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Abstract

We study reinforcement learning (RL) problems in which agents observe the reward
or transition realizations at their current state before deciding which action to
take. Such observations are available in many applications, including transactions,
navigation and more. When the environment is known, previous work shows that
this lookahead information can drastically increase the collected reward. However,
outside of specific applications, existing approaches for interacting with unknown
environments are not well-adapted to these observations. In this work, we close this
gap and design provably-efficient learning algorithms able to incorporate lookahead
information. To achieve this, we perform planning using the empirical distribution
of the reward and transition observations, in contrast to vanilla approaches that
only rely on estimated expectations. We prove that our algorithms achieve tight
regret versus a baseline that also has access to lookahead information — linearly
increasing the amount of collected reward compared to agents that cannot handle
lookahead information.

1 Introduction

In reinforcement learning (RL), agents sequentially interact with a changing environment, aiming
to collect as much reward as possible. While performing actions that yield immediate rewards is
enticing, agents must also bear in mind that actions influence the state of the environment, affecting
the potential reward that could be collected in future steps. When the environment is unknown, agents
also need to balance reward maximization based on previous data and exploration — gathering of data
that might improve future reward collection.

In the standard interaction model, at each timestep, agents first choose an action and only then observe
its outcome on the rewards and state dynamics. As such, agents can only maximize the expected
rewards, collected through the expected dynamics. Yet, in many applications, some information on
the immediate outcome of actions is known before actions are performed. For example, when agents
interact through transactions, prices and traded goods are usually agreed upon before performing any
exchange (‘reward information’). Alternatively, in navigation problems, nearby traffic information is
known to the agent before choosing which path to go through (‘transition information’).

In a recent work, Merlis et al|[2024] shows that even for agents with full statistical knowledge
of the environment, such ‘lookahead’ information can drastically increase the reward collected by
agents — by a multiplicative factor of up to AH when immediate rewards are revealed in advance and
AH/2 when observing the immediate future transitions Intuitively, agents do not only gain from
instantaneously using this information — they can also adapt their planning to account for lookahead
information being revealed in subsequent states, significantly increasing their future values. However,
the work of Merlis et al.|[2024] only tackles planning settings in which the model is known and does
not provide algorithms or guarantees when interacting with unknown environments.

! A is the size of the action space, S is the size of the state space and H is the interaction length.
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In this work, we aim to design provably-efficient agents that learn how to interact when given imme-
diate (‘one-step lookahead’) reward or transition information before choosing an action, under the
episodic tabular Markov Decision Process model. While such information can always be embedded
into the state of the environment, the state space becomes exponential at best, and continuous at
worst, rendering most theoretically-guaranteed approaches both computationally and statistically
intractable. To alleviate this, we start by deriving dynamic programming (‘Bellman’) equations in
the original state space that characterize the optimal lookahead policies. Inspired by these update
rules, we present two variants to the MVP algorithm [Zhang et al.,|2021b] that allow incorporating
either reward or transition lookahead. In particular, we suggest a planning procedure that uses the
empirical distribution of the reward/transition observations (instead of the estimated expectations),
which might also be applied to other complex settings. We prove that these algorithms achieve tight

regret bounds of 0 (\/ H3SAK) and O (\/ HQSK(\/E + ﬁ)) after K episodes (for reward and

transition lookahead, respectively), compared to a stronger baseline that also has access to lookahead
information. As such, they can collect significantly more rewards than vanilla RL algorithms.

Outline. We formally define RL problems with reward/transition lookahead in Section 2]and further
discuss the differences between our setting and standard RL problems in Section 3] Then, we present
our results in two complementary sections: Section [ analyzes reward lookahead while Section 3]
analyzes transition lookahead. We end with conclusions and future directions in Section [6]

Related Work. Problems with varying lookahead information have been extensively studied in
control, with model predictive control [MPC, [Camacho et al., 2007]] as the most notable example.
Conceptually, when interacting with an environment that might be too complex or hard to model, it is
oftentimes convenient to use a simpler model that allows accurately predicting its behavior just in
the near future. MPC uses such models to repeatedly update its policy using short-term planning. In
some cases, the utilized future predictions consist of additive perturbations to the dynamics [Yu et al.,
2020]], while other cases involve more general future predictions on the model behavior [Li et al.|
2019, Zhang et al.| 2021a, |Lin et al.,|[2021}2022]]. To the best of our knowledge, these studies focus
on comparing the performance of the controller to one with full future information (and thus, linear
regret is inevitable), sometimes also considering prediction errors. They do not, however, attempt
to learn the predictions. In contrast, we estimate the reward/transition distributions and leverage
them to better plan, thus increasing the value gained by the agent. In addition, these works focus on
continuous (mostly linear) control problems, whereas we study tabular settings; results from any one
of these settings cannot be directly applied to the other.

In RL, lookahead is mostly used as a planning tool; namely, agents test the possible outcomes after
performing multiple steps to decide which actions to take or to better estimate the value [Tamar et al.}
2017, [Efroni et al.,[2019a},[2020, [Moerland et al., | 2020} Rosenberg et al., 2023} |[El Shar and Jiang} 2020,
Biedenkapp et al., 2021} [Huang et al.||2019]]. Specifically, the future value at the end of the lookahead
is often estimated using rollouts, and a longer lookahead is more robust to suboptimality of the rollout
policy [Bertsekas), [2023]]. However, when agents actually interact with the environment, no additional
lookahead information is observed. One notable exception is [Merlis et al.,[2024], which analyzes
the potential value increase due to multi-step reward lookahead information (and briefly mentions
transition lookahead). However, they only tackle planning settings, where the model is known, and
do not study learning. In this work, we continue a long line of literature on regret analysis for tabular
RL [Jaksch et al.,[2010, Jin et al., 2018}, |Dann et al.,[2019} |[Zanette and Brunskill, 2019, [Efroni et al.|
2019b}, 2021}, Simchowitz and Jamieson, [2019, Zhang et al., 2021b}, 2023|]. Yet, we are not aware
of any existing results on regret minimization with reward or transition lookahead information.

Finally, various applications that involve one-step lookahead information have been previously
studied. The most notable ones are prophet problems [Correa et al.l|2019]], where one-step reward
lookahead is obtained, and the Canadian traveler problem with resampling [Nikolova and Karger,
2008]], which can be formulated through one-step transition lookahead. We discuss the relation to
these problems and the relevant existing results when analyzing each type of feedback, and also
discuss the relation between transition lookahead and stochastic action sets |Boutilier et al.,[2018]].

2 Setting and Notations

We study episodic tabular Markov Decision Processes (MDPs), defined by the tuple M =
(S, A, H, P,R), where S is the state space (of size S), A is the action space (of size A) and H is the

https://doi.org/10.52202/079017-2059 64524



interaction horizon. At each timestep h € {1,...,H} = [H] of an episode k € [K], an agent, located
in state s¥ € S, chooses an action af € A and obtalns areward R = Ry, (sF,af) ~ Ry(sk,ak).
We assume that the rewards are supported by [0, 1] and of expectations rp (s, a). Afterward, the
environment transitions to a state sy, ~ Py (-|s}, af) and the interaction continues until the end of
the episode. We use the notation R ~ R, (s) (or 8’ ~ Py(s)) to denote reward (next-state) samples
for all actions simultaneously at step h and state s and assume independence between different
timestepsE] On the other hand, samples from different actions at a specific state/timestep are not
necessarily independent.

Reward Lookahead. With one-step reward lookahead at timestep & and state s, agents first observe
the rewards for all actions Ry,(s) = {Ry(s,a)},c 4 and only then choose an action to perform.
Formally, we define the set of reward lookahead policies as I = {r : [H] x S x [0, 1]* — A},

where A 4 is the probability simplex, and denote a;, = 7, (sn, Ry). The value of a reward lookahead
agent is the cumulative rewards gathered by it starting at timestep h and state s, denoted by

H
Vb (s) =E| Y Ri(s, m(se, Ri(se))|sn = s] :

t=h

We also define the optimal reward lookahead value to be VhR’* (s) = max,crr VhR’Tr (s). When inter-
acting with an unknown environment for K episodes, agents sequentially choose reward lookahead
policies 7% € II% based on all historical information and are measured by their regret,

K
Reg™(K) = > (V" (sh) = i (s1)).

k=1

We allow the initial state of each episode s¥ to be arbitrarily chosen.

Transition Lookahead. Denoting s), (s, a), the future state when playing action a at step & and
state s, one-step transition lookahead agents observe s}, (s) = {s’h (s a)} before acting.
The set of transition lookahead agents is denoted by II” = {7 : [H] x S x §* — A A} with values

H
VT (s) =E| > Ry(se,mi(se, 844(50)))]sn = s] .

t=h

The optimal value is VhT’* (s) = max, eqnr VhT’” (s), and we similarly define the regret versus optimal
transition lookahead agents as Reg” (K) = Zszl (VlT* (sk) — VlT’Trk (S’f))

When the type of lookahead is clear from the context, we sometimes denote values by V;™ and V}*.

Other Notations. Foranyp € A, and V € R", we define Var, (V) = 3.7, p;V2— (30, piVi)°.
Also, given a transition kernel P and a vector V' € R, we let PV (s,a) = Y .5 P(s'|s,a)V(s')

and similarly define it for value or transition kernel differences. We denote by nf (s, a), the number
of times the pair (s, a) was visited at timestep h up to episode k (inclusive) and similarly denote

k(o) — k ok _ K _ K’
nE(s) = Daea nh(s a). We also let 7j(s,a) = nk(s o Sy {sh s,ay = a}Rh and
Py(s'|s,a) = e a) Zk, 1 {sh =s,af =a, SZ_H = s’ ¢ be the empirical expected rewards
and transition kernel at (sh,an) = (s, a) using data up to episode k and assume they are initialized
to be zero. Finally, we denote by RZ(S), the empirical reward distribution across all actions, and use
PF(s) to denote the empirical joint next-state distribution for all actions. In particular, if &; is the i*"
episode where s was visited at step h, to sample R ~ R (s), we uniformly sample i ~ U ([n}(s)])
and return R = {Rﬁ (s, a)} . A sample 8" ~ PF(s) similarly returns s’ = {sgﬁl(s, a)} R

acA ) a€

When we want to indicate the distribution used to calculate an expectation, we sometimes state it
in a subscript, e.g., write E, (5)[R(a)] to indicate that R(a) ~ Ry (s, a) or use E to emphasize

2This assumption is not used by our algorithms: it is only to ensure that the optimal policy is Markovian.
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that all distributions are according to an environment M. In this paper, O-notation only hides
absolute constants while O hides factors of polylog(S, A, H, K, 0). We also use the notation a V b =
max{a, b}.

3 Comparing the Values of Lookahead Agents and Vanilla RL agents

In the classic RL formulation [e.g.,|Azar et al.,[2017]], agents only observe the reward and transition
after performing an action and aim to maximize the 'no-lookahead’ value, defined by

H
Vir(s) =E Zrt(staﬂ_t(st)‘sh = S],
t=h

where 7 € IT™ = {7 : [H] x S — A4} is a Markovian policy. The optimal value is V;"°(s) =
max,crm ViT(s) and the regret is classically defined as Reg(K) = Zszl (Vf“’(s’f) — Vfrk (s’f))

By definition, the set of lookahead policies also includes all Markovian policies (since agents are not
obliged to use reward/transition information), so the optimal lookahead values are always larger than
their no-lookahead counterpart. In other words, denoting the value gain due to lookahead information

by GE(s) = V% (s) — Vi**(s) and G (s) = V;"*(s) — V;"°(s), it holds that GE(s), GT (s) > 0.
In terms of regret, for any fixed algorithm, we can also write

K K
Reg(K) = Reg(K) — Y G(sf) = Reg” (K) = Y _ GT(s1).
k=1 k=1

As the value gains are non-negative, it directly implies that any regret bound w.r.t. the lookahead
value also leads to the same bound for the standard regret. Even more so, in most cases, lookahead
information leads to a strict improvement in the value, that is, G?(s), GT(s) > Gy > 0. When this
happens, any algorithm with sub-linear lookahead regret enjoys a negative linear standard regret:

IfReg"(K) = o(K) and G¥(s¥) > Gy for all k € [K], then Reg(K) < —GoK + o(K).

The same also holds for transition lookahead. Conversely, any agent that suffers positive standard
regret will suffer linear regret compared to the best lookahead agent, i.e.,

IfReg(K) > 0 and GR(s%) > Gy for all k € [K], then Reg™(K) > GoK.
Notably, any agent that does not use lookahead information will suffer linear lookahead regret in any

such environment. We now present two illustrative examples for environments where the lookahead
value gain is significant, one for reward lookahead and another for transition lookahead.

Reward lookahead. Consider a simple 2-state environment, depicted &

in Figure|l} Starting at s;, agents can either stay there by playing a1,

earning no reward, or play any other action and move to the absorbing s, 6

obtaining a Bernoulli reward Ber(1/(A-1)H). Actions in the terminal

state sy yield no reward. Without observing the rewards, agents will Ya£ar | R~ Ber ()
arbitrarily move from s; to sy, obtaining a reward V"° = 1/(a-1)# in

expectation. On the other hand, when agents observe the rewards before 0

acting, they should move from s; to sy only if a reward was realized for

some action (and otherwise, stay in s; by playing a;). Such agents will w

have (A—1)H opportunities to observe a unit reward across all timesteps
(A-1)H -, Figure 1: Two-state

and actions, collecting in expectation V* = (1 — 1/(a—1)m) .
prophet-like problem

1 — 1/e. In other words, just by observing the rewards before acting, the
agent’s value multiplicatively increases by almost V7*/V"° ~ AH.
Moreover, the additive value gain is Gl ~1-— 1/e, so sub-linear lookahead regret with reward
information results with a negatively-linear standard regret of Reg(K) < —(1 — 1/¢) K.

Transition lookahead. Consider a chain of H/2 states (also described in further detail at Ap-
pendix and depicted at Figure[J). In each state, one action deterministically keeps the agent in its
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current state, while all other actions move the agent one state forward w.p. 1/A, but lead to a terminal
non-rewarding state otherwise. If the reward is located at the end of the chain, any standard RL
agent can collect it only at an exponentially low probability. On the other hand, transition lookahead
agents would move forward only if there is an action that allows it while staying at their current
state otherwise; such agents will collect the rewards at the end of the chain with constant probability.
More specifically, any no-lookahead agent can collect at most V"° = O(H A~*/2) rewards, while
transition lookahead agents can collect V7»* = Q(H); as such, lookahead agents achieve exponential
increase in value, and sublinear regret versus the best lookahead agent will yield a standard regret of
Reg(K) S —HK.

In the following sections, we will present agents that are guaranteed to always achieve sublinear
regret compared to the best lookahead agent.

4 Planning and Learning with One-Step Reward Lookahead

In this section, we analyze RL settings with one-step reward lookahead, in which immediate rewards
are observed before choosing an action. One well-known example of this situation is the prophet
problem [[Correa et al.,2019], where an agent sequentially observes values from known distributions.
Upon observing a value, the agent decides whether to take it as a reward and stop the interaction,
or discard it and continue to observe more values. This problem has numerous applications and
extensions concerning auctions and posted-price mechanisms [Correa et al., [2017]. As shown in
[Merlis et al.| 2024], it is critical to observe the distribution values before taking a decision; otherwise,
the agent’s revenue can decrease by a factor of /. Notably, the example presented in Figure|l|is
a small variant of the prophet problem, where the agent can either take one of A — 1 values and
finish the interaction or discard them and continue playing by staying at s;; we showed that for this
example, the lookahead information increases the value by a factor of V* /V"° ~ AH.

The most natural way to tackle this setting is to extend (augment) the state space to contain the
observed rewards; this way, we transition from a state and reward observations to a new state with
new reward observations and return to the vanilla MDP formulation. However, this comes at a great
cost. Even for Bernoulli rewards, there are 24 possible reward combinations at any given state,
and the augmentation increases the state space by this factor — leading to an exponentially-large
state space. Even worse, for continuous rewards, the augmented state space becomes continuous,
and any performance guarantees that depend on the size of the state space immediately become
vacuous. Hence, algorithms that naively use this reduction are expected to be both computationally
and statistically intractable. We refer to Appendix [B.2]for further details on one such augmentation.

We take a different approach and derive Bellman equations for this setting in the original state space.
Proposition 1. The optimal value of one-step reward lookahead agents satisfies

VII;_’:I(S) =0, Vs € S,

VhR,*(S) =Egrr,(s) [raneaj({Rh(s,a) + Z Ph(3’|s,a)V;i’§(s’)}1 , VseS&, helH].
s'eS

Also, given reward observations R = {R(a)} . 4 at state s and step h, the optimal policy is

(s, R) € arg maX{R(a) + Z Py (s|s, a)Vhﬁ”{(S’)}.
acA
s'eS

We prove Proposition [I]in Appendix where we present an equivalent environment with extended
state space in which one could apply the standard Bellman equations [Puterman, [2014] to calculate
the value with reward lookahead. In contrast to the previously discussed augmentation approach,
we find it more convenient to divide the augmentation into two steps — at odd steps 2h — 1, the
augmented environment would be in a state s;, x 0, while at even steps 2h, the state is s, X Rj.
Doing so creates an overlap between the values of the original and augmented environments at odd
steps, simplifying the proofs. We also use this augmentation to prove a variant of the law of total
variance [LTV, e.g.|Azar et al.,|2017]] and a value-difference lemma [e.g. |Efroni et al.||2019b].

