
Self-Retrieval: End-to-End Information Retrieval
with One Large Language Model

Qiaoyu Tang1,2∗, Jiawei Chen1,2∗, Zhuoqun Li1,2, Bowen Yu3, Yaojie Lu1, Cheng Fu3,
Haiyang Yu3, Hongyu Lin1†, Fei Huang3, Ben He1,2, Xianpei Han1†, Le Sun1, Yongbin Li3†

1Chinese Information Processing Laboratory, Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Alibaba Group
{tangqiaoyu2020,jiawei2020,lizhuoqun2021}@iscas.ac.cn

{luyaojie,hongyu,xianpei,sunle}@iscas.ac.cn
{yubowen.ybw,fucheng.fuc,yifei.yhy,f.huang,shuide.lyb}@alibaba-inc.com

benhe@ucas.ac.cn

Abstract

The rise of large language models (LLMs) has significantly transformed both
the construction and application of information retrieval (IR) systems. However,
current interactions between IR systems and LLMs remain limited, with LLMs
merely serving as part of components within IR systems, and IR systems being
constructed independently of LLMs. This separated architecture restricts knowl-
edge sharing and deep collaboration between them. In this paper, we introduce
Self-Retrieval, a novel end-to-end LLM-driven information retrieval architecture.
Self-Retrieval unifies all essential IR functions within a single LLM, leverag-
ing the inherent capabilities of LLMs throughout the IR process. Specifically,
Self-Retrieval internalizes the retrieval corpus through self-supervised learning,
transforms the retrieval process into sequential passage generation, and performs
relevance assessment for reranking. Experimental results demonstrate that Self-
Retrieval not only outperforms existing retrieval approaches by a significant mar-
gin, but also substantially enhances the performance of LLM-driven downstream
applications like retrieval-augmented generation. 3

1 Introduction

Recently, information retrieval (IR) systems and large language models (LLMs) have witnessed a
growing synergy, with advancements in one field driving progress in the other [13, 56]. On one
hand, IR systems have proven effective in augmenting LLMs and mitigating challenges such as
hallucinations and outdated knowledge [22, 16]. By providing accurate, up-to-date external knowl-
edge, IR systems significantly enhance the reliability and performance of LLMs. On the other hand,
the powerful language understanding and generation capabilities of LLMs have been leveraged to
enhance almost all components of traditional IR systems–indexing, retrieval [42, 9, 26], and rerank-
ing [58, 27, 40]. Through the integration of LLMs into the IR pipeline, these systems achieve
substantially improved retrieval accuracy [57, 1].

However, current IR systems typically adopt a pipeline architecture where different components
operate in isolation, limiting LLMs’ role to specific components rather than leveraging their full

∗ Equally Contribution.
† Corresponding authors.
3The code of this work is available at https://github.com/icip-cas/SelfRetrieval.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

63510 https://doi.org/10.52202/079017-2028

https://github.com/icip-cas/SelfRetrieval

Indexing

Self-Retrieval
LLM

Query: what does the pearl
symbolize in the bible

Title: parable of the
pearl
Content: Parable of ….
and illustrates the great
value of the Kingdom
of Heaven. …

Retrieval Reranking

Retrieved passage Passage assessment

Corpus

passage

Self-supervised instances

sentence

passagesentence

Approval response

Rejection response

can answer the query
OR Answer: the Kingdom
of Heaven

cannot answer the
query

internalize

Trie

…

…

Constrained
Decoding

Inputs Outputs

Figure 1: The Self-Retrieval framework consists of three key components: (1) corpus indexing
through self-supervised learning, (2) passage generation via constrained decoding, (3) passage rank-
ing using self-assessment scoring.

potential across the entire system. This fragmented approach creates several challenges: it hinders
knowledge sharing between components, prevents deep integration of LLMs’ diverse capabilities,
and results in complex implementations with potentially sub-optimal performance. These limitations
underscore the need for a more unified approach that fully integrates LLMs across all components of
the IR system. Such an approach would not only maximize the utility of LLMs’ capabilities but also
simplify system implementation while potentially achieving better performance through enhanced
component synergy.

In this paper, we introduce Self-Retrieval, an end-to-end information retrieval architecture driven
entirely by one large language model. This integration is not trivial due to the inherent mismatch
between information retrieval tasks and text generation, particularly in ensuring accurate document
generation using language models. As illustrated in Figure 1, Self-Retrieval consolidates the sepa-
rate components of an IR system - indexing, retrieval, and reranking - into the parameters of a single
LLM. For indexing, the corpus is internalized into the LLM’s parameters through self-supervised
learning, enabling the model to encode and store corpus information within its internal representa-
tions. During retrieval, Self-Retrieval leverages its encoded knowledge of the corpus to semantically
match the input query and directly generates the relevant documents as outputs. To ensure the
generated documents exactly match those in the original corpus, we employ the constrained decod-
ing algorithm [10, 8, 24] based on the trie of the corpus. For reranking, Self-Retrieval performs
self-assessment on the retrieved documents to evaluate their relevance. The output score is used to
rerank the retrieved passages. Moreover, for downstream tasks such as retrieval-augmented genera-
tion (RAG), Self-Retrieval integrates the reader component into the model, enabling direct answer
generation following retrieval. Through this end-to-end approach, Self-Retrieval fully leverages
LLMs’ powerful capabilities in language understanding, matching, assessment, and generation to
achieve unified information retrieval.

We evaluate Self-Retrieval on three representative retrieval benchmarks: NQ, TriviaQA, and MS
MARCO. Experimental results demonstrate that Self-Retrieval substantially outperforms existing
sparse retrieval, dense retrieval, and generative retrieval methods on both document-level and
passage-level retrieval tasks. Furthermore, our experiments on retrieval-augmented generation tasks
reveal that Self-Retrieval considerably enhances downstream performance. Additionally, larger
LLMs lead to progressively better performance in Self-Retrieval, showing clear scaling benefits.
These results demonstrate the effectiveness of Self-Retrieval across different retrieval tasks and ap-
plication scenarios.

The potential impacts of this paper may include the following aspects. First, we introduce Self-
Retrieval, an end-to-end architecture that consolidates the entire information retrieval system within
a single large language model. This unified approach demonstrates substantial performance im-
provements over existing IR methods. Second, the corpus internalization and indexing mechanism
of Self-Retrieval establishes a new paradigm to memorize, organize and retrieve the learned docu-
ments (at least part of them) during the pre-training phase, paving the way for more transparent and
trustworthy text generation from LLMs. Third, as a LLM-driven retrieval system, Self-Retrieval of-
fers inherent advantages in terms of compatibility, consistency, and interaction with LLMs’ internal
knowledge. Through experiments on RAG, we demonstrate how this natural compatibility leads to
superior performance, suggesting broader potential for enhancing various LLM-based applications.

