross architec-
ture distillation with ScaleKD and FD. si de-
notes the distillation is conducted on stage-i. To
clearly show the performance gain, experiments
in this table are conducted without Lkd.

Teacher Student Method Top-1(%) ∆Top-1(%)

Swin-S (83.02)

ResNet-50

Baseline 76.55 -
FD (s4) 77.43 +0.88
FD (s3 ,s4) 77.74 +1.19
ScaleKD 79.30 +2.75

Mixer-S

Baseline 74.02 -
FD (s4) 74.88 +0.86
FD (s3 ,s4) 75.32 +1.30
ScaleKD 77.24 +3.22

Table 2: Pilot experiments on scaling up the teacher
size. The advanced training strategy uses more
sophisticated data augmentation and optimizer, and
longer training epochs, as shown in Table 10.

Teacher Student Ratio of T/S Params Top-1(%) ∆Top-1(%)

ScaleKD with Traditional Training Strategy

Baseline

ResNet-50

- 76.55 -
Swin-S (83.02) 1.94× 79.62 +3.07
Swin-B (85.16) 3.43× 79.80 +3.25
Swin-L (86.24) 7.68× 80.10 +3.55

ScaleKD with Advanced Training Strategy

Baseline

ResNet-50

- 78.64 -
Swin-S (83.02) 1.94× 81.43 +2.79
Swin-B (85.16) 3.43× 81.77 +3.13
Swin-L (86.24) 7.68× 82.03 +3.39

Table 3: Main results of ScaleKD on 11 teacher-student network pairs. † denotes the model pre-
trained on IN-22K [45] and ‡ denotes the model pre-trained by EVA [41], which has the learned
knowledge of LAION-2B [48].

Teacher Student
Params (M) FLOPs (G) Accuracy (%)

T S T S Top-1 ∆Top-1

Swin-L† (86.24)

MobileNet-V1 (72.10)
196.53

4.23
34.04

0.58 75.15 +3.05
ResNet-50 (78.64) 25.56 4.12 82.03 +3.39
ConvNeXt-T (82.14) 28.59 4.46 84.16 +2.02

Mixer-S/16 (74.02)
196.53

18.53
34.04

3.78 78.63 +4.61
Mixer-B/16 (76.44) 59.88 12.61 81.96 +5.52

ViT-S/16 (79.90)
196.53

22.05
34.04

4.61 83.93 +4.03
Swin-T (81.18) 28.29 4.36 83.80 +2.62
ViT-B/16 (81.80) 86.57 17.58 85.53 +3.73

BEiT-L/14‡ (88.58)
ResNet-50 (78.64)

304.14
25.56

81.06
4.12 82.34 +3.70

Mixer-B/14 (76.62) 59.88 16.45 82.89 +6.27
ViT-B/14 (82.02) 86.57 23.09 86.43 +4.41

using two popular training strategies. From the results shown in Table 2, we can conclude: i) ScaleKD
can help the student inherit the scalability of the teacher: it can be seen that the performance gain
is consistently increased under both training strategies when scaling up the teacher’s model size; ii)
ScaleKD can adapt to teachers’ training strategies: it can be seen that our ScaleKD always brings
promising performance gains, although the baseline model under the advanced training strategy gets
much more competitive performance than that under the traditional training strategy.

According to the above pilot experiments, our ScaleKD shows basic capabilities on handling cross
architecture knowledge distillation from large pre-trained ViTs to CNN and MLP students.

3.2 Main Results

After verifying the effectiveness of our method under our basic settings, we move forward and
perform extensive experiments on more teacher-student network pairs, in order to broadly examine
the scalability of our method. Specifically, we construct 11 teacher-student network pairs by choosing
2 large teachers and 10 popular models for students, covering the current mainstream architectures
across ViT, MLP, and CNN.

From the results shown in Table 3, we can observe: i) in general, our ScaleKD shows great generaliza-
tion ability no matter for CNN, MLP and ViT students. Over 11 teacher-student pairs, the mean top-1
accuracy improvement reaches 3.94%, and the maximum is 6.27%; ii) considering the acceleration,
with Swin-L as the teacher, ResNet-50|Mixer-S/16|ViT-S/16 trained by ScaleKD even outperforms
individually trained ResNet-152|Mixer-B/16|ViT-B/16 by a margin of 0.28%|2.19%|2.13%, achiev-
ing over 2.35×|3.23×|3.83× compression in terms of model size; iii) the top-1 performance gain
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Table 4: Experiments on exploring scalable properties from the teacher’s pre-training data. We use
the best reported models with different pre-training methods as our baselines to examine whether our
student model has learned the teacher’s pre-training knowledge. We use Swin-L as the teacher for the
first two experiments and BEiT-L/14 as the teacher for the rest two experiments. ⇒ denotes transfer
learning and * denotes the model is trained and tested with 384× 384 sample resolution.

