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Abstract

Survival prediction is a significant challenge in cancer management. Tumor micro-
environment is a highly sophisticated ecosystem consisting of cancer cells, immune
cells, endothelial cells, fibroblasts, nerves and extracellular matrix. The intratumor
heterogeneity and the interaction across multiple tissue types profoundly impact
the prognosis. However, current methods often neglect the fact that the contribution
to prognosis differs with tissue types. In this paper, we propose ProtoSurv, a novel
heterogeneous graph model for WSI survival prediction. The learning process of
ProtoSurv is not only driven by data but also incorporates pathological domain
knowledge, including the awareness of tissue heterogeneity, the emphasis on prior
knowledge of prognostic-related tissues, and the depiction of spatial interaction
across multiple tissues. We validate ProtoSurv across five different cancer types
from TCGA (i.e., BRCA, LGG, LUAD, COAD and PAAD), and demonstrate
the superiority of our method over the state-of-the-art methods. Source code is
available at https://github.com/wjx-error/ProtoSurv.

1 Introduction

Pathological images are considered the gold standard for cancer diagnosis and provide rich prognostic
information, such as the tumor differentiation and lymphovascular infiltration. Traditional manual
evaluation by pathologists is subject to inter-observer inconsistency and lacks accuracy in the risk
stratification for patients. The advent of whole-slide imaging allows the entire slide to be digitalized
at high resolution, enabling the standardized and automated analysis of Whole Slide Images (WSIs)
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with deep learning methods. Deep learning has been applied to a series of medical tasks, including
tumor segmentation, grading, subtyping and the prediction of molecular alternations and clinical
outcomes.

The gigapixel WSIs encompass detailed cellular-level information, but this leads to extremely high
memory usage. To make the memory usage acceptable for analyzing WSIs, most current works
are based on the Multiple Instance Learning (MIL) framework [1, 2, 3, 4]. In MIL, WSIs are
divided into multiple instances that are encoded separately, and then aggregated to obtain bag-level
(slide-level) representations for downstream tasks. However, these methods based on MIL do not
emphasize the contextual information among instances within the WSI, leading to a loss of structural
information across tissues. Therefore, these methods struggle to achieve good performance on
prognostic prediction tasks that require a comprehensive understanding of the local morphology and
overall structure of the tumor microenvironment (TME) [5]. In recent years, graph neural network
(GNN) has shown tremendous potential in prognostic prediction [5, 6, 7, 8], which can learn spatial
interaction across tissues, enabling the deciphering of the tumor ecosystem based on the proximity of
tumor cells to other TME components [5, 7, 8].

Apart from the spatial relationships, the high-resolution WSIs contain rich information about tissue
heterogeneity within a tumor [9, 10], which also has significant prognostic value. The tissue categories
in pathology slides include tumor, stroma, immune infiltration, nerves, necrosis, etc., which together
form the tumor microenvironment, but each varies in importance to cancer prognosis [11, 12,
13]. Considering the presence of intratumoral tissue heterogeneity and understanding the specific
characteristics of crucial tissue types can enhance the medical interpretability and optimize the graph
model theoretically. (i) From the medical perspective: A large amount of histological studies have
established the prognostic value of certain tissue types, such as the tumor, immune infiltration, stroma,
and necrosis[9, 10, 11, 12, 13]. Leveraging prior knowledge about intratumoral tissue heterogeneity
can guide the model to focus on tissues highly relevant to survival prediction, aligning more closely
with medical consensus and enhancing the model’s interpretability. (ii) From the model design
perspective: Commonly used GCN-like models are based on the homogeneity assumption, and it
has been demonstrated that they do not perform well on heterogeneous graphs [14, 15]. Thus, the
objective presence of heterogeneity among patches within WSIs could be affecting the performance
of homogeneous graph-based WSI analysis models.

Therefore, we propose ProtoSurv, a novel heterogeneous graph model for cancer prognosis predic-
tion. The heterogeneous graph introduces a "tissue category" attribute to each node to differentiate
prognosis-related tissues in the WSIs. The selection of tissue categories is according to tissues
clinically proven to be highly related to prognosis, which introduces clinical prior knowledge into
the model. We incorporate the concept of prototype learning from advanced heterogeneous graph
solutions [16, 17], decoupling the model into the Structure View and the Histology View. The Struc-
ture View (SV) utilizes the neighbor message-passing mechanism of GNN to simulate the operation
of pathologists observing at multiple magnifications. The Histology View (HV) extract prototypes
from global features under the guidance of pathological priors related to prognosis. Subsequently,
under the guidance of prototypes extracted by HV, the model aggregates regions of interest from the
context-aware multi-hop neighborhood information from SV. We extensively evaluated our method on
five TCGA public benchmark datasets and compared it to various state-of-the-art survival prediction
methods. The survival prediction results of our approach significantly outperform the competitors.

We summarize our main contributions as follows:

1. Domain knowledge awareness: To holistically depict the morphological features and spatial
interaction across multiple tissue types within tumors, we proposed ProtoSurv, which decipher
intratumoral tissue heterogeneity using a heterogeneous graph and incorporates prior knowledge
of prognostic tissue types into the prediction process.