We remark that calculating the exact value is not always tractable — even for S = H = 1 (bandit
problems) and Gaussian rewards, Proposition [I|requires calculating the expectation of the maximum
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Algorithm 1 Monotonic Value Propagation with Reward Lookahead (MVP-RL)

1: Require: ¢ € (0,1), bonuses by, ,,(s), b, ,,(s,a)
2: fork=1,2,...do

3:  Initialize V/, ,(s) =0

4. forh=H,H-1,.,1do

5 Calculate the truncated values for all s € S

Vii(s) = min{ERw%’,jl(s) {?E%{R(a) + by p(s,a) + pflflvhk+1(57a)}:| + bi.n(s), H}

6:  end for

7. forh=1,2,...Hdo

8: Observe si and Ry (sf,a) foralla € A

9: Play an action af € arg maxaeA{R,’i(sﬁ, a) + b . (sk,a) + PEVE (s), a)}
10: Collect the reward R (s}, af’) and transition to the next state ¥ , | ~ Py, (-|sf, af)
11:  end for
12: end for

of Gaussian random variables, which does not admit any simple closed-form solution. On the other
hand, these equations allow approximating the value by using reward samples — in the following, we
show that it can be used to achieve tight regret bounds when the environment is unknown.

4.1 Regret-Minimization with Reward Lookahead

We now present a tractable algorithm that achieves tight regret bounds with one-step reward lookahead.
Specifically, we modify the Monotonic Value Propagation (MVP) algorithm [Zhang et al.l 2021b] to
perform planning using the empirical reward distributions — instead of using the empirical reward
expectations. To compensate for transition uncertainty, we add a transition bonus that uses the
variance of the optimistic next-state values (w.r.t. the empirical transition kernel), designed to be
monotone in the future value. Such construction permits using the variance of optimistic values for
the bonus calculation while being able to later replace it with the variance of the optimal value (see
discussion in |[Zhang et al.|2021b). A reward bonus is used for the value calculation, but does not
affect the action choice in the current state. Intuitively, this is because we get the same amount of
information for all the actions of a state, so they have the same level of uncertainty — there is no need
for bonuses to encourage reward exploration at the action level.

A high-level description of the algorithm is presented in Algorithm[I] while the full algorithm and
its bonuses are stated in Appendix [B.3] Notice that the planning requires calculating the expected
maximum using the empirical distribution, whose support always contains at most K elements, so
both the memory and computations are polynomial. The algorithm ensures the following guarantees:

Theorem 1. When running MVP-RL, with probability at least 1 — & uniformly for all K > 1, it holds
that Reg (i) < O(VAPSAR In SALE 4 1352 A(In SAZE)?).

See proof in Appendix [B.7] Remarkably, our upper bound matches the standard lower bound for
episodic RL of Q2 (\/ H3SAK ) [Domingues et al.,[2021]] up to log-factors; this lower bound is proved
for known deterministic rewards, so in particular, it also holds for problems with reward lookahead.

To our knowledge, the only comparable bounds in settings with reward lookahead were proven to
prophet problems; as agents observe (up to) n distributions at a fixed order, it can be formulated as a
deterministic chain-like MDP, with H = n, S = n + 1 and A = 2. Agents start at the head of the
chain and can either advance without collecting a reward or collect the observed reward and move to
a terminal non-rewarding state (for more details, see [Merlis et al.[2024])). For this problem, [Gatmiry
et al.,|2024] proved a regret bound of @(n3 VK ) (albeit requiring a weaker form of feedback), and
[Agarwal et al.,|2023]] proved a bound of @(n\/T) — slightly better than ours, but heavily relies on
the ability to control which distributions to observe, which is a specific instance of deterministic
transitions. We are unaware of any previous results that cover general Markovian dynamics.
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4.2 Proof Concepts

When analyzing the regret of RL algorithms, a key step usually involves bounding the difference
between the value of a policy in two different environments (‘value-difference lemma’). In particular,
for a given policy 7%, many algorithms maintain a confidence interval on the value Vh”k (s) €
[Vi¥(s), V¥ (s)], calculated based on optimistic and pessimistic MDPs that use the empirical model
with bonuses/penalties [Dann et al., 2019} Zanette and Brunskill, 2019, |[Efroni et al.,|2021]]. Then, the
instantaneous regret (without lookahead) is bounded using the optimistic values by

VE(sn) — Vi (sp) = (77 (shyan) — ra(sh,an)) + (P}’f—l _ Ph) ViE(sn, an)
+ Py (th+1 — V,Zﬁfl) (sn,an) + bonuses,

while the pessimistic values are used either as part of the bonuses or while bounding them. However,
when trying to perform a similar decomposition with reward lookahead, we do not have the difference
of expected rewards, but rather terms of the form

E gt (s) [R(T (51, R))] = ERam, (sn) [R(Th (50, R))]

(see, e.g., the last term of Lemmaf]in the appendix). As the action can be an arbitrary function of the
reward realization, this term is extremely challenging to bound. For example, one could couple both
distributions while trying to relate this error term to a Wasserstein distance between the empirical
and real reward distribution; however, such distances exhibit much slower error rates than standard
mean estimation [Fournier and Guillin} 2015]. Instead, we follow a different approach and show that

uniformly for all possible expected next-state values PV € [0, H]* (as a function of the action at a
given state), it holds w.h.p. that

‘ERN,]%Z—l(S) [mgx{R(a) + PV (s, a)H —ERrr,(s) [mgX{R(a) + PV (s, a)H ‘

Aln%
M\ nf ) v

ey
Throughout the proof, whenever we face an expectation w.r.t. the empirical rewards, we reformulate
the expression to fit the form of Equation (1) and use it as a ‘change of measure’ tool. We remark that
while this confidence interval admits an extra A-factor compared to standard bounds, the counts only
depend on the visits to the state (and not to the state-action), which compensates for this factor.

The choice of MVP for the bonus is similarly motivated — unlike some other bonuses (e.g., Zanette
and Brunskill|[2019), MVP does not require pessimistic values — either in the bonus itself or in its
analysis. In contrast to the optimistic ones, the pessimistic values are not calculated via value iteration,
but rather by following the policy 7* in the pessimistic environment. As such, they cannot be easily
manipulated to fit the form in Equation (T)).

The analysis of the transitions adapts the techniques in [Efroni et al.l [2021]], while requiring extra
care in handling the dependence of actions in the rewards.

5 Reinforcement Learning with One-Step Transition Lookahead

We now move to analyzing problems with one-step transition lookahead, where the resulting next
state due to playing any of the actions is revealed before deciding which action to play. For example,
consider the stochastic Canadian traveler problem with resampling [Nikolova and Karger, 2008,
Boutilier et al.} 2018]. In this problem, an agent wants to navigate on a graph as fast as possible from
a source to a target, but observes which edges at a node are available only upon reaching this node.
When edge availability is stochastic and resampled every time a node is visited, this is a clear case of
one-step transition lookahead, as the information on the availability of edges is given before trying
to traverse them. The example in Section [3]and Appendix [C.9]is one possible formulation of this
problem on a chain — agents are awarded for arriving at the end of the chain as fast as possible, but
trying to use a non-existing edge results with termination. We showed that in this particular instance,
the lookahead value is exponentially larger than the standard value, and any lookahead agent with
low regret would greatly surpass no-lookahead agents.
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As with reward lookahead, the future states for all actions can be embedded into the state, but doing
so increases the size of the state space by a factor of S, again making this approach intractable (see
Appendix [C.2] for an example for such an extension). We once more show that this is not necessary;
the transition-lookahead optimal values can be calculated using the following Bellman equations:

Proposition 2. The optimal value of one-step transition lookahead agents satisfies

Vgﬁl (s) =0, Vs € S,
V}LT7*(8) = ES/NP;L(S) |:II1€aj‘({7”h(s, a) + th’-}; (8/(5’ a))}] ) Vs e S,h e [H].
Also, given next-state observations s' = {s'(a)}, 4 at state s and step h, the optimal policy is

75 (s,s') € arg max{rh(s, a) + Vﬁ’;(sf(a))}.
acA

The proof can be found at Appendix [C.2]and again relies on augmenting the state space to incorporate
the transitions; this time, we divide the episode into odd steps whose extended state is s5, x s, (for an
arbitrary fixed s), € S*) and even steps with the state s5, x s}, - Beyond planning, this again allows
proving a variant of the LTV and of a value-difference lemma.

One important insight is that the policy 7} (s, s’) admits the form of a lisz. Namely, consider the
values V¥ (s,s",a) = ri(s,a) + VhT_ﬁ(s’ ) and assume some ordering of next-state-action pairs

{(st, ai)}fi such that V;*(s, s}, a1) > -+ > V;*(s, s%g 4, asa). Then, an optimal policy would look
at all realized pairs (s'(a), a) and play the action with the highest location in this list. We refer the
readers to Appendix [C.4]for an additional discussion on list representations in transition lookahead.

Similar results could be achieved through a reduction to RL problems with stochastic action sets
[Boutilier et al.l 2018]]. There, at every round, a subset of base actions is sampled, and only these
actions are available to the agent. In particular, one could sample A actions of the form (s’,a) € Sx.A
and impose a deterministic transition to s’ given this extended action. However, since every original
action must be sampled exactly once, this sampling procedure creates a dependence between pairs
even when next-states at different actions are independent, adding unnecessary complications. We
show that when transitions are independent between states, the expectation in Proposition [2]can be
efficiently calculated (see Appendix [C.4.1]for details), and otherwise, it can be approximated through
sampling, as we do in learning settings.

5.1 Regret-Minimization with Transition Lookahead

Relying on similar principals as with reward lookahead, we now present MVP-TL, an adaptation of
MVP to settings with one-step transition lookahead (summarized in Algorithm [2} the full details can
be found at Appendix . This time, we estimate the empirical expected reward and add a standard
Hoeffding-like reward bonus, while performing planning using samples from the empirical joint
distribution of the next-state for all the actions simultaneously. A variance-based transition bonus is
added to the values; though this time, the variance also incorporates the rewards, namely

Var_, sk-1,.,(VF(s,8))
s/ B 1(5) VRS _
bz,h(s) ~ \J h .

nﬁ_l(s) e , Vil(s, &) = lgleaj({f,’ifl(s, a) + b n(s,a) + V,fﬂ(s'(a)}.
The motivation for this modification is the technical challenges described in Section {2} in the
context of reward lookahead. For reward lookahead, we analyzed a value term that included both the
rewards and next-state values, and used concentration arguments to move from the empirical reward
distribution to the real one. For transition lookahead, similar values are analyzed, but we require
variance-based concentration to obtain tighter regret bounds [Azar et al.l [2017]], so this variance
naturally arises. The bonus is again designed to be monotone, as in the original MVP algorithm, and
does not affect the immediate action choice — only the optimistic lookahead value. As before, the
planning relies on sampling the next-state observations at previous episodes, and so it is polynomial,
even if the precise joint distribution is complex. The algorithm enjoys the following regret bounds:

Theorem 2. When running MVP-TL, with probability at least 1 — 6 uniformly for all K > 1, it holds
that Reg” () < O(VIPZSK (VI + VA) In SALE . 3443 (1n SAILE)?),
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Algorithm 2 Monotonic Value Propagation with Transition Lookahead (MVP-TL)
1: Require: ¢ € (0,1), bonuses by, ,,(s,a), by, 1,(s)
2: fork=1,2,...do
3:  Initialize V/, ,(s) =0
4. forh=H,H-1,.,1do
5 Calculate the truncated values for all s € S

Vik(s) = min{Es,Npﬁl(s) [I(?eaj({fﬁl(s, a) + by ,(s,a) + V;erl(s’(a))}] + b1 (), H}

6:  end for

7. forh=1,2,...Hdo

8: Observe s and s}, | (s, a) foralla € A

9: Play an action af € arg maxaeA{fzfl(sﬁ, a) + b£7h(sﬁ, a) + ViF (siF (sF, a))}
10: Collect the reward R} ~ Ry,(sf, ay’) and transition to the next state s, | = s, (s}, afy)
11:  end for
12: end for

See proof in Appendix For transition lookahead, the regret bounds we provide exhibit two rates,
both corresponding to a natural adaptation of known lower bounds to transition lookahead.

1. ‘Bandit rate’ O(v H2SAK): this is the rate due to reward stochasticity. Consider a problem
where at odd timesteps 2h — 1 and across all states, all actions have rewards of mean 1/2 — ¢,
except for one action of mean 1/2. Assuming that the state-distribution is uniform, each such
timestep forms a hard instance of a contextual bandit problem with S contexts, exhibiting a regret

of Q(VSAK) [Auer et al., 2002, Bubeck et al.,[2012]. Since there are H/2 odd steps and we can

design each step independently, the total regret would be Q(H+/ SAK). The even steps can be
used to ‘remove’ the lookahead and create a uniform state distribution. To do so, we set that when
taking an action at odd steps, we always transition to a fixed state s4. From this state, one action
a1 leads uniformly to all states, while the rest of the actions lead to an absorbing non-rewarding
state — rendering them strictly suboptimal. Thus, no-regret agents will only play a;, regardless of
the lookahead information, and the state distribution at odd timesteps will be uniform.

2. ‘Transition learning rate’ O(v H3SK): recall that the vanilla RL lower bound designs a tree
with Q(S) leaves, to which agents need to navigate at the right timing (with Q(H) options) and
take the right action (out of A). While all leaves might transition agents to a rewarding state,
one combination of state-action-timing has a slightly higher probability of doing so [Domingues
et al.|[2021]]. This roughly creates a bandit problem with SAH arms, constructed such that the
maximal reward is Q(H), yielding a total regret of Hv HSAK. Now consider the following
simple modification where in each leaf, only one action can lead to a reward (and the rest of the
actions are ‘useless’ — never lead to rewards). Thus, the agent still needs to test all leaves at all
timings, and so there are still SH ‘arms’ with a corresponding regret of v H3SK. Moreover,
to test a leaf at a certain timing, we must navigate to it, and since the agent is going to play the
single useful action at the leaf, transition lookahead does not provide any additional information.

As discussed before, transition lookahead can be formulated as an RL instance with stochastic action
sets. While Boutilier et al.|[2018]] prove that with stochastic action sets, Q-learning asymptotically
converges, they provide no learning algorithm nor regret bounds. Therefore, to our knowledge, our
result is the first to achieve sublinear regret with transition lookahead.

5.2 Proof Concepts

Transition lookahead causes similar issues as reward lookahead. Hence, it is natural to apply a similar
analysis approach — first, formulate the value as the expectation w.r.t. the next-state observations of
the maximum of action-observation dependent values; then use uniform concentration as a ‘change
of measure’ tool between the empirical and real next-state distribution. In particular, if V (s, s, a)
represents the value starting from state s, performing a and transitioning to s’, one can show that for
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all V(s,-,-) € [0, H]* (see Lemmal[19),

Es,/\/p’llc—l(s) [m(?x V(s,s'(a), a)} —Egp,(s) max V(s,s'(a), a)} ‘

SAln %Vars,/vp’llc—l(s) max, V (s, s'(a),a)
~ nf~(s) V1 7
where the variance term stems from using a Bernstein-like concentration bound. However, in contrast
to the reward lookahead, the /'S A-factor propagates to the dominant term of the regret, so pursuing

this approach would lead to a worse regret bound of @) (\/ H3S2AK )

@

To avoid this, we pinpoint the two locations where this change of measure is needed — the proof that
V;¥ is optimistic and the regret decomposition — and make sure to perform this change of measure
only on a single value V;* (s, s', a) = rp,(s,a) + V;',; (s"), mitigating the need to cover all possible
values and removing the additional v/ S A-factor. However, doing so leaves us with a residual term.
Defining V;* (s, 8') = max,e 4{V}’ (s, '(a), a)} and assuming a similar optimistic value V;*(s, s’),
this term is of the form

Esfwﬁffl(s) [Vi{c(sv Sl) - VIT(Sv SI)} - ES’NP;L(S) [‘7hk(57 S/) - Vi:‘ (5’ 8/)].

While similar terms have been analyzed before [e.g.,/Zanette and Brunskill, 2019 |[Efroni et al.| [2021]],
the analysis leads to a constant regret term that depends on the support of the distribution in question;
in our case, it is the distribution over all possible next-states — of cardinality S“. Therefore, following
the same derivation would lead to an exponential additive regret term.

We overcome it by utilizing the fact that both the optimistic policy and the optimal one decide which
action to take according to a list of next-state-actions (s’, a). In other words, instead of looking at the
next-state s’ (with S possible values) to determine a value, we look at the highest-ranked realized
pair (s, a) in the list that corresponds to the policy that induces the value (with S A possible rankings).
Since we have two values, we need to calculate the probability of being at a certain list location for
both % and 7*, but the cardinality of this space is (SA)2: polynomial and not exponential.