Model Method Training Dataset Dataset Samples × Epochs (M) Viewed Samples (M) Top-1(%)

Supervised pre-training

ViT-B/16
Pre-training [4]

IN-22K ⇒ IN-1K 13.7×90 + 1.28×32 1274 83.97
JFT-300M ⇒ IN-1K 300×7 + 1.28×32 2141 84.15

ScaleKD IN-1K 1.28×300 384 85.53

Self-supervised pre-training

ViT-B/16

BEiT [40] IN-22K ⇒ IN-1K 13.7×150 + 1.28×100 2183 83.70
iBOT [11] IN-22K ⇒ IN-1K 13.7×320 + 1.28×100 4512 84.40

ScaleKD IN-1K 1.28 × 300 384 85.64

Cross-modal pre-training

ViT-B/16 CLIP [13]
LAION-2B ⇒ IN-1K 2320×32 + 1.28×50 74304 85.47

LAION-2B ⇒ IN-12K ⇒ IN-1K 2320×32 + 12.1×60 + 1.28×50 75030 86.17

ViT-B/14 ScaleKD IN-1K 1.28 × 300 384 86.43

EVA hybrid pre-training (MIM distillation from the cross-modal pre-trained teacher)

EVA02-S/14*
EVA-02 [49] IN-22K ⇒ IN-1K 13.7×240 + 1.28×50 3352 85.80

ScaleKD IN-1K 1.28 × 300 384 86.22

Table 5: Transfer learning results (%) on MS-COCO.

Framework Backbone Pre-training Classification (IN-1K) Object Detection (COCO) Instance Segmentation (COCO)
Top-1 AP APS APM APL AP APS APM APL

Mask R-CNN
ResNet-50 Baseline 78.64 40.2 23.0 44.3 52.5 37.1 18.0 40.1 54.9

Ours 82.03 (+3.39) 42.3 25.5 46.5 54.6 39.1 19.3 42.5 57.1

Swin-T Baseline 81.18 42.7 26.5 45.9 56.6 39.3 20.5 41.8 57.8
Ours 83.80 (+2.62) 44.4 28.7 47.9 58.6 40.8 21.8 43.7 59.8

could be increased further, when choosing stronger teachers. For instance, ScaleKD brings 0.32%
additional gain to ResNet-50 when changing the pre-trained ViT teacher from Swin-L to BEiT-L/14.

3.3 The Scalable Properties from Teacher’s Pre-training Data

As we introduced in Section 1, the ViT’s performance scalability is related to two factors: model
scale and pre-training data scale. The experiments in Section 3.1 and 3.2 have validated that our
method could help the student inherit the positive performance effect from increasing the teacher’s
model scale. In this subsection, we focus on exploring the second factor: whether or not our method
could help the student learn the teacher’s pre-training knowledge from its massive pre-training
datasets, mitigating the knowledge density gap. To examine this, we alter our baselines to models
with pre-training and propose an evaluation principle: given that only IN-1K is visible, if ScaleKD
can help the student model achieve similar performance as models with upstream pre-training, the
answer to the above question is Yes. With this principle, we design a series of experiments based on
the selected teachers in Table 4: Swin-L having the pre-training knowledge of IN-22K and BEiT-L/14
having the pre-training knowledge of LAION-2B. We compare the performance of the student models
trained by ScaleKD and the corresponding counterparts trained by prevailing pre-training methods.

From Table 4, we can observe that ScaleKD performs better than various pre-training methods
across all four kinds. Note that the superior performance of ScaleKD is achieved conditioned on not
viewing any pre-training data. In other words, ScaleKD merely views 5.58×, 11.75×, 195.39×, and
8.73× less samples than the counterpart methods based on supervised pre-training, self-supervised
pre-training, cross-modal pre-training, and hybrid pre-training. Therefore, we can summarize two
promising conclusions: i) our method could help the student learn the teacher’s pre-training knowledge
from massive datasets and mitigate the knowledge density gap; ii) if a well pre-trained large ViT is
available, our method can be a more efficient alternative to the time-intensive pre-training.
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Table 7: Performance comparison with recent top-
performing KD methods. Following the settings of
them, the students are trained under the advanced
training strategy. Best results are bolded.

Model Method Teacher # Epochs Top-1 (%)

Swin-T

From Scratch - 300 81.18

DIST [50] Swin-L (86.30) 300 82.30

DiffKD [51] Swin-L (86.30) 300 82.50

ScaleKD Swin-L (86.24) 300 83.80

ResNet-50

From Scratch - 300 78.60

DIST[50] Swin-L (86.30) 450 80.20

DiffKD [51] Swin-L (86.30) 450 80.50

OFA [36] ViT-B (86.53) 300 81.33

ScaleKD Swin-L (86.24) 300 82.03

FunMatch [52] BiT-Res152x2 (N/A) 1200 81.54

FunMatch [52] BiT-Res152x2 (N/A) 9600 82.31

ScaleKD Swin-L (86.24) 600 82.55

Table 8: Performance comparison with model
engineering methods. More comparisons are
shown in Table 14 in the Appendix.
Model Params (M) FLOPs (G) Top-1 (%)