2

63511https://doi.org/10.52202/079017-2028

2 Related Work

LLM for IR Recent studies have explored leveraging LLMs to enhance various components of IR
systems, including query rewriting, retrieval, and reranking. For query rewriting, LLMs have been
employed to generate pseudo-documents for query expansion [46] and to rewrite queries based on
conversational context [15]. In the retrieval stage, researchers have explored augmenting data by
generating pseudo-queries [6, 17] or relevance labels [25] using LLMs, as well as employing LLMs
directly as generative retrievers [42, 5]. Regarding reranking, LLMs have been utilized in two
ways: serving as rerankers directly [27, 40] and augmenting the reranking dataset [12]. While these
methods have advanced specific components within the IR pipeline, Self-Retrieval distinguishes
itself by presenting an end-to-end architecture driven entirely by a single LLM, eliminating the need
for external components.

Dense retrieval Dense retrieval models retrieve information by matching dense vector representa-
tions of queries and documents [19]. In this paradigm, an encoder transforms both queries and
documents into dense vectors, with relevance determined by their vector distance. Various strate-
gies have been proposed to enhance dense retrievers, including designing loss functions [45], multi-
vector [38], training with synthetic queries [33, 47], and leveraging large-scale query-document
pairs [30, 50]. Recent work has also explored using large language models to generate dense vec-
tors for both queries and documents [29]. However, the fundamental limitation of dense retrieval
lies in its limited interaction with LLMs, as the compression of natural language into dense vectors
inherently constrains the utilization of LLMs’ sophisticated language understanding and semantic
inference capabilities.

Generative retrieval Generative retrieval methods leverage sequence-to-sequence language mod-
els to generate document identifiers for a given query [8, 42]. This paradigm is pioneered by
GENRE [7], which introduces the concept of entity retrieval through constrained beam search gen-
eration of entity names. DSI [42] extends it to document retrieval by training T5 models to generate
document-specific identifiers. The field has since evolved through various innovations, including
query generation techniques [11, 59], sophisticated identifier design [48, 51], architectural improve-
ments [5, 36], and continual learning strategies [20, 14].

Most relevant to our work, Yu et al.[52] proposed a "generate-then-read" approach, advocating for
the use of LLMs to directly generate documents instead of relying on a retriever. UniGen [23]
proposed a unified framework that integrates generative retrieval and question answering through a
dual-decoder architecture. Compared to them, Self-Retrieval ensures accurate document generation
through constrained decoding and accomplishes both retrieval and answer generation in one turn.

The main distinctions between Self-Retrieval and existing generative retrieval methods can be sum-
marized as follows: (1) Self-Retrieval enables LLMs to directly generate document content rather
than relying on other text or numeric identifiers. This approach aligns naturally with LLMs’ pre-
training objectives, preserves their inherent knowledge, and eliminates the need for complex iden-
tifier construction schemes. (2) Self-Retrieval further integrates components such as reranking and
answer generation into the framework, further expanding its scope and enhancing the retrieval per-
formance. These distinctions highlight that Self-Retrieval represents a more natural and effective
approach for leveraging the capabilities of LLMs in information retrieval.

3 Self-Retrieval

In this section, we introduce our proposed Self-Retrieval. The overall architecture is illustrated in
Figure 1. Different from traditional information retrieval systems that separate indexing, retrieval,
and reranking components, Self-Retrieval integrates these functionalities directly into the parameters
of a single large language model:

• Indexing: Self-Retrieval internalizes the entire corpus into its parameters through self-
supervised learning, enabling the model to process passages internally without relying on
external indices.

• Retrieval: Given an input query q, Self-Retrieval generates relevant passage p using the
knowledge embedded within its parameters, which is different from dense retrieval or gen-
erative retrieval that rely on embedding or document identifiers as proxies of passage.

3

63512 https://doi.org/10.52202/079017-2028

• Reranking: After generating passage p, Self-Retrieval assesses its relevance to the query
q through self-assessment. The output logits provide the basis for reranking candidate
passages.

Through this unified approach, Self-Retrieval enables a streamlined, end-to-end process that en-
hances the overall effectiveness of information retrieval. In the following sections, we detail each
component of our method.

3.1 Indexing: Internalize the Corpus

Self-Retrieval integrates indexing into the LLM’s parameters through self-supervised learning, en-
abling the model to internalize the entire corpus. Unlike generative retrieval methods that rely
on complex document identifiers and identifier matching, Self-Retrieval employs a straightforward
sentence-to-passage task to construct the index. Specifically, given a passage p = {s1, s2, ..., sL}
consisting of L sentences, each sentence si is provided as input to the LLM with parameters θ.
The training objective is to generate the source passage p in an auto-regressive way, represented as
P (p|si, θ). This self-supervised indexing approach offers several advantages. First, it provides a
simple yet effective method for corpus indexing. Second, it naturally frames the indexing process
as a retrieval-like task, enabling the model to simultaneously internalize the corpus and develop
retrieval capabilities using a consistent data format. Furthermore, this indexing technique closely
aligns with the pre-training processes of language models, suggesting that our method could be con-
sidered as continued pre-training on the corpus. Through this process, the LLM learns to efficiently
memorize and organize corpus information within its parameters.

3.2 Retrieval: Generate Relevant Passage through Constrained Decoding

Retrieval serves as a first-pass filter to collect passages related to the input query. In Self-Retrieval,
we train the LLM to directly generate relevant passages in response to queries, eliminating the need
for intermediaries such as embedding in dense retrieval or document identifier in generative retrieval.
Specifically, given the query q and corpus D, Self-Retrieval first generates a potential document title
t̂ as global information, formulated as P (t̂|q; θ). The model then generates a relevant passage,
denoted as P (p̂|q, t̂; θ).
However, since LLMs are general-purpose pre-trained models rather than statistical frequency mod-
els, the generated passage p̂ may not exactly match any passage in D, making it challenging to locate
the corresponding passages in the corpus. To address this challenge, we employ a trie-based con-
strained decoding algorithm [10, 8, 24]. This approach restricts generated tokens to a dynamically
constrained vocabulary. We construct a prefix tree T from corpus D, where each path from the root
to a leaf node represents a unique passage in the corpus, and each node stores valid tokens for the
next generation step. During inference, the vocabulary at each generation step is constrained by
the valid continuations in the prefix tree. Due to the relatively short common prefixes among docu-
ments, the LLM terminates generation once it has produced sufficient tokens to uniquely identify the
current document and concatenates the full document to the context. This results in document title
and passage generation processes represented as P (t̂|q; θ; T) and P (p̂|q, t̂; θ; T). This mechanism
ensures that generated passages align with existing corpus content.