6 Conclusions and Future Work

In this work, we presented an RL setting in which immediate rewards or transitions are observed before
actions are chosen. We showed how to design provably and computationally efficient algorithms
for this setting that achieve tight regret bounds versus a strong baseline that also uses lookahead
information. Our algorithms rely on estimating the distribution of the reward or transition observations,
a concept that might be utilized in other settings. In particular, we believe that our techniques for
transition lookahead could be extended to RL problems with stochastic action sets [Boutilier et al.|
2018]], but leave this for future work.

One natural extension to our work would be to consider multi-step lookahead information — observing
the transition/rewards L steps in advance. We conjecture that from a statistical point of view, a similar
algorithmic approach that samples from the empirical observation distribution would be efficient.
However, it is not clear how to perform efficient planning with such feedback.

Another possible direction would be to derive model-free algorithms [Jin et al., 2018]], with the aim
to improve the computation efficiency of the solutions; our model-based algorithms require at most
O(K S? AH) computations per episode due to the planning stage, while model-free algorithms might
potentially allow just O(AH ) computations per episode.

On the practical side, previous works presented RL algorithms that utilize/estimate a world model
with multi-step lookahead to perform planning and learning [Schrittwieser et al.,|2020, |Chung et al.,
2024]], aiming to achieve the optimal no-lookahead value. For some of these approaches, it is
quite natural to replace the simulated world behavior with lookahead information on the real future
realization. We leave this adaptation and evaluation to future studies.

Finally, the notion of lookahead could be studied in various other decision-making settings (e.g.,
linear MDPs Jin et al.|2020) and can also be generalized to situations where lookahead information
can be queried under some budget constraints [Efroni et al.| [2021]] or when agents only observe noisy
lookahead predictions; we leave these problems for future research.
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A Structure of the Appendix

Both reward and transition lookahead appendices share the following structure. First, we describe our
assumption on the data generation process and analyze general properties of reward and transition
lookahead. This is done by looking at an extended MDP that incorporates the lookahead information
into the state. Then, we present the full algorithm and describe the relevant probabilistic events that
ensure the concentration of all the empirical quantities. For transition lookahead, we require some
additional notions for the event definitions (including the list representation of values and policies),
which are explained in a separate subsection.

Given the concentration-related good event, we can prove that the planning procedure in the algorithm
is optimistic, which we do in the subsequent subsection. Then, we define an additional good event
that allows adding and removing conditional expectations in a way that will be needed for the proof.

At this point, we provided all (almost all) the results required for the regret analysis, and the proof of
the main theorems is stated. The proofs also require some additional analysis for the bonuses (and
especially variance terms), which is located at the end of the regret analysis.

For transition lookahead, the appendix includes one more part that further analyzes the example
presented in Section 3]

At the end of the appendix, we state and prove several lemmas that will be used throughout our
analysis, while also stating several existing results that will be of use.
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B Proofs for Reward Lookahead

B.1 Data Generation Process

To simplify the proofs, we assume the following ’tabular’ data-generation process: Before the game
starts, a set of K samples from the transition probabilities and rewards is generated for all (s, a, h).
Once a state s at step h is visited for the i time, the 7*" sample from the reward distribution R, (s)
is the reward realization for all action a € .A. When a state-action pair is visited for the i‘" time, the
it" sample from the transition kernel Py (-|s, a) determines the next-state realization. In particular,
it implies that the reward samples from the first 4 visits to a state are i.i.d., and the same for the
next-states samples and state-action visitations. Throughout this appendix, we use the notation
RZ = {R,’i(s’}‘;, a}a ¢ 4 to denote the reward observation at episode & and timestep £ for all the
actions.

For the proof, we define the following three filtrations. Let

_ 1 1 1 k-1 k-1 k—1 k _k k k
Fk,h0({St7at7Rt}te[H]v~”>{St vap Ry }te[H]’{st,a“Rt }te[h]’sh—i_l)’

FE —o({st ol R! {sk_l ak=1 kal} {Sk ay Rk}
E,h {t’ ts t}te[H]’ ) t ) Yt » T tG[H]’ 2Rt A Red 7 te[h+1] )

the filtrations that contains all information until episode %k and step h, as well as the state at timestep
h+ 1, or all information of time h + 1, respectively. We make this distinction so that Fj, ;,_; contains
only s¥, while F{, | also contains a¥. We also define

F, = a({s%,a%,Ri}te[H], PN {s?af,Rf}tem]’s’fH)’

which contains all information up to the end of the k*" episode, as well as the initial state at episode
k+1.

B.2 Extended MDP for Reward Lookahead

In this appendix, we present an alternative formulation of the one-step reward lookahead that falls
under the vanilla (no-lookahead) model and would be helpful for the analysis.

Throughout the section, we study the relations between MDPs with and without reward lookahead,
and between different MDPs with lookahead. Therefore, for clarity, we state the concerning MDP in
the value, e.g. V77 (s|M). Specifically in this subsection, we distinguish between values without
lookahead (denoted V™) and values with lookahead (denoted V%), In the following subsections,
unless stated otherwise, we will only consider lookahead values; for brevity, and with some abuse of
notations, we will then omit the R in the value notation.

For any MDP M = (S, A, H, P,R), define an equivalent extended MDP M ¥ of horizon 2H that
separates the state transition and reward generation as follows:

1. Assume w.l.o.g. that M starts at some initial state s;. The extended environment starts at a
state s; x 0, where 0 € R4 is the zeros vector.

2. Forany h € [H], at timestep 2h — 1, the environment MZ transitions from state sj, x 0 to
sp x R, where R ~ R},(s) is a vector containing the rewards for all actions a € A. This
transition occurs regardless of the action that was played. At timestep 2h, given an action
ap, the environment transitions from s, x R to sp+1 X 0, where sp41 ~ Pp(-|sh, ap).

3. The reward at a state s x R when playing an action a is R(a), namely, the reward is
deterministic and only obtained on even timesteps.

We emphasize that throughout the section, we assume that M and M are coupled; that is, assume
that under a policy 7 in M, the agent visits a state sy, observes Ry, plays an action ay, and transitions
to sp+1- Then, in MPE the agent starts from sy, x 0, transitions to s x R (regardless of the action it
played), takes the action aj, and finally transitions to sj, 41 X O.

Since the reward is embedded into the state, any state-dependent policy in M is a one-step reward
lookahead policy in the original MDP. Moreover, the policy at the odd steps of M does not affect
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the value, and assuming that the policy at the even steps in M is the same as the policy in M, we
trivially get the following relation between the values

H
V27;1,(S7 R|MR) =E ZRt(Stv a’t)"sh =S, Rh(S, ) = Raﬂ' £ VhR,ﬂ-(Sv R|M)a
t=h
H
Vi (5,0l MB) =R ZRt(St7at)|sh =s,m| = VhR’”(S\M). 3)
t=h

While M has a continuous state space, which generally makes algorithm design impractical, this
representation permits applying classic results on MDPs to environments with one-step lookahead.

As aremark, rewards could be directly embedded into the state without separating the state and reward
updates. However, this creates unnecessary complications when analyzing the relations between
similar environments. This is because we are mainly interested in the value given the state — in
expectation over the realized rewards. In particular, value-difference are analyzed assuming a shared
initial state, but in our case, we do not want to assume the same reward realization, but rather also
account for the distance between reward distributions, which the step separation enables. For similar
reasons, this representation also simplifies the proof of the law of total variance [[Azar et al., [ 2017]].

Proposition 1. The optimal value of one-step reward lookahead agents satisfies
Viryi(s) =0, Vs €S,

VhR,*(S) =ER R (s) [r(?eaj({Rh(s,a) + Z Ph(3'|s,a)Vhﬁ’1‘(s’)}1 , VseS&, helH].
s’eS
Also, given reward observations R = {R(a)},c 4 at state s and step h, the optimal policy is

7 (s, R) € arg maX{R(a) + Z Pr(s|s, a)V}i’Y(s')}.
acA
s'eS

Proof. We prove the result in the extended MDP M % and remind the reader that in this formulation,
the policy only uses state information, as in the standard RL formulation. In particular, it implies that
there exists a Markovian optimal policy that uniformly maximizes the value (in the extended state
space), and the optimal value is given through the dynamic-programming equations [Puterman, 2014]

Vi1 (s, RIM™) =0, Vs e S,ReRA,

Vi (s, RIMT) = max{R(a) + Z Ph(s’|s7a)V2*h+1(s',0MR)}, Vh e [H],s € S,R € RA,
s'eS

Vay—1(s,0|lM") = Eg, (o) [Va (s, RIM™)], Vh e [H],s€S.

)

By the equivalence between M and M for all policies, this is also the optimal value in M.
Specifically, combining both recursion equations and substituting the relation between the original
and extended values of Equation , we get the desired value recursion for any h € [H] and s € S:

Vi (s|M) = Vi, (s, 0l M)
= ERh(s) [‘/Q*h(87 R‘MR)}

m(?x{R(a) + Z Pp(s']s,a)Vay, 11 (s, 0|MR)}]

s'eS

=ER,(s)

= ERh,(S) [mgx{R(a) + Z Ph(3/|5’ a)VhIiT(S|M)}‘| .

s’eS
Similarly, for any h € [H], s € S and R € R*, the optimal policy at the even stages of the extended
MDP is

Ton(s, R) € argmaX{R(a) + ) Ph(S’Isva)Vz’ZH(S’?OMR)},

acA ses
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alongside arbitrary actions at odd steps. Playing this policy in the original MDP will lead to an
optimal one-step reward lookahead policy, as it achieves the optimal value of the original MDP.
This policy directly translates to the optimal policy in the statement, by the equivalence between the
original and extended MDPs and the relation V| (s, 0| M*) = VI3 (/| M). O
Remark 1. As in Equation @), one could also write the dynamic programming equations for any
policy € TI®, namely
Vi (s, RIM™) = R(mp(s, R)) + Y Pu(s'|s, mn(s, R) V11 (s, 0|M™), Vh e [H],s €S, ReR,
s'eS
Vi _1(s,0[M") = Eg, () [Var (s, RIM™)], Vh € [H],s € S.
In particular, following the notation of Equation (3)), one can also write
V" (s, RIM) = R(mn(s, R)) + Z Ph(s’|s,ﬂ'h(s,R))Vhﬁ’T(sﬂM), and,
s'eS

Vi (sIM) = Exe, o) [ Vi (5, BIM)|

=Er, s

R(mn(s, R) + Y Pals'|s, mn(s, R))Vﬁf(S'IM))] :
s'eS
We will use this notation in some of the proofs.

Another useful application of the extended MDP is a variation of the law of total variance (LTV),
which will be useful in our analysis

Lemma 3. For any deterministic one-step reward lookahead policy = € I, it holds that

2
H
E <E (Z Rp(sp,an) — VlR’ﬂ(31)> |7, $1
h=1

H
R,
Z Varph('\Sh,,ah,) (Vh+1 (sh+1)) |7Ta 51
h=1

Proof. We apply the law of total variance (Lemma[27) in the extended MDP; there, the rewards are
deterministic and equal to either 0 (at odd steps) or Ry, (sn,an) (at even steps), so the total expected

rewards are Z,Ijzl Ry (sn,an).

H 2
E (Z Rh(sh,ah) —V1F(81,0|MR)> |7T,81
h=1

H H

=B | Y Var(Vg;, (sn, Ru(sn)|M™)|(55,0)) + > Var(Vi i (sny1, 0lM™)[(sn, Ri(s1))) |, 51
h=1 h=1

Odd steps Even steps

[ H
>E Zvar(VQ7;L+1(sh+170|MR)(Sthh(sh)))|W151]
Lh=1

rH
=E ZVa'rph('lshvah)(‘/g;%‘rl(Sh-‘rla0|MR))|W,31]
Lh=1

[ H
=E|>_ Varp, (js.an) (Vi (sn41l M), 51] :
Lh=1
Noting that V" (s1, 0| MF) = V™ (51| M) concludes the proof. O

Finally, though not needed in our analysis, we use the extended MDP to prove the following value-
difference lemma, which could be of further use in follow-up works. While we prove decomposition
just using the next-step values, one could recursively apply the formula until the end of the episode to
immediately get another formula that does not depend on the next value.
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Lemma 4 (Value-Difference Lemma with Reward Lookahead). Let M; = (S, A, H, P*, R') and
Mo = (S, A, H, P?, R?) be two environments. For any deterministic one-step reward lookahead
policy n € IR any h € [H] and s € S, it holds that

T (5| M) = VT (5| M)
= B [th (she1lM1) = VET (51| Mo)|sh = s}

+EM1

Z (Py (s'Isn mh(sh, Rn)) — P2(s|sh, 7 (sh, Rh)))Vh+1( s'|Ma)|sp = S]

s'eS
+ Eaq, {ER;(S) [VhR’ﬂ(Sh,R|M2)} —Erz2 ) [VhR’W(Sh,R|M2)] |sh = 8},

where VhR’”(s, R|M) is the value at a state given the reward realization, defined in Equation
and given in Remark|l]

Proof. We again work with the extended MDPs M1' M. Since under the extension, both the
environments and the policy are Markovian, all values obey the following Bellman equations:

Vi, (s, RIM™) = R(mi(s, R)) + Y Pu(s'|s,m(s, R))V3,, 41 (s, 0|M"), Vhe[H],s €S ReRA
s’'eS
Vi _1(s,0lM™) = Eg, (5 [V, (s, RIM™)], Vh e [H],s €S.

Using the relation between the value of the original and extended MDP (eq. (3)) and the Bellman
equations of the extended MDP, for any h € [H], we have

VT (s My) = ViPT (5| M)
= Vah_1(8, 0|be) = Vah_1(s, 0|M§)
= ER;(S) [Vzﬁ(& R|Mf)] - ER%(S) [VQT;L(S, R|M§')]
= Ex1 (o) [V3i (5, RIME) = Vi (s, RIME)] + B ) [V3 (5, RIME)] = Eres ) [V35 (s, RIME)]
= Ery o [Vai (5, RIME) = Vi (s, RIME)] + By (0 [V (5, RIM:) | = B ) [V (5, RIM3)|
=B, [Vah, (sn, Ru| M) = Vi, (sn, Rp|M3)|sp = s]
+ By (o) Vi (5, RIM2)| = Bz [V (s, RIMo) . )

We now focus on the first term. Denoting a;, = 7, (s, Ry) the action taken by the agent at
environment M1, We have

Vi, (sn, Ru|MT) = Vi, (sn, Ru|ME)

= (Rh(ah) + Pﬁ(S’IShvah)Vz’ZH(S’,OIM{%))

s'eS

- <Rh<ah> 3 P,$<s'|sh7ah>v;;+l<s',0|M§>>

s'eS

=" P |sn, an) Vi1 (' |Ma) = > P |sn, an) Vi (5'| Mz)

s'eS s'eS
= Z Ph \Smah (Vhliir( /|M1) Vhﬁ?( /|M2))
s’'eS
177 2/ ./
+ ) (P8 snyan) — PE(S|sn, an)) VT (5| Ma)
s’'eS

= Bty [Vl (snsa M) = VST (1| M) 31, a0

+ ) (P (s [sny an) — PR(s'|sn, an)) VT (8| Ma).
s'eS
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Substituting this back into Equation (3], we have
Vi (s|Ma) = Vi (s| M2)
= Enty | Bat [T (sn1M1) = VT (sn1| M) s, an ) Isn = s

+ E g,

Z (Pr(8'|sn,an) — PZ(8|sn,an)) th1( s'\Ma)|sp = s]

s'eS
+E721(s)|: ’Tr (s, RIM3) } ]ERQ(S [VRW(S R|M2):|

= Ent, | ViliT (sns1lM1) = VT (ss1 | Ma) sy = s

+ E g,

Z (Pﬁ(s'|sh, 7h(sn, Ri)) — PE(s'|sn, 7 (sn, Rh)))V,i’Tlr(sﬂMzﬂsh = s]

s'eS
+ ]E/Vh [ER}L(S) [VhR’W(Sh, R|M2)} - ERi(s) [VhR’W(Sh, R|M2)} |Sh = 8} .
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B.3 Full Algorithm Description for Reward Lookahead

Algorithm 3 Monotonic Value Propagation with Reward Lookahead (MVP-RL)

1: Require: ¢ € (0, 1), bonuses by, ,,(s), b} (s, a)
2: fork=1,2,...do
3:  Initialize Vi, (s) =0

4. forh=H,H—-1,..,1do

5: for s € S do

6: if nf"!(s) = 0 then

7: Vk(s)=H

8: else

9: Calculate the truncated values

ny ()
Vi¥(s) = min I Z maX{sz(s>(8 a) + b2, (s,a) + PE ' VF L (s a)} +bpn(s), H
Tllzil(s) ae A h 5 k,h\®s h h+1\°» k,h 5

10: end if

11: For any vector R € R, define the policy 7*

(s, R) € argmax{R(a) + 0 (s,a) + PFTIVE (s, a)}
acA ’

12: end for

13:  end for

14: forh=1,2,...H do

15: Observe s¥ and R} = {R}(sk, a)}aeA

16: Play an action af = 7 (sk, R})

17: Collect the reward R} (sy, af) and transition to the next state sy, ~ Py, (-|s}, af)
18:  end for

19:  Update the empirical estimators and counts for all visited state-actions
20: end for

We use a variant of the MVP algorithm [Zhang et al.,|2021b]] while adapting their proof and the one
from [Efroni et al.| [2021]. The algorithm is described in Algorithm 3|and uses the following bonuses:

ALK

Z,h(S) =3 W,

L ik k )
b, (s,a) = min 20 Varps 1(<|s,a)(Vh+1)Lo 400 HLY
k,h\%s 3 nkfl(s a)V1 9 nk—l(s a)\/l’
h ’ h 9

2 A 213 . _
where L} = In w, and for brevity, we shorten Varp:q(A'S,a)(VfH(s’)) to

Varproi . o (V;F.1) (omitting the state from the value).

