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Abstract

The high-dimensional single index model (SIM), which assumes that the response
is independent of the predictors given a linear combination of predictors, has drawn
attention due to its flexibility and interpretability, but its efficiency is adversely
affected by outlying observations and heavy-tailed distributions. This paper intro-
duces a robust procedure by recasting the SIM into a pseudo-linear model with
transformed responses. It relaxes the distributional conditions on random errors
from sub-Gaussian to more general distributions and thus it is robust with sub-
stantial efficiency gain for heavy-tailed random errors. Under this paradigm, we
provide asymptotically honest group inference procedures based on the idea of
orthogonalization, which enjoys the feature that it does not require the zero and
nonzero coefficients to be well-separated. Asymptotic null distribution and boot-
strap implementation are both established. Moreover, we develop a multiple testing
procedure for determining if the individual coefficients are relevant simultaneously,
and show that it is able to control the false discovery rate asymptotically. Numerical
results indicate that the new procedures can be highly competitive among existing
methods, especially for heavy-tailed errors.

1 Introduction

With fast development of information technologies, high-dimensional data are frequently collected
in various scientific disciplines. To efficiently analyze high-dimensional data, various regulariza-
tion methods were developed and thoroughly investigated in both theory and methodology. For a
comprehensive review, see [19]. Though significant progress has been made about the theory of
estimation and variable selection, statistical inference for a high-dimensional model remains largely
unexplored until the seminal works of [58], [47] and [29]. They developed debiased estimators that
correct the bias introduced by LASSO and established the estimators’ asymptotic normality. [40]
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proposed a decorrelated score method which is a general procedure and is applicable to a large family
of penalized M-estimators. [45] introduced a recursive online-score estimation for high-dimensional
generalized linear model. [46] proposed the nuisance penalized regression which does not penalize
the parameters of interest. [21] and [20] studied inference problems for the high-dimensional Cox
model and longitudinal data, respectively. Logistic regression model was investigated in [36]. Other
recent developments include [44], [50], [5], and [19].

Most of current inference procedures focus on parametric regression models. To address the potential
mis-specification issue of parametric models, the single index model (SIM) which is one of the
most popular semiparametric modelling techniques, has received extensive attention and in-depth
research in the past decade. Let Y ∈ R be the response variable along with predictor vector
X = (X1, · · · , Xp)

⊤ ∈ Rp. We consider a general SIM,

Y = g(X⊤β, ϵ) with ϵ ⊥ X, (1.1)

where β = (β1, · · · , βp)⊤, the link function g(·) is unknown and ⊥ means independence. Equiva-
lently, we have

Y ⊥ X | X⊤β.

The above statement is that, given X⊤β which is called index, the response Y is independent of the
predictor vector X. Clearly, model (1.1) covers linear models, generalized linear models and also
the classical SIM [26], that is, Y = g1(X

⊤β) + ϵ with g1(·) being an unknown function. It relaxes
restrictive assumptions on parametric models and is flexible enough to capture complex relationship
between the response and the predictors.

For high-dimensional SIMs, variable selection has been considered by many authors. Examples
include [30], [60], [57], [1], [51], [42], [52], [41] and [43]. Our primary interest is to detect whether
a set of predictors contributes to the response Y or not given the other predictors, that is testing the
following group inference problem:

H0,G : βj = 0 for all j ∈ G versus H1,G : βj ̸= 0 for some j ∈ G, (1.2)

where G is a prespecified subset of {1, 2, . . . , p} with p0 = |G|. Such a hypothesis naturally arises in
the high-dimensional setting. For example, researchers may want to test whether a gene pathway,
consisting of multiple genes for the same biological functions, is important for certain clinical
outcome The above group inference problem also includes global significance testing as a special
case when we set G = {1, 2, . . . , p} and p0 = p. The group inference problem is more difficult
than purely global significance testing. Actually, for group inference problem, we are dealing with a
high-dimensional interested parametric vector with a high-dimensional nuisance parameter. Such a
group inference problem was considered by [59] for high-dimensional linear models. See also [16],
and [23]. All of [59], [16], and [23] did not establish asymptotical honesty of their procedures, which
is critical for reliable inference in high-dimensional setting.

For SIM, due to the existence of the unknown link function g(·), the group inference problem is more
difficult. Actually, the parameter of interest and the nonparametric function are bundled together,
which makes the inference being challenging. For the model (1.1), [17] developed a debiased LASSO
procedure for individual coefficient, while [53] considered simultaneous confidence interval for
optimal treatment regimes under the classical SIM [26]. Their procedures, as well as many other
existing works, rely heavily on the sub-Gaussian assumption about the error term. In practice, data
with heavy-tailed distribution or in the presence of outliers are very common [18], and the efficiency of
those procedures developed under sub-Gaussian assumption would be largely deteriorated. Recently
[25] investigated the robust inference problem of high-dimensional SIM by adopting the Huber loss
with original response. However, their procedure still requires bounded first moment condition of the
error term and needs to select a suitable robustification parameter. In this paper, we aim to develop
robust group inference methods for high-dimensional SIM without any moment condition on the
error term and without choosing robustification parameter.

Interestingly, under a mild condition on the predictors, which is called linearity condition in the
literature of sufficient dimension reduction [31], we find that the SIM can be recast into a pseudo-linear
model with transformed response, allowing us to make robust inference in a simple fashion. With a
specific “response-distribution" transformation, the sub-Gaussian response assumption required in
existing methods is totally avoided, and accordingly our proposed procedures are robust to outliers or
heavy-tailed error distributions.
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Besides group inference of a prespecified subset of predictors, we are also interested in identifying
relevant predictors. To this aim, large-scale simultaneous hypotheses are considered

H0j : βj = 0 versus H1j : βj ̸= 0, 1 ≤ j ≤ p.

Apart from identifying as many nonzero βj as possible, to obtain results with uncertainty quantifica-
tion, we would like to control the false discovery rate (FDR) which is an extremely popular tool to
maintain the ability to reliably detect true alternatives without excessive false positive results when
large-scale hypotheses are simultaneously tested [4]. [28], [20], [36] and [9] considered FDR control
in high-dimensional regression models. We follow this line and develop a FDR control procedure for
high-dimensional SIM.

Our major contributions are listed from the following three aspects.

• We extend the rank-LASSO procedure in [43] to include both convex and non-convex
penalties and establish error bound of any local optimum of the empirical objective. These
theoretical results are summarized in subsection 3.1.

• In Section 2, we provide asymptotically honest group inference procedures based on the
idea of orthogonalization for testing the joint effect of many predictors, which enjoys the
feature that it does not require the zero and nonzero coefficients to be well-separated. We
demonstrate the superiority of our test procedures both theoretically and empirically. Please
see Section 3 for theoretical justification and Section 4 for numerical studies respectively.

• We develop a multiple testing procedure for determining if the individual coefficients are
relevant simultaneously, and show that it is able to control the FDR asymptotically. To this
end, we develop suitable multiple testing procedures and show that the proposed methods
can control the false discovery rate (FDR, [4]) both theoretically and empirically. We refer
the readers to Appendix A.3 and A.6 for details.

Notation. For a d-dimension vector U, we write ∥U∥r = (
∑d
k=1 U

r
k )

1/r and ∥U∥∞ =
max1≤k≤d|Uk| to denote lr and l∞ norms of U. Further we define ∥U∥0 = # {k : Uk ̸= 0}.
A random variable X is sub-Gaussian if the moment generating function (MGF) of X2 is bounded
at some point, namely E exp(X2/K2) ≤ 2, where K is a positive constant. A random variable Y is
sub-Exponential if the MGF of |Y | is bounded at some point, namely E exp(|Y |/K ′) ≤ 2, where
K ′ is a positive constant. For a, b ∈ R, we write a ∨ b = max{a, b}.

2 Group inference based on distribution transformation

Without loss of generality, assume that E(X) = 0, and Σ = Var(X) > 0. Now let σh =
Cov{X, h(Y )} for a given transformation function h(·) of the response. Define βh = Σ−1σh.
We then have the following result.
Proposition 2.1. Assume that E(X | X⊤β) is a linear function of X⊤β. Then βh is proportional to
β, that is, βh = κh × β for some constant κh.

The above proposition follows directly from Theorem 2.1 in [32]. The assumption in above propo-
sition is known as linearity condition (LC) for predictors. It is satisfied when X has an elliptical
distribution and widely assumed in the sufficient dimension reduction literature [31, 14]. [24] showed
that in high-dimensional setting, the LC holds to a reasonable approximation. Throughout of the
paper, we assume that κh ̸= 0. This assumption is mild. In fact, when h(·) is monotone and g(·, ·) is
monotone with respect to the first argument, this assumption is satisfied.

From the definition of βh, we can write

h(Y ) = β⊤
hX+ e, (2.3)

where the error term e must satisfy E(eX) = 0. Different from the existing literature which usually
imposes independence between the regression error and the predictors, the regression error e in the
transformed model is only uncorrelated with the predictors. This implies that under LC, we can
recast the general SIM into a pseudo-linear model with transformed response h(Y ). Therefore, by
Proposition 2.1, testing H0,G is equivalent to

H′
0,G : βhj = 0 for all j ∈ G versus H′

1,G : βhj ̸= 0 for some j ∈ G.

3
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This reformulation is important, allowing us to circumvent the issue of estimating the unknown link
function g(·, ·) and to make inference of βhj , j ∈ G in a linear regression model with transformed
response instead of βj in SIM. As we show later, this reformulation greatly facilitates the construction
of our test statistic and simplifies the computation as well.

In practice, we need to choose a suitable transformation function h(·). We note that [17]’s procedure
also relies on the above proposition and they essentially work with h(Y ) = Y . For robustness
consideration, throughout this paper, we consider the distribution function of Y , denoted by F (Y ) as
the transformation function. Actually with the equation (2.3), given the widely imposed subgaussian
assumption on the predictors, any bounded transformation function h(Y ) would lead the transformed
error term e being subgaussian, even if the original error term ϵ in the single index model Y =
g(X⊤β, ϵ) comes from Cauchy distribution. Further as noted by [43], in the empirical distribution
function, the term

∑n
j=1 I(Yj ≤ Yi) is the rank of Yi. Since statistics with ranks such as Wilcoxon

test and the Kruskall-Wallis ANOVA test, are well-known to be robust, this then intuitively explains
why our procedures with response-distribution transformation are robust with respect to outliers
in response. Moreover the distribution function is very easy to estimate and thus our approach is
straightforward to implement and understand.

Our test statistic for group inference of H′
0,G relies on individual inference of H′

0j : βhj = 0. Now
we first consider individual hypothesis H′

0j . Let Zj be the subvector of X without Xj , and γj be
the subvector of βh without βhj . Suppose that {Xi, Yi}ni=1 is a random sample from the population
(X, Y ). Similarly, we denote Zij as the sample of Zj . Define

βh = E(XX⊤)−1E[X{F (Y )− 1/2}] and θj = E(ZjZ⊤
j )

−1E(ZjXj),

where βh is the regression coefficient of the model (2.3) with h = F .

Our approach is based on the idea of orthogonalization. The main idea of orthogonalization is to
construct a statistic for target parameter which is locally insensitive to the nuisance parameters.
Dealing with high-dimensional models, it plays an important role to make the statistic of target
parameter immune to the bias from the estimators of high-dimensional nuisance parameters, which in
turn enables the statistical inference of parameter of interest. For relevant references, see for example,
[3], [40] and [2].

As pointed by [53], the adoption of orthogonalization is nontrivial for high-dimensional semiparamet-
ric setting, particularly for index model, where the challenge of bundled parameter arises. Fortunately,
with the Proposition 2.1, the SIM can be recast into a pseudo-linear model with transformed response
(2.3). Note that under the null hypothesis H0j

E
[{
F (Y )− 1/2− Z⊤

j γj
} (
Xj − Z⊤

j θj
)]

= 0.

Further the above equation has the orthogonality property

∂

∂γj
E
[{
F (Y )− 1/2− Z⊤

j γj
} (
Xj − Z⊤

j θj
)]

= E
[
Zj
(
Xj − Z⊤

j θj
)]

= 0.

This then motivates us to consider the following quantity

T ∗
nj =

1√
n

n∑
i=1

{
F (Yi)− 1/2− Z⊤

ijγj
} (
Xij − Z⊤

ijθj
)
. (2.4)

In practice, we need to use suitable estimates of F , γj and θj in (2.4) as those quantities are unknown.
Naturally, Fn(y) = n−1

∑n
i=1 I(Yi ≤ y), the empirical distribution of Y1, . . . , Yn, can be used to

estimate F (Y ). For θj , we estimate it by the penalized least-squares method

θ̂j = arg min
θj∈Rp−1

1

2n

n∑
i=1

(
Xij − Z⊤

ijθj
)2

+

p−1∑
l=1

pλX
(|θjl|), (2.5)

where pλX
(·) is a penalty function with a tuning parameter λX . Similarly, for γj , we adopt the

following penalized least-squares

β̂h = arg min
βh∈Rp

Ln(βh) +
p∑
l=1

pλY
(|βhl|), (2.6)

4
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where Ln(βh) = (2n)−1
∑n
i=1{Fn(Yi)− 1/2−X⊤

i βh}2 and pλY
(·) is a penalty function with a

tuning parameter λY . The γ̂j is then set as the subvector of β̂h without β̂hj . Accordingly, for each
individual hypothesis H′

0j : βhj = 0 we define the standardized test statistic

T̃nj =
1

σ̂j
√
n

n∑
i=1

{
Fn(Yi)− 1/2− Z⊤

ij γ̂j
}
(Xij − Z⊤

ij θ̂j), (2.7)

where

σ̂2
j =

1

n

n∑
i=1

{
(Xij − Z⊤

ij θ̂j)êij + m̂j(Yi)
}2

, (2.8)

êij = Fn(Yi)− 1/2− Z⊤
ij γ̂j and m̂j(y) = n−1

∑n
i=1(Xij − Z⊤

ij θ̂j){I(Yi ≥ y)− Fn(Yi)}. Note
that Fn(Yi) = n−1

∑n
j=1 I(Yj ≤ Yi). Then given predictors Xi’s being fixed, perturbations in the

responses would not make the value of T̃nj change as long as the ranks of Yi’s remain unchanged.

Denote T̃n,G = (T̃nj)j∈G . To test the null hypothesis H0,G , we consider test statistic based on the
max norm of T̃n,G . That is,

Mn,G = max
j∈G

T̃ 2
nj . (2.9)

Based on the limiting null distribution obtained in subsection 3.2, we can reject null hypothesis H0,G
at the significant level α if and only if Mn,G ≥ cG(α), where cG(α) = 2 log p0 − log log p0 + qα
and qα is the 1 − α quantile of the Gumbel distribution with the cumulative distribution function
exp{− 1√

π
exp(−x/2)}, that is,

qα = − log(π)− 2 log log(1− α)−1. (2.10)

Our inference procedure is summrized in the Algothrim 1 as follows.

Algorithm 1: Group inference based on distribution transformation
Input: Covariates data {Xi}ni=1, response data {Yi}ni=1.
Output: Testing results for group inference problem (1.2).