2. Validation on multi-cancer datasets: We conducted comprehensive evaluations on five public
benchmark datasets. ProtoSurv demonstrates robust survival prediction performance across multi-
cancer datasets.
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2 Related Work

2.1 Weakly Supervised Learning Survival Prediction in WSIs

Manual annotations of WSIs demand enormous effort and domain knowledge from highly skilled
pathologists. Consequently, only slide-level labels are commonly available, while pixel- or region-
level annotations are seldom present. Hence, WSI tasks are frequently regarded as weakly supervised
learning problems. In recent years, Convolutional Neural Network (CNN)-based and MIL-based
weakly supervised learning approaches have been proposed for survival analysis in WSIs [18, 19,
20, 5, 8]. Mobadersany et al. [18] proposed an end-to-end CNNs method for processing manually
annotated ROIs. Zhu et al. [19] used K-means to cluster patches and employed the clustering results as
inputs into the CNN. Chen et al. [5] employed the MIL-based GCN method to model the topological
relationships between patches, achieving context-awareness. Di et al. [8] introduced hypergraphs
into survival prediction and designed strategies to overcome the limitations of sampling scales in
constructing large hypergraph models.

2.2 Graph-based Approaches in WSIs

Graph-based MIL approaches, which model the interactions between instances via graphs, have been
widely utilized in WSI analysis, solving problems such as cancer classification[6, 21, 22], cancer
grading [23, 24, 25], and survival analysis [5, 26]. Chen et al. [5] used GCN [27] in the information
propagation process to achieve context-awareness. Zheng et al. [22] applied graph transformer
network [28] to the information propagation stage in MIL. Lee et al. [26] proposed a method to
aggregate similar patches into a superpatch according to cosine similarity, and used GAT for message
passing between superpatches. Despite the significant success of graph-based methods in various
tasks, current approaches do not account for the inherent heterogeneity between patches and overlook
the guidance of clinical prior knowledge from pathology. Chan et al. [23] highlighted the importance
of heterogeneous patch categories and subsequently introduced a heterogeneous graph model called
HEAT. HEAT employs HoverNet to classify each patch based on the types of cells within it and
introduces heterogeneous edges to model the relationships between heterogeneous nodes.

2.3 Heterogeneous Graph Neural Networks

GNN models such as GCN [27] and GAT [29] have performed profoundly well on several WSI
analysis tasks [5, 26]. However, GCN-like models have an inherent assumption of homophily
on graphs, and many studies have highlighted their poor performance on heterogeneous graphs
[14, 15]. Many works have attempted to address the issue of message passing among heterogeneous
nodes within heterogeneous graphs. Early works attempted to solve the problem by aggregating
information from multi-hop neighbors or by constructing auxiliary graph structures based on node
and structure features [30, 31]. Recently, aggregating global information has emerged as a new
direction for addressing challenges in heterogeneous graphs. Li et al. [32] found that capturing
more global information substantially improves the model’s performance. Some studies introduced
class prototypes into models, extracting global information based on node categories [16, 17, 33].
Our model integrates the concepts from state-of-the-art heterogeneous graph methods, constructing
a heterogeneous graph, capturing global information based on pathological prior categories. It
incorporates the pathological priors of prognosis-relevant tissues into the model, optimizing both the
model structure and pathological interpretability.

3 Preliminaries

Heterogeneous Graph. A heterogeneous graph is defined by a graph G = (V, E), where V = {vi}Ni=1
is the set of nodes which contains N nodes and E ⊆ V ×V is the set of edges on the graph. A denotes
the adjacency matrix of the graph, where Aij represents the edge ei,j between nodes vi and vj . X
represents the feature matrix of nodes, where xi is the features of node i. C denotes the node class
labels, and ci is the label for node vi. Every node vi within the heterogeneous graph has a category
label ci and a d-dimensional feature xi ∈ X , where X is the embedding space of node features.

Survival Prediction in Whole Slide Images. Given a WSI, we wish to predict the survival risk
Y with a prediction model. We use the clinical survival time of patients as labels, and measure
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prediction performance by the relative ranking of predicted survival risk against the actual survival
times of the patients.
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Figure 1: An overview of the ProtoSurv architecture. We use the encoder and classifier pretrained
from UNI to obtain feature representations and node types for each patch. Edges are created between
spatially adjacent patches to obtain a heterogeneous graph. ProtoSurv decouples the graph into two
views: Structure View and Histology View. The Structure View utilizes GCN to provide multi-hop
neighborhood information. The Histology View breaks the edge constraints and leverages tissue
heterogeneity information to learn global multi-prototype representations for each tissue category.
We use additional loss functions to regularize the multi-prototypes.

4 Method

4.1 Construction of Heterogeneous Graph

We first introduce our methodology of modeling the WSI with a heterogeneous graph. We follow
Lu et al. [34] to segment foreground regions and split WSIs into non-overlapping patches of size
256× 256 by sliding window strategy at 20× magnification. We use the UNI model [35] as a patch
encoder to obtain patch embeddings for each patch. Pathology foundation models such as UNI are
trained on large-scale pathology datasets and have been validated to represent pathological patches
effectively. To incorporate pathological prior knowledge into our model, we focus on tissue regions
that are recognized by the current consensus as highly relevant to cancer prognosis: tumor [11],
tumor stroma [12], immune infiltration [13], and necrosis [36]. Therefore, we further fine-tune UNI
to obtain our patch classifier, which classifies each patch into one of the five categories (tumor,
stroma, immune infiltration, necrosis, others). The classifier training and usage details can be found
in section 5.2. Each patch is treated as a node in the graph, with the representation encoded by the
UNI as the node’s features, and the five histological categories as the node’s labels. We exploit the
graph structure to simulate the topological relationship of patches within the WSI. For each node
v ∈ V , we use the k-nearest neighbor algorithm to find k nodes closest to the given node in Euclidean
space (k=4), and connect edges between node v and its neighboring nodes. All edges have the same

4

64315https://doi.org/10.52202/079017-2051



weight. As a result, we obtain a heterogeneous graph G. The edges of the graph model the topological
relationships between patches.