For the optimistic value iteration, we use the notation &, (s) to represent the #*" episode where the

state s was visited at the h!" timestep. Thus, line E] of Algorithm [3|is the expectation w.r.t. the
empirical reward distribution R}~ (s) (when defining its realization to be zero when n} ~*(s) = 0).

Since the bonuses are larger than H when n,"fl (s) = 0, one could write the update in more concisely

as
ViE(s) = min{ERNﬁlgl(s) [r;leaj({R(a) + by (s,a) + PEIVE (s, a)}] + by 1 (5), H}

We will often use this representation in our analysis.
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B.4 The First Good Event — Concentration

We now define the first good event, which ensures that all empirical quantities are well-concentrated.
For the transitions, we require each element to concentrate well, as well as both the inner product and
the variance w.r.t. the optimal value function. For the reward, we make sure that the maximum of
the rewards to concentrate well (with any possible bias, that will later correspond with the next-state
values). Formally, for any fixed vector u € R4, denote

mu(s,u) = Egr, (s) {mgx{Rh(a) + u(a)}},

(5, u) = Egogn (o) [max{ Ra(a) + u(a)}

my, (s
with the convention that 71} (s, u) = max, u(a) if n¥(s) = 0. We define the following good events:

. 2P(s'|s,a) Lk Lk
EP(k) = | s, a,h: |Pa(sl]s,a) — PEN (s, a)] < [ LI s Ls
ny (s,a)V1 o np(s,a) V1
' L 2Varp, (s a)(Vh* )ng HLE
B (k) = S s,a,h s [(BET = P ) Vi (s,0)| < ASLOMEES s
(k) { ( h h) war(s,a)] < nﬁ_l(s,a) V1 nﬁ_l(s,a) V1
2 Lj
pv _ . * _ R *
EP (k) = V&mh.‘¢VM5&M®ﬂ@H) VA@”f”OMMU@+”‘S4H>7¢—%&a)v1
T A ~k—1 ALI;
E"(k) =< Vs, h,Vu € [0,2H]" : ‘mh(s,u) — 1y, (s,u)| B .
2(n; " (s) V1)
where we again use L’g =In %. Then, we define the first good event as
Gi=[)E"(k) [V EP(k) [) EP (k) () EP*(k),
k>1 k>1 k>1 k>1

for which, the following holds:
Lemma 5 (The First Good Event). The good event Gy holds w.p. Pr(G1) > 1 —0/2.

Proof. The proof of the first three events uses standard concentration arguments (see, e.g., [Efroni
et al.|2021) and is stated for completeness. For any fixed k& > 1,s,a,h and number of visits
n € [k], we utilize Lemma |16 w.r.t. the transition kernel P (-|s,a), the value V", € [0, H]
and probability ' = Wz(kﬂ); notice that by the assumption that samples are generated i.i.d.
before the game starts, given the number of visits, all samples are i.i.d., so standard concentration
could be applied. By taking the union bound over all » € [k] and slightly increasing the constants
to ensure that n = O trivially holds, we get that the events also hold for any number of visit
nk~*(s,a) € {0...,k}, and taking another union bound over all k > 1, s, a, h ensures that each of
the events Nj>1 EP(k), Ny>1 57" (k) and Ny>1 EPY? (k) holds w.p. at least 1 — &

We now focus on bounding the probability of the event N E” (k). For any fixed &, h and s, observe
that the event trivially holds if n}’ = 0, then the event trivially holds, since for all u € [0, 2H]*,

() AL
| (s, u) — m’]fl(&u)’ = ‘]ERNRh(S) [mo?x{Rh(s,a) + u(a)}} - mo?x{u(a)}‘ < 1<3y ?‘5,

where (*) uses the boundedness of the rewards in [0, 1]. Next, recall that for any fixed nf ! = n € [k],
the rewards samples at state s and step A are i.i.d. vectors on [0, 1]4. Therefore, by Lemma

ALk )
k—1/.\ _ A, k-1 5
Pr{nh (s) =n,YVu € [0,2H]" : |mh(s,u) my (s,u)‘ >3 Q(Hi_l(s) VEY } S SSAHRG 1)

Taking a union bound on all possible values of n € [k], s and h, we get

0 0
- >1-
8SAHK?(k+1) — 8k(k+1)

By summing over all & > 1, the event N E” (k) holds with a probability of at least 1 — 4/8. Finally,
taking the union bound with the other three events leads to the desired result of Pr(G1) > 1-46/2. O

Pr{E"(k)} > 1 — SAk -
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B.5 Optimism of the Upper Confidence Value Functions

In this subsection, we prove that under the good event G, the values V* that MVP-RL produces are
optimistic.

Lemma 6 (Optimism). Under the first good event Gy, for all k € [K], h € [H] and s € S, it holds
that Vi (s) < VE(s).

Proof. The proof follows by backward induction on H; see that the claim trivially holds for h = H+1,
where both values are defined to be zero.

Now assume by induction that for some k € [K] and h € [H], the desired inequalities hold at
timestep h + 1 for all s € S; we will show that this implies that they also hold at timestep h.

At this point, we also assume w.l.o.g. that V}f (s) < H, and in particular, the value is not truncated;
otherwise, by the boundedness of the rewards, V;*(s) < H = V;*(s). For similar reasons, we assume
w.l.o.g. that b, , (s,a) < H, so that it is also not truncated.

By the optimism of the value at step & 4 1 due to the induction hypothesis and the monotonicity of
the bonus (Lemma [23)), under the good event, we have for all s € S and a € A that

PrVE (s,0) + by n(s,a)

> P,’fflv,fﬂ(s, a) + max 3

Varpi-i o (Vi) LE 400

HLE

nk~t(s,a) V1

7 7712_1(5,&) V1

* k

. 20 | Varpr-i o (Vi) L5 400 HLE
> PF1vE  (s,a) + max{ — L : , — 0 Lemma
= B Vi (s.a) 3 nf~t(s,a) V1 9 nfl(s,a) V1 ( 23

* k

S PR () 10 | Varges (Vi) ls 200 HEL

heo TR 3 nf~t(s,a) V1 9 nf(s,a) V1

S 10 [ Varp, (js.0) (Vi) Ls SHL
> PFve (s,a) + — n + g Under EPY2(k
= B Via(s,9) 3 nkl(s,a) V1 nk(s,a) V1 ( QU
> PV (s,a). (Under EPV!(k))

Thus, under the good event and the induction hypothesis, we have that

V() = B o [mag{ R0 + 5.0 4 P T (s, |+ 00)
>Ep 2, (s) [gleaj({R(a) + Pth*H(&a)}] + bj.n(5)-

In particular, using Proposition[I] we get
Vii(s) = Vi (s) > Er . (s) {gleaj({R(a) + PrViia (s, a)}} + by, (s)

- Enor, o [max{R(a) + i (5,0}
>0

)

where the last inequality holds under the event E" (k) with u(a) = P,V;7, | (s,a) € [0, H]*. O
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B.6 The Second Good Event — Martingale Concentration

In this subsection, we present four good events that will allow us to replace the expectation over the
randomizations inside each episode with their realization.

Define the following bonus-like term that will later appear in the proof due to value concentration:

2Var sy (V5 )Lk 4H?SLE
bivhl(s,a):min Zh(l‘ @) Vi) Ls + 5 SL; JH 5,
’ ny (s,a) V1 ny (s,a) V1

and let
Yffh = Vh],c+1(5]1§+1) - Vhwjl(slﬁﬂ)»
YQkh = Varp, (s, n,a, h)(VfZ‘fl)v
Y = 0 sk i) + 077 (s, ak)-

The second good event is the intersection of the events G, = E4iffl 0 pdiff2 0 pVar 0 pbr defined
as follows.

K K
: 1 SHK(K +1
BT {Vh €K >1: Y BV P < (1 " 2H) SV, + 1812 (5“}
k=1

K K
. 1 HK(K +1
piff2 _ {vh €[H],K>1: Y B[P ] < (1 + 2H> > YF, +18HIn 8(5+)}’
k=1

K H
. S8HK(K +1
EV‘“:{K>1: YN v <20 ]E[Yzlfh|Fk1]+4H3ln(5)}

K K
SHK(K +1)
E ={Vhe[H],K>1: B[Y{ | Fen1] <2 +50H? In ————— 3,
{ [H], K = ];:1 (Y350 | Flen—1] < g: i 5

We define the good event G = G N Go.
Lemma 7. The good event G holds with a probability of at least 1 — 4.

Proof. The proof follows similarly to Lemmas 15 and 21 of [Efroni et al.,[2021]].

First, define the random process Wy, = ]l{f/hk(s) - Vh”k (s) € 0,H]|,Yh € [H],s € S} and define

}71";,1 = Wkajh, which is bounded in [0, H]. Also observe that W, is F},_; measurable, since both
values and policies are calculated based on data up to the episode k — 1, and in particular, it is F}, 1
measurable and f/ffh is F}, ;, measurable. thus, by Lemma forany k € [K] and h € [H], we have
w.p. at least 1 — m that

K K
- 1 - SHK(K +1)
k k 2
;leE[YLMFk,h_l] < (1 + 5 ) k§:1YM +18H o~

Since W, is F}, ,—1 measurable, we can write the event as

K K
1 S8HK(K +1)
> WAE[YF, | Fina] < <1 + 2H> > WY, +18H? In ———
k=1 k=1
and taking the union bound over all h € [H] and K > 1, we get w.p. at least 1 — g that the event

K
. 1 SHK(K +1)
1iff1 k 2
E _{Vhe[ K >1: ; 1:WkEylh\Fkh 1] < <1+2 )E_IW,CYM—&JSH In = }

Importantly, by optimism gLemrna @), under Gq, it holds that W, = 1 for all &k > 1, so we
immediately get that G, N B4l = G, n p4f1,
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Following the exact same proof just with the filtration %, and defining the equivalent E4if2 e get
that this event also holds w.p. 1 — % and is the desired event when G holds.

Next, we prove that the other two events also hold w.p. at least 1 — %.

By the assumptions of our setting, we know that Vh“k (s) € [0, H], and so

H H

%
ZYQ]Th = ZVarph("st,h,vat,h)(V}ZT+1) € [0’H3]‘
h=1 h=1

In particular, applying Lemma (w.r.t. the filtration F}) with C = H3 and any fixed K, we get w.p.

L = s that

K H K H

SHK(K +1
DD Yau<2) Y ENS[Fia] +4H’In %.
k=1h=1 k=1h=1

Taking the union bound on all possible values of K > 1 proves that £V2" holds w.p. at least 1 — é.

Similarly, by definition, we have that Y3kh = by n(sh al) + bﬁv}}(sh, af) € [0,2H] and is Fk h

measurable. Thus, for any fixed & > 1 and h € [H], using Lemma we have w.p. 1 —
that

8HK(K+1)

K

1 SHK(K +1
> B[ Frpa] < <1 + ) E Y, + 50H% In %
k=1

K
<2) Yy +50H In
k=1

S8HK(K +1)
6 b
applying the union bound on all K > 1, the event E°7 holds w.p. 1 — %.

To summarize, we have that the event G4 holds wp. 1 — é (Lemma , and we proved that the events
pAifft | pdifi2 pVar pbp hold each w.p. 1 — 2, so we also have that the event

G=Gin Gg
— Gl n Ediﬂl N Edifo n EVar N Ebp
— Gl n Ediffl N E~diff? n EVar N Ebp
holds w.p. at least 1 — §. O
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B.7 Regret Analysis

We finally analyze the regret of the algorithm
Theorem 1. When running MVP-RL, with probability at least 1 — § uniformly for all K > 1, it holds
that Reg () < O(VHPSAK In SALE 4 1352 A(1n SALK)),

Proof. Assume that the good events G holds, which by Lemma [7, happens with probability at
least 1 — 4. Then, by optimism (Lemma @), forany k € [K], h € [H] and s € S, it holds that
Vi*(s) < Vi¥(s). Moreover, we can lower bound the value of the policy 7* as follows (see Remark:

Vi () = Enare (0| Rk (5, B) + PaViT (5. (s, B))|
= Enem, (o) | R (5. ) + PE Vil (5, mh (5, ) + ) s,k (s, R))|
k A1k
+ ERNRh(S) [PhV}ZTJrl(S’ 77}]?(5’ R)) - P}I: 1V}f+1 (s ﬂﬁ(s, R)) - bi h(Sv 7'(';’{;(87 R))}

¢)) Sk—11
= ERrr,(s) [gleaj({R(a) + P}’f 1th+1(5’ a) + bz’h(s, a)}]

k Aq 1=
+ ERNR;L(S) [thhﬂ;l(sa ﬂ'ﬁ(sv R)) - P}I; 1Vif:+1(57 ﬂ-ﬁ(sa R)) - bi,h(sa ﬂ'ili(& R))i|

@]E fk—1 max{R(a)—i—Pk*le (s,a) + V%, (s a)} =} n(s)
= TR~R; T (s) aeA h h+1\°» k,h\%> k,h

k ng 4=
+ER~Rh(s) [PhV}ZTJrl(SﬂWZ(SvR)) - P}]: 1Vif+1(37ﬂ—l]§(87R)) - bz,h(sﬂri’i(&R))}

3 _
> ViE(s) - 260(5)
k Ay 1=
+ Enm, ) [PVt (s mh(s, B) = PET VL (s mh(s, R)) = B, (s, k(5. R)) -
(6)

Relation (1) is by the definition of 7% (see Algorithm , while (2) holds under the good event E” (k)
with u(a) = P,}fflvh’“+1(sla) +0}, (s, a) € [0,2H] (due to the value and bonus truncation). Finally,
(3) is by the definition of V}*(s), where the inequality also accounts for its possible truncation.

To further bound this, we need to bound
Dk—117 7Tk [k Trk Dk— ik
PV (s,0) = PV (s, @) = P (Vi = Vi ) (s.0) + (B! = Pu) Ul (s, 0)
(7 k wk
=h, (Vh+1 - Vh+1)(5a a)
+ (pflf_l - Ph)‘/hll(sv a) + (Pi]:_l - Ph) (Viter = Vira) (s, ).

The first error term can be bounded under the good event, while the second using Lemma@ More
formally, under the good event EP*1(k), we have

L 2Varp, (|5 a)(V,;k )ng HLk
P = P ) Vi (s,0)| < e o,
‘( h h) Vi (s, )] < nﬁ_l(s,a)\/l nﬁ_l(s,a)\/l

and by Lemmawith o =4H (using and P, = P, P, = If’;f_l, under E?(k)),

L _ 1 _ HSLE(1+4H -2/4)
Pk,‘ 1_P>Vk _V* ‘< ]E ) Vk I_V* / 1)
(B2 = P) (s = Vi) (5,0 < B [V (s) = Vit (6] + =55 =0
1 _ A 3H2SLk
€ B [Tn () = V()] + k8
S g P Clsia) h+1( ) h+1( ) nﬁ‘l(s,a)\/l
1 _ K 3H2SLk
=_—_p (V’c - VT )s,a 4
4 M\ we1)(5,0) ni_l(s, a)V1
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where the second inequality is since the value of 7* cannot exceed the optimal value

Since under the good event by Lemma |6} we have 0 < V,fﬁl(s’) <SVia(s) <VEL(S) < H,we
can trivially bound the error by H and bound

AL 1= ﬂ_k
P}]: 1V}Z€+1(Saa) _Pth+1(S7a')

1 - . 3H2SLY 2Varp, (s,0) (Vi1 ) LE HLY
<min¢ [ 14+ — P(Vk - Vr )s,a+ s 4 a + ] H
( 4H) h\Vier = Vice ) (5 0) nk=t(s,a) V1 nf~t(s,a) V1 nf~t(s,a) V1
>0

1 _ ; 2Varp, (1s,.0) (Vi ) LE AH?SL
14+ — P(Vk v )s,a + min ASLIDASEES Vil 200 o H
( 4H> WV = Vit ) (5:0) nk 1 (s,a) V1 nk1(s,a) v 1

k v
<1 + 4H>Ph <Vh+1 Vh”H) (s,a) + bﬁﬁ(s,a).

Substituting back to Equation @ while writing the linear operation P,V (s, a) as an expectation and
letting the action be aj, = ¥ (s, R), we get under G for all k € [K], h € [H] and s € S that

V() = Vi (s)
—1y; ok T
| PE VL (s, mh(s, R)) = PaVirta (s, mh (s, R)) 4+ 0, (s, mh(s, R)| + 267.4(5)

1 - ; v T
(14 7 [T ) = Vi o lon = s 0n] 5,00 4 82 ) 45,00 + 20,00
1 : v T
= E[( 10 ) (Vh-H Sh+1) Vh”+k1(8h+1)) + 07, (s an) + 07 (s, an)|sn = SJTk} + 20 ().