1 Compute the penalized least-square estimator β̂h defined in (2.6);
2 for j ∈ G do
3 compuate estimator γ̂j and θ̂j defined in (2.5);
4 calculate the standard statistic T̃nj defined in (2.7);
5 calculate the test statistic Mn,G defined in (2.9) ;
6 if Mn,G ≥ cG(α), reject H0,G ; otherwise accept H0,G .

Remark 2.1. The use of quantiles of limiting null distribution in cG(α) is attractive from a computa-
tional point of view. On the other hand, the validity of limiting null distribution requires additional
assumptions regarding the dependence structure of the components of the covariates X. See Assump-
tion A.5 in Appendix A.8 for details. Besides, it is well known that this weak convergence is typically
slow. To solve these problems, we propose a multiplier bootstrap approach and show its validity in
theory, please see Appendix A.1 for details.

3 Theoretical properties

3.1 Estimation error bound

The theoretical analysis of β̂h requires a substantial modification of the proof technique as compared
to existing works on high-dimensional inference. It is related to the fact that empirical distribution
Fn(Yi) are dependent, and thus Ln(βh) is a sum of dependent random variables. Note that [43]
considered a similar penalized procedure with LASSO penalty. While [60] and [51] considered non-
convex penalties such as SCAD and MCP to reduce estimation bias incurred by LASSO. However,

5
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their results only allow the dimension to be polynomial order of the sample size and thus cannot work
in ultrahigh-dimensional setting. Further their results only provide guarantees for global optima. In
this paper, we consider both convex and non-convex penalties and establish error bound of any local
optimum of the empirical objective.

To be specific, assume that β̂h satisfies the first-order necessary condition to be a local minimum of
2.6, that is, 〈

∇Ln(β̂h) +∇pλY
(β̂h),β − β̂h

〉
≥ 0, for all feasible β ∈ Rp. (3.11)

Let sY be the sparsity level for βh, i.e., sY = ∥βh∥0. For any vector β̂h satisfying the condition
(3.11), we have the following result.

Theorem 3.1. Under Assumptions A.1 and A.2 in Appendix A.8, the β̂h defined in (3.11) satisfies

∥β̂h − βh∥2 ≤ cλY
√
sY and ∥β̂h − βh∥1 ≤ c′λY sY

with probability at least 1 − c1 exp(−c2 log p). Here, (c, c′, c1, c2) are universal constants and
λX , λY ≍

√
log p/n.

In Theorem 3.1 we establish error bound of penalized least-squares estimators with empirical
distribution function of the response. For consistency in L2-loss, we require the sparsity level sY
satisfy that sY = o(n/ log p). While in terms of L1-loss, the limitation becomes sY = o(

√
n/ log p).

Clearly the sparsity level is allowed to be diverging. Our results unify both convex [43] and non-
convex penalties [60, 51]. Compared with the results in [60] and [51], the dimension can be
exponential order of the sample size, and no minimal signal condition is imposed to obtain those error
bounds. In the proof, we modify Hoeffding’s inequality by a probability inequality for U -statistic to
handle tail probability in dependent case, which may be interesting in their own rights.

3.2 Asymptotic null distribution

In this subsection, we derive the asymptotic null distribution for statistic defined in (2.9). Denote
Ω =

{
βh ∈ Rp : ∥βh∥0 ∨max1≤j≤p∥θj∥0 ≤ s

}
and βhG = (βhj)j∈G . We consider the following

parameter space for H0,G

Ω0
G = {βh ∈ Rp : βhG = 0} ∩ Ω.

Theorem 3.2. Suppose that Assumptions A.1-A.6 in Appendix A.8 and LC condition hold. If
s = o(

√
n/(log p log p0)), then for given t ∈ R we have

lim
(n,p0)→∞

sup
βh∈Ω0

G

∣∣∣∣Pr(Mn,G − 2 log p0 + log log p0 ≤ t
)
− exp

{
− 1√

π
exp(−t/2)

}∣∣∣∣ = 0.

Theorem 3.2 implies that the type I error of the proposed test statistic Mn,G converges to any
pre-specified significance level uniformly over βh ∈ Ω0

G . The hypothesis test with such uniform
convergence property is called honest test. The advantage of honest test is that the limiting distribution
of our procedure is uniformly valid over s-sparse high-dimensional models despite the possible
imperfect model selection via estimator β̂h. An immediate implication is that it relaxes the assumption
on signal strength and does not require the zero and nonzero effects to be well-separated. In particular,
this procedure does not require the initial estimator to select zero and nonzero signals perfectly, which
is nearly impossible in practice. Due to these excellent statistical properties, honest test has recently
drawn lots of attention. See [47], [29], [3], [2], [11], [53] for further examples.

On the basis of Theorem 3.2 , we can reject null hypothesis H0,G at the significant level α if and only
if Mn,G ≥ cG(α), where cG(α) = 2 log p0 − log log p0 + qα and qα is defined in (2.10).

3.3 Power analysis

We next to consider the asymptotic power analysis of the Mn,G . In this section, we show that our
test statistic is powerful in the sense that the separation rate is of order

√
(2 + ϵ0) log p0/n for some

ϵ0 > 0 when p0 → ∞. At the beginning we define the following parameter space for H1,G

Ω1
G(c0) =

{
βh ∈ Rp : max

j∈G

∣∣∣∣βhjδjσj

∣∣∣∣ ≥
√
c0

log p0
n

}
∩ Ω,

6
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where c0 is a positive constant and δj = E
(
X2
j

)
− E

(
XjZ

⊤
j

)
E
(
ZjZ

⊤
j

)−1E
(
ZjXj

)
.

Theorem 3.3. Suppose that conditions in Theorem 3.2 are satisfied, we have for some ϵ0 > 0,
lim

(n,p0)→∞
inf

βh∈Ω1
G(2+ϵ0)

Pr
(
Mn,G ≥ cG(α)

)
= 1. (3.12)

Theorem 3.3 implies that our test procedure can still be powerful even when there exists few
components of βG with a magnitude being larger than

√
(2 + ϵ0) log p0/n. Therefore our testing

procedure is powerful against “sparse" alternative aforementioned. This separation rate is widely
discussed in the literature, such as [8], [59] and [36]. Theorem 3.3 shows our tests based on
distribution transformation can also achieve this lower bound.
Remark 3.1. In the proof of Theorem 3.3, we show that

Mn,G ≍M0
G +max

j∈G

(
βhjδj
σj

)2

,

where the M0
G has the type I extreme limiting distribution, which is mentioned in Theorem 3.2. Then

the power is largely determined by the second term

SNR(Mn,G) = max
j∈G

(
βhjδj
σj

)2

, (3.13)

and it can be explained as the maximum of the signal-to-noise ratio for j ∈ G. The power of the test
based on Mn,G increases with the growth of SNR(Mn,G). When SNR(Mn,G) ≥ (2 + ϵ0) log p0/n,
the asymptotic power is tending to 1.

In this paper, we focus on the distribution transformation of the response. In the following we make
some comparisons between this choice and another natural one. Actually, same to [17], one may
consider use h(Y ) = Y to conduct the following test statistic

T̃+
nj =

1

σ̂+
j

√
n

n∑
i=1

(Yi − Z⊤
ij γ̂

+
j )(Xij − Z⊤

ij θ̂j). (3.14)

Here γ̂+
j is the subvector of β̂+

h without j-th component, and β̂+
h is a penalized least-squares estimator

of β+
h = E(XX⊤)−1E(XY ) as follows:

β̂+
h = arg min

β+
h ∈Rp

1

2n

n∑
i=1

(Yi −X⊤
i β

+
h )

2 +

p∑
l=1

pλY
(|β+

hl|).

θ̂j is estimated by (2.5). And σ̂+2
j is an appropriate estimator of σ+2

j :=E{(Xj − Z⊤
j θj)

2(Y −
Z⊤
j γ

+
j )

2}. For the group inference problem (1.2), it’s natural to consider the following testing
statistic:

M+
n,G = max

j∈G
(T̃+
nj)

2,

Now we discuss the power properties of M+
n,G . By similar arguments as Theorem 3.3, the power of

the test based on M+
n,G is determined by

SNR(M+
n,G) = max

j∈G

(
β+
hjδj

σ+
j

)2

. (3.15)

For the convenience of illustration, we consider the classical SIM, that is, Y = g1(X
⊤β) + ϵ and ϵ is

independent of X. To compare the theoretical power of Mn,G and M+
n,G , it suffices to compare the

SNRs aforementioned. In the classical SIM case, the ratio of SNR can be simplified as
SNR(Mn,G)

SNR(M+
n,G)

≥ c3Var(ϵ),

where c3 is a constant depending on (X, Y ). The detailed form of c3 is presented in the Appendix
A.2. When Var(ϵ) > c−1

3 , Mn,G is more powerful than M+
n,G . Actually when ϵ follows a heavy-tail

distribution, Var(ϵ) can be very large even be infinite.

The above results illustrate the robustness of our test statistic Mn,G . In fact, with distribution
transformation, no moment assumption on ϵ is required. Even if the ϵ comes from Cauchy distribution,
our test procedure still works well but the M+

n,G requires sub-Gaussian assumption on the error term
and thus in this situation would fail.

7
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4 Numerical studies

In this section, extensive simulation studies are carried out to evaluate the numerical performance
of the proposed methods for the global inference problem described in (1.2). We consider the
high-dimensional SIM in equation (1.1) and generate the data from the following models:

Model 1: Linear model: Y = X⊤β + ϵ.
Model 2: Non-linear model: Y = exp(X⊤β + ϵ).

Here, the predictors Xi, i = 1, · · · , n are generated from multivariate normal distribution Np(0p,Σ).
The covariance matrix Σ ∈ Rp×p is block diagonal, that is, Σ = diag (Σ1, · · · ,Σ10), where Σ1 is
p
10 ×

p
10 dimensional identity matrix, and each Σk is p

10 ×
p
10 dimensional with an AR(1) correlation

structure, that is (Σk)ij = (0.1k − 0.1)|i−j|, k = 2, . . . , 10; i, j = 1, · · · , p/10. We consider
two different error distributions for ϵ which is independent of X: (1) standard normal distribution
N(0, 1); (2) Cauchy distribution or equivalently Student’s t distribution with 1 degree of freedom,
t(1). Without loss of generality, we set the active set be {1, 2, . . . , 6}. The regression coefficients
β are generated from an arithmetic sequence from 0.1 to 2, that is βj = 0.2 + 0.038(j − 1) for
1 ≤ j ≤ 6 and βj = 0 otherwise. We consider n = 200, 500 and p = 800. We use Intel(R) Xeon(R)
Silver 4208 CPU @ 2.10GHz.

In order to explore the robustness behaviors of our proposed statistics, we add outliers to pollute the
observations: pout of the responses are picked at random and increased by mout-times maximum of
original responses, shorted as pout +mout ·max(responses). Here pout is the proportion of outliers and
mout is a pre-set constant standing for outlier strength. Throughout the simulation study, we analyze
the results with both the original data (shorted as Ori.) and the data with outliers (shorted as Out.).

We assess the empirical type I error and the empirical power of group inference with the nominal
level α = 0.05 based on 500 simulation runs. We consider the following five different choices for G
to test the hypothesis (1.2):

G1 = {10, 11, p− 4, p− 3, p− 2, p− 1, p},
G2 = {3, . . . , 6} ∪ G1,

G3 = {10, . . . , 59, p− 149, . . . , p},
G4 = {3, . . . , 6} ∪ G3.

Note that G1 and G2 are small groups, G3 and G4 are large groups. G1 and G3 consist of only zero
coefficients, while G2 and G4 includes nonzero elements.

Then we report the numerical results of empirical rejection rate (ERR) for different scenarios, where
ERR is the proportion of rejected hypotheses among the total 500 simulations. For G1 and G3, the
ERR is the empirical type I error; For G2 and G4, the ERR is the empirical power.

From the numerical results for all scenarios displayed in table 1, we have the following findings.
Firstly, when there are outliers or heavy errors, our methods still have very high powers and control
empirical sizes well. Secondly, for both linear model and nonlinear model, small groups and large
groups, our procedures have similar satisfactory performance in this experiment. Thirdly, we find that
the dimensionality of all predictors p does not effect the empirical performances. Our test procedures
with LASSO penalty perform similarly to those with SCAD or MCP. Therefore, we only present the
results of test statistics with LASSO penalty. We use the R-package ncvreg [6].

Moreover, we compare the proposed methods with the three-step testing procedure based on the
studentized statistics in [59], denoted as ST. Here, we use R package SILM [59] to implement the
three-step testing procedure, set the number of bootstrap replications as 500 and choose the splitting
proportion of 30% for screening.

Table 2 summarizes the results of empirical type I errors and powers with α = 0.05 for different
methods and models based on 500 simulation runs (due to the computation limit, we only run 200
times for ST). Here we consider (n, p) = (200, 400), and other settings are same as before. It is
obvious that our methods outperform the ST. Firstly, when there are no outliers and heavy errors, all
methods have empirical power 1 for linear model. But for non-linear model, our test procedures T (1)

α

and T (2)
α are more powerful than ST. For instance, under non-linear model with original data and

ϵ ∼ N(0, 1), the empirical powers of ST for G2 and G4 are 0.785 and 0.430, while the corresponding
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Table 1: Simulation results for the group inference problems

ϵ ∼ N(0, 1) ϵ ∼ t(1)

G1 G2 G3 G4 G1 G2 G3 G4

n Ori. Out. Ori. Out. Ori. Out. Ori. Out. Ori. Ori. Ori. Ori.

Y = X⊤β + ϵ
200 0.028 0.034 1.000 1.000 0.026 0.046 1.000 1.000 0.026 1.000 0.058 1.000

500 0.018 0.028 1.000 1.000 0.024 0.040 1.000 1.000 0.032 1.000 0.054 1.000

Y = exp(X⊤β + ϵ)
200 0.018 0.024 1.000 1.000 0.030 0.052 1.000 1.000 0.044 1.000 0.084 1.000

500 0.034 0.040 1.000 1.000 0.026 0.040 1.000 1.000 0.030 1.000 0.028 1.000

empirical powers of our methods are all 1. Secondly, the outliers and heavy errors have dramatic
effect on the power performances of ST, which has very low powers even as low as the nominal level.
For example, under linear model with outliers, the empirical power of ST for G4 is 0.050 and that
of our proposal is 1; under non-liner model with Cauchy error, the corresponding empirical powers
of ST and our proposal are 0.040 and 1, respectively. Thirdly, all methods can control type I errors
reasonably. Overall our methods have better powers and are robust with respect to outliers and heavy
errors, whereas ST in [59] can completely fail when outliers exist.

Table 2: Simulation results for our method and ST.

ϵ ∼ N(0, 1) ϵ ∼ t(1)

G1 G2 G3 G4 G1 G2 G3 G4

Method Ori. Out. Ori. Out. Ori. Out. Ori. Out. Ori. Ori. Ori. Ori.