4.2 ProtoSurv

To capture scattered but significant information from prognostically relevant tissues while preserving
multi-scale context perspective, inspired by Dong et al. [16], we propose ProtoSurv, which decouples
the Structure View and the Histology View from the graph, allowing separate learning of hierarchical
features and global features of prognosis-related tissue categories.

Structure View. We use GNN to learn the structure representation of WSIs. After the i-th layer
of message passing, the i-th output node representations reflect the receptive field within i-hop
neighbors centered around the node. We retain all output features from each GCN layer to enable the
Structure View to leverage multi-hop neighborhood information. We concatenate the features from
each GCN layer along the feature dimension and use a MLP to learn representations from multi-hop
neighborhood information, obtaining the final feature H of the Structure View.

hl = GCNl(hl−1, A) ∈ RN×d where h0 = X, (1)

H
′
= concat

[
h1, h2, . . . , hL

]
∈ RN×Ld, (2)

H = MLP (H
′
) ∈ RN×dh , (3)

where X represents the initial feature matrix of nodes, d is the hidden dimension of each GCN layer,
L is the number of GCN layers, N is the number of nodes, and dh is the hidden dimension of the
Structure View.

Histology View. In order to fully exploit representations of tissue categories highly related to
prognosis within the WSI, Histology View learns prototype representations for each category from
global nodes. These prototypes extract feature information within the feature space of certain
categories irrespective of their topological edges.

In clinical practice, heterogeneity exists even within the same tissue category[37, 38]. Take stroma
as an example, Xu et al. [38] highlighted: "The tumor stroma is highly dynamic, heterogeneous
and commonly tumor-type specific, . . . " Therefore, using a single prototype to represent a whole
tissue category is insufficient and often inaccurate. We introduce multiple prototypes for each tissue
category, allowing them to capture different phenotypes within tissue feature distributions. For a
detailed illustration of multiple subtypes of specific tissue categories, refer to appendix F.

In Histology View, all node features with category c are first averaged to obtain the initial prototype
pcinit of category c with the hidden dimension d. For a visual demonstration of the multi-prototype
extraction process, please refer to appendix B.

pcinit = MEAN(Xc) ∈ R1×d, (4)

Then, learnable parameters Z = {z1, z2, . . . , zk} are used to shift the initial prototype to multi-
prototypes, we obtain K distinct prototypes for category c that focus on different subtypes of the
specific tissue. The learnable parameters Z are initialized by Xavier initialization [39].

P c
prior = {p1c , p2c , . . . , pkc} = {pcinit + z1, p

c
init + z2, . . . , p

c
init + zk} ∈ RK×d, (5)

We further employ the cross-attention mechanism to aggregate scattered global node information
into the prototypes, thereby updating the multi-prototypes. Considering the potential omissions from
pseudo-labeled tissue categories from the classifier and the need to focus on other relevant tissues,
we extract information from global nodes, not just nodes with category c, to update the prototypes.

Pc = Softmax

([
P c
priorW

Q
][
XWK

]T
√
d

)(
XWV

)
∈ RK×d, (6)

where d is the hidden dimension, WQ, WK and WV are query, key and value transformation matrices
respectively. Finally, we obtain multiple prototypes P for all categories.

P = {P1, P2, . . . , Pc} ∈ RCK×d, (7)

5
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The learning of prototypes can be viewed as intentionally adding edges based on pathological priors.
Guided by prior knowledge, it allows global messages to pass from nodes to the interested histological
category prototypes.

Prior Guided Fusion&Pooling. Once we have all the category prototypes P from the Histology View
and hierarchical context embeddings H from the Structure View, we can select regions of interest
within multi-hop neighborhoods from Structure View under the guidance of category prototype priors.
This process can also be viewed as pooling guided by prior knowledge of the tissue categories of
interest. We use the cross-attention mechanism to aggregate Structure View features and pathological
multi-prototypes.

Pfusion = Softmax

([
PWQ

][
HWK

]T
√
d

)(
HWV

)
∈ RCK×d, (8)

where WQ, WK and WV are query, key and value transformation matrices respectively. Guided
by histopathological prior knowledge, we select regions of interest at multiple scales through cross-
attention, obtaining K representations for each of C tissue categories, resulting in CK categorized
representations in total. Finally, we use average pooling to derive the WSI representation hslide,
which is used for predicting survival risk Y .

hslide = MEAN (P ) ∈ R1×d, (9)
Y = g(hslide), (10)

where g is a survival prediction head, which is a Multi-Layer Perceptron (MLP) used to predict
survival risk Y from WSI-level feature hslide.

Loss Functions. To fully exploit the capabilities of the multiple prototypes of each tissue category,
besides the commonly used Cox regression loss [40] Lcox for survival prediction, we introduce
compatibility loss and orthogonality loss to regularize training. The compatibility loss regularizes
by encouraging the prototypes and representations of a specific category to agree. Meanwhile, the
orthogonality loss encourages different prototypes of the same category to be distinct.