Next, taking s = s¥, the action a;, = 75 (s, R) becomes a, and summing on all k, we can rewrite

7hk(5§) -y (SlfL)

K K
1 — & ok . X -
< ZE Kl + 4H> (thﬂ(SZH) - Vh+1(5§+1)) + bi h(327ah) by 1(327a2)|Fk,h1} +2 Zbk,h(slfi)
k=1 k=1
K

) 1 1 "
(1+32) (1+ ) > (Vi lshn) = Vita(eh))

SHK(K +1
+2Z(b§hsh,ah) + h,ah>+22bkh5h ) + 68H? In SHE(K +1)
k=1

IN

4H 2H

2) 1 1) /o o 1 1 oo L
< (1 + 2H> (1 + 4H) Z(th+1(52+1) - Vh+1(5]i§+1)> ( + ) z:l(vhk+1(5]f€b+1) - Vh+1(5§+1))

K

K | Varp 1 2¢7k
Clskaly (Vim )L 620H2S Lk L SHK(K +1)
+18E a ) E —+68H17 25 b, (sk
— nZ 1(5h,ah v —n sh, h)\/l kh h)

2 K K LkVar k .k (Vﬂ' )
1 _ ok 5 Pp,(-|sF,a h+1
< (1 + 2H> Z(thﬂ(slﬁﬂ) - Vh+1(5§+1)) + 18 Z \/ .
k=1

k=1 nk=t(sk ak) v
% 1700H?SLE Z ALY
P 1nZ Ysk ak)vi 2nﬁ Ys)vi

where inequality (1) holds when both E4f! and E" occur and inequality (2) is by Lemmal8} In
the last inequality, we also substituted the definition of the reward bonus. Recursively applying this

https://doi.org/10.52202/079017-2059 64548



inequality up to h = H + 1 (where both values are zero), w.p. at least 1 — J, we get

K
Reg" () < > (Vi (s) =17 (s}))
k=1

K
<> (Vsh) - vt sh) (Lemmafg)
k=1
ok
1\ 2 L\ JEEVarp, (g ) (Vi) 1\ & 1700H2SLE
§181+ﬁ +1+ﬁ Zklkk
k=1 nZ l(sﬁ,aﬁ)\/l = (spoap) V1
1 2H K
6(1+-—
" ( +2H) Z 2nl€ Ys)vi

< 100VH3SAKLE +50v25AH? (LK)’
+ 5000H2SLE - SAH(2 + In(K)) + 121/ ALK (SH + 2\/SH2K)

- O(\/H?’SAKLg( + H3S2A(LK )2).

Relation () is by Lemma[9]and Lemma [20] O
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B.7.1 Lemmas for Bounding Bonus Terms

Lemma 8. Conditioned on the good event G, for any h € [H|, it holds that

K K
v 1 1 — ok
= (Walshoab) + ol shoah)) < o (1 ’ w) - (Va(shin) = Viia(olin)
k=1 =1
N gi Varp, ok oty (Vi) L i 810H2SLE
— nf sk ak) v 1 —n Yskab)yvi1

Proof. We start by analyzing each of the terms separately. First, we apply Lemma |22 with o = 23—0 -

32H L%, noting that under the good event (by Lemma@), 0< Vh’fl(s) SVia(s) <VEL(s)<H
and using the event EP; doing so yields

) 7k \Tk
b (s a) < 20 | Varpr-is, @ Vi) L5 400  HLj
kR -3 nf~t(s,a) V1 9 nil(s,a) V1

_ 20\/L§Varph(-\s,a>(V;?f1) 1

< +
3y/nk(s,a) Vv 1 32H
6400H2LY 20  4HLY 400  HLE

I s,a) vl 3 nf(s,a) V1 9 nf(s,a) V1
Using Lemmawith a = 1, under the good event E? (k) and for any s, a, we can further bound

N — 7. Trk
Pf]f ! (th+1 - Vh+1)(87 a)

_ k — k
Py, (thﬂ - V}ZTJrl)(S a) + 327HP]C ! (V}fﬂ - Vhﬂﬂ) (s,a)

_ R L B
=P, (th+1 - ViZT—H) (s,a) + (Pi]f - Ph) (th+1( ) - Vh+1) (s,a)
_ o _ o HSL"“(l +2- 1/4)
< P, (V,fﬁrl — Vh+1> (s,a) + Pp (V,{“H — Vh+1) (s,a) + 1( v (Lemma[29)
_ 1.5HSLE
< 2P, (VF ., — Ve ) (s,a) + ——22220
> h( h+1 h+1)( ) ni_l(s,a) V1
Thus, we get the overall bound
20\/ LiVarp,(1s.0(Vii1) 3 785H2SLE

bin(s,a) < + 32th (Vfﬁrl - V}fﬁ)(&“) t T
3y/nr(s,a) V1 n, (s,a) V1

For the second bonus, we apply Lemmaw L.t. Vh+1( s) < Vpr,i(s) and @ = 324/2L¥ H and get

bzv}i(s,a) < \/2varph(.ls’a)(v}j+1>[/§ + 4HQSL§

ni_l(s,a) V1 ni_l(s,a) V1
2Varp, (.|s.a) (Vi) )Lk K 16HLk 4H?SLk
< h +1)75 P (V vy ) s,a) + 5 5
\/ ny H(s,a) V1 32H h(Vier = Vi ) (5:0) nf(s,a)  nf(s,a) V1

2Varph( Is, a)(V}ZTJ’:I)ng k 20H2SL%
- L (T - ) o) IS
\/ ny H(s,a) V1 32H (Vi = Vi )(5:0) nk=t(s,a) V1

where we again used the optimism. Combining both and summing over all &, we get

K ik k K
v VarP (-|sk,a )(Vh+1)L6 1 — ok
Z(bi,h(sili’alﬁ) + bﬁ; (sh: a, ) < 92 1: T T3H th (Vh],c-&-l - Vh+1>(52,02)
k=1 (s af) V1 k=1
im
sh,ah) V1
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Finally, under the good event E4if2 it holds that

ZPh<Vh+1 Vh+1)(8hvah ZE{Vthl(Sthl) Vf?jl(sz+1)|Fl§h71}

K
! % " S8HK(K +1)
<1 + 2H) Z (th+1(5§+1) - VhH(s’,jH)) +18H%1n e
k=1
Substituting this relation back concludes the proof. -

Lemma 9. Under the event EV?" it holds that

K H ,/Var
ZZ\/ Puciape (Vi) < 2\/H3SAKLE + VBSAH’LE.

k—1
k=1h=1 ny t(sk,ak) v

Proof. Following Lemma 24 of [Efroni et al.| 2021]], by Cauchy-Schwartz inequality, it holds that

K H \/Varp}(_|skak (V}ZT_tl) K H K H 1
>0 — < ZZ arp, ooy VDA 22 D o ot
k-1 — = nils = 1(sﬁ7aﬁ)\/1

k=1h=1 /n; (sk,af)V1

The second term can be bounded by Lemma[20] namely,

ZZ T v T < SAH(2 + In(K)).

k=1h=1" ,af

We further focus on bounding the first term. Under EVar we have

Z Z Varp, ( (-|sk, Vh+1)

k=1h=1
SHK(K +1)

3 T

<2k§1E §= Var p, (st ak (Vi) Fret | +4H? In — (Under EVar)
’ SHK(K +1)
ok +
§2§7 E <§ Ry (sf,ak) — Vi (s’f)> |Fy_1 +4H31nf (By Lemma3)
HK(K +1

< 2H?K + 4H?In %ﬁ

where the last inequality is since both the values and cumulative rewards are bounded in [0, H].
Combining both, we get

K H Varpl(.|sk,ak)(v}1ﬂ:1)
oy

k=1h=1 k= (sk ak) v

SHE(K +1)
5

< \/ 2H2K +4H31n V/SAH(2 4 In(K))

KK + 1 HK(K +1
< \/2H2K+4H3 ln8<6+)\/2SAHln8(5+)

< 2\/H3SAKLE + V8SAH?LY.
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C Proofs for Transition Lookahead

C.1 Data Generation Process

As for the reward transition, we also assume that all data was generated before the game starts for
all state-action-timesteps, and it is given to the agent when the relevant (s, a, h) is visited. Thus, the
rewards and next-state from the first ;¥ visits at a state (or a state-action pair) at a certain timestep
are i.i.d.

Throughout this appendix, we use the notation siF, | = {s}¥, | (s}, a) }u ¢ 4 to denote the next-state
observations at episode k£ and timestep h for all the actions, and use the equivalent filtrations to the

ones defined at Appendix [B.I] namely
1 1 pl k=1 _k—1 k—1 k
Fk’h:a({st,at,stﬂ, t}te[H]""7{St ,ak st+1 LR} }te {st,at,st+1,R }teh])

k 1k gh+l
Fy _U<{Staatvst+1 te[m) "7{Staatvst+1? }te[H]’ )

In particular, notice that since both s/¥, | and a}’ are F}, ;, measurable, then so does s}’ ;.

C.2 Extended MDP for Transition Lookahead

In this appendix, we present an equivalent extended MDP that embeds the lookahead into the state to
fall under the vanilla MDP model, similarly to Appendix[B.2} We use this equivalence to apply various
existing results on MDPs without the need to reprove them. We follow the same conventions as
Appendixwhile denoting transition lookahead values by V7™ (s| M) (and again, the superscript
T will be omitted in subsequent subsections).

For any MDP M = (S, A, H, P,R), let MT be an MDP of horizon 2H and state space S+ that
separates the state transition and next-state generation as follows:

1. Assume w.l.o.g. that M starts at some initial state s;. The extended environment starts at a
state 51 x s{), where s}, € S is a vector of A copies of some arbitrary state sp € S.

2. For any h € [H], at timestep 2h — 1, the environment MT transitions from state s;, x 36 to
Sh X 83,1, Where s}, | ~ Pj,(s) is a vector containing the next state for all actions a € A;
this transition happens regardless of the action that the agent played. At timestep 2h, given
an action ay,, the environment transitions from s;, x s}, to s}, ;(a) x sg.

3. The rewards at odd steps 2h— 1 are zero, while the rewards at even steps 2h are Ry, (sp,, ap) ~
R (sh,ap) of expectation 7, (s, ap,)-

As before, since the next state is embedded into the extended state space, any state-dependent policy in
MT is a one-step transition lookahead policy in the original MDP. Also, the policy at even timesteps
does not affect either the rewards or transitions, so it does not affect the value in any way. We again
couple the two environments to have the exact same randomness, so assuming that the policy at the
even steps in M7 is the same as the policy in M, we trivially get the following relation between the
values

H
Vi (s,8'|lMT)=E ZRt(st,atﬂsh = 5,8 1(s,) =8, 7| 2V, (s,8'|M),
t=h

Va—1(s, 80| MT) = ZRt st a)|sp = s, | =V, (s|M). 0
t=h

While M7 is finite, it is exponential in size, so applying any standard algorithm in this environment
would lead to exponentially-bad performance bounds. Nonetheless, as with the extended-reward
environment, we use this representation to prove useful results on one-step transition lookahead.
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Proposition 2. The optimal value of one-step transition lookahead agents satisfies

ngl (s) =0, Vse S,
VI (8) = Egropy (s) [meaj({rh(s, a) + V[ (s (s, a))}], Vs € S, h € [H].
a
Also, given next-state observations s' = {s'(a)}, 4 at state s and step h, the optimal policy is

7i(s,8') € arg max{rh(s, a) + VhT_;i (5’((1))}-
acA

Proof. We prove the result in the extended MDP M7, in which (as with reward lookahead) the
optimal value can be calculated using the Bellman equations as follows [Puterman) |2014]

‘/271}+1(87 3/|MT) = 0; Vs € S, 8/ S SA,
Vi (5, 8'| MT) = max{ri(s,a) + V3,1 (s'(a), sl M7}, Vhe[H],s€8,s €84,
Vo 1(5, 86| MT) = Egrap, s) [Va (5, 8'|MT)], Vhe[H],seS. (8)

By the equivalence between M and M7 for all policies, this is also the optimal value in M.
Combining both recursion equations and substituting Equation (/] leads to the stated value calculation
forall h € [H] and s € S:

ViU (sl M) = Vi (s, splMT)
= IEs'NPh(s) [V;h(sa S;H—l‘MT)]
=Es P, (s) {m(?x{rh(s, a) + V2*h+1(5;1+1(a)7 36|MT)}]

= Eqreop, (o[ mac{ 7 (s,0) + V7 (512 (@)1 M) }]

In addition, a given state s and next-state observations s’, the optimal policy at the even stages of the
extended MDP is

(s, 8') € arg Hj‘aX{Th(s, a) + Vay1(s'(a)) },
ac

alongside arbitrary actions at odd steps. Playing this policy in the original MDP will lead to the
optimal one-step transition lookahead policy, as it achieves the optimal value of the original MDP.

By the value relations between the two environments (V3 , (s, so|M™) = VhT_;i (s|M)), this is
equivalent to the stated policy. O

Remark 2. As in Remark/[l} one could write the dynamic programming equations for any policy
7w € I, and not just to the optimal one, namely

Vi (s, 8" |MT) = rp(s,m(s,8")) + Va1 (8 (mn(s, 8)), 0| MT), Vh e [H],s €S, s €84,
Vai_1(s, 86/ MT) = Egop, (s) [Vay (s, 8’| M), Vhe[H| seS.
In particular, following the notation of Equation (1)), we can write
VhT’W(s, s'IM) =rp(s,mn(s,s)) + Vth{(s’(wh(s, sHHIM), and,
VI (sl M) = By o) [Vi (5,81 M)]
= Eqreepy (o) |7 (5, 705, 8)) + Vi1 (' (ma(s, 8) M)

a notation that will be extensively used for transition lookahead.
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We also prove a variation of the law of total variance (LTV) for transition lookahead:

Lemma 10. For any one-step transition lookahead policy © € 117, it holds that

H H 2
E|Y  Vargop, o) (V) "(sn,8))m,s1| <E <Z rh(Sh, an) — V1T’7r(81)> |, 51
h=1 h=1

Proof. We apply the law of total variance in the extended MDP; there, the expected rewards are either

0 (at odd steps) or 7, (sn, ar) (at even steps), so the total expected rewards are Zthl rh(Sh,an).
Hence, by Lemma[27]

H 2
E (Z T (Sh, an) —Vfr(ShSHMT)) |, 51
h=1

H H

=E| ) Var(Vg, (sn, 51l MT)|(s1,86)) + D Var(Vah 1 (sn1, 861 M) (1, 87,41)) I, 1
h=1 h=1

Odd steps Even steps

r H
>E ZVM(VQE(%Sh+1|MT)|(Sh,86))|7Ta81]
Lh=1

H
=E > Vargp, (s, (Vaj(sn, 8'|MT))|m, 31]
Lh=1

r H
=E|Y " Varyp, (s, (Vi " (sn, 8'|M))|7, 1 '
Lh=1

Using again the identity V{" (s1, s)|MT) = V;""™ (51| M) leads to the desired result. O

Finally, prove a value-difference lemma also for transition lookahead

Lemma 11 (Value-Difference Lemma with Transition Lookahead). Let M; = (S, A, H, P}, R')
and My = (S, A, H, P2, R?) be two environments. For any deterministic one-step transition
lookahead policy m € 1T, any h € [H] and s € S, it holds that

Vi (sl My) = VT (s| M)
=B, [rh(shs Th(sny 8hy1)) = T (Sh, T (Sh, Shy))lsn = 5]

+ Bty [ Vi (sn M) = VI (s | Mo)lsn = 5|

Bty [Earpt o) [Vil " (50 8'1M2)] = Ear o [V (s, 8/ M) | 30 = 5.

where V,"'™ (s, 8'| M) is the value at a state given the reward realization, defined in Equation (7) and
given in Remark 2]

Proof. We again work with the extended MDPs M7{, M7 and use their Bellman equations, namely,

Vi (s, 8'|MT) = (s, m(s, 8") + Vai 1 (' (mn(s, 8')), s|MT), Vhe[H],seS, s €84,
Va1 (s, 80| MT) = Egrop, (s) [Va (5, 8'|MT)], Vh e [H],s €S.
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Using the relation between the value of the original and extended MDP (eq. (7)) and the Bellman
equations of the extended MDP, for any h € [H], we have

T (5| My) = VI (5| M)
= V2h71(87 S(J|M{) = Vah_1(s, Sf]‘MzT)
=Eyopi(s) [Van(s, 8'IMT)] = Byrop2() [Van (s, 8'|M3)]

) [Vi (s, 8| MT) = V3 (5,8 |MD)] + B ) [VE (5, 8'IMT)] = Egrpae) Vi (5. 8'lMT)]
= Eupy o [Van (5, 8'1MT) = V3 (5, 8'|MD)] + Barpy (o [V (5, 8/ 1M3) | = Earepi) [Vl ™ (s, /1 M) |
=B, [Vah (8n, Shya IMT) = Vi, (sn, 8301 [M3) s = 5]