Y = X⊤β + ϵ
Our 0.028 0.030 1.000 1.000 0.038 0.044 1.000 1.000 0.012 1.000 0.050 1.000
ST 0.045 0.040 1.000 0.115 0.015 0.040 1.000 0.050 0.055 0.370 0.055 0.250

Y = exp(X⊤β + ϵ)
Our 0.032 0.054 1.000 1.000 0.034 0.070 1.000 1.000 0.042 1.000 0.054 1.000
ST 0.025 0.040 0.785 0.045 0.060 0.075 0.430 0.080 0.045 0.085 0.035 0.040

5 Discussions

In this paper, we investigate robust inference for high-dimensional single index model (SIM). Under
the linearity condition about the predictors, we recast the SIM into pseudo-linear model with trans-
formed response. A response-distribution transformation is considered. This transformation choice
avoids the sub-Gaussian assumption for the response. Our introduced procedures are thus robust
with respect to outliers or heavy-tailed errors. We develop asymptotically honest group inference
procedures. Asymptotic distribution and bootstrap implementation are both established. For testing
the individual coefficients simultaneously, multiple testing procedures are proposed and shown to
control the false discovery rate asymptotically. Our numerical studies illustrate the robustness of our
procedures against outliers or heavy errors.

In this paper, the linearity condition about the predictors plays a very important role in the methodol-
ogy development. How to make inference for high-dimensional SIM without this condition is of great
importance and interest. The second-order Stein’s method with score function-based corrections in-
vestigated in [56] and [55] would be a powerful alternative. The condition κh ̸= 0 excludes even link
functions, and in particular the problem of sparse phase retrieval. [39] introduced a novel procedure
to deal with the problem of sparse phase retrieval when κh = 0. It would be of interest to extend their
approach to make robust group inference. Further our paper doesn’t provide quantitative bounds on
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robustness. It is also of interest to make inference for partially linear single-index regression model
[15]. We will pursue these challenging problems in near future.
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A Appendix / supplemental material

Notation. For functions f(n) and g(n), we write f(n) ≲ g(n) to mean that f(n) ≤ cg(n) for
some universal constant c ∈ (0,∞), and similarly, f(n) ≳ g(n) when f(n) ≥ c′g(n) for some
universal constant c′ ∈ (0,∞). We write f(n) ≍ g(n) when f(n) ≲ g(n) and f(n) ≳ g(n) hold
simultaneously. For a function h : Rp → R, we write ∇h and ∇kh to denote a gradient or subgradient
and its k-th component, if they exist. The sub-Gaussian norm of a sub-Gaussian random variable
X is defined as ∥X∥ψ2 := inf{t > 0 : E exp(X2/t2) ≤ 2}. Similarly, the sub-Exponential norm
of a sub-Exponential random variable Y is defined as ∥Y ∥ψ1 := inf{t > 0 : E exp(|Y |/t) ≤ 2}.

A.1 A multiplier bootstrap test procedure

As discussed in Remark 2.1, the critical value obtained from the asymptotic distribution may not
work well in practice since this weak convergence is typically slow and assumptions for dependence
structure of the covariates. We next describe a simple gaussian multiplier bootstrap method to obtain
an accurate critical value. Let w1, . . . , wn be i.i.d. N(0, 1) random variables that are independent of
{Xi, Yi}ni=1 and define the gaussian multiplier bootstrap statistic:

M ♯
n,G = max

j∈G

[
2

σ̂j
√
n

n∑
i=1

{
1

n− 1

∑
ĩ ̸=i

ĥsymj (Yi,Xi;Yĩ,Xĩ)−
1√
n
Tnj

}
wi

]2
,

where

ĥsymj (Yi,Xi;Yĩ,Xĩ) =
1

2

{
ĥj(Yi,Xi;Yĩ,Xĩ) + ĥj(Yĩ,Xĩ;Yi,Xi)

}
,

and

ĥj(Yi,Xi;Yĩ,Xĩ) =

{
I(Yĩ ≤ Yi)−

1

2
− Z⊤

ij γ̂j

}(
Xij − Z⊤

ij θ̂j

)
is the kernel funtion in Tnj . The bootstrap critical value is given by c

(2)
G (α) = inf

{
t ∈ R :

Prw
(
M ♯
n,G ≤ t

)
≥ 1−α

}
, where Prw is the probability measure induced by the multiplier variables

{wi}ni=1 holding {Xi, Yi}ni=1 fixed. We can reject null hypothesis H0,G at the significant level α if
and only if Mn,G ≥ c

(2)
G (α),

Theorem A.1. Suppose that Assumptions A.1, A.2, A.7, A.8 and LC condition hold. If s =
o
(√
n/(log p(log np0)

3/2)
)
, we have

lim
n→∞

sup
βh∈Ω0

G

sup
α∈(0,1)

∣∣P (Mn,G > c
(2)
G (α)

)
− α

∣∣ = 0. (1.16)
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Remark A.1. Here we assume s = o
(√
n/(log p(log np0)

3/2)
)

which is slightly stricter than s =
o(
√
n/(log p log p0)) in Theorem 3.2. Suppose ζ1 is a sequence satisfying ζ1

√
1 ∨ log(p0/ζ1) → 0

as n → ∞. This assumption has two purposes. Firstly, making the difference between ∥T̃n,G∥∞
and ∥S̃n,G∥∞ bounded by ζ1. Secondly, making Prw

(∣∣√M ♯
n,G −

√
L♯n,G

∣∣ ≥ ζ1
)
→ 0 in probability,

where L♯n,G is the ideal version of M ♯
n,G and it is defined in (1.27) in the Appendix A.9.

Theorem A.2. Suppose that conditions in Theorem A.1 are satisfied, we have for some ϵ0 > 0,

lim
(n,p0)→∞

inf
βh∈Ω1

G(2+ϵ0)
Pr
(
Mn,G ≥ cG(α)

)
= 1. (1.17)

Where Ω1
G(·) is defined in subsection 3.3.

The theoretical guarantee of the bootstrap procedure is based on the gaussian approximation theory
for nondegenerate U -statistic. Symmetrization of the kernel function ĥj(·) plays an important role
in theory. Thus ĥsymj (·) is necessary in our gaussian multiplier bootstrap procedure. Meanwhile,
Theorem A.1 holds whether p0 is divergent or not. While the limiting null distribution established in
Theorem 3.2 asks p0 be divergent.

A.2 The detailed form of c3

By the definition of SNR and Lemma A.8 in the Supplementary Material, for a given β ∈ Rp we
have

SNR(Mn,G) =
Cov2(F (Y ),X⊤β)

(β⊤Σβ)2
max
j∈G

(
βjδj
σj

)2

.

Similarly, we have

SNR(M+
n,G) =

Cov2(Y,X⊤β)

(β⊤Σβ)2
max
j∈G

(
βjδj

σ+
j

)2

.

Thus the ratio of SNR(Mn,G) and SNR(M+
n,G) can be simplified as

SNR(Mn,G)

SNR(M+
n,G)

≥ Cov2(F (Y ),X⊤β)

Cov2(Y,X⊤β)
·
(σ+
j′)

2

σ2
j′

,

where j′ = argj∈G max
(βjδj

σ+
j

)2
. In the case of classical SIM, that is, Y = g1(X

⊤β) + ϵ and ϵ is

independent of X. We can derive

(σ+
j′)

2 = E{(Xj′ − Z⊤
j′θj′)

2(Y − Z⊤
j′γj′)

2} ≥ E(Xj′ − Z⊤
j′θj′)

2Var(ϵ).

Thus we have

SNR(Mn,G)

SNR(M+
n,G)

≥
Cov2(F (Y ),β⊤X)E(Xj′ − Z⊤

j′θj′)
2

Cov2(Y,β⊤X)σ2
j′

Var(ϵ),

and

c3 =
Cov2(F (Y ),β⊤X)E(Xj′ − Z⊤

j′θj′)
2

Cov2(Y,β⊤X)σ2
j′

.

A.3 False discovery rate control

In the previous section, we consider joint significance testing of a prespecified subset of predictors.
In applications, however, the parameter of interest may not be specified in advance. Denote H0 =
{j : βj = 0, j = 1, . . . , p}, and H1 = {j : βj ̸= 0, j = 1, . . . , p}. It is of interest to identify the
elements in H1. To this aim, we consider simultaneous testing of the following hypotheses

H0j : βj = 0 versus H1j : βj ̸= 0, 1 ≤ j ≤ p.

In this section, we aim to develop data-driven procedures to control the FDR.
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Recall that in Section 2, for each individual hypothesis H0j : βj = 0 we define the standardized
statistic T̃nj = σ̂−1

j Tnj defined in (2.7). At a given threshold level t > 0, H0j is rejected if |T̃nj | ≥ t.
For each t, let R0(t) =

∑
j∈H0

I
(
|T̃nj | ≥ t

)
, and R(t) =

∑p
j=1 I

(
|T̃nj | ≥ t

)
be the total number

of false discoveries and the total number of discoveries, respectively. Accordingly, the false discovery
proportion (FDP) and FDR are

FDP(t) =

∑
j∈H0

I
(
|T̃nj | ≥ t

)
max

{∑p
j=1 I

(
|T̃nj | ≥ t

)
, 1
} , FDR(t) = E{FDP(t)}.

Let G0(t) be the proportion of the nulls falsely rejected by the procedure among all the true nulls at
the threshold level t, namely, G0(t) = q−1

0

∑
j∈H0

I
(
|T̃nj | ≥ t

)
, where q0 = |H0|. In practice, it is

reasonable to assume that the true alternatives are sparse, that is, p− q0 =: q1 = o(p). If the sample
size is large, we can use the tails of normal distribution G(t) = 2− 2Φ(t) to approximate G0(t). In
fact, it will be shown that, for bp =

√
2 log p− log log p,

sup
0≤t≤bp

∣∣∣∣G0(t)

G(t)
− 1

∣∣∣∣→ 0

in probability as (n, p) → ∞. To summarize, we have the following multiple testing procedure
controlling the FDR and FDP at a pre-specified level 0 < α < 1, which is summarized in Algorithm
A.1.

Algorithm 2: multiple testing procedure

1 Let 0 < α < 1, bp =
√
2 log p− log log p and define

t̂ = inf

{
0 ≤ t ≤ bp :

pG(t)

max
{∑p

j=1 I
(
|T̃nj | ≥ t

)
, 1
} ≤ α

}
. (1.18)

If t̂ in (1.18) does not exist, then let t̂ =
√
2 log p. We reject H0j whenever |T̃j | ≥ t̂.

Next we show that under mild conditions, our proposed multiple testing procedure control the FDR
asymptotically. Recall that Ω =

{
βh ∈ Rp : ∥βh∥0∨max1≤j≤p∥θj∥0 ≤ s

}
. The following theorem

shows that T̃nj is uniformly asymptotically normal distributed and G0(t) is well approximated by
G(t).
Theorem A.3. Suppose that Assumptions A.1, A.2, A.8 in Appendix A.8 and LC condition hold. If
p = O(nc) for some constant c > 0 and s = o(

√
n/(log p)2). Then as (n, p) → ∞, for any βh ∈ Ω

we have

sup
j∈H0

sup
0≤t≤

√
2 log p

∣∣∣∣∣Pr(|T̃nj | ≥ t)

2− 2Φ(t)
− 1

∣∣∣∣∣→ 0. (1.19)

If in addition Assumption A.9 holds, then

sup
0≤t≤bp

∣∣∣∣G0(t)

G(t)
− 1

∣∣∣∣→ 0 (1.20)

in probability.

In the results given in Section 2, we could allow p to grow exponentially fast in n. However, in order
to control FDR, we only allow p = O(nc) to apply the moderate derivation result in [34]. Further
we assume s = o(

√
n/(log p)2) which is slightly stricter than s = o(

√
n/(log p log p0)) to make the

difference between T̃nj and its ideal version S̃nj uniformly bounded with the rate o(1/
√
log p). Note

that [28] imposed a similar condition. The following theorem provides the asymptotic FDR control
of our procedure.
Theorem A.4. Under the assumptions in Theorem A.3, for t̂ defined in our multiple testing procedure,
we have

lim sup
(n,p)→∞

FDR(t̂) ≤ α. (1.21)
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A.4 Discussions of robustness

In this subsection, we carefully discuss the robustness of our inference procedure based on the
efficient influence function. We find that our statistics are robust with respect to perturbations in the
responses. The details are given below. Recall that our test procedure is inspired by the quantity

I := E[{F (Y )− 1/2− Z⊤
j γj}(Xj − Z⊤

j θj)].

Next we derive the efficient influence function (EIF) of I . We rewrite I as

I = Ψ(P) = EP [{FP(Y )− 1/2− Z⊤
j γj}(Xj − Z⊤

j θj)],

where P is distribution of (Xj , Z
⊤
j , Y )⊤. Consider the following parametric submodel indexed by t,

i.e.
Pt = tP̃ + (1− t)P,

where t ∈ [0, 1], and P̃ is a point mass at a single observation õ = (x̃j , z̃
⊤
j , ỹ)

⊤. As mentioned in
[27], the EIF for I at observation õ is

ϕ(õ,P) =
dΨ(Pt)
dt

∣∣∣∣
t=0

,

where Ψ(Pt) = EPt [{FPt(Y ) − 1/2 − Z⊤
j γj}(Xj − Z⊤

j θj)]. Denote o = (xj , z
⊤
j , y)

⊤ and O =

(Xj , Z
⊤
j , Y )⊤. Let mt(o) = {FPt

(y) − 1/2 − z⊤j γj}(xj − z⊤j θj) and Ψ(Pt) = EPt
[mt(O)].

Further, the operator, ∂t, applied to an arbitrary function g(t), is defined as

∂tg(t) =
dg(t)

dt

∣∣
t=0

.

Some calculation entails that

∂tΨ(Pt) =
∫
∂tmt(O)dPt|t=0 +

∫
mt(O)|t=0d∂tPt

= EP [∂tmt(O)] +m0(õ)−Ψ(P).

Note that

mt(O) = {tI(Y ≥ ỹ) + (1− t)FP(Y )− 1/2− Z⊤
j γj}(Xj − Z⊤

j θj).

Thus we derive that

∂tmt(O) = {I(Y ≥ ỹ)− FP(Y )}(Xj − Z⊤
j θj),

and

EP [∂tmt(O)] = EP [{I(Y ≥ ỹ)− FP(Y )}(Xj − Z⊤
j θj)].

As m0(õ) = {FP(ỹ)− 1/2− z̃⊤j γj}(x̃j − z̃⊤j θj), by some calculations we derive

ϕ(õ,P) = {FP(ỹ)− 1/2− z̃⊤j γj}(x̃j − z̃⊤j θj) + EP [{I(Y ≥ ỹ)− FP(Y )}(Xj − Z⊤
j θj)]−Ψ(P).

Recall that

Tnj =
1√
n

n∑
i=1

[{
Fn(Yi)−

1

2
− Z⊤

ij γ̂j

}(
Xij − Z⊤

ij θ̂j

)]
,

Snj =
1√
n

n∑
i=1

[{
F (Yi)−

1

2
− Z⊤

ijγj

}(
Xij − Z⊤

ijθj

)
+mj(Yi)

]
,

where mj(y) = E[(Xj − Z⊤
j θj){I(Y ≥ y) − F (Y )}]. Here Tnj is an individual test statistic

corresponding to the parameter I . While Snj is an individual quantity corresponding to the EIF of I .
From our proof, we know that Tnj = Snj + op(1).