Following Dong et al. [16], we modify the compatibility loss function from Snell et al. [41] to handle
multiple prototypes within each category. Within the compatibility loss, we treat node features
that belong to the same category of the prototypes as positive samples, and those that belong to
different categories as negative samples, and use the negative log-likelihood loss to constrain their
relationships. First, we map all prototype representations back to the latent space of the node features
through a nonlinear mapping layer. Then, we calculate positive similarity scores of positive samples
between prototypes and node features belonging to category c, as well as similarities of negative
samples with features not belonging to the category. Finally, we aggregate the similarity scores of
multiple prototypes into a single score for a specific category, and adopt the negative log-likelihood
loss to regulate the relationship between the prototype and node features of the same category. The
compatibility loss is computed as follows:

sci = MEAN
k∈K

(
γ(Xc, f(pck))

)
, (11)

Lcomp =
1

CN

∑
i∈N

scii + log
∑
c′ ̸=c

exp (−sc
′

i )

 , (12)

where N is the number of nodes, C is the number of categories, ci is the category of ith node, pck is
the kth prototype of category c, Xc is the initial node features with category c, f is an MLP and γ is a
similarity function. To exploit multi-prototypes, we regularize them so that they are distinct from each
other, and focus on different representations of certain tissue categories. We employ orthogonality
loss [42] to enforce that the prototypes are orthogonal to each other to achieve this purpose,

Lortho =

∥∥∥∥∥ (P c)
T
P c

∥(P c)
T
P c∥F

− Id√
d

∥∥∥∥∥
F

, (13)

where ∥ · ∥F indicates the Frobenius norm, and Id is an identity matrix. With the α and β as tuning
hyperparameters, the full loss function used for training is:

L = Lcox + αLcomp + βLortho. (14)
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5 Experiments

5.1 Datasets

The cancer types of WSIs we use are: Breast Invasive Carcinoma (BRCA) (1064 cases), Lower Grade
Glioma (LGG) (841 cases), Lung Adenocarcinoma (LUAD) (512 cases), Colon Adenocarcinoma
(COAD) (441 cases), Pancreatic Adenocarcinoma (PAAD) (208 cases). All cancer types of WSIs
are from The Cancer Genome Atlas (TCGA) repository.1 We choose these cancer types for training
and evaluation using the following criteria: 1) overall survival available, and 2) balanced distribution
of uncensored-to-censored patients. During dataset construction, we only preserve formalin-fixed
paraffin-embedded hematoxylin and eosin (H&E) slides, given the morphological alterations found
in frozen sections.

5.2 Implementation Details

Patch Extraction and Encoding. First, we use OTSU to extract foreground tissue regions. Then we
extract a series of non-overlapping patches at 20× magnification with size 256× 256 which contain
more than 50% foreground tissue. All patches are encoded by UNI [35] into 1024-dimensional
vectors, and the encoder does not perform data augmentation during inference.

Patch Classifier Training. We use a small amount of proprietary annotated patches from the TCGA
dataset and several public tissue classification datasets [43, 44, 45, 46] to train our classifier. The
classifier is based on UNI [35]. We used the 1024-dimensional vector obtained from UNI encoding
and added a classification head to classify the patches into 12 categories. We trained the classifier
based on the pre-trained weights of UNI, fine-tuning without freezing. Our 12-class classifier achieved
an accuracy of 92.5% on the validation set. For details on the 12 categories, refer to section 5.5.

Network Hyper-Parameter. For Histology View, the number of prototypes K per category is set
to 8, and the dimension of each prototype is set to 768. Based on pathological prior knowledge, we
divided the nodes into five categories. For a detailed discussion on the tissue category selection, refer
to section 5.5. For Structure View, the number of GCN layers L is set to 4, the hidden dimension d of
each GCN layer hl are set to 128, The dimension of the final feature H of the Structure View is set to
768. For loss function, the hyperparameter α is set to 0.01, β is set to 0.1.

Training and Evaluation. Adam optimization [47] is adopted to optimize our model. We use Adam
optimization with a default learning rate of 2× 10−4, weight decay of 1× 10−5, and the batch size
is set to 8. All experiment results are obtained through 5-fold cross-validation. Concordance index
(C-index) [48] and its standard deviation (std) are used to measure the predictive performance in
correctly ranking the survival risk of each patient. As qualitative assessment, we use Kaplan-Meier
curves [49] to visualize the quality of patient stratification in stratifying low and high-risk patients as
two different survival distributions. All the experiments are implemented using PyTorch [50] on a
workstation with 4 Nvidia 3090 GPUs.

5.3 Comparison with State-Of-The-Art Methods

We compare our proposed method with several state-of-the-art survival prediction approaches on the
above datasets. The comparison methods include: (1) WSISA [19], (2) ABMIL [4], (3) TransMIL
[51], (4) DeepAttnMISL [52], (5) Patch-GCN [5], (6) DeepGraphConv [53], (7) HEAT [23], (8)
HGSurvNet [54]. (9) PANTHER [55]. Among them, WSISA, ABMIL, TransMIL and DeepAttnMISL
are classic WSI survival prediction methods; DeepGraphConv and Patch-GCN used GNN to construct
homogeneous graphs; HGSurvNet established a hypergraph; HEAT created a heterogeneous graph
for classification/staging tasks; PANTHER utilizes an unsupervised prototype network to aggregate
global information. For fairness of comparison, we use UNI [35] as the instance feature encoder for
all methods. All approaches are evaluated using the same 5-fold cross-validation splits.

Comparison. From the results in table 1, we observe that ProtoSurv achieves best or suboptimal
performance across five cancer datasets. Particularly, the PAAD dataset has a small sample size
(208 cases), which may lead to overfitting. Therefore, PANTHER, which extracts prototypes in an
unsupervised way based on priors and has a minimal number of learnable parameters, demonstrated

1https://portal.gdc.cancer.gov/
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superior results on PAAD dataset. Meanwhile, ProtoSurv is only slightly below PANTHER on
PAAD and significantly outperforms the other comparative methods, indicating the potential of the
domain-prior infused model on small-scale datasets.