CNN-based Architecture

ResNet-50 [2] 22.56 4.12 78.64
ResNet-50 + ScaleKD 22.56 4.12 82.55

ConvNext-T [3] 28.59 4.46 82.14
RepViT-2.3M [53] 22.90 - 82.50

MLP-based Architecture

Mixer-B/16 [6] 59.88 12.61 76.44
Mixer-B/16 + ScaleKD 59.88 12.61 81.96

gMLP-B [8] 73.00 15.80 81.60
ResMLP-B24 [7] 115.7 23.00 81.00

ViT-based Architecture

ViT-S/16 [4] 22.05 4.61 79.90
ViT-S/16 + ScaleKD 22.05 4.61 83.93

Swin-T [5] 73.00 15.80 81.18
Swin-B [5] 87.77 15.14 83.50

3.4 Transferring to Downstream Tasks Table 6: Transfer learning results (%) on ADE20K.

Framework Backbone Pre-training IN-1K (Top-1) ADE20K (mIOU)

UperNet

ResNet-50 Baseline 78.64 42.37
Ours 82.03 (+3.39) 44.50 (+2.13)

Swin-T Baseline 81.18 44.41
Ours 83.80 (+2.62) 46.33 (+1.92)

ViT-B/16 Baseline 81.80 46.75
Ours 85.53 (+3.73) 50.84 (+4.09)

To further examine whether the performance
gains from our method could be well pre-
served in transfer learning, we conduct com-
parative experiments on MS-COCO for ob-
ject detection and instance segmentation, and
on ADE20K for semantic segmentation.

The results on MS-COCO and ADE20K are shown in Table 5 and Table 6, respectively, from which
we can observe: i) overall, our pre-trained models outperform their baselines by significant margins
across three downstream tasks and different architectures; ii) for semantic segmentation on ADE20K,
ViT-B/16 achieves the highest 4.09% absolute performance gain across three backbones, even higher
than its gain on IN-1K; iii) for object detection and instance segmentation on MS-COCO, ResNet-
50|Swin-T pre-trained by ScaleKD outperforms its baseline by an AP margin of 2.1%|1.7% and
2.0%|1.5%, respectively. The above observations illustrate that the performance gains from ScaleKD
could be well transferred to various and challenging downstream tasks.

3.5 Comparison with Recent Top-Performing KD Methods

As we stated in Section 1 and 2, ScaleKD is a unified design incorporating three novel focuses to
align computing paradigm differences, model scale differences, and knowledge density differences,
which are clearly different from existing KD methods. In order to validate the superiority of our
method, we compare ScaleKD with recent top-performing KD methods.

From the results shown in Table 7, we can see: i) compared to DIST, DiffKD and OFA, although
our teacher is not the best and the number of training epochs is the smallest, our ScaleKD still
outperforms the best of these methods by clear margins (0.70%|1.30% on ResNet-50|Swin-T); ii)
compared to FunMatch, our method even shows superior performance, outperforming FunMatch
by a margin of 0.24% but only using less than 10% training epochs. As a result, in the context of
transferring the scalability of the pre-trained ViT to various student models, our systematic design and
its focuses show obvious superiority to previous works, paving a new path for future KD research.

3.6 Potential Impact on Model Engineering

In Section 3.2, we have noticed ScaleKD brings significant performance gains to target students,
especially for the plain design in each model category, such as ResNet, MLP-Mixer, and ViT. In
parallel, model engineering is a common solution to improve the model performance. Considering
these two facts, we conjure that since our method could bring competitive performance gain compared
to model engineering, larger flexibility would be provided when choosing models in practice.
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Table 9: Ablation studies. Experiments in (b)-(d) are performed on Swin-S→ResNet-50. As DFM
and TPP are designed based on CAP, CAP is added by default when choosing DFM and TPP in (a).
Because of this, we treat CAP as another baseline method, when analyzing DFM and TPP in (c)-(d).

(a) Ablation on the overall design

Teacher Student
Ablation Design

Top-1
CAP DFM TPP KD

Swin-S

ResNet-50

76.55

✓ 77.87

✓ ✓ 78.51

✓ ✓ 78.62

✓ ✓ ✓ 79.30

✓ ✓ ✓ ✓ 79.62

Mixer-S

74.02

✓ 75.03

✓ ✓ 76.42

✓ ✓ 76.28

✓ ✓ ✓ 77.24

✓ ✓ ✓ ✓ 77.59

(b) Ablation on CAP

Projector Top-1 ∆ Top-1

Baseline 76.55 -

Linear 77.43 +0.88
Conv 77.52 +0.97
CAP 77.87 +1.32

(c) Ablation on DFM

Feature Mimicking Top-1 ∆Top-1

Baseline 76.55 -

CAP 77.87 +1.32
Dual-Path CAP 78.12 +1.57
DFM 78.51 +1.96

(d) Ablation on TPP

Method
TPP Design Accuracy (%)

Proxy Path Adaptive Queries Top-1 ∆Top-1

Baseline - - 76.55 -
CAP - - 77.87 +1.32

TPP ✓ - 78.50 +1.95
TPP ✓ ✓ 78.62 +2.07

To study it, we apply ScaleKD to 3 standard designs of CNN, MLP and ViT, and compare the
performance with recent advanced designs. From the results shown in Table 8, we observe that our
method could help these models reach better performance than advanced models. More interestingly,
in Table 3, we can clearly see that the performance gap between plain designs (ResNet-50|ViT-
S/16) and advanced designs (ConvNeXt-T|Swin-T) no longer exists after applying ScaleKD. These
phenomena indicate ScaleKD could have a potential impact on the model selection in real applications.