3.3 Reranking: Assess the Relevance

Reranking serves as a second-pass filter to precisely sort the retrieved passages based on the rele-
vance to the query. We implement a self-assessment mechanism that leverages the Self-Retrieval
model itself to evaluate the relevance of generated passages. Specifically, Self-Retrieval assesses the
passage relevance by generating responses such as “can answer the query” for relevant passages and
“cannot answer the query” for irrelevant ones. This self-assessment mechanism allows the model to
generate passages and evaluate their relevance within a single inference turn.

During training, we utilize the gold passage from the supervision data as the positive instance, while
sampling negative instances from both the same and different documents. This training strategy
conditions the LLM to accurately discern and verify the relevance of its outputs, thereby enhancing
its autonomous relevance assessment capabilities and improving the overall precision of the retrieval
process.

4

63513https://doi.org/10.52202/079017-2028

During inference, the overall relevance score S is composed of the document title score ST and
the self-assessment score SP . Specifically, the document title score is derived from the title
generation probability, while the self-assessment score is calculated based on the probability of
the language model rejecting the passage. Formally, for a set of generated titles and passages
{(t1, p1), (t2, p2), . . . , (tn, pn)}, the title score for each (ti, pi) is given by:

ST
i = Softmax(P (ti|q; θ)/τ) (1)

and the assessment score is:

SP
i = Softmax((1− P (rejection response|q, ti, pi; θ))/δ) (2)

where τ and δ are temperature parameters used to scale the logits. Based on preliminary experiments
on the development set, we simply set τ = δ = 0.4 for the main passage retrieval experiments.

The final relevance score is computed as the product of these two components:

S = ST · SP (3)

This combined score is then used to rerank the passage set, producing a more refined ordering based
on relevance.

3.4 Training & Inference

Training Self-Retrieval unifies the three distinct tasks of information retrieval – indexing, retrieval,
and reranking – into text generation tasks, trained using cross-entropy loss in an auto-regressive
manner. Specifically, Self-Retrieval first internalizes the corpus into its parameters through self-
supervised learning as introduced in Section 3.1. Subsequently, in addition to a portion of self-
supervised instances, it incorporates two different types of data to build retrieval and reranking
abilities:

• Retrieval data: Utilizes supervised query-passage pairs from the dataset, where the model
learns to generate both document titles and passage content in response to input queries.

• Reranking data: Employs positive and negative examples to train the model in relevance
assessment between queries and passages.

This auto-regressive training approach enables Self-Retrieval to integrate traditionally separate IR
components into a unified language model, establishing an end-to-end IR system.

Furthermore, leveraging the universal language generation capabilities of LLMs, we can seamlessly
integrate downstream task components, such as readers in RAG, into Self-Retrieval. This integra-
tion can be achieved by simply appending the golden answer after the assessment in Self-Retrieval.
Consequently, the LLM can function as a comprehensive RAG system, effectively reducing the
knowledge gap between IR system and reader modules.

Inference During inference, given an input query, Self-Retrieval aims to obtain the relevant pas-
sages that are sorted based on the relevance to query. Firstly, the model generates i document titles
through constrained beam search. Secondly, for each title, it generates j passages using beam search.
Finally, the resulting i×j passages are scored using the self-assessment mechanism and reranked to
produce the final output.

4 Experimental Results

4.1 Experimental Setup

Datasets and metrics We conduct main experiments on Natural Questions (NQ) [21] and Trivi-
aQA [18] datasets, both of which are widely used retrieval benchmarks based on Wikipedia. We
use their versions from the KILT benchmark [34], which consolidates these datasets into a single
pre-processed Wikipedia dump, facilitating easier evaluation. Since the KILT test set is not publicly
accessible, we use the development set for testing and randomly sample 2,000 instances from the
training set as our development set. For our experiments, we sample approximately 40K documents

5

63514 https://doi.org/10.52202/079017-2028

NQ TriviaQA

Model Params H@1 H@5 M@5 H@1 H@5 M@5
Sparse Retrieval
BM25 [37] - 14.54 32.71 21.13 20.09 42.73 28.35
Dense Retrieval
DPR [19] 110M 40.41 61.79 48.80 35.57 57.39 43.93
DPR-FT [19] 110M 42.21 60.45 49.33 36.58 53.05 42.91
BGE [50] 335M 36.30 66.95 48.05 46.97 70.14 55.95
BGE-FT [50] 335M 53.42 80.15 63.99 52.70 75.22 61.65
BGE-FT + BGE-Reranker-FT 770M 52.15 76.15 61.37 44.87 67.39 53.39
GTR-XL [32] 1.24B 37.64 66.84 48.94 35.97 63.75 46.67
GTR-XL + BGE-Reranker-FT 1.57B 57.50 78.92 66.06 58.56 77.65 66.22
GTR-XXL [32] 4.86B 39.21 69.72 50.88 35.97 64.15 46.83
text-embedding-ada-002 - 34.28 62.28 44.64 35.09 62.00 45.15
GritLM [29] 7.24B 44.67 76.00 57.03 39.91 69.34 51.14
GritLM + BGE-Reranker-FT 7.57B 57.57 81.35 66.98 58.60 80.54 67.21
Generative retrieval
DSI-XL [42] 2.85B 43.03 60.26 49.47 29.64 46.74 36.12
DSI-XXL [42] 11.3B 43.81 60.45 50.20 30.55 46.67 36.56
SEAL [5] 406M 36.79 61.35 45.88 36.88 61.66 46.29
DSI-QG [59] 2.85B 34.88 56.60 43.33 29.15 45.53 35.20
NCI + BGE-Reranker-FT 1.07B 50.86 70.27 58.53 28.42 42.18 33.62
Self-Retrieval (StableLM) 2.8B 62.16∗ 79.28 69.45∗ 58.69∗ 78.39∗ 66.72∗

Self-Retrieval (Llama 2) 6.74B 63.44∗ 79.29 70.00∗ 59.94∗ 81.06∗ 68.74∗

Table 1: The experimental results of passage retrieval on NQ and TriviaQA test set. * indicates
statistically significant improvements (p < 0.01) over state-of-the-art retrieval baselines.

from Wikipedia for each dataset. Each document is segmented into passages of maximum 200
words, yielding approximately 1 million passages in total. The detailed statistics of the datasets are
presented in Appendix A. We use passage-level Hits@{1, 5} and Mean Reciprocal Rank (MRR)@5
as evaluation metrics.

To comprehensively compare with other generative information retrieval methods, we also conduct
experiments on document retrieval. Following NCI [49], we conduct experiments on NQ320K and
utilize Recall@{1, 10} and MRR@100 as the evaluation metrics. To evaluate the model’s robust-
ness in non-Wikipedia scenarios where high-quality text and titles are not available, we conduct
experiments on a subset of MS MARCO [3] following the experimental setup of Ultron [55]. The
performance was measured using Recall@{1,5} and MRR@10.