Table 1: C-index (mean ± std) over five cancer datasets. The best and second-best results are
highlighted in bold and underlined.

PAAD BRCA LGG LUAD COAD

WSISA 0.573± 0.021 0.564± 0.054 0.610± 0.013 0.576± 0.045 0.564± 0.034
ABMIL 0.625± 0.063 0.657± 0.064 0.710± 0.048 0.653± 0.059 0.647± 0.036

TransMIL 0.642± 0.037 0.694± 0.053 0.739± 0.034 0.608± 0.040 0.695± 0.051
DeepAttMISL 0.596± 0.034 0.634± 0.017 0.657± 0.076 0.623± 0.049 0.638± 0.069

Patch-GCN 0.618± 0.057 0.647± 0.032 0.713± 0.054 0.635± 0.027 0.652± 0.086
DeepGraphConv 0.615± 0.032 0.535± 0.014 0.617± 0.048 0.597± 0.037 0.621± 0.085

HEAT 0.638± 0.030 0.693± 0.084 0.741± 0.079 0.642± 0.031 0.679± 0.056
HGSurvNet 0.646± 0.064 0.701± 0.067 0.746± 0.043 0.638± 0.064 0.673± 0.043
PANTHER 0.673± 0.082 0.699± 0.019 0.748± 0.046 0.631± 0.029 0.635± 0.056

ProtoSurv (Ours) 0.669± 0.049 0.720± 0.040 0.774± 0.063 0.658± 0.046 0.692± 0.045

5.4 Interpretability

To understand the interaction patterns of the prototypes, we visualize the attention heatmap between
the prototypes and the features, as well as the attention components for each prototype in fig. 2. We
observed that the attention preferences of multi-prototypes from a category varied. Some prototypes
were responsible for extracting global category information, while others focused on discovering
interactions between other categories. This indicates that the prototype learning paradigm has the
potential to uncover unknown interactions and factors.

Figure 2: Heatmap interpretation of prototypes. (A) Visualizations of attention maps of multi-
prototypes in Prior Guided Fusion (PGF) module. (B) Visualization of each prototype’s preference:
showing the top 4 patches and detailed tissue proportion of the top 1000 patches base on attention
scores. (C) Proportions of detailed 12 intratumoral tissue categories.
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5.5 Ablation Studies

Component Validation. We decouple the graph into the Structure View and the Histology View to
separately extract structure and global features, and use the Prior Guided Fusion & Pooling module to
aggregate these features. In this section, we conduct ablation experiments on Histology View (HV),
Structure View (SV), and Prior Guided Fusion & Pooling (PGF) modules. Specifically, we implement
our ablation as follows: (1) Without Histology View (w/o HV): We retain the features after message
passing in the Structure View in eq. (3). Same to PatchGCN [5], we compute attention scores for
each node and aggregate them by weighted summation. (In fact, the ablated model without HV is
equivalent to PatchGCN.) (2) Without Structure View (w/o SV): We use the multi-prototypes extracted
from the Histology View in eq. (7). We test the use of mean pooling and direct concatenation (concat
pooling) to obtain the WSI-level representation. (3) Without Prior Guided Fusion & Pooling (w/o
PGF): Beside our proposed fusion component, we tested two other aggregation approaches, including
direct concatenation fusion and the transpose fusion. Within the concatenation fusion, we directly
concatenate the prototypes from HV with the features from SV. Within the transpose fusion, We use
the aggregation method from Dong et al. [16], swapping the order of Q and KV in cross-attention to
integrate global information into node features, and same to the ablation of HV module, we compute
attention scores for each node feature and aggregate them by weighted summation. For detailed
information on the ablation of the PGF module, please refer to appendix D.1. Table 2 presents the
results. We find that combining the HV and SV modules resulted in improvements, regardless of the
aggregation method. This indicates that HV and SV are compatible and complementary. Additionally,
our proposed Prior Guided Fusion (PGF) can best utilize information from the two modules to achieve
optimal aggregation.

Table 2: Ablation study of the main modules in ProtoSurv.
PAAD BRCA LGG LUAD COAD

w/o HV 0.618± 0.057 0.647± 0.032 0.713± 0.054 0.635± 0.027 0.652± 0.086

w/o SV(mean pooling) 0.624± 0.032 0.657± 0.049 0.706± 0.036 0.646± 0.051 0.684± 0.044
w/o SV(concat pooling) 0.661± 0.057 0.713± 0.039 0.766± 0.044 0.641± 0.037 0.688± 0.046

w/o PGF(transpose fusion) 0.653± 0.024 0.714± 0.041 0.724± 0.042 0.653± 0.055 0.657± 0.074
w/o PGF(concat fusion) 0.652± 0.040 0.719± 0.024 0.712± 0.084 0.662± 0.064 0.659± 0.058

ProtoSurv 0.669± 0.049 0.720± 0.040 0.774± 0.063 0.658± 0.046 0.692± 0.045

Classifiers. Classifying each patch into tissue categories requires additional annotated data to train
the classifier, which somewhat limits the applicability of our model. To demonstrate the performance
of our model in a wider range of scenarios, we test the performance of the model with different
publicly available tissue classifiers in this section. We test our model using four different classification
methods: (1) Zero-shot classifier from CONCH [56] (CONCH), (2) HoverNet nuclear classification
[57] (HoverNet), (3) Pre-compute initial prototypes P c

init of eq. (4) from the features of existing
patches of category c (Pre-Proto), (4) K-means (with cluster number n = 4, 6, 8). None of the
classifiers are specifically optimized for our task. For details on the usage of these classifiers, refer
to appendix D.2. Table 3 shows the results of ProtoSurv under different patch classifiers. We find
that without specially optimized classifiers, ProtoSurv still exhibited excellent performance. To
our surprise, even when simply replacing the classifier with K-means clustering, ProtoSurv still
outperforms most comparative methods. The ablation experiments on classifiers demonstrate the
robustness of ProtoSurv to classifier choice, showing that ProtoSurv can achieve state-of-the-art
performance without the need for specialized classifiers.