4 Ablation Study

4.1 Tightly Coupled Design Properties of Three Core Components

Recall that our ScaleKD consists of three core components, CAP, DFM and TPP, which are progres-
sively designed in a tightly coupled manner. In Table 9a, we perform an ablation study to testify
their complementarity via comparing different component combinations. We can notice: i) when
gradually applying more of three component designs, the performance of ResNet-50 and Mixer-S
shows similar increasing trends, showing that each component of ScaleKD is not designed for specific
student architecture; ii) although CAP brings the two students promising performance gains, DFM
and TPP further brings ResNet-50|Mixer-S extra performance gains, 0.64%|0.75% and 1.25%|1.39%
respectively, verifying that DFM and TPP are complementary to CAP; iii) when using DFM and TPP
together, both ResNet-50 and Mixer-S obtain additional performance boosts, which indicates that
DFM and TPP are also complementary with each other.

4.2 Role of Each of Three Core Components

Figure 3: Feature distances of
alternative components in the
spatial domain. Details on the
figure drawing are in Figure 6.

CAP vs. Popular Feature Projectors. We first compare CAP with
two popular feature projectors, denoted as Linear and Conv, to ver-
ify the superiority of CAP. The former projector consists of a linear
layer and the latter projector consists of two 3×3 convolutional
layers. From the results shown in Table 9b, we can notice that CAP
outperforms the other two projectors clearly, which validates the
key role of CAP: aligning computing paradigm differences towards
better KD performance.

Importance of Alternative Feature Mimicking in DFM. The key
insight of DFM is to complement the neglected alternative features
in the feature mimicking process. In Table 9c, we compare DFM
with CAP and dual-path CAP to illustrate that the alternative feature
mimicking is essential. We find that although the dual-path feature
mimicking brings 0.25% extra performance gain to CAP, removing
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the direct component in the second path can further bring 0.39% improvement. This verifies the
rationality of the design. To better understand why the performance gain is from the learning of
teacher’s alternative features, we make comparisons between the methods with DFM and without
DFM. Specifically, we measure the distances between the student’s features and the teacher’s features
of alternative components in the spatial domain. In Figure 3, we can clearly see that DFM can
effectively reduce alternative feature distance between the teacher and the student.

Role of Proxy Path in TPP. Note that for transferring the teacher’s pre-training knowledge in the
parameter space to the student, TPP establishes a proxy path that connects the student’s former stages
to the teacher’s later stages. In Table 9d, we study the design of TPP and verify whether the proxy
path and its adaptive queries are effective. The results show that the feature mimicking in the proxy
path can provide the student with performance improvement and providing input-dependent queries
can further enhance the effectiveness of TPP, which indicates that these designs in TPP are essential
for learning the knowledge in the teacher’s parameter space.

More ablation studies on the hyper-parameter β and the others are provided in Appendix D.

5 Related Work

Knowledge Distillation. Traditional KD methods [14–35] generally focus on CNN-based teacher-
student network pairs with small model scale gaps. Some recent works [54, 55, 50] further study
how to conduct knowledge distillation with larger teachers. As vision transformers suffer from low
convergence speeds, some recent works [56–58] explore leveraging CNNs to accelerate the training
of vision transformers. Meanwhile, [36–38, 59] discuss how to bridge the architecture gap when the
teacher and the student are in different model categories.

Frequency-based Knowledge Distillation. As traditional feature distillation only focuses on pixel-
to-pixel differences, FAM [60] defines knowlwedge distillation in terms of frequency-based attention
maps. FreeKD [61] explores how to eliminate unfavorable information in the frequency domain for
enhancing the distillation performance on dense prediction tasks. Different from our ScaleKD, they
consider feature distillation on CNN-based network pairs and have different formulations.

Teacher Parameter Reuse. Some previous KD methods also leverage the teacher’s parameter for
reusing a better classifier [32] or initializing the student’s neck and head [62–64] or dismissing the
shortcuts in residual architectures [65]. Unlike our ScaleKD, the motivation of these works focuses on
parameter reuse or equivalent substitution, rather than aligning two parameter spaces for transferring
the teacher’s pre-training knowledge to the target student without the pre-training process.

6 Conclusion

In this paper, we present ScaleKD, a new cross architecture KD approach for transferring the scalable
properties of pre-trained large ViTs to various CNNs, MLPs and heterogeneous ViTs. Our method
consists of three tightly coupled components that rely on principled designs to align computing
paradigm differences, model scale differences, and knowledge density differences between the
teacher and the student. By conducting systematic experiments on several mainstream large-scale
vision benchmarks, we broadly validate the effectiveness and generalization ability of our method.
Benefiting from its novel motivation and design insights, ScaleKD is the first work which successfully
verified that KD can be a more efficient alternative to the time-intensive pre-training, to the best
of our knowledge. This extends the application scope of KD from model compression to training
acceleration. We hope our work would inspire feature KD research in this new direction.

Limitations. Restricted by our computational resources, we do not conduct experiments on very
large teachers, such as ViT-22B [66], or on large students, such as ViT-L [4]. Furthermore, with
the increasing model scale of teachers, the training cost of ScaleKD increases, which is a common
limitation to KD research. According to the analysis in Appendix D, the extra training cost of
ScaleKD is acceptable to a large extent. Actually, thanks to its promising performance, ScaleKD
shows the great potential to replace the time-intensive pre-training of students on large-scale datasets.
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A Datasets

ImageNet-1K [45] is a well-known large-scale classification dataset, comprising over 1.2 million
training images and 50,000 validation images with 1,000 object categories.