Implementation details In this study, we employ StableLM-3B [44] and Llama2-7B [43] as pas-
sage retrieval backbones. For document retrieval, we employ StableLM-1.6B [4] for NQ320K and
StableLM-3B for MS MARCO. We train the models using ZeRO stage-2 optimization on 8 NVIDIA
A100 (80 GB) GPUs with the AdamW optimizer, a batch size of 16 per GPU, and BFloat16 preci-
sion. The models are trained for 3 epochs with a learning rate of 2e-5. During inference, we use
beam search to generate 5 titles and 10 passages for each title, with hyperparameters τ and δ set to
0.4 across all models and datasets.

Baselines We evaluate Self-Retrieval models for both passage retrieval and document retrieval,
comparing them with sparse, dense, and generative retrieval baselines. The sparse retrieval base-
lines are:BM25 [37] and DocT5Query [28]. The dense retrieval baselines include: DPR [19],
Sentence-T5 [31], GTR [32], BGE [50], text-embedding-ada-002 [30], GritLM [29], and their fine-
tuned variants, DPR-FT and BGE-FT. The generative retrieval baselines comprise: DSI [42], DSI-
QG [59], NCI [49], Ultron [55], DynamicRetriever [54], GenRet [39], and SEAL [5]. Additionally,
to ensure a comprehensive comparison, we also evaluate combinations of strong retrieval baselines
with various rerankers, including BGE-Reranker, BGE-Reranker-FT, and RankGPT [41]. In the
passage retrieval task, we use the official pre-trained models for all non-fine-tuned dense retrieval
baselines. For fine-tuned dense models and generative models, we use their official implementations
to replicate the experiments on our dataset. In the document retrieval task, we report the baseline

6

63515https://doi.org/10.52202/079017-2028

performances from their original paper. For comprehensive details about these baselines, please
refer to Appendix B.

4.2 Main Results

Passage retrieval In Table 1, we compare the performance of Self-Retrieval with various baselines
on the NQ and TriviaQA datasets. Self-Retrieval 3B outperforms both strong pre-trained dense
retrieval models, such as BGE and GritLM 7B, and other generative retrieval methods. Specifically,
Self-Retrieval 3B achieves improvements of 5.46 and 5.07 in MRR@5 over the fine-tuned BGE on
NQ and TriviaQA datasets, respectively.

Our results indicate that other generative retrieval baselines exhibit suboptimal performance on pas-
sage retrieval. Even the largest DSI-XXL model only achieves an MRR@5 of 50.20 on NQ, sig-
nificantly lagging behind dense retrieval methods such as GritLM, which achieves an MRR@5 of
57.03. In contrast, our Self-Retrieval model demonstrates strong performance in passage retrieval,
achieving an MRR@5 of 69.45, significantly outperforming all other generative methods.

We further compare Self-Retrieval with conventional 2-stage retriever-reranker pipeline. Represen-
tative results are shown in Table 1, while the complete experimental results are provided in Ap-
pendix D. Notably, even strong retrieval baselines (BGE-FT, GTR-XL, GritLM, and DSI-XL) en-
hanced with powerful rerankers (such as BGE-Reranker-FT) still fall short of Self-Retrieval’s perfor-
mance, highlighting the advantages of unifying multiple retrieval processes into a single framework
rather than treating them as separate components.

These findings underscore the efficacy of Self-Retrieval in harnessing the memory, generation, and
ranking capabilities of LLMs, thereby excelling in passage retrieval tasks where other generative
baselines struggle.

Method R@1 R@10 M@100
Sparse Retrieval
BM25 [37] 29.7 60.3 40.2
DocT5Query [28] 38.0 69.3 48.9
Dense Retrieval
DPR [19] 50.2 77.7 59.9
Sentence-T5 [31] 53.6 83.0 64.1
GTR-Base [32] 56.0 84.4 66.2
Generative Retrieval
DSI [42] 55.2 67.4 59.6
SEAL [5] 59.9 81.2 67.7
DSI-QG [59] 63.1 80.7 69.5
NCI [49] 66.4 85.7 73.6
GenRet [39] 68.1 88.8 75.9
Self-Retrieval 73.3 92.6 80.7

Table 2: The experimental result of document
retrieval on NQ320K.

Method R@1 R@5 M@10
Sparse Retrieval
BM25 [37] 18.9 42.8 29.2
DocT5Query [28] 23.3 49.4 34.8
Dense Retrieval
DPR [19] 29.1 62.8 43.4
Sentence-T5 [31] 27.3 58.9 40.7
Generative Retrieval
DSI-Atomic [42] 32.5 63.0 44.3
DynamicRetriever [54] 29.0 64.2 42.5
Ultron-URL [55] 29.6 56.4 40.0
Ultron-PQ [55] 31.6 64.0 45.3
Ultron-Atomic [55] 32.8 64.9 46.9
GenRet [39] 47.9 - 58.1
Self-Retrieval 47.8 69.9 57.2

Table 3: The experimental result of document
retrieval on MS MARCO.

Document retrieval We present the document retrieval results on NQ320K dataset in Table 2.
Self-Retrieval outperforms all other generative retrieval methods and dense retrieval baselines across
all three metrics. Compared to GenRet, the previously strongest generative retrieval method, Self-
Retrieval improves Hits@1 by 5.2, Hits@10 by 3.8, and MRR@100 by 4.8 points. Notably, while
other methods commonly employ query generation to augment their training data, Self-Retrieval
achieves these results using only the original training set.

To evaluate the effectiveness of Self-Retrieval in non-Wikipedia scenarios, we extend our exper-
iments to MS MARCO. To address the absence of document titles in MS MARCO, we employ
Llama2 to automatically generate titles. As shown in Table 3, Self-Retrieval achieves comparable
performance to the SOTA model GenRet, while significantly outperforming other baselines. These
results demonstrate its adaptability and robustness in non-Wikipedia and title-lacking contexts.