By the formula of ϕ(õ,P), given (xj , z
⊤
j )

⊤, it can shown that ϕ(õ,P) is bounded for any ỹ ∈ R.
Thus our test statistics are robust with respect to the perturbations in the responses.
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A.5 Additional simulation results for group inference

In this subsection, we conduct simulation studies to compare our procedure with other methods
based on different transformation functions. The simulation settings are summarized as follows. We
consider the following two models:

• Model 1: Linear model: Y = X⊤β + ϵ.

• Model 2: Non-linear model: Y = exp(X⊤β + ϵ).

The regression coefficients β = (β1, β2, . . . , βp)
⊤ are generated as βj = δ for j = 1, . . . , 6 and

βj = 0 otherwise, where δ can be regarded as a signal strength parameter. We generate the error
term from the standard normal distribution. We add outliers to pollute the observations: pout of
the responses are picked at random and increased by mout-times maximum of original responses.
Specifically, the detailed settings for the above parameters are as follows. Firstly, we consider the
sample size n = 500 and the dimension p = 800. Secondly, we set the signal strength parameter
δ to vary from {0.1, 0.3, 0.5}. Thirdly, we fix mout to 10. Lastly, we vary pout from 0 to 0.5 in
increments of 0.1. For more complete comparisons, we consider three transformation procedures: (1)
h(Y ) = F (Y ) (Our method); (2) h(Y ) = Y ; (3) h(Y ) = sigmoid(Y ) = 1/{1 + exp(−Y )}. Other
simulation settings are the same as described in section 4 of the main text.

Figure 1 summarizes the results of empirical type I error and empirical power with the significant
level of α = 0.05 for different methods when the error term follows the standard normal distribution.
Firstly, under the null hypothesis (G1), h(Y ) = sigmoid(Y ) cannot control the type I error for
Model 2, while other procedures perform well. Secondly, under the alternative hypothesis (G2), the
empirical powers of other procedures decrease rapidly with the increase of pout, while the powers of
our procedure remain stable, which is particularly noticeable when δ = 0.5. This finding indicates
that our method has strong robustness when the responses are polluted. Thirdly, our method performs
well for both Model 1 and Model 2, indicating that our method is robust across different single-index
models.
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Figure 1: Under different settings of the generated model, the testing group and the signal strength,
simulated results of the proposed method for the proportion of outliers pout from 0 to 0.5 in increments
of 0.1 when the error term follows the standard normal distribution.
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A.6 Additional simulation results for false discovery rate control

In this subsection, we examine the empirical FDR results of our proposed procedure. We also
make comparisons with two alternatives. Let BH-Vn denote the BH procedure [4] with p-values
obtained from Vn. BH-Wn is similarly defined. Here Vn and Wn denote the debiased lasso procedure
introduced by [17] and the decorrelated score method proposed by [40], respectively. Here, we use the
R function p.adjust(...,method="BH") to implement the BH procedure. We simultaneously test
H0j : j ∈ H0 for all j = 1, · · · , p. We set the dimension p = 1000 and sample size n = 1000, 1500.
The sparsity level |H1| = q1 is set as 4 or 8. The data is generated from the following linear and
nonlinear models:

Y = X⊤β + ϵ,

Y = sin(0.5X⊤β) · exp(X⊤β + 1) + ϵ,

where β = β1 with δ0 = 1, that is β = (

s0︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0)⊤ and ϵ comes from N(0, 1) or t(1).

We evaluate the empirical FDRs and the empirical powers of our test statistic Tn and two existing
high-dimensional inference procedures BH-Vn and BH-Wn. Here the power is defined as the number
of correctly discovered variables divided by the number of truly active variables. We set the desired
FDR level as α = 0.2 and the results are calculated based on 500 replications.

We illustrate our proposed procedure under different models, error distributions, sample sizes, and
sparsity levels. Table 3 shows the simulation results. We have the following important observations.
Firstly our introduced procedure controls the FDR well, even when the random error comes from
Cauchy distribution. Secondly, our method has power 1, indicating that the proposed method can
detect all important predictors. Thirdly, the other two methods lose their powers when random error
follows Cauchy distribution and sometimes fail to control FDR.

Table 3: Empirical FDRs and powers of our proposed method, BH-Vn and BH-Wn. Here the
dimension p = 1000 and nominal FDR level α = 0.2.

Linear model Non-linear model

n = 1000 n = 1500 n = 1000 n = 1500

Sparsity Method FDR Power FDR Power FDR Power FDR Power

ϵ ∼ N(0, 1)
4 Proposed 0.188 1.000 0.187 1.000 0.197 1.000 0.203 1.000

BH-Vn 0.245 1.000 0.235 1.000 0.198 0.773 0.206 0.730
BH-Wn 0.133 1.000 0.122 1.000 0.125 0.851 0.125 0.879

8 Proposed 0.194 1.000 0.198 1.000 0.211 1.000 0.211 1.000
BH-Vn 0.243 1.000 0.230 1.000 0.458 0.011 0.248 0.005
BH-Wn 0.138 1.000 0.142 1.000 0.097 0.028 0.122 0.041

ϵ ∼ t(1)
4 Proposed 0.191 1.000 0.196 1.000 0.196 1.000 0.213 1.000

BH-Vn 0.328 0.017 0.283 0.013 0.249 0.448 0.204 0.446
BH-Wn 0.121 0.028 0.104 0.032 0.127 0.628 0.134 0.664

8 Proposed 0.204 1.000 0.206 1.000 0.212 1.000 0.202 1.000
BH-Vn 0.299 0.019 0.244 0.013 0.460 0.014 0.245 0.006
BH-Wn 0.087 0.022 0.113 0.031 0.114 0.024 0.093 0.050

A.7 Real data analysis

In this subsection, we illustrate the practical applications of our procedures by a real data analysis.
The group inference is helpful to decide whether a group of predictors are important or not for the
response. If we find a group of predictors are important, we would like to know which specific
predictors in the group are significant. For this aim, our developed multiple testing procedure is useful.
For instance, researchers may aim to test whether a gene pathway, consisting of high-dimensional
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genes for the same biological function, is important for a certain clinical outcome, given the other
high-dimensional genes. When determining that a certain gene pathway is important, researchers
need to further identify specific genes within the pathway which are important for a certain clinical
outcome.

We apply our methods on a dataset about riboflavin (vitamin B2) production rate with Bacillus Subtilis.
This dataset is made publicly by [7] and has been analyzed by many authors, for instance [37], [47],
[29], and [22]. The dataset riboflavin can be obtained from the R package hdi. It consists of n = 71
observations of strains of Bacillus Subtilis and p = 4088 covariates, measuring the log-expression
levels of 4088 genes. The response variable is the logarithm of the riboflavin production rate.

Our goal is to detect which genes are associated with riboflavin production rate. Like most existing
studies, we first reduce ultrahigh-dimension to a moderate high-dimension. Here we pick out first
300 genes by distance correlation based screening [33]. We first conduct global testing on these
300 genes. The p-value of our group inference procedure is 1.286e − 04, indicating that the null
hypothesis is rejected and the selected 300 genes are influential for riboflavin production rate. Next,
we further use FDR control procedure to select the important genes in these 300 genes.

By implementing our proposed FDR control procedure with the FDR level of 0.1, we identify 10 genes
that are significantly associated with the response. That is GI = {YTGB_at, YCKE_at, YXLE_at,
YXLD_at, YJCJ_at, XHLA_at, xepA_at, YCGO_at, RPLP_at, XKDS_at}. If the FDR level is set as
0.2, 5 more genes will be selected. That is GII = GI∪{SPOIISA_at, YHCB_at, XKDI_at, YJCF_at,
XHLB_at}.

We further conduct group inference on the selected subsets GI ,GII and their complement sets GcI ,GcII .
As expected, our group inference procedure finds again that GI ,GII are significant while GcI ,GcII are
not. The corresponding p-values of GI , GcI , GII and GcII are 6.748e-06, 7.257e-01, 9.334e-06 and
9.370e-01, respectively. These results suggest that the genes selected by the FDR control procedure
are really influential.

We compare these selected genes with other methods. For example, the multi-sample-splitting method
proposed in [37] identified YXLD_at; [47] did not select any gene using the de-sparsified Lasso; [29]
only selected two genes: YXLD_at and YXLE_at and [22] claimed YCKE_at, XHLA_at, YXLD_at,
YDAR_at and YCGN_at as significant. From GI and GII , we can see clearly that the gene YXLD_at
is detected by not only [37], [29], [22], but also by our procedure. Besides, the genes YCKE_at,
YXLE_at and XHLA_at which are detected by [29] and [22], are also found by our method. Further,
our procedure detects some additional important genes.

A.8 Technical assumptions

Assumption A.1. We assume that

(i) Xj , X
⊤βh and Z⊤

j θj , j = 1, . . . , p are all sub-Gaussian with uniformly bounded sub-
Gaussian norms.

(ii) c
√

log p
n ≤ λX , λY ≤ C

√
log p
n for some constants 0 < c ≤ C.

(iii) Σ = Cov(X) > 0.

The above conditions are mild and widely assumed in the high-dimensional literature. Condition (i)
is used to obtain l∞ norm of 1√

n

∑n
i=1(Xij − Z⊤

ijθj)Zij in the proof. Sub-Gaussian assumption
is a standard condition while working with random predictors in high-dimensional models [49].
However, we should emphasize here that we do not make sub-Gaussian assumption for the error term
(or equivalently for the response), which is widely assumed in the literature of high-dimensional
inference [40, 17]. Actually we even do not assume the existence of E(ϵ).
Assumption A.2. We assume that

(i) The function pλ satisfies pλ(0) = 0 and is symmetric around zero (i.e., pλ(t) = pλ(−t), for
all t ∈ R).

(ii) On the nonnegative real line, the function pλ is nondecreasing.

(iii) For t > 0, the function t→ pλ(t)
t is nonincreasing in t.
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(iv) The function pλ is differentiable for all t ̸= 0 and subdifferentiable at t = 0, with
limt→0+ p

′
λ(t) = λL for some L > 0.

(v) There exists µ > 0 such that pµλ(t) := pλ(t) +
µ
2 t

2 is convex.

Many commonly used penalty functions pλ satisfy all the conditions in Assumption A.2, such as
LASSO, SCAD and MCP penalties. Proofs can be found in [35]. By the result in [35], we have the
following proposition for θ̂j .
Assumption A.3. The RSC condition in [35] is

{∇Ln(βh +∆)−∇Ln(βh)}⊤∆ ≥


α1∥∆∥22 − τ1

log p

n
∥∆∥21, ∀∥∆∥2 ≤ 1, (1.22)

α2∥∆∥2 − τ2

√
log p

n
∥∆∥1, ∀∥∆∥2 ≥ 1, (1.23)

where the α1, α2 are strictly positive constants, the τ1, τ2 are nonnegative constants and the ∆ ∈ Rp
is a p-dimension column vector.

Here we denote

Snj =
1√
n

n∑
i=1

[{
F (Yi)−

1

2
− Z⊤

ijγj

}(
Xij − Z⊤

ijθj

)
+mj(Yi)

]
.

and S̃nj = σ−1
j Snj , where mj(y) = E[(Xj − Z⊤

j θj){I(Y ≥ y) − F (Y )}]. It could be shown
that S̃nj = T̃nj + op(1) and Var(S̃nj) = 1. Denote S̃n = (S̃nj)

p
j=1 and Λ = Var(S̃n), where

Λjk = Cov(S̃nj , S̃nk) is (j, k) component of Λ. And denote S̃n,G = (S̃nj)j∈G and ΛG = Var(S̃n,G)
correspondingly. Further denote Ω =

{
βh ∈ Rp : ∥βh∥0 ∨ max1≤j≤p∥θj∥0 ≤ s

}
and βhG =

(βhj)j∈G .
Assumption A.4. {log(np0)}7/n = o(1).
Assumption A.5. C−1

0 ≤ λmin(Λ) ≤ λmax(Λ) ≤ C0 for some constant C0 > 0.
Assumption A.6. max1≤j ̸=k≤p |Λjk| ≤ c0 < 1 for some constant c0 > 0.

Assumptions A.4-A.6 are mild and commonly used in the high-dimensional settings. Assumption
A.4 is the technical condition to bound the difference between ∥S̃n,G∥∞ and ∥NG∥∞, where NG ∼
Np0(0,ΛG). Specially, Assumption A.4 imposes suitable restrictions on the growth rate of p0 and
it is commonly used in the group inference literature, such as [59] and [16]. Assumption A.5 and
A.6 are used to establish the limiting distribution of ∥NG∥∞. Assumptions A.5 requires that the
eigenvalues of ΛG are bounded. Assumption A.6 is widely used to establish the limiting distribution
of the max type statistic in the high-dimensional settings, see [8], [54], and [36] for further examples.

The validity of the above bootstrap method requires the following assumptions.
Assumption A.7. {log(np0)}8/n = o(1).

Assumption A.8. min1≤j≤p E(S̃2
nj) ≥ Cmin, where Cmin is a positive constant.

Assumption A.7 and A.8 are the technical assumptions needed for the gaussian multiplier bootstrap
method. Assumption A.7 is imposed for controlling the estimation error of gaussian multiplier
bootstrap statistic M ♯

n,G . Theorem A.1 below establishes the honest property of the bootstrap
procedure for the statistic Mn,G .

Denote B(a) = {(j, k) : |Λjk| ≥ a, j, k ∈ H0, j ̸= k} and A(b) = B((log p)−2−b).
Assumption A.9. Suppose that for some b > 0 and q > 0,∑

(j,k)∈A(b)

p

2|Λjk|
1+|Λjk|+q = O

(
p2/(log p)2

)
.

Remark A.2. Recall Λjk is the covariance between S̃nj and S̃nk. Thus, A(b) contains all the
strongly correlated pairs and Assumption A.9 requires that the number of these pairs cannot be too
large. If |Λjk| ≤ a0 for some constant 0 < a0 ≤ 1, then this assumption holds under |A(b)| =
O
(
p

2
1+a0

−q/(log p)2
)

for some b > 0 and q > 0. Similar assumptions were considered in [10], [20]
and [36].
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A.9 Proofs of theorems

The proof of Theorem 3.1: We denote

β̃h = arg min
βh∈Rp

ELn(βh)

where Ln(βh) is defined in equation (2.6). By triangle inequality of l1 and l2 norms, it suffices to
show that the l1 and l2 norms of β̂h − β̃h and β̃h − βh satisfy the requirements in this theorem
respectively.

Firstly we calculate l1 and l2 norms of difference between β̂h and β̃h. The results are presented in
Lemma A.2.

Secondly, by Lemma A.8 in Supplementary Material and Theorem 1 in [43], we can show that
β̃h = (n− 1)βh/n, and thus

∥β̃h − βh∥2 =
1

n
∥βh∥2, and ∥β̃h − βh∥1 =

1

n
∥βh∥1.

By the sparse assumption, ∥βh∥2/n = o(
√
sY log p/n) and ∥βh∥1/n = o(sY

√
log p/n). Thus

Theorem 3.1 is proved.