+ Eaepio) | Vi (5,81 M2)| = Earpao [V (5,8 1M2)|. ©

= Es/~P1

Denoting aj, = 7, (sn, 8}, ;) the action taken by the agent at environment M, We have
Vi (8ns 8h1 ML) = Vi (sn, 851 IM3)
= (ri(sn,an) + Vi1 (shia(an), slMT)) = (7 (s an) + Va1 (Sha (an), 561 M3 )
T,
= rh(sns an) = 17 (sny an) + Vi (sh1 (an) | Ma) = VT (5541 (an) [ Ma),

when taking the expectation w.r.t. M3, it holds that s/ hil (an) = Sp+1; substituting this back into
Equation (9), we get

Vi (8| M1) = ViT (5| M>)
=Em, {T}L(Shy an) — 3 (sn,an) + Vil ($hoa (@n)IM1) = ViR (841 (an) M) s, = S}
oo | Vil (5,81 M2) | = Egrpaio) Vi (5,8 | M)
= Ent, [ (50, T (sny i) = i (o Th (815 8hyr)) s = 5]
+ Bay [V (sna M) = VT (sn M) s = 5|

+Epnm, []Eswp,}(sh) [VhT’ﬁ(Shv 3/|M2)} —Eop2(sy) [VhT’ﬂ(Sh, 8/|M2)} |sh = 5}
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C.3 Full Algorithm Description for Transition Lookahead

Algorithm 4 Monotonic Value Propagation with Transition Lookahead (MVP-TL)

1: Require: 6 € (0, 1), bonuses by, 1,(s, a), by, ;,(s)
2: fork=1,2,...do
3:  Initialize Vi, (s) =0

4. forh=H,H—-1,..,1do

5: for s € S do

6: if ¥ ~1(s) = 0 then

7: Vk(s)=H

8: else

9: Calculate the truncated values

= nﬁil@ — 1kt (s)
Vi (s) = ming ——— max f,’i*l(s, a) + by n(s,a) + fo+1(3hf1 (s, a))} + bﬁyh(s), H
nh (3) P} acA
10: end if
11: For any set of next-states s’ € S*, define the policy 7*
(s, 8') € argrrjax{f,’j_l(s, a) + by, (s, a) + ViE L (s'(a)}
ac

12: end for

13:  end for

14: forh=1,2,...H do

. k E [k (oK

15: Observe sy, and sy, | = {5}, (s}, )}, _

16: Play an action af = 7¥(sk, s/F)

17: Collect the reward R} ~ Ry (s}, a)’) and transition to the next state s, | = s/¥, | (s§, af})
18:  end for

19:  Update the empirical estimators and counts for all visited state-actions
20: end for

As with reward lookahead, we again use a variant of the MVP algorithm [Zhang et al., [2021b],
described in Algorithm@ For the bonuses, we use the notation

th(& s') = Ianeajc{fﬁ*l(s, a) + by 5 (s,a) + V,ﬁrl(s'(a)}

and define the following bonuses:

L
7 n(s,a) = min 1o,
k’h( ) nfb_l(s,a) V1

20 | Varg pro (Vs $')DL5 400 HIE

by p(s) = — ) +
enl®) 3 nf~t(s) V1 3 it (s)vi1

342 .2
where L = In 105ATHR(ELD g

_ _ _ 2
Vars,Nﬁ,}kL-,_l(S)(V,f(s, 3/)) = IES,N}A,:—l(S) [‘/;ZC(S, 3/)2] _ (]ES,NP’):_l(S) [V}ZC(S, 3’)]) .

The notation k!, (s) again represents the t*" episode where the state s was visited at the h'" timestep;
in particular, line [9] of the algorithm is the expectation w.r.t. the empirical reward distribution

15,]:*1(5). Since the transition bonus is larger than / when nl,“fl (s) = 0, we can arbitrarily define

the expectation w.r.t. 15,];*1 (s) when nfjl (s) = 0to be 0, and one could write the update in a more
concise way as

ViE(s) = min{]Es/NP:fl(s) [th(s, s’)] + bi,h(s)v H}.
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C.4 Additional Notations and List Representation

In this subsection, we present additional notations for both values and transition distributions that
will be helpful in the analysis. In particular, we show that instead of looking at the distribution over
all combinations of next state s’ € S, we can look at a ranking of all the next-state-actions and
represent important quantities using the effective distribution on these ranks — this moves the problem
from being S“-dimensional to a dimension of SA.

We start by defining the values starting from state s € S, playing a € A and transitioning to s’ € S,
denoted by

Vir(s, s a) = rp(s,a) + Vi (s)),
Vi (s,8',a) = (s, a) + Vi (s),
Vii(s,',a) = 71 (s,a) +0f g (s,0) + Vi (s),
We similarly define (consistently with Remark 2))
Vi (s, 8') = Vi (s,8'(mn(s, 8)), ma(s, 8)),
Vi(s,s') = maXVh (s,8(
(

/

a),a), and ,
)

Vik(s,8") = max V¥ (s, s'(a), a).
a

List representation. We now move to defining lists of next-state-actions and distributions with respect
to such lists. Let £ be a list that orders all next-state-action pairs from (52(1), a(1)) to (SZ(SA), ag(sa))

and define the set of all possible lists to be £ (with |£] = (SA)!). Also, define £, the list induced
by a function u : S X A — R such that u(s%u(l)7 Qpu(ry) =0 2> U(SQH(SAV agu(sa)), Where ties
are broken in any fixed arbitrary way. From this point forward, for brevity and when clear from the
context, we omit the list from the indexing, e.g., write the list £ by (s}, a1),. .., (S54,as54).

We now define the probability of list elements. Denote by Ef the event that the highest-ranked
realized element in the list is element ¢, namely

Ef ={s' €S8%:5(a;) = s, and Vj <i,5 (a;) # s} }. (10)

Then, for a probability measure P on S, define u(i|[¢, P) = P(s’ € Ef). Notably, when the list is
induced by u and element i is the realized highest-ranked elements, we can write max, u(s'(a), a) =
u(s}, a;), so we have that (e.g. by Lemmal[l7|with f(s’) = max, u(s'(a), a))

Earnepy (o) [max{u(s'(a), )}| = Bivoujepy (o [u(s )]

We also denote by fif (i|s; ¢) = S st = s, s}, € B}, the empirical probability for

nF(s)V1 (s V1
a list location ¢ to be the highest- reahzed ranki according to a list £ at state s and step h, based on

samples up to episode k; We have by Lemma|17|that /i} (i|s; £) = P} (Ef|s) and

Byt (o | max{u(s' (@), @)} = By (| [u(s), )]
Similarly, we will require the distribution probability w.r.t. two lists — the probability that the top
element w.r.t. list £ is ¢ and the top element w.r.t. list £’ is j; we denote the real and empirical

probability distributions by y(i, j|¢, ¢, P) and ji¥ (i, j|s; £, ¢'), respectively. This allows, for example,
using Lemma|[I7]to write for any u,v : S x A+ R,

By, (o) [max{u(s'(a), a)} — max{v(s'(a), 0)}
= Eijou(lev 00, Pu(s)) [“(Sleu(iw agu(iy) = (8o (j)» a@,(j))} :
By pi1(5) [max{u(s'(a), a)} — max{v(s'(a), a)}}

= Ei,jN/lﬁ('lS;eu,ev) {U(S%u(z), a,gu(i)) — 'U(S%v(j)7 agv(j)):| . (11)
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Finally, we say that a policy 7 (s, 8’) is induced by lists £ (s) if it chooses an action a such that
its next-state s’(a) is ranked higher in /¢ than all other realized next-state-action pairs. In particular,
the policy 7* and the optimal policy 7* (defined in Proposition are such policies w.r.t. the lists
% (s) and ¢} (s) — induced by V;¥(s, s, a) and V;* (s, s', a), respectively. As such, for any probability
measure P, (s), function u : S X § X A +— R and a policy 7 induced by a list ¢, it holds that

Egnpy(s)[u(s, s'(m(a)), m(a)] = Eiwpu 16 (s), Pu(s)) [u(s, 87 )] (12)
C.4.1 Planning with Transition Lookahead

We have already seen the optimal policy is induced by a list £ (s), and in particular, we can write the
dynamic programming equations of Proposition 2] as

V;(S) = Es’NPh(s) [r&ajc{rh(s, CL) + VhT,*(S/(GJ))}:|
= By 165, (), () 1 (5, 00) + Vil (57(a))].
Therefore, one way to perform the planning is to build a list £} (s) of (s’, a) s.t. the values
Vf;k(s’ 8/, a) = rh(sv a’) + VI:<+1(8/)

are sorted in a non-increasing order and calculate the probability of any pair in the list to be the
highest-realized pair:

u(il€, Po(s)) = Pu(E) = Pr(sh s (ar) = s} and Vj < i, s}, (a5) # s, = s).

In general, calculating this distribution is intractable, and one must resort to approximating it by
sampling (as done in Algorithm [ Nonetheless, if next states are generated independently between
actions, this distribution could be efficiently calculated as follows:

H(il€, Po(s)) = Pr(sh . (a;) = s, and Vj < i, s, (a;) # s = s)

W Pr{s'(a;) = s; and Vj <is.t a; # a;, s (a;) # silsp = s}

@ Pr{s'(a;) = s|sp, = s} H Pr{Vj <ist a; =a,s'(a) # sj|sn = s}
aFa;

i—1
@ Putsilscan) T {1 -0 1y = a} Pu(s)s. )
a#a; Jj=1

Relation (1) holds since if s'(a;) = s}, it cannot get any previous value of the same action in the list,
so these events can be removed. Relation (2) is by the independence and (3) directly calculates the
probabilities.

https://doi.org/10.52202/079017-2059 64558



C.5 The First Good Event — Concentration

Next, we define the events that ensure the concentration of all empirical measures. For rewards, an
event handles the convergence of the empirical rewards to their mean. For the transitions, we want
the Bellman operator, applied on the optimal value with the empirical model, to concentrate well,
and we require the variance of values w.r.t. the empirical and real model to be close. Finally, the
empirical measure fif (i, j|s; ¢, 5 (s)) must concentrate well around its mean for any list £ — this will
allow the change-of-measure argument described in the proof sketch.

Formally, define the following good events:

Lk
E"(k) ={Vs,a,h: |ra(s,a) — (s, a)| < | ——0——
(0 { (o) 7570 <[

B (k) = {Vs,h, ¥ € £,Vi,j € [SA]: | (0,18 €, 00 () — (i, 516 61 () Pi(9))|

< 4SALgp(i, j|s; 0, 05 (s); Pa(s)) 2SAL§
- nyt(s) v 1 ny(s) V1

2Varg . p, (s(Vi*(s,8'))LE k
EP"M (k) = { Vs, h: ar }:77(1)( (s, 8")) L% k}l{L‘s
ny (s) V1 ny (s)Vv1

Eoimp, (s) [Vh*(s, s')] — ES/NP}Iffl(S) [Vh* (s, 3/)] ‘ < \/

v Lk
EP(k) = {vm: WVarsf~ph<s><vs<s7s/>> - Warswp,z;fl(s)(v}:(s,s'»\ <4H }

n, (s)Vv1
where we again use L¥ = In %. We define the first good event as
Gi= () E"(k) () E (k) () E"" (k) () E™(K),
k>1 E>1 k>1 E>1

for which the following holds:
Lemma 12 (The First Good Event). It holds that Pr(Gy) > 1 —6/2.

Proof. We prove that each of the events holds w.p. at least 1 — 6/8. The result then directly follows
by the union bound. We also remark that due to the domain of the variables and their estimators (e.g.,
[0, 1] for the rewards), all bounds trivially hold when the counts equal zero, so w.1.0.g., we only prove
the results for cases in which states/state-actions were already previously visited.

Event N;>1E" (k). Fix k > 1, s,a, h and visits n > 1. Given all of these, the reward observations
are i.i.d. random variables supported by [0, 1]. Denoting the empirical mean based on these n samples

by 71(s, a,n), by Hoeffding’s inequality, it holds w.p. 1 — m that

) | [SAHE ) [T
[rn(s, @) = (s, a,m)] < || ———0—— </ =%

Taking the union bound over all n € [k] at timestep k, we get that w.p. 1 — Wk(km

Lg
nkt(s,a)v1’

and another union bound over all possible values of s, a, h and & > 1 implies that ﬂkzlEr(k) holds
w.p. at least 1 — 6/8.

|rh(s,a) - f‘}]jil(sﬂ a)' <

The event N> E£*(k). For any fixed k > 1,5, h, alist £ € £ and number of visits n € [k], we utilize

Lemmal(l6|(event EP) w.r.t. the distribution (i, j|¢, £} (s), P) (whose support is of size M = (SA)?).

When applying the lemma, notice that given the number of visits n > 1, the empirical distribution

1571, j|s; £, €5 (s)) is the average of n = nf!(s) i.i.d samples, so that for all 4, j € [SA],

2
o i o 2, 516, €3 (s); P (s)) In 25402 9y 2(54)°
it 1(z,a|s;e,zh<s>>—u(z,gw,eh(s);ﬂ(s))]<\/ G A A

\/4M(i,j€, :(s); Pu(s))In 234 N 21n 294
n n

<
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w.p. 1 — ¢’. Choosing ¢’ = m (such that In 2?,‘4 < SA lnw since

|£| < (SA)S4), while taking the union bound on all n € [k], all s, h and all lists £ € £ implies that
Nk>1E*(k) holds w.p. at least 1 — g.

Events N> EPV1 (k) and Ng>1 EPV2 (k). We repeat the arguments stated in Lemma For any fixed
k > 1, s, h and number of visits n € [k] , we utilize Lemma[16]w.r.t. the next-state distribution for all
actions Py (s), the value V;* (s, s’) € [0, H] and probability §’ = W(Hl); we yet again remind
that given the number of visits, samples are i.i.d.

As before, the events Ny>1 EP' (k) and Ng>1 EPY2(k) hold w.p. at least 1 — g through the union
bound first on n € [k] (to get the empirical quantities) and then on s, h and k > 1. This proves that
each of the events in G holds w.p. at least 1 — g, so G1 holds w.p. at least 1 — g O
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C.6 Optimism of the Upper Confidence Value Functions

We now prove that under the event G4, the values that MVP-TL outputs are optimistic.

Lemma 13 (Optimism). Under the first good event G, for all k € [K], h € [H], a € A and
s,8' €S, it holds that V;' (s, s',a) < Vik(s,s',a). Moreover, for all ' € S84, V;¥(s,8") < V(s, s')
and also V;¥ (s) < ViF(s).

Proof. The proof of all claims follows by backward induction on H; the base case naturally holds for
h = H + 1, where all values are defined to be zero.

Assume by induction that for some k € [K] and h € [H], the inequality V;*, ,(s) < V;F,, (s) holds
for all s € S; we will show that this implies that all stated inequalities also hold at timestep h. At
this point, we also assume w.l.o.g. that th (s) < H (namely, not truncated), since otherwise, by the
boundedness of the rewards, V;*(s) < H = V¥(s). In particular, under the good event E" (k), for all

sand a, it holds that 7}~ ' (s, a) + by.n(s,a) > 4(s,a), so for all s, a and s', we have

Vik(s,s',a) = f,’j_l(s, a) + by (s, a) + V;f+1(s’) > rp(s,a) + Vi (s') = Vi (s, s, a).

where the inequality also uses the induction hypothesis. This proves the first part of the lemma.
Moreover, it implies that

Vi (s, 8") = max{V;i(s, s'(a), ) } > max{Vii (s, s'(a), )} = Vi (5, ), (13)

and proves the second part of the statement.

To prove the last claim of the lemma, we use the monotonicity of the bonus, relying on Lemma 23]
This lemma can be used when applied to the empirical distribution of all possible next-states P;f_ ! (s);
indeed, the non-truncated optimistic value can be written as

V() = By oy [mae{ 77 (5,0) + 0 (5, @) + Vil (@)} | + 8 (5)

o [k / k
ST e [Vk(s S/)] 4 max 20 Vars/wph’f 1(5)(Vh (s,8"))L§ 400 3HLY
'~Py (s) h ’ 3 nZ—l(S) v ) 9 n];_l(s) V1

- s )

which is exactly the required form in Lemma w.r.t. the distribution P}Iffl(s) and the values

V¥ (s, 8") (while noticing that due to the truncation of the values and bonuses, V/ (s, s') € [0, 3H)).
Thus, the lemma guarantees monotonicity in the value, so by Equation (T3)),

_ QOJVMS%H?1(s>(Vf(s’3/))L§ 400 _ 3HL;

k * ! -
ViF(s) > Eswﬁh’?*l(s) [Vi (s, 8")] 4+ max 3 (s v 1 "9 pfl(s) v
h h

* / k
SE . . Vit(s, )] + 20 Vary,_pr-1 o (Vi(s, 8L 900 HLE
AT NORG 3 nyt(s) v 1 3 i (s) vl

> B, peeiy [Vir(5,8)] + 130\/ Var“:},%‘fi gﬁisqﬂg n;}lﬁi - (Under F72(1)
> Egp,(s) (Vi (58] (Under EP"! (k))
= Vi (s).