Ablation study To study the effect of each component, we conduct ablation study on both NQ
and TriviaQA. Results are presented in Table 4. All components prove crucial for Self-Retrieval’s

7

63516 https://doi.org/10.52202/079017-2028

Method NQ TriviaQA

H@1 H@5 M@5 H@1 H@5 M@5
Self-Retrieval (base) 62.16 79.28 69.45 58.69 78.39 66.72
w/o indexing 53.05 67.16 58.95 54.45 70.64 60.98
w/o title 47.81 60.90 52.81 52.32 67.91 58.48
w/o self-assessment 54.80 75.21 62.77 46.67 70.79 55.92

Table 4: Ablation study on NQ and TriviaQA.

performance, with each ablation resulting in substantial performance degradation. Specifically, re-
moving the indexing mechanism restricts the model to internalizing only the documents encountered
during training, leading to poor performance on unseen passages. Without titles, we directly gen-
erate passages with constrained decoding. The absence of document titles significantly degrades
performance, as titles provide critical global information that guides the LLM in generating relevant
content. Furthermore, removing the self-assessment mechanism leads to a significant decrease in
both datasets. Without self-assessment, the model cannot effectively evaluate and refine its initial
retrieved passages, leading to less accurate document rankings. This degradation directly impacts
downstream applications such as RAG, where precise passage ranking is crucial for generating high-
quality responses. These ablation results show that each component of Self-Retrieval addresses a
specific challenge in the retrieval process, contributing to its overall effectiveness.

4.3 Performance on Retrieval-Augmented Generation

NQ TriviaQA

10K 40K 10K 40K
BGE-FT + StableLM-FT 43.18 41.24 56.79 58.15
Self-Retrieval 3B 44.62 46.11 64.03 62.69
BGE-FT + Llama2-FT 49.10 49.24 61.79 61.72
Self-Retrieval 7B 53.26 52.98 72.14 70.40

Table 5: The performance on retrieval-augmented generation. For baseline, we use BGE-FT as the
retriever and a fine-tuned LLM as reader. Results are reported using Exact Match (EM) scores.

The end-to-end architecture of Self-Retrieval seamlessly integrates retrieval and answer generation
into a single inference process. To evaluate its effectiveness in RAG, we compare Self-Retrieval mod-
els with a strong baseline that combines BGE-FT for retrieval and fine-tuned versions of StableLM-
3B and LLaMA2-7B as readers. We conduct experiments on subsets of NQ and TriviaQA using
10K and 40K documents for each dataset. We utilize the top-1 retrieved passage as the context and
measure performance using the Exact Match (EM) metric. As shown in Table 5, Self-Retrieval sig-
nificantly outperforms the baseline on both datasets across different model scales. Unlike other RAG
pipelines that separate retrieval and generation, Self-Retrieval integrates the entire process within the
LLM framework, enabling more accurate and coherent responses through end-to-end modeling.

4.4 Detailed Analysis

Scaling model capacity To explore the impact of model scale on retrieval performance, we eval-
uate Self-Retrieval with various backbone models of different sizes, including StableLM (1.6B,
3B) [4, 44], Llama2 (7B, 13B) [43], and Qwen-1.5 (4B, 7B, 14B) [2]. Figure 2 presents the results
on NQ, showing that Self-Retrieval’s retrieval performance benefits from the general capabilities of
larger language models. For models within the same series, as the model size increases, we observe
consistent improvements in both Hits@1 and Hits@5, indicating strong scaling properties of the
Self-Retrieval architecture.

Scaling corpus size Recent studies [35, 53] have demonstrated that generative retrieval methods
such as DSI or NCI experience more significant performance degradation compared to dense re-
trieval methods when scaled to larger corpora. To explore the impact of corpus size on Self-Retrieval,

8

63517https://doi.org/10.52202/079017-2028

StableLM Llama2 Qwen1.5

1.6B 14B7B3B

64
66
68
70

82

84

86

88

H
its
@
1

H
its
@
5

Params

Figure 2: Impact of model capacity on Self-
Retrieval performance.

30

40

50

60

70

Self-RetrievalBGE-RerankerOriginal

80

M
R
R
@
5

DPR-FT SEAL GritLM
Retriever

Figure 3: Reranking performance comparison
when processing top-100 passages.

BGE-FT H@1 BGE-FT H@5 Self-Retrieval H@1 Self-Retrieval H@5

10k 40k 70k 100k 200k

50

60

70

80

90

Num of Documents
(a) Scaling results on NQ.

10k 40k 70k 100k 200k

50

60

70

80

90

Num of Documents
(b) Scaling results on TriviaQA.

Figure 4: Scalability analysis of retrieval performance for Self-Retrieval and BGE-FT across varying
corpus sizes.

we expand our experiments from 10K to 200K documents, scaling the number of passages from
290K to 3M. Figure 4 illustrates the performance trends of BGE-FT and our Self-Retrieval 3B
model on the NQ and TriviaQA datasets with increasing corpus sizes. While both models show
performance decrease with larger corpus sizes, Self-Retrieval maintains a degradation rate compara-
ble to BGE-FT. As the number of documents continues to increase, the degradation rate gradually
diminishes, demonstrating Self-Retrieval’s potential scalability to larger document collections. This
observation indicates that Self-Retrieval effectively addresses some of the inherent limitations of
generative retrieval approaches in large-scale scenarios.

Analysis on reranking In this part, we conduct an in-depth analysis of the reranking performance
of Self-Retrieval reranker module in comparison with the fine-tuned BGE-Reranker. We employ
DPR-FT, SEAL and GritLM to retrieve 100 passages on TriviaQA, followed by reranking the re-
trieved results using both approaches. We evaluate performance using MRR@5 as the metric. The
experimental results are presented in Figure 3. The results reveal two key findings: (1) Reranking
plays a crucial role in information retrieval systems, significantly enhancing the ranking perfor-
mance across all models. (2) The Self-Retrieval reranker consistently outperforms the fine-tuned
BGE Reranker in most scenarios, demonstrating its robustness and effectiveness. These findings
demonstrate that Self-Retrieval performs effectively both as a complete IR system and as a reranker
component.

9

63518 https://doi.org/10.52202/079017-2028

In Appendix C, we conduct additional experiments with a chunk size of 100 words, demonstrating
Self-Retrieval’s adaptability to different text segmentation strategies. In Appendix E, we further
discuss Self-Retrieval’s computational efficiency.

5 Conclusion

In this paper, we propose Self-Retrieval, an end-to-end LLM-driven information retrieval architec-
ture that unifies indexing, retrieval, and reranking in a single LLM. This approach enables the LLM
to internalize the corpus, generate relevant content, and perform self-assessment within a unified
framework. Unlike previous works that incorporate LLMs into individual IR components, Self-
Retrieval provides a unified framework for the entire IR procedure, facilitating knowledge sharing
and deep collaboration among different components. Experimental results demonstrate that Self-
Retrieval achieves strong performance across various retrieval benchmarks and application scenarios.
In future work, we plan to extend our method to further enhance the reliability and trustworthiness
of LLM generation.

Limitations

While our experiments demonstrate the effectiveness of Self-Retrieval, several limitations need to
be addressed in future work. Our current evaluation is limited to 200K Wikipedia documents and
3M passages, and testing on larger and noisier text collections is needed. As an LLM-driven system,
Self-Retrieval has lower retrieval efficiency compared to sparse or dense retrieval methods, which
may limit its applications to specialized knowledge systems. Furthermore, enabling incremental
learning and dynamic corpus expansion remains an important direction for future research.