MS-COCO [46] is a large-scale dataset for object detection and instance segmentation, which
contains 118,000 training images and 5,000 validation images with 80 object categories.

ADE20K [47] is a challenging semantic segmentation dataset, containing 20,210 training samples,
2,000 validation samples, and 3,352 testing samples with 150 categories.

B Experimental Setups

B.1 Experimental Setups on IN-1K

Training Strategy. We conduct our experiments with two popular training strategies: traditional
training strategy and advanced training strategy. The traditional training strategy is commonly used
in previous KD approaches (shown in Table 10a) and the advanced training strategy is adopted in
training recently proposed CNNs, MLPs, and ViTs (shown in Table 10b).

Compute Infrastructure. The experiments using the traditional training strategy are conducted
on 8 × NVIDIA Tesla-V100 GPUs, while the experiments using the advanced training strategy are
conducted on 32 × NVIDIA Tesla-V100 GPUs.

Implementation Codebase. We implement our method based on MMClassification [67].

Hyper-Parameter Settings. The overall loss for our ScaleKD is defined as Equation 5. Thanks to
the simplicity of this formulation, we have only one hyper-parameter β in our ScaleKD. From the
ablation study in the Appendix D, we find that the best choice is β = 0.6 and we use it as the default
setting throughout all experiments.

Selection of Teacher-Student Network Pairs. Overall, we construct 11 teacher-student network
pairs, which consist of 2 pre-trained large ViTs, and 10 students covering mainstream architectures of
ViT, MLP, and CNN. Specifically, for the teacher, we choose two different types of well pre-trained
ViTs: supervised pre-trained Swin-L [5] with the hierarchical architecture and hybrid pre-trained
BEiT-L/14 [40] with the typical ViT architecture. Moreover, compared to Swin-L, BEiT-L/14 is
much larger in terms of model size and stronger in terms of model performance. For the student

∗ Core authors contributed to method formulation, experimental design and analysis.
† Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Table 10: Detailed settings of traditional training strategy and advanced training strategy on IN-1K.

(a) Traditional training strategy

Configuration CNN
Batch Size 256
Learning Rate 0.1
Learning Rate Schedule Stepwise Decay/Cosine Decay
Optimizer SGD
Optimizer Hyper-Parameters momentum= 0.9
Weight Decay 1e-4
Training Epochs 100
Warmup Epochs
Drop Path
Label Smoothing
Random Flip 0.5
Random Resize Crop (0.08,1)
Random Augmentation
Random Erasing

(b) Advanced training strategy

Configuration CNN / MLP / ViT
Batch Size 2048 / 1536 / 1024
Learning Rate 5e-3 / 7e-4 / 1e-3
Learning Rate Schedule Cosine Decay
Optimizer Lamb / AdamW / AdamW
Optimizer Hyper-Parameters β1, β2, ϵ = 0.9, 0.009, 1e-8
Weight Decay 0.02 / 0.07 /0.05
Training Epochs 300
Warmup Epochs 5 / 20 / 20
Drop Path 0.05 / 0.1 / 0.1
Label Smoothing 0.1
Random Flip 0.5
Random Resize Crop (0.08,1)
Random Augmentation (7,0.5) / (9,0.5) / (9,0.5)
Random Erasing 0.25

Table 11: Detailed settings of transfer learning strategies on MS-COCO and ADE20K.

(a) MS-COCO

Configuration ResNet-50 / Swin-S
Weight Initialization Pre-trained Checkpoint
Batch Size 16
Learning Rate 1e-4
Learning Rate Decay Stage (0.7)
Learning Rate Schedule Cosine Decay
Optimizer AdamW
Optimizer Hyper-Parameters β1, β2, ϵ = 0.9, 0.009, 1e-8
Weight Decay 0.05
Training Epochs 8
Crop Size (1333, 800)
Drop Path 0.0 / 0.2

(b) ADE20K

Configuration ResNet-50 / Swin-S / ViT-B
Weight Initialization Pre-trained Checkpoint
Batch Size 16
Learning Rate Decay 1e-4 / 1e-4 / 2e-4
LR decay Stage (0.9) / Stage (0.9) / Layer (0.6)
Learning Rate Schedule Cosine Decay
Optimizer AdamW
Optimizer Hyper-Parameters β1, β2, ϵ = 0.9, 0.009, 1e-8
Weight Decay 0.05
Training Iterations 160000
Crop Size (512, 512)
Drop Path 0.0 / 0.3 / 0.2

architectures, we first choose the basic design in each architecture type, such as ResNet-50 [2],
Mixer-S/16 [6], and ViT-S/16 [4]. Then, we also select some popular models, such as MobileNet-V1
[68], ConvNeXt-T [3], and Swin-S. Next, we expand the basic designs to larger ones, like Mixer-B/16,
Mixer-B/14, ViT-B/16 and ViT-B/14. After separately selecting teachers and students, we finally
organize them into 11 teacher-student network pairs for comprehensive experiments. Note that the
performance for most individual trained baselines in Table 3 are sourced from their original papers,
except for ResNet-50, MobileNet-V1, ViT-B/14, and Mixer-B/14, which we trained ourselves using
the advanced training strategy due to the absence of reference results in their original papers.