The proof of Theorem 3.2: By Lemma A.3, the distribution of maxj∈G |T̃nj | can be approximated
by ∥NG∥∞ with NG ∼ Np0(0,ΛG). By Lemma 6 of [8], we obtain

lim
(n,p0)→∞

∣∣∣∣Pr(Mn,G − 2 log p0 + log log p0 ≤ t
)
− exp

{
− 1√

π
exp(−t/2)

}∣∣∣∣ = 0.

Note that all the universal constants do not depend on n, p, βh and θj , j = 1, . . . , p. Thus this
theorem is proved.

The proof of Theorem A.1: For the convenience of the proof, we introduce some notations. Denote
Unj as

Unj =
1

n(n− 1)

∑
1≤i̸=ĩ≤n

hsymj (Yi,Xi;Yĩ,Xĩ), (1.24)

where

hsymj (Yi,Xi;Yĩ,Xĩ) =
1

2

{
hj(Yi,Xi;Yĩ,Xĩ) + hj(Yĩ,Xĩ;Yi,Xi)

}
, (1.25)

and

hj(Yi,Xi;Yĩ,Xĩ) =

{
I(Yĩ ≤ Yi)−

1

2
− Z⊤

ijγj

}(
Xij − Z⊤

ijθj

)
. (1.26)

Denote Ũnj =: σ−1
j Unj . Unj plays an important role in the proof of this theorem.

Let w1, . . . , wn be i.i.d. N(0, 1) random variables that are independent of {Xi, Yi}ni=1 and denote
L♯n,G as :

L♯n,G = max
j∈G

[
2

σj
√
n

n∑
i=1

{
1

n− 1

∑
ĩ ̸=i

hsymj (Yi,Xi;Yĩ,Xĩ)− Unj

}
wi

]2
, (1.27)

where Unj and hsymj (·) are defined in (1.24) and (1.25). The proof follows from the general results
for the multiplier bootstrap of U -statistic in [12]. Here, we extend these results for approximate
high-dimensional U -statistic by results in [13] and rewrite it in a suitable form for our analysis. It is
now presented in Lemma A.22 in the Supplementary Material. Suppose ζ1 is a sequence satisfying
ζ1
√
1 ∨ log(p0/ζ1) → 0 as n → ∞. According to Lemma A.22, to prove this theorem, it suffices

to prove
∣∣∥T̃n,G∥∞ − ∥S̃n,G∥∞

∣∣ = op(ζ1) and Prw
(∣∣√M ♯

n,G −
√
L♯n,G

∣∣ ≥ ζ1
)
→ 0. We denote

21

65237 https://doi.org/10.52202/079017-2083



ζ1 = C(log(np0))
−1/2, where C is a sufficient large constant. The proofs of these results are

presented in Lemmas A.17, A.18 in the Supplementary Material.

With Lemmas A.17, A.18 and A.22 in the Supplementary Material, we obtain

sup
α∈(0,1)

∣∣P (Mn,G > c
(2)
G (α)

)
− α

∣∣ = o(1)

when H0,G holds. Note that all the universal constants in the proof do not depend on n, p, βh and
θj , j = 1, . . . , p. We thus have

sup
βh∈Ω0

G

sup
α∈(0,1)

∣∣P (Mn,G > c
(2)
G (α)

)
− α

∣∣ = o(1).

The proof of Theorem 3.3: Using the inequality 2a1a2 ≤ ϵ−1a21 + ϵa22 for any ϵ > 0, we have

max
j∈G

(
σ̂−1
j

√
nβhjδj

)2 ≤ (1 + ϵ)Mn,G + (1 + ϵ−1)max
j∈G

σ̂−2
j (Tnj −

√
nβhjδj)

2. (1.28)

Denote ηG = |maxj∈G σ̂
−2
j (Tnj −

√
nβhjδj)

2 − maxj∈G σ
−2
j (Snj −

√
nβhjδj)

2|, and ηG =

op((log p0)
−1/2) by Lemma A.16 in the Supplementary Material. We can derive

lim
(n,p0)→∞

inf
βh∈Ω1

G(2+ϵ0)
Pr
(
max
j∈G

σ̂−2
j (Tnj −

√
nβhjδj)

2 − 2 log p0 + log log p0 ≤ t
)

≥ lim
(n,p0)→∞

inf
βh∈Ω1

G(2+ϵ0)
Pr
(
max
j∈G

σ−2
j (Snj −

√
nβhjδj)

2 − 2 log p0 + log log p0 ≤ t− ηG
)

≥ lim
(n,p0)→∞

inf
βh∈Ω1

G(2+ϵ0)
Pr
(
max
j∈G

(σ2
j − β2

hjδ
2
j )

−1(Snj −
√
nβhjδj)

2 − 2 log p0 + log log p0 ≤ t− ηG
)

=exp

{
− 1√

π
exp(−t/2)

}
.

The last equality holds by Lemma A.19, A.20 in the Supplementary Material and Lemma 6 of [8].
Denote t = log log p0/2, it implies that

lim
(n,p0)→∞

inf
βh∈Ω1

G(2+ϵ0)
Pr
(
max
j∈G

σ̂−2
j (Tnj −

√
nβhjδj)

2 ≤ 2 log p0 − log log p0/2
)
= 1. (1.29)

For any βh ∈ Ω1
G(2 + ϵ0), applying Lemma A.14 in the Supplementary Material, we derive

max
j∈G

(
σ̂−1
j

√
nβhjδj

)2
= (1 + o(1))max

j∈G

(
σ−1
j

√
nβhjδj

)2
> (2 + ϵ0) log p0 (1.30)

holds with probability 1 as (n, p0) → 1.

Substitute (1.29) and (1.30) into (1.28), we derive that

Mn,G ≥ 1

1 + ϵ
max
j∈G

(
σ̂−1
j

√
nβhjδj

)2 − 1

ϵ
max
j∈G

σ̂−2
j (Tnj −

√
nβhjδj)

2

>
(2 + ϵ0) log p0

1 + ϵ
− 2 log p0

ϵ
+

log log p0
2ϵ

.

Now we prove the validity of c(i)G (α), i = 1, 2. Note that c(1)G (α) ≤ 2 log p0 by the def-

inition of c(1)G (α). By the properties of Gaussian multiplier bootstrap statistic(Lemma A.22),

c
(2)
G (α) is equal to the (1− α)th quantile of maxj∈G σ̂

−2
j (Tnj −

√
nβhjδj)

2 asymptotically. Thus

lim(n,p0)→∞ infβh∈Ω1
G(2+ϵ0) Pr

(
2 log p0 > c

(2)
G (α)

)
= 1 by (1.29). By choosing (ϵ0, ϵ) satisfying

2+ϵ0
1+ϵ − 2

ϵ ≥ 2,

lim
(n,p0)→∞

inf
βh∈Ω1

G(2+ϵ0)
Pr
(
Mn,G > c

(i)
G (α)

)
= 1, i = 1, 2

can be proved.
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The proof of Theorem A.3: At first we calculate the uniform bound of the difference between
constructed statistic T̃nj and its ideal version S̃nj . The result is presented in Lemma A.4.

For (1.19), by Lemma 6.1 in [34], we have

max
1≤j≤p

sup
0≤t≤2

√
log p

∣∣∣∣∣Pr
(
|S̃nj | ≥ t

)
G(t)

− 1

∣∣∣∣∣ ≤ C(log p)−2−γ1 (1.31)

for some constant 0 < γ1 < 1/2. So (1.19) follows from Lemma A.4, and the fact that G(t+
o((log p)−1/2))/G(t) = 1 + o(1) uniformly in 0 ≤ t ≤

√
2 log p.

For (1.20), it suffices to show that

sup
0≤t≤bp

∣∣∣∣∣
∑
j∈H0

I
(
|S̃nj | ≥ t

)
q0G(t)

− 1

∣∣∣∣∣→ 0 in probability. (1.32)

Let z0 < z1 < . . . < zdp ≤ 1 and ti = G−1 (zi), where z0 = G (bp) , zi = cp/p+ c
2/3
p ei

ν

/p with

cp = pG (bp), and dp =

{
log

(p−cp)
c
2/3
p

}1/ν

and 0 < ν < 1, which will be specified later. We have

G (ti) /G (ti+1) = 1 + o(1) uniformly in i, and t0/
√
2 log (p/cp) = 1 + o(1). Note that uniformly

for 1 ≤ j ≤ m,G (ti) /G (ti−1) → 1 as p→ ∞. The proof of (1.32) reduces to show that

max
0≤i≤dp

∣∣∣∣∣
∑
j∈H0

I
(
|S̃nj | ≥ ti

)
q0G(ti)

− 1

∣∣∣∣∣→ 0 in probability. (1.33)

In fact, for each ϵ > 0, we have

Pr

(
max

0≤i≤dp

∣∣∣∣
∑
j∈H0

{
I
(
|S̃nj | ≥ ti

)
−G(ti)

}
q0G(ti)

∣∣∣∣ ≥ ϵ

)
≤

dp∑
j=0

Pr

(∣∣∣∣
∑
j∈H0

{
I
(
|S̃nj | ≥ ti

)
−G (ti)

}
q0G(ti)

∣∣∣∣ ≥ ϵ/2

)
.

Set I(t) =
∑

j∈H0
{I(|S̃nj |≥t)−Pr(|S̃nj |≥t)}

q0G(t) . By Markov’s inequality Pr (|I (ti)| ≥ ϵ/2) ≤ E{I(ti)}2

ϵ2/4 ,

and it suffices to show
∑dp
j=0 E{I(ti)}2 = o(1). To see this, by (1.31),

EI2(t) =
∑
j∈H0

{
Pr
(
|S̃nj | ≥ t

)
− Pr2

(
|S̃nj | ≥ t

)}
q20G

2(t)

+

∑
j,k∈H0,k ̸=j

{
Pr
(
|S̃nj | ≥ t, |S̃nk| ≥ t

)
− Pr

(
|S̃nj | ≥ t

)
Pr
(
|S̃nk| ≥ t

)}
q20G

2(t)

≤ C

q0G(t)
+

1

q20

∑
(j,k)∈A(b):j,k∈H0

Pr
(
|S̃nj | ≥ t, |S̃nk| ≥ t

)
G2(t)

+
1

q20

∑
(j,k)∈A(b)c:j,k∈H0

{
Pr
(
|S̃nj | ≥ t, |S̃nk| ≥ t

)
G2(t)

− 1

}

=
C

q0G(t)
+ I11(t) + I12(t).

For (j, k) ∈ A(b)c with j, k ∈ H0, applying Lemma 6.1 in [34], we have I12(t) ≤ C(log p)−1−ξ for
some ξ > 0 uniformly in 0 < t <

√
2 log p. By Lemma 6.2 in [34], for (j, k) ∈ A(b) with j, k ∈ H0,

we have

Pr
(
|S̃nj | ≥ t, |S̃nk| ≥ t

)
≤ C(t+ 1)−2 exp

(
− t2

1 + |Λjk|

)
.

So that

I11(t) ≤ C
1

q20

∑
(j,k)∈A(b):j,k∈H0

(t+ 1)−2 exp

(
− t2

1 + |Λjk|

)
G−2(t) ≤ C

1

q20

∑
(j,k)∈A(b):j,k∈H0

G(t)
−

2|Λjk|
1+|Λjk| .
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Note that for 0 ≤ t ≤ bp, we have G(t) ≥ G (bp) = cp/p, so that by assumption A.9 it follows that
for some b, q > 0,

I11(t) ≤ C
∑

(j,k)∈A(b):j,k∈H0

p
2|Λjk|

1+|Λjk|+q−2
= O

(
1/(log p)2

)
.

By the above inequalities, we can prove (1.33) by choosing 0 < ν < 1 so that
dp∑
i=0

E{I (ti)}2 ≤ C

dp∑
i=0

{pG(ti)}−1 + Cdp
{
(log p)−1−ν + (log p)−2

}
≤ C

dp∑
i=0

1

cp + c
2/3
p eiν

+ o(1)

= o(1).

The proof of Theorem A.4: We first consider the case when t̂, given by (1.18), doesn’t exist. In
this case, t̂ =

√
2 log p and we consider the event F0 = {

∑
j∈H0

I(|T̃nj | ≥
√
2 log p) ≥ 1}, which

mean at least one false positive. In order to show the FDR/FDP can be controlled in this case, we
show that

Pr(F0) → 0, as (n, p) → ∞. (1.34)

And we have

Pr(F0) ≤ Pr

(∑
j∈H0

I(T̃nj ≥
√
2 log p) ≥ 1

)
+ Pr

(∑
j∈H0

I(T̃nj ≤ −
√
2 log p) ≥ 1

)
=: Pr(F1) + Pr(F2). (1.35)

For any ϵ > 0, we can bound the first term by

Pr(F1) = Pr

(∑
j∈H0

I(S̃nj + T̃nj − S̃nj ≥
√

2 log p) ≥ 1

)

≤ Pr

(∑
j∈H0

I(S̃nj ≥
√
2 log p− ϵ) ≥ 1

)
+ Pr

(
max
j∈H0

|T̃nj − S̃nj | ≥ ϵ

)

≤ pmax
j∈H0

Pr

(
S̃nj ≥

√
2 log p− ϵ

)
+ Pr

(
max
j∈H0

|T̃nj − S̃nj | ≥ ϵ

)
.

By Lemma A.4, we know that Pr
(
maxj∈H0 |T̃nj − S̃nj | ≥ ϵ

)
→ 0. For simplify, we rewrite

S̃nj =
∑n
i=1 ξij/

√
n. Since E(ξij) = 0, Var(ξij) = 1 and {ξij}ni=1 is a i.i.d. sequence, by Lemma

6.1 of [34], we have sup0≤t≤2
√
log p

∣∣∣Pr(|S̃nj |≥t)
G(t) − 1

∣∣∣ ≤ C(log p)−1. Now let t =
√
2 log p− ϵ, we

have

Pr
(
S̃nj ≥

√
2 log p− ϵ

)
≤ G(

√
2 log p− ϵ) + C

G(
√
2 log p− ϵ)

log p

for j ∈ H0 uniformly. Hence pmaxj∈H0
Pr
(
S̃nj ≥

√
2 log p − ϵ

)
≤ (C + 1)pG(

√
2 log p − ϵ),

which goes to zero as (n, p) → ∞. By symmetry, we know that Pr(F2) in (1.35) also goes to 0.
Therefore (1.34) is proved.

Now consider the case when 0 ≤ t̂ ≤ bp holds. We have

FDP(t̂) =

∑
j∈H0

I(|T̃nj | ≥ t̂)

max
{∑p

j=1 I(|T̃nj | ≥ t̂), 1
} ≤ q0G(t̂)

max
{∑p

j=1 I(|T̃nj | ≥ t̂), 1
} (1 +Ap),

whereAp = sup0≤t≤bp

∣∣∣∣∑j∈H0
I(|T̃nj |≥t)

q0G(t) −1

∣∣∣∣. Note that by definition q0G(t̂)

max{
∑p

j=1 I(|T̃nj |≥t̂),1}
≤ q0α

p .