Acknowledge

We sincerely thank the reviewers for their insightful comments and valuable suggestions. We are
grateful to Le Yu and Xinyu Lu for their helpful feedback on the paper writing. This work was
supported by the Natural Science Foundation of China (No. 62122077, 62272439), Beijing Mu-
nicipal Science and Technology Project (Nos. Z231100010323002), the Basic Research Program
of ISCAS (ISCAS-JCZD-202303), and CAS Project for Young Scientists in Basic Research (Grant
No.YSBR-040).

References
[1] Qingyao Ai, Ting Bai, Zhao Cao, Yi Chang, Jiawei Chen, Zhumin Chen, Zhiyong Cheng,

Shoubin Dong, Zhicheng Dou, Fuli Feng, Shengling Gao, J. Guo, Xiangnan He, Yanyan Lan,
Chenliang Li, Yiqun Liu, Ziyu Lyu, Weizhi Ma, Jun Ma, Zhaochun Ren, Pengjie Ren, Zhiqiang
Wang, Min Wang, Jirong Wen, Lei Wu, Xin Xin, Jun Xu, Dawei Yin, Peng Zhang, Fan Zhang,
Wei na Zhang, M. Zhang, and Xiaofei Zhu. Information retrieval meets large language models:
A strategic report from chinese ir community. ArXiv, abs/2307.09751, 2023.

[2] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[3] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan
Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human gener-
ated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

[4] Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi,
Reshinth Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, Meng Lee,

10

63519https://doi.org/10.52202/079017-2028

Emad Mostaque, Michael Pieler, Nikhil Pinnaparju, Paulo Rocha, Harry Saini, Hannah Teufel,
Niccolo Zanichelli, and Carlos Riquelme. Stable lm 2 1.6b technical report, 2024.

[5] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Scott Yih, Sebastian Riedel, and
Fabio Petroni. Autoregressive search engines: Generating substrings as document identifiers.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 31668–31683. Curran Associates,
Inc., 2022.

[6] Luiz Henrique Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. In-
pars: Data augmentation for information retrieval using large language models. ArXiv,
abs/2202.05144, 2022.

[7] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity
retrieval. ArXiv, abs/2010.00904, 2020.

[8] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity
retrieval. In International Conference on Learning Representations, 2021.

[9] Jiangui Chen, Ruqing Zhang, J. Guo, Y. Liu, Yixing Fan, and Xueqi Cheng. Corpusbrain: Pre-
train a generative retrieval model for knowledge-intensive language tasks. Proceedings of the
31st ACM International Conference on Information & Knowledge Management, 2022.

[10] Pinzhen Chen, Nikolay Bogoychev, Kenneth Heafield, and Faheem Kirefu. Parallel sentence
mining by constrained decoding. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1672–1678, Online, July 2020. Association for Computational Lin-
guistics.

[11] David R. Cheriton. From doc2query to doctttttquery. 2019.

[12] Fernando Ferraretto, Thiago Laitz, Roberto de Alencar Lotufo, and Rodrigo Nogueira.
Exaranker: Synthetic explanations improve neural rankers. Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, 2023.

[13] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey, 2024.

[14] Jiafeng Guo, Changjiang Zhou, Ruqing Zhang, Jiangui Chen, Maarten de Rijke, Yixing
Fan, and Xueqi Cheng. Corpusbrain++: A continual generative pre-training framework for
knowledge-intensive language tasks. ArXiv, abs/2402.16767, 2024.

[15] Chao-Wei Huang, Chen-Yu Hsu, Tsung-Yuan Hsu, Chen-An Li, and Yun-Nung (Vivian) Chen.
Converser: Few-shot conversational dense retrieval with synthetic data generation. ArXiv,
abs/2309.06748, 2023.

[16] Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick,
Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot
learning with retrieval augmented language models. Journal of Machine Learning Research,
24(251):1–43, 2023.

[17] Vitor Jeronymo, Luiz Henrique Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto de Alen-
car Lotufo, Jakub Zavrel, and Rodrigo Nogueira. Inpars-v2: Large language models as efficient
dataset generators for information retrieval. ArXiv, abs/2301.01820, 2023.

[18] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1601–1611, Vancouver, Canada, 2017. Association for Computational Linguistics.

11

63520 https://doi.org/10.52202/079017-2028

[19] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–
6781, Online, November 2020. Association for Computational Linguistics.

[20] Varsha Kishore, Chao gang Wan, Justin Lovelace, Yoav Artzi, and Kilian Q. Weinberger. In-
cdsi: Incrementally updatable document retrieval. ArXiv, abs/2307.10323, 2023.

[21] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee,
Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le,
and Slav Petrov. Natural questions: a benchmark for question answering research. Transac-
tions of the Association of Computational Linguistics, 2019.

[22] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 9459–9474. Curran Associates, Inc.,
2020.

[23] Xiaoxi Li, Yujia Zhou, and Zhicheng Dou. Unigen: A unified generative framework for re-
trieval and question answering with large language models. ArXiv, abs/2312.11036, 2023.

[24] Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun, Meng Liao, and
Shaoyi Chen. Text2Event: Controllable sequence-to-structure generation for end-to-end event
extraction. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 2795–2806, Online, August 2021. Association for Computational Linguistics.

[25] Guangyuan Ma, Xing Wu, Peng Wang, Zijia Lin, and Songlin Hu. Pre-training with large lan-
guage model-based document expansion for dense passage retrieval. ArXiv, abs/2308.08285,
2023.

[26] Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for
multi-stage text retrieval. ArXiv, abs/2310.08319, 2023.

[27] Xueguang Ma, Xinyu Crystina Zhang, Ronak Pradeep, and Jimmy J. Lin. Zero-shot listwise
document reranking with a large language model. ArXiv, abs/2305.02156, 2023.

[28] Antonio Mallia, O. Khattab, Nicola Tonellotto, and Torsten Suel. Learning passage impacts for
inverted indexes. Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2021.

[29] Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
and Douwe Kiela. Generative representational instruction tuning, 2024.

[30] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek,
Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings
by contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

[31] Jianmo Ni, Gustavo Hernández Abrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Matthew
Cer, and Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text
models. ArXiv, abs/2108.08877, 2021.

[32] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei Yang. Large dual encoders are generalizable
retrievers. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pages 9844–9855,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics.

12

63521https://doi.org/10.52202/079017-2028

[33] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. From doc2query to doctttttquery. Online
preprint, 6:2, 2019.

[34] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao,
James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim
Rocktäschel, and Sebastian Riedel. KILT: a benchmark for knowledge intensive language tasks.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 2523–2544, Online, June
2021. Association for Computational Linguistics.