Counterpart Pre-training Methods. In the main paper, we select state-of-the-art methods in each
pre-training paradigm for comparison. For supervised pre-training, we choose the pioneering work [4].
For self-supervised pre-training, we choose BEiT [40] and iBoT [11]. For cross-modal pre-training
and hybrid pre-training, we choose CLIP [13] and EVA-02 [49], respectively.

Counterpart Knowledge Distillation Methods. In the main paper, we make comparisons with
many recent KD methods, such as DIST [50], DiffKD [51], OFA [36] and FuncMatch [52]. In this
Appendix, we further compare with CNN-based methods, such as KD [14], AT [16], OFD [26], RKD
[20], CRD [25], DKD [35], SRRL [30], ReviewKD [69], DistPro [33] and MGD [70].

Counterpart Model Engineering Methods. In the main paper, to better show the great potential of
our ScaleKD, we apply it to the popular designs of each architecture type and make comparisons with
various advanced counterparts. Driven by this target, we mainly select the so-called next-generation
models. For ResNet-50, we select ConvNeXt-T [3] and RepViT-2.3M [53] for comparison. The
former one is the typical design of the new-era CNN and the latter one is a popular model for
deployment. For Mixer-B, we select gMLP-B [8] and ResMLP-B24 [7], which are optimized to
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Table 12: Performance comparison (%) of ScaleKD and CLIP on ViT-B for linear probing.

Model Method Pre-training Dataset IN-1K (Training) CIFAR-100 (Linear Probing)
1 shot 5 shot 10 shot 25 shot Full

ViT-B/16

From-scratch IN-1K 81.80 33.86 60.30 66.77 72.65 81.76

CLIP

LAION-300M - - - 71.96 77.21 84.07
LAION-2B, IN-1K 85.49 41.10 69.00 72.34 78.64 85.51
LAION-2B, IN-12K, IN-1K 86.17 44.90 70.19 76.77 81.43 88.88
CLIP OpenAI, IN-12K, IN-1K 85.99 47.40 70.85 77.37 81.52 88.92

ViT-B/14 Ours IN-1K 86.43 48.14 70.91 77.52 81.50 89.11

Teacher: BEiT-L/14 EVA CLIP OpenAI, IN-22K, IN-1K 88.58 63.74 85.20 87.39 89.27 93.36

Table 13: Performance comparison on IN-1K with more CNN-based KD methods. In the experiment,
we adopt the same traditional training strategy as these methods.

Model Teacher Method Top-1(%)

MobileNet-V1 ResNet-50 (76.16)

From Scratch 69.63
KD [14] 70.68
AT [16] 70.72
OFD [26] 71.25
RKD [20] 71.23
CRD [25] 71.40
DKD [35] 72.05
SRRL [30] 72.49
ReviewKD [69] 72.56
DIST [50] 73.24
DistPro [33] 73.26
MGD [70] 73.35
DiffKD [51] 73.62

Swin-L (86.24) ScaleKD 74.21

suppress the weaknesses of MLP-Mixer. For ViT-S, we choose Swin-S [5] and Swin-B as counterparts
to validate whether our ScaleKD could outperform larger advanced designs.

B.2 Experimental Setups on MS-COCO and ADE20K

Training Strategy and Hyper-Parameter Settings. For the experiments on MS-COCO, we adopt
the settings shown in Table 11a, while for experiments on ADE20K, we adopt the settings shown in
Table 11b.

Compute Infrastructure. All experiments on MS-COCO and ADE20K are conducted on 8 ×
NVIDIA Tesla-V100 GPUs.

Implementation Codebase. We conduct experiments based on MMDetection [71] and MMSegmen-
tation [72].

Selection of Task Frameworks and Backbones. For different task frameworks, we choose Mask
R-CNN [73] for object detection and instance segmentation, and UperNet [74] for semantic segmen-
tation. As for backbones, we select ResNet-50, Swin-T, and ViT-B/16.

C More Experiments

Linear Probing on CIFAR-100. We conduct a set of linear probing experiments on CIFAR-100
[75], based on models in Table 4. From the results shown in Table 12, we can observe: i) models
pre-trained by CLIP greatly improve the backbone’s generalization ability across different datasets; ii)
our ScaleKD helps the student model reach mostly better performance than CLIP-based pre-training,
even without viewing pre-training data.

Performance Comparison with More KD Methods. In the main paper, we compare ScaleKD with
mostly related cross architecture KD approaches in Table 7, as few previous works use medium-sized
students, such as ResNet-50, for benchmarking. To make a more comprehensive comparison with lots
of CNN-based KD methods, we conduct experiments on a traditional student network, MobileNet-V1,
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Table 14: Performance comparison on IN-1K with lots of model engineering methods. We conduct
ScaleKD on the simplest design of each architecture type and then make a performance comparison
with various designs. Ours⋆, Ours† and Ours‡ denote choosing ViT-B (training from scratch), Swin-L
(with IN-22K pre-training) and BEiT-L/14 (with EVA pre-training) as the teacher, respectively.