The proof is complete if Ap → 0 in probability, which has been shown by Theorem A.3.
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A.10 Some technical lemmas

For the convenience of the proof, we introduce some definitions. Denote Unj as

Unj =
1

n(n− 1)

∑
1≤i ̸=ĩ≤n

hj(Yi,Xi;Yĩ,Xĩ),

where

hj(Yi,Xi;Yĩ,Xĩ) =
1

2

[{
I(Yĩ ≤ Yi)−

1

2
− Z⊤

ijγj

}(
Xij − Z⊤

ijθj

)
(1.36)

+

{
I(Yi ≤ Yĩ)−

1

2
− Z⊤

ĩj
γj

}(
Xĩj − Z⊤

ĩj
θj

)]
.

And denote Ũnj =: σ−1
j Unj . Unj plays an important role in the proof of main results. Let sX be the

sparsity level for parameter θj as sX = max1≤j≤p∥θj∥0.

Lemma A.1. Under Assumptions A.1 and A.2, the θ̂j defined in (2.5) satisfies

∥θ̂j − θj∥1 ≤ cλXsX

with probability at least 1− c1 exp(−c2 log p). Here, (c, c1, c2) are universal constants.

Lemma A.2. Under assumptions in Theorem 3.1, β̂h defined in (3.11) satisfies

∥β̂h − β̃h∥2 ≤ c0λY
√
sY , and ∥β̂h − β̃h∥1 ≤ c′0λY sY

with probability at least 1 − c1 exp(−c2 log p). Here β̃h = argminβh∈Rp ELn(βh) with Ln(βh)
defined in equation (2.6).

Proof. The main part of the proof is to verify RSC condition in assumption A.3 and get exponential
inequality of ∥∇Ln(βh)∥∞. Based on these results, we use Lemma A.5 to prove theorem A.2.

Thus, we focus on RSC condition at the beginning. Note that for ∆ ∈ Rp,

En(∆) = {∇Ln(βh +∆)−∇Ln(βh)}⊤∆

=
1

n

n∑
i=1

(X⊤
i ∆)2.

From Proportion 2 in [38], we then have

En(∆) ≥ α1∥∆∥22 − τ1

√
log p

n
∥∆∥1∥∆∥2 ∀∥∆∥2 ≤ 1 (1.37)

with probability at least 1 − c1 exp{−c2n} for an appropriate choice of α1. By the arithmetric
mean-geometric mean inequality,

τ1

√
log p

n
∥∆∥1∥∆∥2 ≤ α1

2
∥∆∥22 +

τ21
2α1

log p

n
∥∆∥21,

and consequently,

En(∆) ≥ α1

2
∥∆∥22 −

τ21
2α1

log p

n
∥∆∥21,

which establishes (1.22) in assumption A.3. As square loss function is convex, condition (1.23) then
follows via Lemma 8 in [35]. So we verify RSC condition completely.

Next, we construct exponential inequalities of ∇Ln(βh). By conditions of lemma A.5, it suffices to
show that there exist universal constants (c, c1, c2) such that

Pr

(
∥∇Ln(β̃h)∥∞ ≥ c

√
log p

n

)
≤ c1 exp(−c2 log p). (1.38)

By lemma A.7, we can choose proper (c, c1, c2) such that both RSC condition and inequality (1.38)

are satisfied. As λY is proportional to
√

log p
n , the claimed l1 and l2 bounds then follow directly from

Lemma A.5 by choosing R proportional to 1
λY

.
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Lemma A.3. Under the assumptions in Theorem 3.2,

lim
n→∞

sup
βh∈Ω0

G

sup
t∈R

∣∣Pr(max
j∈G

|T̃nj | ≤ t
)
− Pr

(
∥NG∥∞ ≤ t

)∣∣ = 0,

where NG ∼ Np0(0,ΛG).

Proof. By Lemma A.16, we obtain

|max
j∈G

|T̃nj | −max
j∈G

|S̃nj || ≤ max
j∈G

|T̃nj − S̃nj | ≤ Cq(n, p)

for some constant C, with probability 1 as (n, p) → ∞. And q(n, p) is a sequence satisfying
q(n, p) = o((log p0)

−1/2). This implies that

Pr
(
max
j∈G

|T̃nj | ≤ t
)
− Pr

(
∥NG∥∞ ≤ t

)
≤Pr

(
max
j∈G

|S̃nj | ≤ t+ Cq(n, p)
)
− Pr

(
∥NG∥∞ ≤ t+ Cq(n, p)

)
+ Pr

(
∥NG∥∞ ≤ t+ Cq(n, p)

)
− Pr

(
∥NG∥∞ ≤ t

)
=:I1 + I2.

By sub-Gaussian condition in Assumption A.1 and Assumption A.8, lim supn→∞ supt∈R I1 ≤
0. By the Gaussian anti-concentration inequality in Lemma A.20, we derive that supt∈R I2 ≤
Cq(n, p)

√
1 ∨ log(p0/q(n, p)) for some constant C. As q(n, p) = o((log p0)

−1/2), we derive that

lim sup
n→∞

sup
t∈R

(
Pr
(
max
j∈G

|T̃nj | ≤ t
)
− Pr

(
∥NG∥∞ ≤ t

))
≤ 0.

Similarly,

lim inf
n→∞

inf
t∈R

(
Pr
(
max
j∈G

|T̃nj | ≤ t
)
− Pr

(
∥NG∥∞ ≤ t

))
≥ 0.

This completes the proof.

Lemma A.4. Under the assumptions in Theorem A.3,

max
j∈H0

|T̃nj − S̃nj | = op(
1√
log p

).

Proof. The proof of this Lemma is similar to Lemma A.16. We only need replace G with H0 and
replace p0 with p.

Lemma A.5. (Theorem 1 in [35]) Suppose the regularizer ρλ satisfies Assumption A.2, the empirical
loss Ln satisfies the RSC condition with 3

4µ < α1, and β∗ is feasible for the objective. Consider any
choice of λ such that

4

L
·max

{∥∥∇Ln(β∗)
∥∥
∞, α2

√
log p

n

}
≤ λ ≤ α2

6RL
(1.39)

and suppose n ≥ 16R2 max(τ2
1 ,τ

2
2 )

α2
2

log p. Then any vector β̃ satisfying the first-order necessary
condition (3.11) satisfies the error bounds

∥β̂ − β∗∥2 ≤ 6λL
√
k

4α1 − 3µ
, and ∥β̂ − β∗∥1 ≤ 24λLk

4α1 − 3µ
(1.40)

where k = ∥β∗∥0.

26

65242https://doi.org/10.52202/079017-2083



Lemma A.6. Consider a U -statistics

U =
1

n(n− 1)

∑
i ̸=j

h(Zi, Zj)

with a kernel h based on i.i.d. random variables Z1, . . . , Zn. Then for ∀s ∈ R,

E exp{s(U − EU)} ≤ E exp

[
s

N

N∑
i=1

{
h(Zi, Zi+N )− EU

}]
where N = ⌊n2 ⌋, which represents the greatest integer less than or equal to n

2 .

Proof. It can be seen in the proof of Lemma 14 in [43].

Lemma A.7. Under the Assumptions A.1 and A.2, there exist universal constants (c, c1, c2) such that

Pr

(
∥∇Ln(β̃h)∥∞ ≥ c

√
log p

n

)
≤ c1 exp(−c2 log p), (1.41)

where ∇Ln(β̃h) is the gradient of Ln(β̃h), which is a p-dimension column vector.

Proof. Suppose ∇kLn(β̃h) is the k-th component of ∇Ln(β̃h). Note that

∇kLn(β̃h) =
1

n

n∑
i=1

Xik

[
X⊤
i β̃h − {Fn(Yi)−

1

2
}
]

=
1

n

n∑
i=1

Xik

[
X⊤
i β̃h − {F (Yi)−

1

2
}
]
−Xik

{
Fn(Yi)− F (Yi)

}
=

1

n

n∑
i=1

Xik

[
X⊤
i β̃h − {F (Yi)−

1

2
}
]
− 1

n2

n∑
i=1

n∑
ĩ=1

Xik

{
I(Yĩ ≤ Yi)− F (Yi)

}
=

1

n

n∑
i=1

Xik

[
X⊤
i β̃h − {F (Yi)−

1

2
}
]
− n− 1

n
· 1

n(n− 1)

∑
1≤i̸=ĩ≤n

Xik

{
I(Yĩ ≤ Yi)− F (Yi)

}
− 1

n2

n∑
i=1

Xik

{
1− F (Yi)

}
,

where I(·) is an indicator function. So we decompose ∇kLn(β̃h) into three parts:

∇kLn(β̃h) =
1

n

n∑
i=1

Xik

[
X⊤
i β̃h − {F (Yi)−

1

2
}
]
− n− 1

n
Ak −

1

n2

n∑
i=1

Xik

{
1− F (Yi)

}
,

where Ak is a U -statistics with kernel hk(y1, x1k; y2, x2k) = 1
2

[
x1k
{
I(y2 ≤ y1) − F (y1)

}
+

x2k
{
I(y1 ≤ y2)− F (y2)

}]
. Then

Pr

(
|∇kLn(β̃h)| ≥ c

√
log p

n

)
≤ Pr

(
|Ak| ≥ t

)
(1.42)

+ Pr

(∣∣∣∣ 1n
n∑
i=1

Xik

[
X⊤
i β̃h − {F (Yi)−

1

2
}
]∣∣∣∣ ≥ t

)
(1.43)

+ Pr

(∣∣∣∣ 1n2
n∑
i=1

Xik

{
1− F (Yi)

}∣∣∣∣ ≥ t

)
(1.44)

with t = c
3

√
log p
n .
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Firstly, for probability (1.42). For ∀s ∈ R

Pr
(
Ak ≥ t

) (1)

≤ exp(−st)E{exp(sAk)}
(2)

≤ exp(−st)E
[
exp

{
s

N

N∑
i=1

hk(Yi, Xik;YN+i, X(N+i)k)

}]

≤ exp(−st)E
[
exp

{
s

2N

N∑
i=1

(Xik +X(N+i)k)

}]
≤ exp

(
−st+ C1K

2

2N
s2
)
,

where C1 is an absolute constant, K = max1≤k≤p∥X1k∥ψ2 and N = ⌊n2 ⌋. Note that (1) holds by
Markov inequality, (2) holds by Lemma A.6. Denote s = Nt

C1K2 , we have

Pr
(
Ak ≥ t

)
≤ exp

(
− Nt2

2C1K2

)
.

Similarly, we have

Pr
(
|Ak| ≥ t

)
≤ 2 exp

(
− Nt2

2C1K2

)
. (1.45)

Secondly, for probability (1.43). As both
{
X⊤
i β̃h − {F (Yi) − 1

2}
}n
i=1

and {Xik}ni=1 are sub-
Gaussian random variables,

{
Xik

[
X⊤
i β̃h − {F (Yi)− 1

2}
]}n
i=1

is a zero mean sub-Exponential
random variable sequence with sub-Exponential norm

∥∥Xik

[
X⊤
i β̃h − {F (Yi)− 1

2}
]∥∥
ψ1

≤ KK ′,

where K ′ = ∥X⊤
1 β̃h − {F (Y1) − 1

2}∥ψ2
. Then by inequality for r.v. with sub-exponential sum

(Corollary 2.8.3 in [49]),

Pr

(∣∣∣∣ 1n
n∑
i=1

Xik

[
X⊤
i β̃h − {F (Yi)−

1

2
}
]∣∣∣∣ ≥ t

)
≤ 2 exp

{
−C2 min

(
nt2

K2K ′2 ,
nt

KK ′

)}
, (1.46)

where C2 is an absolute constant.

Thirdly, for probability (1.44). Using general Hoeffding’s inequality (Theorem 2.6.3 in [49]) directly,

Pr

(∣∣∣∣ 1n2
n∑
i=1

Xik

{
1− F (Yi)

}∣∣∣∣ ≥ t

)
≤ Pr

(∣∣∣∣ 1n2
n∑
i=1

Xik

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−C3

n3t2

K2

)
, (1.47)

whereC3 is an absolute constant. As exp(−n3) = o(exp(−n)), probability (1.44) is trivial compared
to other two terms. Combining inequalities (1.45), (1.46) and (1.47), we have

Pr

(
∥∇Ln(β̃h)∥∞ ≥ c

√
log p

n

)
= Pr

(
max
1≤k≤p

|∇kLn(β̃h)| ≥ c

√
log p

n

)
≤ p max

1≤k≤p
Pr

(
|∇kLn(β̃h)| ≥ c

√
log p

n

)
≤ 4p exp(−C4 log p),

where C4 = min{ c2

36C1K2 ,
C2c

2

9K2K′2 }. For a given constant c, we can choose arbitrary constants
c1 ≥ 4, c2 ≤ C4 − 1 and inequality (1.41) is satisfied.

Lemma A.8. Under the assumptions in theorem 3.1, then

βh =
Cov(F (Y ),β⊤X)

β⊤Σβ
β.

Proof. The proof of this lemma is similar to the proof of theorem 2.1 in [32]. Using Jensen’s
inequality and LC condition, we can get this result. We omit the proof.
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Lemma A.9. Suppose pλX
satisfies Assumption A.2. And under the Assumption A.1, we have∥∥∥∥ 1n

n∑
i=1

Zij(Xij − Z⊤
ij θ̂j)

∥∥∥∥
∞

≤ LλX ,

where θ̂j is defined in (2.5) and L is a constant only depend on pλX
.

Proof. By the property of θ̂j , we have

1

n

n∑
i=1

Zijk(Xij − Z⊤
ij θ̂j) = ∇pλX

(θ̂jk)

with probability 1. Under assumption A.2 and by Lemma 4(a) in [35], all subgradients and derivatives
of pλX

are bounded in magnitude by LλX , that is,

max
1≤k≤p

|∇pλX
(θ̂jk)| ≤ LλX .

And this lemma is proved.

Lemma A.10. Under the Assumptions A.1 and A.2, for βh ∈ {βh : ∥βh∥∞ ≲
√

log p/n}, there
exist universal constants (c, c1, c2) such that

Pr

(∥∥∥∥ 1n
n∑
i=1

Zij{Fn(Yi)− 1/2− Z⊤
ijγj}

∥∥∥∥
∞

≥ c

√
log p

n

)
≤ c1 exp(−c2 log p).

Proof. At first we decompose 1
n

∑n
i=1 Zij{Fn(Yi)− 1/2− Z⊤

ijγj} as

1

n

n∑
i=1

Zij{Fn(Yi)− 1/2− Z⊤
ijγj} = ∇Ln(βh) +

1

n

n∑
i=1

βhjXijZij

= ∇Ln(βh) +
1

n

n∑
i=1

βhj{XijZij − E(XjZj)}+ βhjE(XjZj)

=: I1 + I2 + I3.

If ∥βh∥∞ = 0, then I2, I3 = 0. Thus this Lemma is proved by Lemma A.7. So in the following proof,
suppose ∥βh∥∞ > 0, that is, there exists 1 ≤ j ≤ p, such that |βhj | > 0. As ∥βh∥∞ ≲

√
log p/n,

there exist a constant c3 > 0 such that ∥βh∥∞ ≤ c3
√
log p/n. Denote c′ = c/3, c′1 = c1/3, we

have

Pr

(∥∥∥∥ 1n
n∑
i=1

Zij{Fn(Yi)− 1/2− Z⊤
ijγj}

∥∥∥∥
∞

≥ c

√
log p

n

)
≤

3∑
k=1

Pr

(
∥Ik∥∞ ≥ c′

√
log p

n

)
.