Table 3: Effect of different classifiers.
PAAD BRCA LGG LUAD COAD

CONCH 0.664± 0.051 0.729± 0.042 0.776± 0.051 0.660± 0.056 0.692± 0.040
HoverNet 0.649± 0.060 0.701± 0.070 0.771± 0.064 0.656± 0.042 0.695± 0.036
Pre-Proto 0.668± 0.045 0.714± 0.062 0.775± 0.062 0.652± 0.055 0.687± 0.038

K-means(n=4) 0.646± 0.056 0.683± 0.080 0.774± 0.069 0.643± 0.051 0.690± 0.031
K-means(n=6) 0.652± 0.027 0.708± 0.049 0.772± 0.061 0.638± 0.046 0.695± 0.037
K-means(n=8) 0.656± 0.039 0.696± 0.054 0.761± 0.070 0.648± 0.057 0.664± 0.045
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Choice of Tissue Categories. To infuse our model with prior knowledge, we select node categories
based on prior prognosis-related tissues. These ablation experiments are conducted on different tissue
categories to validate the effectiveness of incorporating prior knowledge. We train the classifier to
categorize 12 types of tissues, which are: 0. background and noise; 1. malignant tumor; 2. benign
tumor; 3. normal tissue; 4. stroma; 5. immune infiltration; 6. lymph nodes; 7. nerve; 8. blood
vessel; 9. blood cell aggregation; 10. necrosis; 11. other tissues. We refer to these 12 detailed tissue
categories as "Detailed Tissue Category (DTC)". Additionally, based on histological knowledge,
we coarsely group these 12 tissue categories into 5 broader categories (The numbers in parentheses
correspond to the numbers of DTC): Non-tumor tissue (3); tumor (1,2); stroma(4,5,7,8); necrosis(10);
others(0,6,9). We refer to these 5 broader categories as "Coarse Tissue Category (CTC)". In our
model, we incorporate five tissue categories based on pathological knowledge of prognosis-related
tissues: tumor(1,2); stroma(4); immune infiltration(5); necrosis(10); others(0,3,6,7,8,9,11). We refer
to these 5 categories from prior knowledge as "Prior Tissue Category (PTC)". Table 4 shows the
results of ProtoSurv under three different tissue category settings. We observed that the detailed
category setting generally has a negative impact on the model’s performance. We believe this is due
to the overly detailed categories introducing a substantial amount of irrelevant information to the
model. Compared to the Coarse Tissue Category, our proposed Prior Tissue Category achieved the
best results, demonstrating the effectiveness of incorporating prior knowledge.

Table 4: Effect of tissue category choices.
PAAD BRCA LGG LUAD COAD

DTC 0.641± 0.087 0.684± 0.063 0.793± 0.056 0.652± 0.064 0.681± 0.051
CTC 0.656± 0.066 0.706± 0.058 0.776± 0.064 0.658± 0.050 0.690± 0.041

PTC(proposed) 0.669± 0.049 0.720± 0.040 0.774± 0.063 0.658± 0.046 0.692± 0.045

Further Ablations. We conduct further ablation studies and present additional insights in appendix C.
Overall, ProtoSurv is robust of errors in classification, hyperparameters of the losses and the number of
prototypes. Additionally, we provide statistics on FLOPs and model runtime, and test the complexity
and performance of the tiny version of the model. The results indicate that although there is an
increase in runtime compared to classical models, it remains acceptable, and the model still achieves
decent performance with smaller parameter settings.

6 Discussions

Conclusion. In this paper, we introduce a heterogeneous graph for WSI survival prediction to
incorporate pathological prior knowledge by leveraging tissue heterogeneity in tumor, and propose a
novel heterogeneous graph message passing framework (ProtoSurv) to integrate pathological prior
knowledge into the model. Compared to previous work, ProtoSurv is not solely data-driven but
learns under the guidance of prior expert knowledge. We validate our method across multiple cancer
datasets, demonstrating that ProtoSurv exhibits higher accuracy and robustness, as well as more
stable multi-cancer performance.

Limitations and Future Work. Although ablation experiments have demonstrated the robustness of
ProtoSurv across different classifiers, the difficulty of obtaining node categories remains an obstacle
to its broader application. In future work, we will explore methods to obtain pseudo-labels directly
from node features without relying on additional classifiers.
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A Overview

In this supplement, We first provide detailed illustrations of ProtoSurv in appendix B. We then provide
further ablation studies in appendix C. Then, we provide implementation details of ablation studies
in appendix D. We display the KM curve results of ProtoSurv on five datasets in appendix E, and
present different subtypes within the intratumoral tissue in pathology in appendix F to support the
motivation for our model’s multi-prototype design. Finally, we discuss the potential ethical issues
that may arise in our study in appendix G.

B Detailed Illustrations of ProtoSurv

In this section, we provide schematic diagrams illustrating the details of each module’s functional-
ity. In fig. 3, we illustrate the schematic diagram of the GCN providing multi-hop neighborhood
information. In fig. 4, we illustrate the process of obtaining multi-prototypes.