Model Training Dataset Resolution Params (M) FLOPs (G) Top-1(%)

CNN-based Architecture

ConvNext-T [3] IN-1K 2242 28.59 4.46 82.14
ConvNext-T + Ours† IN-1K 2242 28.59 4.46 84.16

ConvNext-T [3] IN-22K ⇒ IN-1K 2242 28.59 4.46 82.90
ConvNext-B [3] IN-1K 2242 87.77 15.14 83.80

UniRepLKNet-T [76] IN-1K 2242 31.00 4.90 83.20
EfficientNet-B5 [77] IN-1K 4562 30.00 9.90 83.60
RepViT-M2.3 [53] IN-1K 2242 22.90 - 83.70

MLP-based Architecture

Mixer-B/16 [6] IN-1K 2242 59.88 12.61 76.44
Mixer-B/16 + Ours⋆ IN-1K 2242 59.88 12.61 81.62
Mixer-B/16 + Ours† IN-1K 2242 59.88 12.61 81.96
Mixer-B/14 + Ours‡ IN-1K 2242 59.88 16.45 82.89

Mixer-B/16 [6] IN-22K ⇒ IN-1K 2242 59.88 12.61 80.64
Mixer-L/16 [6] IN-22K ⇒ IN-1K 2242 208.2 44.57 82.89

ResMLP-B24 [7] IN-1K 2242 115.7 23.0 81.00
gMLP-B [8] IN-1K 2242 73.00 15.80 81.60

Transformer-based Architecture

ViT-S/16 [4] IN-1K 2242 22.05 4.61 79.90
ViT-S/16 + Ours† IN-1K 2242 22.05 4.61 83.93

ViT-S/16 [4, 78] IN-22K ⇒ IN-1K 2242 22.05 4.61 80.50
Swin-T [5, 78] IN-22K ⇒ IN-1K 2242 28.29 4.36 81.90
T2T-ViTt-14 [79] IN-1K 2242 21.47 4.34 81.83
DaViT-T [80] IN-1K 2242 28.36 4.54 82.24
iLLaMA-S [81] IN-1K 2242 21.90 - 79.90

EVA-02-S/14 [49] IN-1K 3362 22.13 15.51 81.12
EVA-02-S/14 + Ours‡ IN-1K 3362 22.13 15.51 86.22

ViT-B/16 [4] IN-1K 2242 86.57 17.58 81.80
Swin-B [5] IN-1K 2242 87.77 15.14 83.50
T2T-ViTt-24 [79] IN-1K 2242 64.00 12.69 82.71
DaViT-B [80] IN-1K 2242 87.95 15.51 84.09
ViT-B/16 [4] IN-22K ⇒ IN-1K 2242 86.57 17.58 83.97
Swin-B [5] IN-22K ⇒ IN-1K 2242 87.77 15.14 85.20
iLLaMA-B [81] IN-22K ⇒ IN-1K 2242 86.30 - 85.00

using the same training strategy as them. From the results shown in Table 13, we can observe that by
using Swin-L as the teacher, our ScaleKD could help MobileNet-V1 reach 74.21% top-1 accuracy,
outperforming previous methods which use ResNet-50 as the teacher by clear margins.

Performance Comparison with More Model Engineering Methods. In the main paper, we apply
ScaleKD to the basic design of each architecture type and make comparisons with more recent variant
architectures. As illustrated in Table 14, we choose more designs to have a more comprehensive
comparison.

D More Ablation Studies

Ablation Study on Training Efficiency of ScaleKD. As TPP in our ScaleKD leverages the teacher’s
last stage, it will introduce additional training costs compared to traditional FD. To clearly study its
training efficiency, we conduct ablative experiments in this section: i) as shown in Table 15a, we
first compare the training efficiency of ScaleKD with traditional FD on three network pairs having
increased teacher’s model scale; ii) then, as shown in Table 15b, we conduct the experiments on
each component in ScaleKD. The experimental results show that: i) using large teachers would
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Table 15: Experiments on the training efficiency of ScaleKD. The student model in all experiments is
ResNet-50. In (a), we compare ScaleKD with traditional FD using three teachers with different model
scales. In (b), we conduct the experiments based on Swin-S→ResNet-50 teacher-student network
pair to illustrate the training costs (memory and time) introduced by each component of ScaleKD.
Experiments are conducted on 8 × NVIDIA Tesla-V100 GPUs.

(a) Training costs comparison with FD

Teacher Method Top-1 (%) GPU Memory (G) Ttrain (d)

Swin-S FD 77.43 3.66 1.67
ScaleKD 79.62 6.65 2.10

Swin-B FD 77.76 3.66 1.83
ScaleKD 79.80 7.26 2.53

Swin-L FD 77.72 4.72 2.24
ScaleKD 80.10 9.11 3.51

(b) Training costs of each component in ScaleKD

Method Designs Top-1 (%) GPU Memory (G) Ttrain (d)CAP DFM TPP KD

FD - - - - 77.43 3.66 1.67

ScaleKD

✓ 77.87 3.77 1.70
✓ ✓ 78.51 4.02 1.77
✓ ✓ 78.62 5.13 1.84
✓ ✓ ✓ 79.30 6.60 2.08
✓ ✓ ✓ ✓ 79.62 6.65 2.10

Table 16: Ablation study on pre-training and distillation.
Model Method Top-1(%)

ViT-S/16

Training from scratch on IN-1K 79.90
Training from scratch on IN-1K w/ KD 81.42

Pre-training on IN-22K 80.05
Pre-training on IN-22K w/ KD 82.00

Training from scratch on IN-1K w/ ScaleKD 83.93

Table 17: Ablation study on the necessity
of alternative components in the first path
of DFM.