So it suffices to prove Pr(∥Ik∥∞ ≥ c′
√
log p/n) ≤ c′1 exp(−c2 log p), k = 1, 2, 3.

For k = 1, this inequality holds by lemma A.7 and choosing proper constants.

For k = 2, by sub-Gaussian Assumption in Assumption A.1 and applying Bernstein inequal-
ity(Theorem 2.8.2 in [49]), we derive

Pr

(
∥I2∥∞ ≥ c′

√
log p

n

)
≤ p max

1≤k≤p
Pr

(∣∣∣∣βhjn
n∑
i=1

{XijZijk − E(XjZjk)}
∣∣∣∣ ≥ c′

√
log p

n

)

≤ 2p max
1≤k≤p

exp

{
−c4 min

(
c′2 log p

β2
hjK

2n
,
C
√
log p

|βhj |K
√
n

)
n

}

≤ 2p exp

[
−c4 min

{(
c′

c3K

)2

,
c′

c3K

}
n

]
,
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where c4 is a constant independent of βh and K = max1≤k≤p∥XjZjk∥ψ1 . Thus this inequality
holds as n≫ log p.

For k = 3. As Xj , j = 1, . . . , p are all sub-Gaussian with uniform bounded sub-Gaussian norm, then
it follows that ∥I3∥∞ ≤ Cc3

√
log p/n. In summary, this Lemma is proved.

Lemma A.11. Let X1, . . . , Xn be i.i.d mean zero random variables. If there exist constants L1 and
L2, such that Pr (|Xi| ⩾ x) ⩽ L1 exp (−L2x

r) for some r > 0, then for x ⩾
√

8E (X2
i ) /n

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ⩾ x

)
⩽4 exp

{
−1

8
nr/(2+r)x2r/(2+r)

}
+ 4nL1 exp

{
−L2n

r/(2+r)x2r/(2+r)

2r

}
.

Proof. Details of the proof can be seen in [40].

Lemma A.12. For a sequence η(n, p) → ∞ as (n, p) → ∞, we have

Pr

(
sup
t∈R

∣∣Fn(t)− F (t)
∣∣ > η(n, p)√

n

)
= o(1).

Proof. We can get this result by using DKW inequality([48]) directly.

Lemma A.13. Under the Assumption A.1 and A.2, maxi,j(Xij − Z⊤
ijθj)

2, maxi,j e
2
i,j and

maxi,j
∣∣(Xij − Z⊤

ijθj)ei,j
∣∣ are all Op(log(np)). Both maxj

1
n

∑n
i=1

{
Z⊤
ij(θj − θ̂j)

}2
and

maxj
1
n

∑n
i=1(êij − eij)

2 are Op(s log pn ). We abbreviate 1 ≤ i ≤ n, j ∈ G as i, j respectively.

Proof. For a sufficient large constant C, by sub-Gaussian assumption we have

Pr
(
max
i,j

(Xij − Z⊤
ijθj)

2 > C2 log(np)
)

=Pr
(
max
i,j

∣∣Xij − Z⊤
ijθj

∣∣ > C
√
log(np)

)
≤npmax

i,j
Pr
(∣∣Xij − Z⊤

ijθj
∣∣ > C

√
log(np)

)
≤2np exp

{
−C2 log(np)/K2

1

}
= o(1),

where K1 is a constant independent of the choice of i, j. So maxi,j(Xij − Z⊤
ijθj)

2 = Op(log(np))

is proved. By same argument, we can prove both maxi,j e
2
i,j and maxi,j

∣∣(Xij − Z⊤
ijθj)ei,j

∣∣ are

Op(log(np)). Applying Theorem 2 in [35], it follows directly that maxj
1
n

∑n
i=1

[
Z⊤
ij(θj − θ̂j)

]2
=

Op(s
log p
n ). But for maxj

1
n

∑n
i=1(êij − eij)

2, there is something different. Note that for a sufficient
large constant C > 0,

Pr

(
max
j

1

n

n∑
i=1

(êij − eij)
2 > 4C

s log p

n

)

=Pr

(
max
j

1

n

n∑
i=1

{
Fn(Yi)− F (Yi)− Z⊤

ij(γ̂j − γj)
}2

> 4C
s log p

n

)

≤Pr

(
max
j

1

n

n∑
i=1

{
Fn(Yi)− F (Yi)

}2
+
{
Z⊤
ij(γ̂j − γj)

}2
> 2C

s log p

n

)

≤Pr

(
sup
t∈R

∣∣Fn(t)− F (t)
∣∣ >√ log p

n

)
+ Pr

(
max
j

1

n

n∑
i=1

{
Z⊤
ij(γ̂j − γj)

}2
> C

s log p

n

)
.

The first term of last inequality is o(1) by lemma A.12 with η(n, p) =
√
log p. The second term is

also o(1) by applying Theorem 2 in [35] again. In summary, this lemma is proved.
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Lemma A.14. Under the Assumptions A.1 and A.2,

max
j∈G

∣∣σ2
j − σ̂2

j

∣∣ = op
(
r2(n, p, p0, s)

)
,

where

r2(n, p, p0, s) =

√
(log np0)5

n
∨
√
s log p log(np)

n
∨
√

(s log p)3/2
√
log np

n
∨
√

(s log p)2

n
.

(1.48)

Proof. To prove this lemma, we define

σ̃2
j =

1

n

n∑
i=1

{(
Xij − Z⊤

ijθj
)
eij +mj(Yi)

}2
,

where eij = F (Yi) − 1/2 − Z⊤
ijγj , mj(Yi) = Eβh

[(Xj − Z⊤
j θj){I(Y ≥ Yi) − F (Y )}] and

σ̃2
j is an unbiased estimator of σ2

j . It follows by the triangle inequality that maxj∈G
∣∣σ2
j − σ̂2

j

∣∣ ≤
maxj∈G

∣∣σ2
j − σ̃2

j

∣∣+maxj∈G
∣∣σ̃2
j − σ̂2

j

∣∣. So it suffices to prove both terms are op
(
(log p0)

−1
)
.

We begin with estimation of the rate of maxj∈G
∣∣σ2
j − σ̃2

j

∣∣. Note that

max
j∈G

∣∣σ2
j − σ̃2

j

∣∣ = max
j∈G

1

n

n∑
i=1

[{(
Xij − Z⊤

ijθj
)
eij +mj(Yi)

}2 − σ2
j

]
.

Since Prβh
(maxj∈G

∣∣σ2
j − σ̃2

j

∣∣ ≥ t) ≤ p0 maxj∈G Prβh
(
∣∣σ2
j − σ̃2

j

∣∣ ≥ t) and for ∀t ≥ σ2
j ,

Prβh

(∣∣∣∣{(Xij − Z⊤
ijθj

)
eij +mj(Yi)

}2 − σ2
j

∣∣∣∣ ≥ t

)
≤Prβh

(∣∣∣∣{(Xij − Z⊤
ijθj

)
eij +mj(Yi)

}2∣∣∣∣ ≥ t− σ2
j

)
=Prβh

(∣∣∣∣(Xij − Z⊤
ijθj

)
eij +mj(Yi)

∣∣∣∣ ≥√t− σ2
j

)
.

By sub-Gaussian assumption,
(
Xij − Z⊤

ijθj
)
eij + mj(Yi) is a sub-Exponential random vari-

able with uniform bounded sub-Exponential norm. When t is large enough, by the defi-
nition of sub-Exponential random variable, we could find some constants L1, L2 such that
Prβh

(∣∣(Xij − Z⊤
ijθj

)
eij +mj(Yi)

∣∣ ≥√t− σ2
j

)
≤ L1 exp(−L2

√
t). Thus it follows by Lemma

A.11 for some t ≥ C
√
(log np0)5/n with sufficient large constant C,

p0 max
j∈G

Prβh

(∣∣σ2
j − σ̃2

j

∣∣ ≥ t
)
≤ 4p0 exp(−n1/5t2/5/8) + 4np0C1 exp(−C2n

1/5t2/5) = Op
(
(np0)

−1
)

for some constants C1 and C2. Thus, maxj∈G
∣∣σ2
j − σ̃2

j

∣∣ = Op
(√

(log np0)5/n
)
.
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Next we estimate the rate of maxj∈G
∣∣σ̃2
j − σ̂2

j

∣∣. By definitions,

max
j∈G

∣∣σ̃2
j − σ̂2

j

∣∣
=max

j∈G

∣∣∣∣ 1n
n∑
i=1

{
(Xij − Z⊤

ij θ̂j)êij + m̂j(Yi)
}2 − {(Xij − Z⊤

ijθj)eij +mj(Yi)
}2∣∣∣∣

≤max
j∈G

∣∣∣∣ 1n
n∑
i=1

{
(Xij − Z⊤

ij θ̂j)êij + m̂j(Yi)− (Xij − Z⊤
ijθj)eij −mj(Yi)

}2∣∣∣∣
+max

j∈G

∣∣∣∣ 2n
n∑
i=1

{
(Xij − Z⊤

ijθj)eij +mj(Yi)
}{

(Xij − Z⊤
ij θ̂j)êij + m̂j(Yi)− (Xij − Z⊤

ijθj)eij −mj(Yi)
}∣∣∣∣

≤max
j∈G

∣∣∣∣ 2n
n∑
i=1

{
(Xij − Z⊤

ij θ̂j)êij − (Xij − Z⊤
ijθj)eij

}2∣∣∣∣+max
j∈G

∣∣∣∣ 2n
n∑
i=1

{
m̂j(Yi)−mj(Yi)

}2∣∣∣∣
+max

j∈G

∣∣∣∣ 2n
n∑
i=1

{
(Xij − Z⊤

ijθj)eij +mj(Yi)
}{

(Xij − Z⊤
ij θ̂j)êij + m̂j(Yi)− (Xij − Z⊤

ijθj)eij −mj(Yi)
}∣∣∣∣

=:2(I1 + I2 + I3).

So it suffices to estimate the converge rate of Ii, i = 1, 2, 3 respectively. Decomposing I1, it follows
that

I1 ≤
6∑

ν=1

I1ν ,

where I1ν is given by

I11 = max
j∈G

1

n

n∑
i=1

(Xij − Z⊤
ijθj)

2(êij − eij)
2,

I12 = max
j∈G

1

n

n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}2
e2ij ,

I13 = max
j∈G

1

n

n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}2
(êij − eij)

2,

I14 = max
j∈G

∣∣∣∣ 2n
n∑
i=1

(Xij − Z⊤
ijθj)eijZ

⊤
ij(θj − θ̂j)(êij − eij)

∣∣∣∣,
I15 = max

j∈G

∣∣∣∣ 2n
n∑
i=1

(Xij − Z⊤
ijθj)Z

⊤
ij(θj − θ̂j)(êij − eij)

2

∣∣∣∣,
I16 = max

j∈G

∣∣∣∣ 2n
n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}2
eij(êij − eij)

∣∣∣∣.
Then we deal with I1ν , ν = 1, . . . , 6 respectively. For simplify, in the rest of proof, we abbreviate
1 ≤ i ≤ n, j ∈ G as i, j respectively.

For I11, we have I11 ≤ maxi,j(Xij − Z⊤
ijθj)

2 maxj
1
n

∑n
i=1(êij − eij)

2 =

Op(log(np))Op(n
−1s log p) = Op(n

−1s log p log(np)) by lemma A.13. Similarly, we have
I12 ≤ maxi,j e

2
ij maxj

1
n

∑n
i=1

{
Z⊤
ij(θj − θ̂j)

}2
= Op(n

−1s log p log(np)).
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For I13, by Cauchy-Schwartz inequality and lemma A.13, it holds that

I13 ≤ 1

n

√√√√max
j

n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}4√√√√max
j

n∑
i=1

(êij − eij)4

≤ nmax
j

1

n

n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}2
max
j

1

n

n∑
i=1

(êij − eij)
2

= Op

(
n

(
s
log p

n

)2)
= Op

(
(s log p)2

n

)
.

Similarly, we have

I14 ≤ 2max
i,j

∣∣(Xij − Z⊤
ijθj)eij

∣∣√√√√max
j

1

n

n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}2√√√√max
j

1

n

n∑
i=1

(êij − eij)2

= Op(n
−1s log p log(np)),

I15 ≤ 2
√
nmax

i,j

∣∣Xij − Z⊤
ijθj

∣∣√√√√max
j

1

n

n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}2
max
j

1

n

n∑
i=1

(êij − eij)
2

= Op

(
(s log p)3/2

√
log(np)

n

)
,

I16 ≤ 2
√
nmax

i,j

∣∣eij∣∣max
j

1

n

n∑
i=1

{
Z⊤
ij(θj − θ̂j)

}2√√√√max
j

1

n

n∑
i=1

(êij − eij)2

= Op

(
(s log p)3/2

√
log(np)

n

)
.

Next we deal with I2. By definition and Hoeffding’s inequality we have

I2 = max
j

1

n

n∑
i=1

[
1

n

n∑
ĩ=1

(
Xĩj − Z⊤

ĩj
θ̂j
){
I(Yĩ ≥ Yi)− Fn(Yi)

}
−mj(Yi)

]2

≤ max
j

1

n

n∑
i=1

[
1

n

n∑
ĩ=1

(
Xĩj − Z⊤

ĩj
θ̂j
){
I(Yĩ ≥ Yi)− Fn(Yi)

}]2

≤ max
j

{
1

n

n∑
ĩ=1

(
Xĩj − Z⊤

ĩj
θ̂j
)}2

= Op(n
−1 log p).

In summary, we have that I1 + I2 = Op(r(n, p, s)), where

r(n, p, s) =
s log p log(np)

n
∨ (s log p)3/2

√
log np

n
∨ (s log p)2

n
∨ log p

n
.

Similarly, we can show that I3 = Op(
√
r(n, p, s)), it follows from Cauchy-Schwartz inequality that

I3 ≤
√
max
j
σ̃2
j

√
2(I1 + I2).

Thus we have maxj∈G
∣∣σ̃2
j − σ̂2

j

∣∣ = Op(
√
r(n, p, s)) and totally,

max
j∈G

∣∣σ2
j − σ̂2

j

∣∣ = Op

(√
(log np0)5

n
∨
√
r(n, p, s)

)
= Op

(√
(log np0)5

n
∨
√
s log p log(np)

n
∨
√

(s log p)3/2
√
log np

n
∨
√

(s log p)2

n

)
= Op

(
r2(n, p, p0, s)

)
.

Thus this lemma is proved.
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Lemma A.15. Under the Assumptions A.1,

max
j∈G

∣∣Snj −√
nβhjδj

∣∣ = Op
(
(log p0)

1/2
)
.

Proof. For simplify, we rewrite Snj −
√
nβhjδj =

∑n
i=1 ξij/

√
n. Under assumption A.1, it’s easy

to show that {ξij}ni=1 is an i.i.d. zero mean sub-Exponential r.v. sequence. So we can prove this
lemma by using Bernstein’s inequality and Bonferroni’s inequality.