O
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C.7 The Second Good Event — Martingale Concentration

In this subsection, we present three good events that allow replacing the expectation over the
randomizations inside each episode by their realization. Let
k .k k koo k
Yl,h = Vh+1(5h+1) - Vhﬂ+1(sh+1)
k krk of
YQ,h = Varswph(s;;)(v;? (sh,8"))
k k k
Y3,h = b};,h(sm ap)-

The second good event is the intersection of the events G, = E4ff 0 EVar 0 Eb defined as follows.

K
BT —dvh e [H,K > 1: S EYE Funa] < (1+1)ZYM+18H21 LLESUS N
k=1 ’ 0

K H
EV&FZ{KZL ZZYM 2 > BN Fio +4H31H6HK(5M},

k=1h=1 k=1h=1

EbT_{Vhe[ ]K>1 ZEY3h‘Fkh1<2ZY3h+181 5

6HK(K +1) }
k=1
We define the good event G = G1 N Ga.

Lemma 14. The good event G holds with a probability of at least 1 — 9.

Proof. The analysis of the first event follows E4ff exactly as the one of E4! in Lemma(7} define
Wi = ]I{V}f(s) - Vh’rk (s) € [0,H],Yh € [H],s € S} (which happens a.s. under G; due to the
optimism in Lemmaand truncation) and Y7", = WY}, which is bounded in [0, H] and F}, .-
measurable. The corresponding event w.r.t. this modified variables E4ff then holds w.p. 1 — & by
Lemma and as in Lemma we can use the fact that G; N B4 = G, N B4 o conclude this
part of the proof.

Moving to the second event, since Vh”k (s,8’) € [0, H], then ZhH:1 Yzlfh € [0, H3]. Therefore by

Lemma(w.r.t. the filtration F},) with C = H? and any fixed K, we get w.p. 1 — WKH) that

K H H

6HK(K +1
ZZ%’%QZZMM 1] + 4H?In %.
k=1h=1 k=1h=1

Taking the union bound on all possible values of K > 1 proves that £V2" holds w.p. at least 1 — é.
Finally, by definition, we have that Yy, = b}, (s}, ay) € [0,1] and is F}, 5-measurable. Thus, for

any fixed k > 1 and h € [H], using Lemma we have w.p. 1 — m that

K K K

1 6HK(K +1) 6HK(K +1)
S RV, Frpoa] < (1 + 2) > Y{, +18In ———— < 2> Y{, +18In —
k=1 k=1 k=1
so that due to the union bound, E*" holds w.p. 1 — g.

To conclude, Gy holds w.p. 1—$ (Lemma and the events B4 EVar BV each hold w.p. 1—2. As

before, when accounting to the fact that E4 and E4f are identical under G4, the event G = G1NG»
holds w.p. atleast 1 — §. O
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C.8 Regret Analysis
Theorem 2. When running MVP-TL, with probability at least 1 — 0 uniformly for all K > 1, it holds

that Reg” (K) < O(m<ﬁ+ \/Z> In SAHK | f3.54 A3 (1n SAg{K)Q).

Proof. Assume that the event G holds, which by Lemma [[4] happens with probability at least
1 — 6. In particular, throughout the proof, we use optimism (Lemma [T3), which implies that

0< V,Zrk (s,8") <V (s,s") < ViF(s,s") < 3H (the upper bound is also by the truncation), as well
as 0 < Vi (s) < Vi (s) < ViF(s) < H.

We first focus on lower-bounding the value of the policy 7%: by Remark we have
Vi () = By (o) [ (5 78 (5, 8)) + Vit (5 (nh (5. 8))|
= Eurmery (o [P (5,7 (5.8)) 4+ Ty (' (e (5, 8)) + B (5. 7 (5. 8')]
T By [rn(s,mh(s, &) — 75 (5,78 (5, 8')) — B (5,78 (s, 8)]
By, o) Vi (5 (i (s,8))) = Vi (8

(1) ~k— [/ r
D By [l 510 + V(@) + 0050

+ ]ES/NP}L(S) [rh(sv ﬂ;i(sv 8/)) - ffb_l(sv ﬂﬁ(’S, 8)) - z,h

@ _
> Egrop, () [Vii (5:8)] = 2Egrop, (5) [bh (5, 73 (5, 8)]
_ ﬂ_k
By, (o) [ Vil (5 (7h (5, 8))) = Vit (' (mh (5, 8)) |
where (1) is by the definition of 7% and (2) uses the reward concentration event. Thus, we can write

th(s) — Vhﬂ— (S) S ES,NPk—l [ (S, S/

+ Earmory o[ Vi (5 ( (5, ) = V1 (e (5. 8))] +82,(9)

=By pii(o) Vi (5:8) = Vii(s,8)] = Egrp, o) [Vii (5.8) = Vi (s, 8)] + b7, (5)

] 3 '~ P (s [Vh (5 S )] + Q]ES/NP;L(S) [bz,h(sv Wﬁ(sa Sl))]

(@

+ ESINP}L(S) Vi (s, S/)] o ]ES’NP:’I(S) Vi (s, S/)] +2E3/NP}L(S) [b;,h(sv ﬂﬁ (s, 5/))]

(@)
+ By (o) | Vi (5 (h (5, 8)) = Virpa (5 (mh (5, 8)| (14)

Bounding term (ii): using the concentration event E**(k), we have

(i) < 2Varg .. p, () (Vi (s, 8')) Lk HLE
1
- k= (s) v 1 k() v
(1) [2Var, Nph S)(V,;f’“(s s)LE 1 " 4H2Lk HLE
< +—F,.. S[v;f s,8') — V7 s,s’}—k 5 5
\/ Y(s)v1 8H e [T (s, 8) = V(s %) nfrs) v afl(s) v
(2) [2Varg ~P) (V,;f‘ (s,8)LE 1 ke , 5H2LY
< 4+ —Egnp ()| Vi(s,8) =V (s,8)| + ——2—.
_\/ (s)\/ SH ¢ P;L()[h( ) h ( )] nﬁ 1()\/1
(15)

Relation (1) uses Lemmawith the values 0 < Vh”k (s,8") < Vi(s,s') < Hwitha = 8H -/2Lk
and (2) is by optimism.
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Bounding term (7): We first focus on the transition bonus; to bound it, we apply Lemmaw.r.t.
PF=Y(s'|s), Pu(s'|s), the values 0 < Vh"k (s,8") < Vi*(s,8") < ViF(s,s') < 3H (by optimism),
under the event EPV?(k) and with o« = 8H - 22/ L}:

20 | Vargpror (Vi(s $'DIF 400 HL)

Po(g) — 400 HLIF
bn(®) 3 nf~(s) V1 3 nfl(s)vi
1 [/ * 1 * Tk
< 87HE5/N15]7:71(S) (ViF(s,8) = Vi (s,8')] + 87HESINPh(S)[Vh (s,8") =V, (s,8")]
20 [Vargop, () (Vi (s, 8)) L} 1600H2 L2 4HLE 400 HL%
3 nfH(s) V1 3nfrs)v1l o 3 afTis) v 3 i l(s)vi

< SH (Eswﬁ;’jfl(s) [fo(sa s') = Vi (s, 3')} — Egrup,(s) [‘_/hk(s, s = Vi (s, s’)])

@ Val"swPh(s)(V;fk <S75/))L§ 700H?
3 nkt(s)v1 nkts)v1

1 [/ e
+ @ES,NP}L(S) [V;f(s, s') = Vi (s, s’)] +

Substituting back to term (), we now have

. 1 - " > *
(i) < (1 + SH) (Eswﬁp’j‘*l(s) [Vi(s,8") = Vi (s,8")] = Bsimp,(s) [ViF (s, 8) — Vi (s, s’)])

20 [Vargop, (Vi (s,8")) L5 7T00H>LE
3 nkt(s)v1 nfHs)v 1

1 (7 k s
+ 87HES/NPII(S) [th(s, S/) — Vh k (S, Sl)} +

The next step in the proof involves bounding the first term of (¢). At this point, we remind that both
values can be written as V¥ (s, 8') = max, V¥ (s, s'(a),a) and V;*(s, ') = max, V;*(s, s'(a), a),
inducing the lists £ = /¥ (s) and £* = ¢} (s), respectively; thus the expectations can be written as (see
Appendix [C.4]for further details on the list representation, and in particular, Equation (TT)):

ES’NP;:;I(S) [fo(s’ S/) - Vh*(s? Sl)} - ES’NPh(S) [th(s7 S/) - V}:,k (87 S/)]
) ¥ *
= T (1sift) [th(s’ Stiy 920) = Vi (5,50, af*@)]

7k *
- Ei,jwu(<|l7,£*,Ph(s)) [Vh (s, 5%@)’ aé(z')) — Vi (s, 32*(]‘)7 aé*(j))}

@ 1 e, . 3H(SA)?LE(2SA +8H - 4SA/4)
< @Ei,jw(.mz*,ﬂ(s)) [Vh (s, Sty agi)) = Vi (s, sf*(j)’af*(a’))} + nF1(s) v 1
M 1 - . 30H?(SA)3LY
< 5B [V ) = Vi (s, )] + =i TR
1 e o, 30H?(SA)>L%
< —[E,. — e e —
< g (Vi) = Vi (52 + nyH(s) V1

Relations (1) formulate the expectation using the list representations and backward, as done in
Equation . For inequality (2) we rely on Lemma with o = 8 H under the event E*(k) and
the optimism, which ensures that the value difference is bounded in [0, 3H]. We also remark that
the support of the distributions is of size (SA)?; were we to use the same result on the distributions
PF=1(s) and Py (s), the support would be of size S*, which would lead to an exponential additive
factor. And so, we finally have a bound of

. 3 _ 20 |Varg..p (S)(Vh”k (s,8'))Lk  735H?(SA)LE

i) < —Egp o) |[VF(s,8) =V (s,8)] + = - 2.

()—8H Ph(<)[ h( ) h ( )} 3\/ nifl—l(s)\/l TLZ_I(S)\/l
(16)
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Combining both terms. Substituting this and Equation into Equation (T4), we have

_ k 1 Vars’NPh(s)(Vhﬂk (573/))L’§ 750H2(SA)3L§

VES) =V (s) < =—Egrp, ()| VF(s,8) = V™ (s,8)] +9
h() h ()—2H s Ph()[ h( ) h ( )] \/ n’,ﬁfl(s)\/l nf;l(s)\/l

2By, ) [V (5, 7 (5, 8)] + Eurm ) [V (5 (e (s, ) = Vil (' (ki (s, )

and further bounding (using the concentration event E” (k)

Vik(s,8) = Vi (s,8') = 73" (s, 7 (5, 8) + By (5,78 (s, 8)) + Vi (5'(nf (5, 8))
— 3 (s, (s, 8) = Vi (8 (ki (5, 8)

< Vh+1(51<7rﬁ(5a s'))) — Vh+1(3/(77}]§(5a s'))) + sz,h(& 772(57 s')),
we finally get the decomposition

Vi(s) = Vi (s) < (1 + ;I)n«:swph(s) (Vi (s (ki (5,8) = Virta s (e (s, 8)]

o Varg . p, (s)(Vir (s,8"))LE  750H2(SA)3Lk
nFl(s)v1 nkt(s)v1

+ 3Eg P, (s) [b};h(s, T (s, s

At this point, we choose to take s = s’,j and sum over all k € [K]; specifically, for s’ = sﬁf;rl, the

action becomes 7} (s, s') = af and s'(w}i(s, 8')) = s} ;. Formally, we can write the bound as

K
ST - Vi (sh) < (1+1)ZE[VM<SH1> Vit sk Pl
k=1

K K Tk k
Vars’wPh(sk)(V (Shv ))L

E kh Shvah |Fk,h—1] +9§ :

k=1 k=1 nﬁ 1( h,) V1

K

3 T50H2(SA)3 Lk

F—
P Y 1(sh)\/l

and, in particular, under the events E4ff and EP" it holds that

K 2 K
_ ok - 6HK(K + 1)
D Vi (sh) = Vi (sh) < (1 + ) Z(Vh-i-l Shi1)) Vh+1(52+1)) +36H> In ————
k=1 k=1
K
6HK (K +1)
T k _k
+3> by (s, af) + 54In —
k=1
+9i Vary . p, ) (Vi (55, 8')LE i 750H2(SA)3 Lk
k=1 nfl 1( h) V1 k=1 nﬁ_l(slfi) V1
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To conclude the proof, we recursively apply this formula from A = 1 to h = H + 1 (where the values

are zero) and use the optimism. This yields

K
* wk
Reg! (K) =Y Vi (sh) = Vi" (s})
k=1

\/Vars’NPh,(s,; (Vhﬂ'k (sfn 5/))L§

k=1h=1 nf sk v
1 2H K H Lk
+3 <1 + > \/_5
20 ;}; nlfl 1(82,@2)\/1

2H K H
1 750H?(SA)3LY 1
+(1+) > o> kl()5+90H3<1+

k=1h=1 "h (sp) V1 ZH

@
< 50VHPSKLE +50V2SH? (LK)

(Optimism)

>2H 6HEK(K +1)
In ————~ "~/

)

+9y/LE (SAH + 2\/SAH2K) +2050H3S* A3LE (2 +In(K)) + 250 H3LE

= O(VH?SK (VH + VA)LE + H$' 4% (L)),

Relation (1) is the recursive application of the difference alongside substitution of the reward bonuses,

while relation (2) is by Lemma([I5]and Lemma 20}
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C.8.1 Lemmas for Bounding Bonus Terms

Lemma 15. Under the event EV?" it holds that

K H_ .\ [Varg p (V7 (sF, s
¥ \/ hoh) < 2\/H3SKLE + V8SH?LE.
k=1h=1 A/ k 1

Proof. Similar to LemmaJ} we again rely on the lookahead version of the law of total variation to
prove this bound. First, by Cauchy-Schwartz inequality, it holds that

K X Vars’NPh(sk)<Vhﬂk (Sga Sl))

K H K H 1
> <[ DD Varg s, o (Vi (sho 8 ZZW

k=1 h=1 nft(sk) v k=1 h=1 k=1h=1"h

We use Lemma [20]to bound the second term by
1
Y 4 < SH2+In(K))

and focus on bounding the first term. Under £V?, we have

K H .
Z Z Va‘rs’NP;L(st)(V}f (wa S/))
k=1 h=1

K

gzZE

k=1

H

k
Z Vars’wPh,(s’}:)(szr (S]}iv SI))|F]€*1
h=1

6HK(K +1)

+4H31n (Under EVar)

K 2
6HK(K +1
:2ZE (Zrh (s, ak)y -V (1)> | Fre—1 +4H31n(f+) (By Lemma T0)

6HK(K +1)

6 )
where the last inequality is since both the values and cumulative rewards are bounded in [0, H].
Combining both, we get

< 2H?’K + 4H?1n

K H .\ [Varg p, o) (Vi (s5,8")

Y §\/2H2K+4H31116HK(K+1) SH2 1 In(K))
k=1h=1 nf sk vl
< \/2H2K+4H31n6HK(M\/2SHh16HK(6M
< 2\/H3SKLE + V8SH’LY.
O
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C.9 Example: Value Gain due to Transition Lookahead

Figure 2: Random chain: agents start at the left side and must reach its right side to collect a reward.

We now present in further detail the example described at Section [3] This example is inspired by the
one in Appendix C.3 in [Merlis et al.| [2024], greatly simplifying it and achieving similar behavior for
a much smaller environment.

Agents start at the left side of a chain of length H /2 (depicted in Figure[2)) and have two options:

1. Play a safe action a; that leaves the agent in the same state (in green), or,

2. play one of the A—1 risky actions ag, . .., a4 (in red). Each of these actions moves the agent
forward in the chain w.p. -1+, but leads to a terminal non-rewarding state w.p. 1 — .

At the end of the chain, the last state is an absorbing state with a unit reward.

Without lookahead, all agents can do is try to randomly reach the end of the chain, succeeding with
probability (A — 1)~ /2, In particular, such agents cannot collect more than V" < H(A —1)~H/2,
On the other hand, with transition lookahead, agents observe whether the risky actions allow moving

forward in the chain or lead to the bad terminal state. If one action allows progressing in the chain
A—1

(which happens w.p. p = 1 — (1 — ﬁ) > 1 — 1/e), a lookahead agent would take it, and

otherwise, they will use a; to remain in the same state. In other words, optimal lookahead agents

reach the reward after H/2 — 1 successful ’progression steps” with probability p each. The probability

of reaching the end of the chain using less than 5H /6 steps is at least
. (bH 1 H
Pr( Bin < 1,1——) > 5 > cg, for some absolute ¢y > 0.
e

Under this event, the agent collects % rewards, so the lookahead value is at least VT+* > COGH =Q(H).

To summarize, for this example, no lookahead optimal value is at most ~ H A~H/2 while transition
lookahead agents can collect a value of ~ H: transition lookahead increases the value by an
exponential multiplicative factor. The difference between the two values is GT = Q(H), and

following the discussion in Section[3] a sublinear transition lookahead regret would imply a negatively
linear standard regret of Reg(K) < —HK.