Method Top-1 (%) ∆ Top-1 (%)

Baseline 76.55 -
CAP 77.87 +1.32

DFM (Dir + Alt) 78.23 +1.68
DFM (All + Alt) 78.51 +1.96

induce more GPU memory occupation and longer training time; ii) comparatively, TPP is the most
resource-consuming component, especially after combining it with DFM. In summary, our ScaleKD
introduces additional training costs compared to traditional FD. However, if considering the significant
performance gain it brings, these additional costs are acceptable.

Figure 4: Ablation study on the
hyper-parameter β.

Ablation Study on Hyper-parameter β. According to Equation
5 in the main paper, our method only has one hyper-parameter
β, which is the balancing weight of two feature mimicking paths
in DFM. We conduct the ablation study on Swin-S→ResNet-50
network pair to study the impact of different settings of β. Specifi-
cally, we select the β uniformly from 0 to 1. β = 1.0 indicates that
only the first feature mimicking path exists, while β = 0 indicates
that only the second feature mimicking path exists. As shown
in Figure 4, we can observe: i) in general, ScaleKD outperforms
the baseline by significant margins at all settings, validating the
stability of ScaleKD; ii) when β = 0.6, our ScaleKD achieves the
best performance; iii) though the second feature mimicking path
could be used individually, it is inferior to the first path, indicating
that the direct component is essential in feature mimicking; iv)
when the two paths work collaboratively, they perform better than
two individual counterparts, which suggests that the two designs
are complementary with each other.

Ablation Study on Pre-training and Distillation. In this study, we explore the originality of the
distillation performance gain. We compare models trained by ScaleKD with upstream pre-trained
models and upstream pre-training models with KD. From the results shown in Table 16, we can
notice: i) compared to individual pre-training, applying KD under this stage can significantly boost
model performance; ii) ViT-S/16 trained by ScaleKD significantly outperforms the models trained
with KD on IN-22K. These two observations indicate that: i) small students are difficult to capture
the pre-training knowledge with traditional FD, even with the upstream pre-training dataset; ii) our
ScaleKD could effectively help the student to learn useful pre-training knowledge from the teacher
without viewing the pre-training dataset.

Ablation Study on the First Feature Mimicking Path of DFM. We explore the necessity of
alternative components in the first feature mimicking path of DFM. Specifically, we remove all
alternative components in the first path of DFM and perform an experiment under the same settings as
Table 9(b). For the results shown in Table 17, DFM(Dir + Alt) indicates the above new setting, while
DFM(All+ Alt) is the original design. We can observe that removing all alternative components in the
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(a) ViT-L/14 (b) Swin-L (c) BEiT-L/14

Figure 5: More illustrative feature distributions of large pre-trained ViTs in the frequency domain.
We first collect the output feature maps of 1600 samples from IN-1K, then conduct DCT on each
channel, and finally take the average value across these samples after converting all responses into
absolute values.

Figure 6: Feature distance distributions of alternative components for the last stage features between
teacher and student on IN-1K. We obtain 64,000 feature pairs on Swin-L→ResNet-50 network pair
from 64,000 samples. After calculating the distance between teacher and student, we project the
high-dimension distances into a two-dimension space for illustration. Finally, we randomly select
6,400 data points for 8 times to draw the scatters. Blue points denote the distances without DFM,
while orange points denote the distances with DFM.

first path will slightly decrease the effectiveness of DFM, but its performance is still obviously higher
than CAP. As we discussed in Section 1, the first path of DFM aims to capture the teacher’s global
features, where the subtle alternative components are also indispensable parts. Directly removing
alternative components in the first path will break the integrity of the original feature space (ScaleKD
is not conducted in the frequency space), thus lowering the efficacy of DFM.

E More Visualization Results

In this section, we provide more visualization results for a better understanding of our method. In
Figure 5, we provide the frequency distributions of three pre-trained large ViT models. We can
observe that these pre-trained ViTs show a consistency in unbalanced frequency distributions: the
direct responses are salient and significantly stronger than the alternative responses. And in Figure
6, we show more examples of feature distance distributions of alternative components, comparing
scenarios with and without DFM, between the teacher and the student on IN-1K. The results validate
DFM can effectively reduce the alternative feature distances between the teacher and the student.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction contain three parts: i) motivation, ii) methodol-
ogy, and iii) experimental results, which are explained in Section 1, Section 2, and Section 3.
We discuss the related works in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Conclusion part in our main paper
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all training setups and implementation details in Appendix B

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code has been made publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detailed explain all experimental settings in Appendix B

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The main experiments are conducted on large-scale datasets, whose results are
stable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We give the demand compute resources in Appendix B
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts in Section 6
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We clearly illustrate the dataset and codebase we use in the Appendix A and
the Appendix B, respectively.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We obtained some high-performance models in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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