[35] Ronak Pradeep, Kai Hui, Jai Gupta, Adam Lelkes, Honglei Zhuang, Jimmy Lin, Donald Met-
zler, and Vinh Tran. How does generative retrieval scale to millions of passages? In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages 1305–1321, Singapore, December 2023.
Association for Computational Linguistics.

[36] Shanbao Qiao, Xuebing Liu, and Seung-Hoon Na. Diffusionret: Diffusion-enhanced gener-
ative retriever using constrained decoding. In Conference on Empirical Methods in Natural
Language Processing, 2023.

[37] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

[38] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia.
ColBERTv2: Effective and efficient retrieval via lightweight late interaction. In Marine
Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz, editors, Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 3715–3734, Seattle, United States, July
2022. Association for Computational Linguistics.

[39] Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren,
Zhumin Chen, Dawei Yin, Maarten de Rijke, and Zhaochun Ren. Learning to tokenize for
generative retrieval. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[40] Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, and Zhaochun Ren. Is
chatgpt good at search? investigating large language models as re-ranking agent. ArXiv,
abs/2304.09542, 2023.

[41] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei
Yin, and Zhaochun Ren. Is chatgpt good at search? investigating large language models as
re-ranking agents. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 14918–14937, 2023.

[42] Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai
Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W Cohen, and Donald Metzler. Transformer
memory as a differentiable search index. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 21831–21843. Curran Associates, Inc., 2022.

[43] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[44] Jonathan Tow, Marco Bellagente, Dakota Mahan, and Carlos Riquelme. Stablelm 3b 4e1t.

[45] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. SimLM: Pre-training with representation bottleneck for dense passage
retrieval. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2244–2258, Toronto, Canada, July 2023. Association for Computational Lin-
guistics.

13

63522 https://doi.org/10.52202/079017-2028

[46] Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language
models. In Conference on Empirical Methods in Natural Language Processing, 2023.

[47] Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language
models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, pages 9414–9423, Singapore,
December 2023. Association for Computational Linguistics.

[48] Yujing Wang, Ying Hou, Hong Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing
Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang,
and Mao Yang. A neural corpus indexer for document retrieval. ArXiv, abs/2206.02743, 2022.

[49] Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Qi Chen, Yuqing Xia,
Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang,
and Mao Yang. A neural corpus indexer for document retrieval. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Pro-
cessing Systems, volume 35, pages 25600–25614. Curran Associates, Inc., 2022.

[50] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources
to advance general chinese embedding, 2023.

[51] Tianchi Yang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, and
Qi Zhang. Auto search indexer for end-to-end document retrieval. In Conference on Empirical
Methods in Natural Language Processing, 2023.

[52] Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chen-
guang Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language
models are strong context generators. In International Conference for Learning Representa-
tion (ICLR), 2023.

[53] Peiwen Yuan, Xinglin Wang, Shaoxiong Feng, Boyuan Pan, Yiwei Li, Heda Wang, Xupeng
Miao, and Kan Li. Generative dense retrieval: Memory can be a burden. arXiv preprint
arXiv:2401.10487, 2024.

[54] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, and Ji-Rong Wen. Dynamicretriever:
A pre-training model-based ir system with neither sparse nor dense index. arXiv preprint
arXiv:2203.00537, 2022.

[55] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian Zhang, and Ji-Rong Wen. Ultron:
An ultimate retriever on corpus with a model-based indexer. arXiv preprint arXiv:2208.09257,
2022.

[56] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Haonan
Chen, Zhicheng Dou, and Ji-Rong Wen. Large language models for information retrieval: A
survey, 2024.

[57] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng,
Zhicheng Dou, and Ji rong Wen. Large language models for information retrieval: A survey.
ArXiv, abs/2308.07107, 2023.

[58] Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui
Wang, and Michael Bendersky. Rankt5: Fine-tuning t5 for text ranking with ranking losses.
Proceedings of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2022.

[59] Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, Guido Zuccon, and Daxin
Jiang. Bridging the gap between indexing and retrieval for differentiable search index with
query generation. arXiv preprint arXiv:2206.10128, 2022.

14

63523https://doi.org/10.52202/079017-2028

A Dataset Statistics

Table 6 presents the statistics of the NQ and TriviaQA datasets used in our experiments.

Dataset Natural Questions TriviaQA
10K 40K 10K 40K

doc 10,000 37,202 10,000 38,399
psg 291,506 979,804 390,586 1,193,047
train 32,163 72.716 29,038 51,166
dev 2,000 2,000 2,000 2,000
test 2,837 2,837 5,355 5,355

Table 6: Statistics of the experimental datasets. #doc/#psg denotes number of documents/passages;
#train/#dev/#test denotes size of training/development/test set. Training instances without query-
document pairs are removed.

B Baselines

The sparse retrieval baselines are as follows:

• BM25 [37] is a classical sparse retrieval algorithm based on probabilistic relevance frame-
work and term frequency statistics.

• DocT5Query [28] expands documents by generating potential queries using a fine-tuned
T5 model.

The dense retrieval baselines are as follows:

• DPR [19] is a dual-encoder model trained with in-batch negative sampling. We fine-tune
DPR on our training datasets to obtain DPR-FT, following the official implementation and
hyperparameter settings.

• BGE [50] is a state-of-the-art universal embedding model trained on approximately 200
million text pairs using contrastive learning. We employ the bge-large-en-v1.5 variant and
fine-tune it on our training datasets to obtain BGE-FT. The fine-tuning process uses a
learning rate of 1e-5, batch size of 128, and runs for 10 epochs.

• Sentence-T5 [31] employs a dual-encoder T5 architecture to generate semantic embed-
dings through contrastive learning for efficient retrieval.

• GTR-XL [32] is a dense retrieval model based on Sentence-T5, pre-trained on billions of
question-answer pairs.

• Text-embedding-ada-002 is a powerful embedding model developed by OpenAI, accessi-
ble through their API service.

• GritLM [29] is built upon the Mistral 7B language model and optimized using both em-
bedding and generation objectives.

The generative retrieval baselines are as follows:

• DSI [42] is a sequence-to-sequence model that directly maps queries to document identi-
fiers.

• DSI-QG [59] enhances the DSI framework by incorporating a doc2query model for dataset
augmentation.

• SEAL [5] utilizes n-gram as the document identifiers and constrains the generation process
using FM-index.

• NCI+BGE-Reranker-FT. NCI [49] employs a sequence-to-sequence architecture with a
prefix-aware weight-adaptive decoder. We train the model using T5-Large for document-
level retrieval following the official implementation. To obtain passage-level results, we
further incorporate a fine-tuned BGE reranker (bge-reranker-large).

15

63524 https://doi.org/10.52202/079017-2028

• Ultron [55] represents documents using three types of identifiers (URL, PQ, Atomic) and
trains the model through a progressive three-stage pipeline.