Remark 3. The chain length was chosen to be H /2 for simplicity — similar conclusions can be
achieved for a length of = 1 — 1/e. Then, the multiplicative increase in value due to transition

lookahead would be =~ (A — 1)(1_%)1{, matching Proposition 2 in [[Merlis et al.| |2024)]. In fact,
setting the transition from the last state of the chain to the terminal state (rendering it possible to earn
only one unit of reward), the analysis coincides with the one in [Merlis et al.||2024]. Following their
exact derivation, the value with lookahead information is multiplicatively larger than its no-lookahead

factor by an exponential factor of © ((A — 1)min{(17%)H71’S}72). This significantly improves the
result in [[Merlis et al.,|2024)], that only holds if S > A(l_%)H.
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D Auxiliary Lemmas

In this appendix, we prove various auxiliary lemma that will be used throughout our proofs.

D.1 Concentration results

We first present and reprove a set of well-known concentration results.

Lemma 16. Let P be a distribution over a discrete set X of size |X| = M and let X, X1, ..., X, be
independent samples from this distribution. Also, let U : X — [0, C] for some C' > 0 and define the
empirical distribution P, (z) = + 3" | 1{x; = x}. Then, for any § € (0, 1), each of the following
events hold w.p. at least 1 — §:

2P(x)In 24 N 2In 21

EP ={Vz e X,|P(z) — P,(z)] < n ° 3n

. ) 2Varp(U(X))In}  2Cn2
EPvl — ;{(Pn(x)P(x))U(x) S\/ n s 3n :
B2 = £\ Varp, (U(X)) = VNarp (U(X))| < 4C ;nvgl :

where Varp(U(X)) = 3, cx P(2)U(2)% = (X,c v P(@)U(2))".

Proof. All the results require standard probability arguments and are stated for completeness.

For the first event EP, notice that each of the components P, (z) is the empirical mean of independent
Bernoulli random variables X;(x) of mean P(x). Therefore, by Bernstein’s inequality, recalling that
the variance of the variable Ber(p) is p(1 — p), we get w.p. at least 1 — % that

P(x) — By (2)] < 2P(z)(1 — P(z))In 2} N 2In 2 - 2P(z)In 2 N 21n 2M
n B " 3n n 3n

Taking the union bound over all x € X" implies that E? holds w.p. at least 1 — §.
For the second event EPV!, we apply Bernstein’s inequality on the variables Y; = U(X;). The

empirical mean is given by Y, = LN UX:) = X ,cx Po(@)U(2) and its average is E[Y] =
> wex P(x)U(x). Similarly, the variance of the random variables is Var(Y') = Varp(U(X)). Thus,
by Bernstein’s inequality, w.p. at least 1 — 9,

Y, —E[Y]| < 9
n 3n

. ’ 2Var(Y) In 2 N 2C'In % .

Stating the bounds in terms of X; leads to the second event.

For the last event, we follow the analysis of [Efroni et al.,[2021, Lemma 19], which in turn, relies on
[Maurer and Pontil, 2009, Theorem 10]. Define V,, = 51— S""._ (U(X;) — U(X;))*. Thisis a

~ 2n(n-1) i,j=1
well-known unbiased variance estimator, namely, E[V,,] = Varp(U (X)), and by [Maurer and Pontill
2009| Theorem 10], for any § > 0 it holds w.p. at least 1 — § that

[V V)| < 0y 2,

where we scaled the bound by C' to account for the values being in [0, C].
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Next, we relate V,, to the empirical variance. By elementary algebra, we have

1 n
" - i;w (X)) - U(X;))*
- 3w - g S
i=1 z;é]

;ZU(Xi)Q n_1< > >+ n_l)ZU

1=

> Pu(2) <ZP ) +ﬁ U(X;)? - T <ZU )

reX zeX =1

=

3

The first two terms are exactly the variance w.r.t. the empirical distribution; therefore, using the

inequality ‘f —b ’ < +/|a — b| for positive numbers, we have

V= o @0 < ||t v - s (Sve) <5

Combining both inequalities and recalling the trivial bound of C' on the difference, we get that w.p. at
least 1 — 6,

2

21n 2 C? In %
‘,/Varﬁ,n(U(X))—\/Varp(U(X))‘gmin O == + =50 p a0y =

Next, we present a short lemma that allows moving between different spaces of probabilities.

Lemma 17. Let X be a finite set and let X1, ..., X, € X. Also, let E1, ..., E,, C X be a partition
of the set X, namely, for all i # j, E; N E; = 0 and U™, E; = X. Finally, let f : X — R such that
foralli € [m]| and x € E;, it holds that f(x) = f(i), and define

1 n
= ;mxe =z}, and, Qnl(i) Zﬂ{Xz € E;}.
Then, the following hold:

1. Qn(i) = P,(E;) & > ven, P, (z) and, in particular, E, o, /)] =E, p [f(2)

2. If 1:_’ is a distribution over X and Xy,...,X, € X are i.id. samples from P, then
E[Qn(1)] = P(E;) = Q(i). It also holds that E,.p[f ()] = Eiwo[f(9)].

Proof. For the first part, we have by definition that

=1

xeX =1 reX
=Y Pu(z) = Pu(E).
TEE;
In particular, it holds that
E,.o [f an IEDIDIFACHOED IS IFACHOED BRACHE

= E%pn [f(2)],
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where (1) is since f is constant inside E; and (2) is since {E;}." | partition X

For the second part of the statement, notice that since the samples are i.i.d., it holds that E {Pn (x)] =
P(z), and therefore,

zeFE;

= 3" P() = P(E) = Q(i).

zeF;

Finally, as in the first part of the statement, it holds that

Binglf(0)] = 2_QWI0) =) 3 P@I® =3 ) Pla)f(a) = 3, P)f@)
=1 z€FE; 1=1x€FE; reX
= E:er[f(x)]'
[

Finally, we present two specialized concentration results that are needed for reward and transition
lookahead, respectively.

Lemma 18. Let X, X1,...X,, € R? be i.i.d. random vectors over [0,1] and let C > 1 be some
constant. Then, for any 6 € (0, 1), with probability at least 1 — 6,

9Cn
dh’l 5 '

d
Yu € [0, C]°, o

<3

[max{X( )+ }] — > ma(Xe(0) + (i)
=1

i€[d]

Proof. Denote m(u) = E[max;c(q{X (i) + u(i)}] and m(u) = = 377 max;eq{Xe(i) + u(i)}
and fix any u € [0, C]¢. Since the variables are bounded in [0, 1], their maximum is bounded almost
surely in [max; u(), max; u(i) + 1], namely, an interval of unit length. Therefore, by Hoeffding’s
inequality, for any ¢’ € (0,1), w.p. 1 — ¢’

In2
- < o
m(u) - in(u)] < |/ 52

Now, for some € € (0, C], let u. be the closest vector to w on a grid {0, €, 2, . . ., C’}d. Then, it
clearly holds that

[m(u) —m(u)] < [m(uc) —m(uc)| + 2e.

Taking the union bound over all ([£] + l)d possible choices for . and fixing §' =

c d

m 2E]F)° dIn 8¢

— 4 2e< [ 2
2n 2n

Now, fixing € = 4/ dl " and noting that <+V2nforC > 1, we get

n 8Cy2n dln 8¢ dln 26 dln 8¢ dln 2€n
[m(w) +2 <3 .
2n 2n

get w.p. 1 — ¢ for all u that
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Lemma 19. Let X, X1,... X,, € R? be i.i.d. random vectors with components supported over the
discrete set [m) and let C > 1 be some constant. Then, uniformly over all u € [0, C]™ w.p. 1 — §:

E[max{u( } - = Zmax{u Xe(i),4)}

< \/deln %"Var(maxi{u(X(i)J)}) Ly 8Cmd( en)l 5

n n

Proof. We follow a similar path to Lemma |18| and use a covering argument. Denoting w(u) =
E[max;{u(X(i),4)}] and w(u) = = >7_, max;{u(X,(i),7)}, by Bernstein’s inequality, for any
8" € (0,1) and fixed u € [0, C]*™, it holds w.p. 1 — &’ that

() — ()] < \/QVar(maXi{u(X(i)J)}) In 2 N 2C'In %'

n 3n

7)

Now, for some € € (0, C], let u, be the closest matrix to « on a grid {0, €, 2e, . . ., C’}md and denote
Z(u) = max;{u(X(¢),)} with samples Z;(u). By the smoothness of the max function, it holds that

|Z(u) — Z(ue)| < e
In particular, we also have that
|E[Z(u)?’] —E[Z(u)’]| <€ +2Ce, and  |E[Z(u)]* — E[Z(uc)]?| < € + 2Ck,
so we have
‘Var (m?X{U(X(i), i)}) ~ Var (m?x{ue(X(i), i)}) | — [Var(Z(u)) — Var(Z(u.))| < 2¢% + 4Ce.
Similarly, it holds that
[w(w) = b(u)| < w(ue) —w(ue)| + 2.

Taking the union bound over all (( ] + 1) md possible choices for u. and fixing §' = i3 ‘i ) —,
we get w.p. 1 — 9§ for all u that ¢
c md o md
. 2Var(max;{u(X(i),7)}) IHM 20 1In M
lw(u) —w(u)| < + + 2¢
n 3n
< V?dear(maXi{ue(X(i), i)}) In % N 2CmdIn % 2
n 3
2md1n % (Var(na, (u(X (1), 1)) + 262 +4Ce)  20mdIn%§

[ :
y

2md In %€ Var(max; {u(X (i), )}) N \/Sdee In 5 N \/4md52 In 5

n n n

| 20mdn &

2¢.
3n +e

6n
nT

Now, fixing € = t 6(; < bn

5 » We get

W) < \/deln 82 Var(max; {u(X (i),7)}) N V8mdC'In % \/ mdC (In 6”)

n n nl-5

and noticing tha

|w(

2CmdIn % 2Cn %
+

3n n

\/deln 6(;‘Var (max; {u(X (3),4)}) n 8C'md(In %)1.5-

n n

+
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D.2 Count-Related Lemmas

Lemma 20. The following bounds hold:

K H
< SAH +2VSAH’K, > Y —

1k ok
k=1 h=1\/n}~ (5’;, af)v1 s (spap) V1

M

< SAH(2 +In(K)),

H K H
Z < SH +2VSH?K, >N % < SH(2 +In(K)).

%
1h=1 (sfl) V1 imhmy e (sp) V1

M=

>~
Il

Proof. Recall that every time a state (or state-action) is visited, its visitation-count is increased by 1,

up to nhK !(s,a) at the last episode. therefore, we can write
K H

zzzzmh”'}

k—1
k=1h=1 \/n; "' (sF,ak)V h=1sesaeAk=1 \/ny (s,a) V1

n, ~(s,a)

Sy y L

h=1seSacA i=0

izzom/n s, >)

=1s€SacA

<SAH +2,|SAH Z Z Z ny, ) (Jensen’s inequality)
h=1s€SacA

< SAH +2VSAH?K.
where we bounded the total number of visits by the number of steps H K. Similarly, we also have
K H ny ~'(s,a)

Eﬁf—fzzz T

h=1se€SacA =0

< Z Z Z (2 + ln(nhKfl(&a) Vv 1)) < SAH(2+ In(K)).

h=1seSacA
We can likewise prove the inequalities for the state counts as follows:
K H H K
1 1 { sk = s}

h=1se
<SH+2 SHZ ZnhKfl(s) (Jensen’s inequality)
h=1seS

< SH +2VvSH?K,
and
K H 1 H ny ' (s) 1 H

K—1

ZZWZZ Z Z'\/ISZ (2+In(ny ~'(s) V1)) < SH(2 + In(K)).
k=1h=1""h h h=1s€S§ i=0 h=1seS

O
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D.3 Analysis of Variance terms

Lemma 21. Let P be a distribution over a finite set X and let X ~ P. Also, let V1,V : X — [0, C]|
for some C' > 0 such that Vl( ) < Vo(z) forall x € X. Then, for any a,n > 0, it holds that

V) O | Ly )y oy 4 OO

vn Vn 4n
Proof. By Lemma[26] we have
VVarp(Va(X)) — /Varp(V1 (X)) < \/Varp(Va(X) — V1 (X))

< VEp[(Va(X) = Vi(X))?]
< VCEp[Va(X) — Vi(X)]
where the last inequality is by the boundedness and since V7 (z) < Va(x). Thus, we can bound
V/Varp(V5(X)) — /Varp (Vi (X)) < VCEp[Va(X) — Vi(X)]
Vn B Vn

C
= VEp[a(X) — Vi(X)] - p
1 Ca
< —Ep|Va(X) — V1(X —
< SEp[Va(X) - (X)) + -,
where last inequality is due to Young’s inequality (ab < éaz + %bQ for all o > 0). O

Lemma 22. Let P, P’ be distributions over a finite set X and let X ~ P. Also, let V1,V5, V3 : X +—
[0, C] for some C' > 0 such that Vi (x) < Vg(gc) < Vs(z) for all x € X. Finally, assume that

’\/V&I’p V2 \/Varpr V2( )) S 6

for some 3 > 0. Then, for any a,n > 0, it holds that
VVarp (V3(X))  /Varp(Vi(X)) 1 1 Ca B

T < T T G B0 = Va(X)+ JERVR(0) - 0] o0 e

< YREAED 4 LB VA(X) - 0]+ SEAVACO — V(] + 52 + T2

Proof. We decompose the Lh.s. as follows
\/V&I'P/(Vg(X)) \/Varp/ Va(X \/V&I'p/ Vo (X \/Vﬂfp/ Va(X \/Varp (Va(X))

vn \/ﬁ \/ﬁ

\/Varp V2(X)) — y/Varp(V1(X)) n v/ Varp (V1 (X))
\/ﬁ vn

We bound the first and third terms using Lemma [21) and bound the second term with the assumption
and get

Val"p/(Vg(X)) 1 Ca ﬁ
VIEPATRR)) < ZEp [Va(X) — Va(X)] + = 4 =
< LR VAX) - V(X)) + T
1 Ca Varp(V1(X))
—E X)-W(X —
Jra p[Va(X) = Vi(X)] + n + T
_ /Varp(Vi(X)) 1 1 Ca §
= V) 4 SEp V() — Va(X)] + SER[VR(X) ~ (X)) + 55 + -
Varp(V1(X)) 1 1 Ca B
< VPN L TRy — - g - =4 7
< NG + - Ep [V3(X) = Vi(X)] + aEP[VS(X) Vi(X)] + o T
where the last inequality uses the fact that V) (z) < Va(z) < Vs(z) for all z € X. The last two
bounds are the desired results. O
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E Existing Results

Lemma 23 (Monotonic Bonuses,[Zhang et al., 2023, Appendix C.1). Forany p € AS ve Ri s.L.
lv]l < H, 0" € (0,1) and positive integer n, define the function

20 [Var,(v)ln L 400 Hln L
_.T 2V P 57 2uU s
f(p,v,n) =p' v+ max 3\/ - = -

Then, the function f(p,v,n) is non-decreasing in each entry of v.

Lemma 24 (Efroni et al.[2021, Lemma 28). Let Y € R be a vector such that 0 < Y (s) < H for
all s € 8. Let Py and P, be two transition models and n € RﬁA. If

C’lL’gPlyh(s’Ls, a) CQL’g
n(s,a) V1 n(s,a) V1

)

V(s,a,8') €S x Ax S, he€[H]: |Pap(s']s,a) — Prp(s']s,a)| < \/

for some Cy,Cy > 0, then, for any o > 0,

HSL(];(CQ + 0401/4)
n(s,a) V1

)

1
[(Prn — Pap)Y (s,a)| < SEsnPiiCls) [Y(s")] +

Lemma 25 (Efroni et al[2021, Lemma 27). Let {Y;};>1 be a real-valued sequence of random
variables adapted to a filtration {Ft}t>0. Assume that for all t > 1 it holds that 0 < Y; < C a.s.,
and let T € N. Then each of the following inequalities holds with probability greater than 1 — 4.

T T
1 1
< — 2 —
t§:1E[Y;|Ft,1] < (1 + 20) ;leyt +2(2C+1)*In <,

T T 1
Y <2) EYi|F] +4Cln .

t=1 t=1

Lemma 26 (Standard Deviation Differences, e.g., [Zanette and Brunskill|2019, lines 48-51). Let
P € Ay be some distribution over [d] and let V1, Vs € R%. Then, it holds that

VVarp(Vy) — /Varp(Va) < /Varp (Vi — Va).

Lemma 27 (Law of Total Variance, e.g., Zanette and Brunskill[2019, Lemma 15). For any no-
lookahead policy T, it holds that

H

H 2
E ZVar(Vhﬂ+1(8h+1)|Sh)|7T,81] =E (Zrh(sh,ah)—Vf(&)) T, 81,
h=1

h=1

where Var(\/,f+1(sh+1)|sh) is the variance of the value at step sj_1 given state sy, and under the
policy 7, due to the policy randomization and next-state transition probabilities.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we accurately present the setting and its motivation, as well as
a summary of the results, all of which are proved in the appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitations in this work are a result of the studied setup — some
possible extensions and improvement are discussed in the future work section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs for all the stated results are provided in the appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The paper is purely theoretical and studies a fundamental decision-making
model; any ethical issue that might arise would be a core issue in the ethics of applying
machine learning, and not tied specifically to this work.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to the theoretical nature of the paper and the generality of the model, it is
no direct societal impact.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

64579 https://doi.org/10.52202/079017-2059


https://neurips.cc/public/EthicsGuidelines

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No data or models are released with this paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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