Figure 3: Illustration of the multi-hop neighborhood information within the Structure View.
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Figure 4: Illustration of the multi-prototypes within the Histology View. (a) Calculate the initial
prototype pcinit of a certain category using the average function. (b) Using learnable parameters to
shift pcinit to multi-prototypes P c

prior = {p1c , p2c , . . . , pkc}, to focus on different clusters (subtypes)
within the category.

C Further Ablations

Extract Features only using the last or last two Layers in Structure View. We tested using only
the last and the last two layers to extract features in SV. As shown in Table 5, although the optimal
results varied across different datasets, overall, models that used more layers to extract features
achieved better results.

Table 5: Effects of GCN layer number in Structure View.
PAAD BRCA LGG LUAD COAD

ProtoSurv (SV all layers) 0.669± 0.049 0.720± 0.040 0.774± 0.063 0.658± 0.046 0.692± 0.045
ProtoSurv (SV last layer) 0.671± 0.042 0.718± 0.049 0.764± 0.054 0.658± 0.060 0.678± 0.051

ProtoSurv (SV last two layers) 0.662± 0.049 0.723± 0.044 0.762± 0.037 0.656± 0.058 0.693± 0.057

Number of Prototypes per Category. To guide the model to focus on different subtype features of a
specific tissue category, we assign multiple prototypes for each category. Our model hypothesizes
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that using multiple prototypes can capture the feature distribution of different subtypes within certain
tissue category. We vary the number of prototypes per class to validate the contribution of multiple
prototypes to the results. Fig.5 illustrates ablative experiments of ProtoSurv on PAAD dataset. We
observe that: (1) ProtoSurv with a single prototype per class performs almost on par with state-of-the-
art methods. (2) ProtoSurv with multiple prototypes per class consistently outperforms the version
with a single prototype. The ablative experiments show the effectiveness of using prototypes, as well
as the benefits of using multiple prototypes per class over using a single one.

Figure 5: Effect of prototype number per category.

How Errors in Classification Impact the Overall Performance. To minimize the impact of
classification errors on the overall performance, in the HV module, we rely only on the node
categories provided by the classifier to delineate an initial range. We calculate the average value of
the patch features within the category range as the initial prototype, providing an initial preference
for the aggregation of each prototype (pathology prior injection). To further illustrate this point, we
randomly assign categories for 20% and 30% of the nodes. As shown in table 6, the introduction of
random noise does not significantly impact the model’s performance, indicating the robustness of our
model against classification errors.

Table 6: Effects of classification errors.
PAAD BRCA LGG LUAD COAD

ProtoSurv 0.669± 0.049 0.720± 0.040 0.774± 0.063 0.658± 0.046 0.692± 0.045
20% random 0.671± 0.044 0.712± 0.045 0.769± 0.048 0.658± 0.046 0.685± 0.051
30% random 0.666± 0.047 0.717± 0.047 0.777± 0.047 0.656± 0.043 0.689± 0.053

Loss Functions. To fully exploit the capabilities of the multiple prototypes of each tissue categories,
we introduce compatibility loss and orthogonality loss to regularize training. In this ablation study,
we evaluate the effect of these losses on model performance. Table 7 shows the results of ProtoSurv
under different settings of hyperparameters α and β. Compared to cox loss alone, performance
improvements for all non-zero values of α and β on both datasets. This provides substantial evidence
for the usefulness of the additional loss functions.

Table 7: Effects of compatibility and orthogonality losses.
Lcomp (α) Lortho (β) PAAD BRCA LGG LUAD COAD

0 0 0.651± 0.057 0.693± 0.046 0.765± 0.054 0.661± 0.052 0.690± 0.046

0.1 0.1 0.656± 0.049 0.702± 0.052 0.769± 0.051 0.654± 0.046 0.694± 0.038
0.1 0.01 0.658± 0.055 0.723± 0.037 0.773± 0.063 0.654± 0.041 0.692± 0.043
0.01 0.1 0.669± 0.049 0.720± 0.040 0.774± 0.063 0.658± 0.046 0.692± 0.045
0.01 0.01 0.662± 0.043 0.714± 0.025 0.770± 0.060 0.658± 0.049 0.690± 0.044
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Computational Requirements. We evaluate the model’s inference time, floating point of op-
erations(FLOPs), model parameters, and maximum GPU memory usage. We use a WSI which
contains 32,625 patches as input. The computation time is measured using a Nvidia RTX 3090 GPU.
We included PatchGCN [5] for comparison. We additionally test ProtoSurv-tiny under a reduced
parameter configuration (prototype dim = 256, hidden dim of SV and HV = 64, prototypes per
category = 4), to evaluate the performance degradation of our architecture with fewer parameters and
its scalability for more limited hardware. Table 8 presents the computational requirements of the
model, while table 9 shows the performance of the model under the tiny setting.

Table 8: Computational requirements.
Time (s) FLOPs (G) Model Parameters (M) Maximum GPU memory usage (MB)

ProtoSurv 0.29 627.3 39.1 5417
ProtoSurv-tiny 0.21 96.5 4.77 1523

PatchGCN 0.12 30.5 1.19 1570

Table 9: Performance of ProtoSurv-tiny.
PAAD BRCA LGG LUAD COAD

ProtoSurv 0.669± 0.049 0.720± 0.040 0.774± 0.063 0.658± 0.046 0.692± 0.045
ProtoSurv-tiny 0.687± 0.049 0.707± 0.044 0.756± 0.038 0.664± 0.039 0.673± 0.039

D Implementation Details of Ablation Studies

D.1 Implementation Details of Component Ablation

In this section, we provide a detailed explanation of the ablation settings for the Prior Guided Fusion
& Pooling (PGF) module in the component validation ablation experiment. The ablation of the PGF
module aggregates the global prototypes into the graph nodes, here the eq. (8) is modified to:

H = Softmax

([
HWQ

][
PWK

]T
√
d

)(
PWV

)
∈ RN×d, (15)

Then, we use the weighted aggregation method from Chen et al. [5] to calculate the score for each
node and combine them with weighted summation.

ai =
exp

{
wT
(
tanh (MHi)⊙ sigm

(
UHT

i

))}
K∑
i=1

exp
{
wT (tanh(MHi)⊙ sigm(UHT

i ))
} , (16)

hslide =

K∑
i=1

aiHi, (17)

Y = MLP (hslide). (18)

This weighted aggregation method is also used in the ablation of the Histology View (HV) module.