• DynamicRetriever [54] parameterizes traditional static indices by embedding both token-
level and document-level corpus information into a pre-trained model for dynamic docu-
ment identifier generation.

• GenRet [39] employs discrete auto-encoding with progressive training and clustering tech-
niques to learn semantic document identifiers for generative retrieval.

C Ablation on Chunk Size

To investigate the potential impact of chunk size, we conduct additional experiments comparing Self-
Retrieval with strong baselines on the NQ dataset using a chunk size of 100 words, complementing
our main experiments where chunk size is set to 200. The experimental results are presented in
Table 7. It demonstrates that Self-Retrieval significantly outperforms the baselines with both chunk
sizes settings, further validating the effectiveness of our proposed method.

Model Params Hits@1 Hits@5 MRR@5
BGE-FT 335M 40.79 58.92 47.76
GritLM 7B 30.95 51.36 38.77
Self-Retrieval (StableLM) 3B 58.43 77.76 66.18

Table 7: Retrieval performance with chunk length of 100 words.

D Full Comparison with Retriever-Reranker Pipeline

NQ TriviaQA
H@1 H@5 M@5 H@1 H@5 M@5

BGE-FT 53.42 80.15 63.99 52.70 75.22 61.65
BGE-FT + BGE-Reranker 21.91 54.58 33.33 45.36 72.16 55.78
BGE-FT + BGE-Reranker-FT 52.15 76.15 61.37 44.87 67.39 53.39
BGE-FT + RankGPT 44.21 73.68 55.51 48.00 72.00 57.33
GTR-XL 37.64 66.84 48.94 35.97 63.75 46.67
GTR-XL + BGE-Reranker 26.39 59.96 38.50 42.41 68.42 52.51
GTR-XL + BGE-Reranker-FT 57.50 78.92 66.06 58.56 77.65 66.22
GTR-XL + RankGPT 42.11 68.42 52.30 47.00 66.00 54.95
GritLM 44.67 76.00 57.03 39.91 69.34 51.14
GritLM + BGE-Reranker 30.06 65.87 43.20 43.64 70.87 54.23
GritLM + BGE-Reranker-FT 57.57 81.35 66.98 58.60 80.54 67.21
GritLM + RankGPT 37.89 70.53 51.19 44.00 66.00 52.70
DSI-XL 43.03 60.26 49.47 29.64 46.74 36.12
DSI-XL + BGE-Reranker 34.39 64.26 45.74 37.85 52.57 43.49
DSI-XL + BGE-Reranker-FT 50.02 68.60 57.43 36.49 52.40 42.36
DSI-XL + RankGPT 49.47 73.68 59.25 39.00 52.00 44.75
Self-Retrieval (StableLM) 62.16 79.28 69.45 58.69 78.39 66.72
Self-Retrieval (Llama 2) 63.44 79.29 70.00 59.94 81.06 68.74

Table 8: Comparison between Self-Retrieval and traditional two-stage retriever-reranker pipelines.

We comprehensively evaluate Self-Retrieval against various two-stage retriever-reranker pipelines.
Specifically, we construct these pipelines using state-of-the-art retrievers (BGE, GTR, GritLM,
and DSI-XL) combined with three different reranking approaches: BGE reranker, fine-tuned BGE
reranker, and RankGPT. As shown in Table 8, Self-Retrieval achieves superior performance com-
pared to most retriever-reranker combinations, demonstrating the effectiveness of our end-to-end
approach over traditional pipeline methods.

16

63525https://doi.org/10.52202/079017-2028

E Efficiency Analysis

We conduct efficiency analysis on NQ dataset using an NVIDIA A100-80G GPU. Results in Table 9
illustrate that, while Self-Retrieval requires slightly higher computational resources than DSI, it pro-
vides notable performance benefits. Notably, Self-Retrieval with a beam size of 10 achieves signifi-
cantly higher H@5 scores compared to DSI-XL with a beam size of 100, enabling a flexible trade-off
between retrieval quality and computational efficiency. When compared to SEAL, which also em-
ploys natural language decoding, Self-Retrieval demonstrates more efficient memory usage (30MB
vs 444MB) by utilizing a lightweight trie structure instead of SEAL’s resource-intensive FM-Index
post-processing mechanism. Furthermore, the efficiency of Self-Retrieval stands to benefit from
ongoing developments in optimization techniques (e.g., quantization and attention acceleration) and
hardware advancements.

Model Name Memory Beam Size Latency (s) Hits@5

SEAL 444MB 10 1.18 61.91
100 5.92 59.57

DSI-XL 0 10 0.23 60.21
100 0.45 60.21

Self-Retrieval 30MB 10 1.44 76.17
100 6.06 81.49

Table 9: Efficiency analysis.

17

63526 https://doi.org/10.52202/079017-2028

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly explained the shortcomings of previous works in the abstract
and introduction (Section 1), as well as how we can make improvements. We have validated
these claims in the experiment section (Section 4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have specifically written a chapter to illustrate the limitations (Section
Limitations) of our method and the factors that may affect its performance.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

63527https://doi.org/10.52202/079017-2028

Answer: [NA]
Justification: Our work mainly focuses on the application of large language models and
does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a comprehensive description of the training and inference details
for our proposed method in Section 3.4. In the experimental setup section (Section 4.1),
we elaborate on the datasets used and the model training process. Additionally, we have
made the complete training code available in an open-source repository, ensuring that other
researchers can replicate our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.

19

63528 https://doi.org/10.52202/079017-2028

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted the code and instructions in an open-source github reposi-
tory, and can obtain the experimental results in the paper by running our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed description of the training and testing details in Section
4.1, including data partitioning, training hyperparameters, optimizer, and testing methodol-
ogy.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have marked the significance analysis with an asterisk in the main experi-
mental table (Table 1).

Guidelines:

20

63529https://doi.org/10.52202/079017-2028

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mentioned in Section 4.1 that the experiments were conducted using 8
Nvidia A100 80GB GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We obey relevant rules in NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

21

63530 https://doi.org/10.52202/079017-2028

https://neurips.cc/public/EthicsGuidelines

Justification: We talk about positive impacts in introduction and method section, and possi-
ble negative impacts in limitation part.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments use publicly available base models and standard training
datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all datasets and models used in our experiments..

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

22

63531https://doi.org/10.52202/079017-2028

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: All datasets are from existing public resources, and no new data assets are
created.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: No crowd-sourcing or human annotation is required in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human participants or human subjects research,
therefore no IRB approval or risk assessment was required.

23

63532 https://doi.org/10.52202/079017-2028

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Depending on the country in which research is conducted, IRB approval (or equiva-

lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

24

63533https://doi.org/10.52202/079017-2028