D.2 Implementation Details of Classifier Ablation

CONCH. CONCH [56] is a visual-language foundation model. The model can be immediately used
for downstream classification tasks due to the aligned visual-language pretraining, which eliminates
the need for additional labeled examples for supervised learning or fine-tuning. As shown in fig. 6, we
use text prompts to map patches and prompts into the same embedding space, comparing the cosine
similarity of the representations to obtain category labels. We constructed our set of predetermined
text prompts based on the set of class or category names provided by CONCH. The set of categories
and their names we use including: 0. lymphoid infiltrate 1. stroma 2. tumor 3. necrosis 4. others
(adipose, background, penmarking, mucin, muscle, benign epithelium)

HoverNet. Follow Chan et al. [23], we test using HoverNet [57] as the classifier in the ablation
experiment. HoverNet detects nuclei in each patch and assigns types to these nuclei. By majority
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Figure 6: Schematic of zero-shot classification using contrastively aligned image and text encoders
of CONCH.

votes, we take the most frequently predicted nucleus type to be the type of the patches. The nuclei
types of HoverNet including: neoplastic, dead, inflammatory, non-neoplastic epithelial, connective,
no label.

Pre-Proto. In the ablation study of pre-proto, we pre-computed the initial prototypes P c
init for each

category c based on the representations of existing category patches. This eliminates the need for the
model to get the category of each node for every sample. However, it reduces the model’s attention
to the specificity of the tissues in each sample. In this ablation experiment, for each cancer type,
we randomly sampled 50% of the WSIs and then randomly sampled 10% of the patches within
those WSIs to calculate their representations and corresponding tissue categories. Then, we used
the average function to calculate the initial prototype P c

init for each category of patches. Under this
setting, all samples use the same pre-obtained prototypes, and the Histology View starts directly from
eq. (5).

E Kaplan-Meier Curves

We evaluate our method using the Kaplan-Meier curves as presented in fig. 7. In Kaplan-Meier
analysis, patients are separated into high-risk and low-risk groups based on predicted risk scores. We
use the median value of each validation set as the cut-off. Subsequently, we utilize the log-rank test
to compute P-values, which assess the statistical significance of differences between these groups.
The results indicate that our method’s predictions are statistically significant.

Figure 7: Kaplan-Meier curves of predicted high-risk (red) and low-risk (blue) groups. A P-value
<0.05 indicates statistical significance.
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F Illustrations of subtypes of tissue categories

In this section, we present illustrations of various subtypes of certain tissues to support our use of
multi-prototypes. fig. 8 illustrate subtypes of stroma; fig. 9 illustrate subtypes of immune infiltration;
fig. 10 illustrate subtypes of tumor.

Inactivated 
stroma

Intermediate
 stroma

Activated 
stroma

Figure 8: Subtypes of stroma [58].

TIL TLS

Figure 9: Subtypes of immune infiltration.

Conventional Clear-cell Cribriform

Gyriform Micropapillary Complex

Adenosquamous
carcinoma

Colloid 
carcinoma

Papillary
carcinoma

Figure 10: Subtypes of tumor [59].
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G Ethical Discussions

Ethical Issues. With regard to possible ethical issues in data collection, The Cancer Genome Atlas
(TCGA) repository, as a publicly available dataset that has been used in pathology previous studies,
is undoubtedly not ethically questionable. Additionally, we annotated tissue categories for a subset of
slices from the TCGA dataset to train the patch classifier. The pathologists involved in the annotation
were explicitly informed of the purpose of sample collection, ensuring it would not adversely affect
any individuals. Therefore, it does not adversely affect any individual, so there are no ethical or moral
issues.

Possible Negative Social Impacts. As the research in this paper deals with the survival prediction of
cancer, it is necessary to elaborate here on the possible negative social impacts of this work. Including
but not limited to:

• Incorrect diagnosis. AI methods must have the possibility of error, which cannot be avoided, but
an incorrect diagnosis will have a significant impact on individuals and society. Therefore, AI tools
can only be used as a diagnostic aid, not as a decision maker, and the final decision should still be
made by the doctor.

• Leakage of privacy information. In WSI datasets, the identity information of the subjects is highly
private, and the leakage of identity information will also have unpredictable and significant impact
on individuals and society. Therefore, in this work, we exclusively used WSI data from public
datasets, where their privacy information has been well protected.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately reflect our paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitations at section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not have theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided detailed descriptions of our experimental setup in section 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provided the Anonymous GitHub link of our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided detailed descriptions of the hyperparameter and optimizer setup
in section 5.2. We further provided the data splits in our open-source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided the standard deviation in our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided information on the computer resources in section 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the data we used comes from public datasets, and there are no violations of
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential societal impacts in appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data and pretrained models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets used in our paper are properly credited and the license and terms of
use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code we provided includes a detailed README document.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: All the data we used comes from public datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: All the data we used comes from public datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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