Lemma A.16. Under the Assumptions A.1 and A.2,

max
j∈G

|(T̃nj − σ̂−1
j

√
nβhjδj)− (S̃nj − σ−1

j

√
nβhjδj)| = Op

(
r(n, p, p0, s)

)
uniformly for βh ∈ Ω ∩ {βh : ∥βh∥∞ ≲

√
log p/n} with

r(n, p, p0, s) = r1(n, p, p0, s) ∨ r2(n, p, p0, s)(log p0)1/2. (1.49)

Where

r1(n, p, p0, s) =
s log p√

n
∨ (log p0)

3/2 log(np0)

n
∨ log p0√

n
,

and r2(n, p, p0, s) is defined in (1.48).

Proof. First we decompose (T̃nj − σ̂−1
j

√
nβhjδj)− (S̃nj − σ−1

j

√
nβhjδj) as:

(T̃nj − σ̂−1
j

√
nβhjδj)− (S̃nj − σ−1

j

√
nβhjδj)

=σ̂−1
j (Tnj − Snj) + (σ̂−1

j − σ−1
j )(Snj −

√
nβhjδj)

= : A1j +A2j .

Next we deal with maxj∈G |Aij |, i = 1, 2 respectively. We handle maxj∈G |A1j | at first. We
decompose A1j as

A1j = σ̂−1
j

[
1

n3/2

n∑
i=1

(
1

2
− Z⊤

ijγj)(Xij − Z⊤
ijθj) +

(θj − θ̂j)
⊤

√
n

n∑
i=1

Zij{Fn(Yi)− 1/2− Z⊤
ijγj}

+
(γj − γ̂j)

⊤
√
n

n∑
i=1

Zij(Xij − Z⊤
ij θ̂j)− n−1/2Un + (

√
nUnj − Snj)

]
=: σ̂−1

j

(
I1j + I2j + I3j + I4j + I5j

)
where Unj is defined in (1.24). So it suffices to prove maxj∈G |Iij | = Op(r1(n, p, p0, s)), i =
1, 2, 3, 4, 5 respectively. For a sufficient small constant c′ > 0 and a sufficient large constant C > 0,
we have following results.

Step 1, for i = 1. maxj∈G |Iij | = Op(r1(n, p, p0, s)) holds by sub-Gaussian Assumption and
Bernstein inequality. The proof is similar to step 2 in the proof of Lemma A.10, we omit it.

Step 2, for i = 2. By Proposition A.1 and Lemma A.10, we have

Pr(|I2j | ≥ c
√
nλXλY sX) ≤ c1 exp(−c2p),

where (c, c1, c2) are constants defined in these lemma and independent of the choice of j. We can
derive that

√
nλXλY sX = O(s log p/

√
n) by the fact that λX , λY ≍

√
log p/n

Step 3, for i = 3. It’s similar to step 2 by using Theorem 3.1 and Lemma A.9. We omit it.

Step 4, for i = 4. Note that I4j = n−1/2(Unj − βhjδj) +n−1/2βhjδj and n−1/2 maxj∈G |βhjδj | =
O(n−1

√
log p). It suffices to deal with n−1/2(Unj − βhjδj). We begin the proof in the same way as

we argue in the proof of lemma A.7. Applying lemma A.6, for ∀s ∈ R we have

Pr(Unj − βhjδj ≥ t) ≤ exp(−st)E
[
exp

{
s

N

N∑
i=1

hj(Yi,Xi;YN+i,XN+i)− βhjδj

}]
, (1.50)
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where N = ⌊n/2⌋ and t ∈ R+. Denote Wij = hj(Yi,Xi;YN+i,XN+i) − βhjδj , i = 1. . . . , N .
By the sub-Gaussian assumption made in assumption A.1, {Wij}Ni=1 is an i.i.d. sub-Exponential
sequence and max1≤j≤p∥W·j∥ψ1

< ∞. Thus by the same way used in the proof of Bernstein
inequality([49]), we derive

max
j∈G

Pr(|Unj − βhjδj | ≥ t) ≤ 2 exp

[
−cmin

{
t2

(max1≤j≤p∥W·j∥ψ1
)2
,

t

max1≤j≤p∥W·j∥ψ1

}
n

]
,

where c is a constant. Denote t = Cr1(n, p, p0, s), we prove it as n≫ t−2.

Step 5, for i = 5. By the theory of U -statistics, Unj − Snj/
√
n is a two-order canonical U -statistic.

Thus maxj∈G |I5j | = Op
(
{n−1(log p0)

3/2 log(np0)+n
−1/2 log p0}

)
by Lemma A.21. In summary,

we derive that maxj∈G |A1j | = Op(r1(n, p, p0, s)) since σ̂j ≥ Cmin − ψn ≥ Cmin/2 > 0 for n
large enough.

Next we prove maxj∈G |A2j | = op(r2(n, p, p0, s)(log p0)
1/2). For ∀ c′ > 0 we have

Prβh

(
max
j∈G

|A2j | ≥
4

3
C ′−3c′Cr2(n, p, p0, s)(log p0)

1/2

)
≤ Prβh

(
max
j∈G

∣∣σ2
j − σ̂2

j

∣∣ ≥ c′r2(n, p, p0, s)
)
+ Prβh

(
max
j∈G

∣∣Snj −√
nβhjδj

∣∣ ≥ C(log p0)
1/2
)

= o(1).

The last equality holds by Lemma A.14 and A.15. Note that all the universal constants do not depend
on n, p, βh and θj , j = 1, . . . , p. Thus this lemma is proved.

Lemma A.17. Under the Assumptions A.1 and A.2,

max
j∈G

|T̃nj −
√
nŨnj | = Op(r(n, p, p0, s)).

Proof. The proof of this Lemma is similar to Lemma A.16.

Lemma A.18. Under the Assumptions in theorem A.1, if s = o
(√
n/(log p(log np0)

3/2)
)
, then

Prw

(∣∣∣∣√M ♯
n,G −

√
L♯n,G

∣∣∣∣ ≥ C(log(np0))
−1/2

)
→ 0 in probability,

where L♯n,G is defined in (1.27) in the main text and C is a sufficient large constant.

Proof. By definition,∣∣∣∣√M ♯
n,G −

√
L♯n,G

∣∣∣∣ ≤ max
j∈G

∣∣∣∣ 2n (T̃nj −√
nŨnj)

n∑
i=1

wi

∣∣∣∣
+max

j∈G

∣∣∣∣ 2√
n(n− 1)

n∑
i=1

∑
ĩ ̸=i

{
σ̂−1
j ĥj(Yi,Xi;Yĩ,Xĩ)− σ−1

j hj(Yi,Xi;Yĩ,Xĩ)

}
wi

∣∣∣∣
=: I1 + I2.

Thus it suffices to prove Prw(Ii ≥ C(log p0)
−1/2) → 0 in probability, i = 1, 2.

For I1, since wi is standard Gaussian r.v., the Hoeffding inequality implies that

Prw(I1 ≥ C(log(np0))
−1/2) ≤ 2 exp

{
− C ′n(log(np0))

−1(
maxj∈G |T̃nj −

√
nŨnj |

)2}
where C ′ is a constant. Applying Lemma A.17, Prw(I1 ≥ C(log(np0))

−1/2) = op(1) is proved.

For I2, the Hoeffding inequality also implies that

Prw(I2 ≥ C(log(np0))
−1/2) ≤ 2 exp

{
− C ′n(n− 1)2(log(np0))

−1

maxj∈G
∑n
i=1

(∑
ĩ̸=i

{
σ̂−1
j ĥj − σ−1

j hj
})2}.
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For simplify, we abbreviate ĥj(Yi,Xi;Yĩ,Xĩ), hj(Yi,Xi;Yĩ,Xĩ) as ĥj , hj respectively. In the rest
of proof, we abbreviate max1≤i≤n, maxĩ ̸=i, maxj∈G as maxi,maxĩ, maxj respectively. To prove
Prw(I2 ≥ C(log(np0))

−1/2) = op(1), it suffices to prove that

1

n(n− 1)2
max
j∈G

n∑
i=1

{∑
ĩ ̸=i

(
σ̂−1
j ĥj − σ−1

j hj
)}2

= op
(
(log(np0))

−1
)
.

By the Hölder inequality,√√√√ 1

n(n− 1)2
max
j∈G

n∑
i=1

(∑
ĩ ̸=i

{
σ̂−1
j ĥj − σ−1

j hj
})2

≤max
i,̃i,j

∣∣σ̂−1
j ĥj − σ−1

j hj
∣∣

≤max
i,̃i,j

∣∣σ̂−1
j ĥj − σ̂−1

j hj
∣∣+max

i,̃i,j

∣∣σ̂−1
j hj − σ−1

j hj
∣∣

= : I21 + I22.

Thus it suffices to prove I2k = op((log(np0))
−1/2), k = 1, 2 respectively. For I21, it holds that

I21 = max
i,j

|(Xij − Z⊤
ij θ̂j)η̂ij − (Xij − Z⊤

ijθj)ηij |

= max
i,j

|(Xij − Z⊤
ijθj)(η̂ij − ηij)|+max

i,j
|Z⊤
ij(θ̂j − θj)(η̂ij − ηij)|+max

i,j
|Z⊤
ij(θ̂j − θj)ηij |,

where η̂ij = K−Z⊤
ij γ̂j , ηij = K−Z⊤

ijγj andK = 1/2 or −1/2. Note that η̂ij−ηij = Z⊤
ij(γj− γ̂j)

and

max
i,j

|η̂ij − ηij | ≤ max
i,j

|Zij | · ∥γj − γ̂j∥1 = Op

(
s

√
log(np0) log p

n

)
,

where the last step follows from the s
√
log p/n convergence of ∥γj − γ̂j∥1 and maxi,j |Zij | =

Op(
√
log(np0)), due to the sub-Gaussian properties of Zij . Following the similar arguments, we

have

max
i,j

|(Xij − Z⊤
ijθj)(η̂ij − ηij)| ≤ max

i,j
|Xij − Z⊤

ijθj |max
i,j

|η̂ij − ηij | = Op

(
s

√
(log(np0))2 log p

n

)
,

max
i,j

|Z⊤
ij(θ̂j − θj)(η̂ij − ηij)| ≤ ∥θ̂j − θj∥1 max

i,j
|Zij |max

i,j
|η̂ij − ηij | = Op

(
s2 log(np0) log p

n

)
,

max
i,j

|Z⊤
ij(θ̂j − θj)ηij | ≤ ∥θ̂j − θj∥1 max

i,j
|Zij |max

i,j
|ηij | = Op

(
s

√
(log(np0))2 log p

n

)
.

In summary, we have

I21 = Op

(
s

√
(log(np0))2 log p

n

)
= op

(
(log(np0))

−1/2
)
,

where the last equality holds by Assumption A.7. For I22, it holds that

I22 ≤ max
j

|σ̂−1
j − σ−1

j |max
i,̃i,j

|hj | = op
(
(log(np0))

−1/2
)
,

where the last inequality holds by Lemma A.14 and maxi,̃i,j |hj | = Op(log(p0n)). In summary, this
lemma is proved.

Lemma A.19. Let X1, . . . ,Xn be n i.i.d random vectors, where Xi = (Xi1, . . . , Xid)
⊤. Assume

that there are some constants 0 < c1 < C1 such that E
(
X2
ij

)
≥ c1 and Xij is sub-Exponential with

∥Xij∥ψ1
≤ C1 for all 1 ≤ j ≤ d. If (log(dn))7/n = o(1), then

lim
n→∞

sup
t∈R

∣∣∣∣P(∥∥∥∥ 1√
n

n∑
i=1

Xi

∥∥∥∥
∞

≤ t

)
− Pr

(
∥N∥∞ ≤ t

)∣∣∣∣ = 0,

where N ∼ Nd
(
0,E(XX⊤)

)
.
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Proof. Lemma H.6 in [40], and this lemma is adapted from [13].

Lemma A.20. Assume that X ∼ Nd(0,Σ). Let σ2
j = Σjj and define σmin = minj σj and

σmax = maxj σj . Then

sup
t∈R

∣∣Pr(∥X∥∞ ≤ t+ ϵ
)
− Pr

(
∥X∥∞ ≤ t

)∣∣ ≤ Cϵ
√
1 ∨ log(d/ϵ),

where C is a constant depending on σmin and σmax.

Proof. Lemma H.5 in [40], and this lemma is adapted from [13].

Lemma A.21. (A maximal inequality for canonical U-statistics). Let X1, . . . ,Xn be n i.i.d. p-
dimension random vectors. Let f : Rp × Rp → Rd be a symmetric and canonical kernel such
that max1≤m≤d E

{
exp
(
|fm| /Bn

)}
≤ 2, and Bn is a sequence of positive reals. Let Vn =

{n(n− 1)}−1
∑

1≤i̸=j≤n f (Xi, Xj). If 2 ≤ d ≤ exp(bn) for some constant b > 0, then there exists
a constant C(b) > 0 such that

E
(
∥Vn∥∞

)
≤ C(b)Bn

{
(n−1 log d)3/2 log(nd) + n−1 log d

}
.

That is, ∥Vn∥∞ = Op
(
Bn{(n−1 log d)3/2 log(nd) + n−1 log d}

)
.

Proof. This lemma is adapted from [12].

Lemma A.22. Let X1, . . . ,Xn be n i.i.d. p-dimension random vectors and h : Rp × Rp → Rd be a
symmetric and nondegenerate kernel such that E|hk(X1,X2)| <∞ for all k = 1, . . . , d. Consider
the U -statistic of order two:

Un =
1

n(n− 1)

∑
1≤i ̸=j≤n

h
(
Xi,Xj

)
.

Let Tn =
√
n(Un − θ)/2, where θ = E{h(X1,X2)} is the mean of Un. Define g(x) =

E{h(X1,X2) | X1 = x} and x ∈ Rp. Let e1, . . . , en be i.i.d. N(0, 1) random variables that
are independent of {Xi}ni=1 and

T♯
n =

1√
n

n∑
i=1

{
1

n− 1

∑
j ̸=i

h(Xi,Xj)−Un

}
ei.

Let Bn ≥ 1 be a sequence of real numbers possibly tending to infinity. We assume that:

(1) There exists a constant b > 0 such that E{g2m(X1)} ≥ b for all m = 1, . . . , d.

(2) E{|hm(X1,X2)|2+ℓ} ≤ Bℓn for ℓ = 1, 2 and for all m = 1, . . . , d.

(3) ∥hm(X1,X2)∥ψ1
≤ Bn for all m = 1, . . . , d.

Denote a∥T♯
n∥∞

(α) as the αth conditional quantile of ∥T♯
n∥∞ given X1, . . . ,Xn, where α ∈ (0, 1).

If (log(dn))7/n = o(1), then

lim
n→∞

sup
α∈(0,1)

∣∣Pr(∥Tn∥∞ ≤ a∥T♯
n∥∞

(α)
)
− α

∣∣ = 0. (1.51)

In additional, assume that there exist statistics T̂n and T̂♯
n such that

Pr
(∣∣∥T̂n∥∞ − ∥Tn∥∞

∣∣ ≥ ξ(n)
)
→ 0,

and
Pre
(∣∣∥T̂♯

n∥∞ − ∥T♯
n∥∞

∣∣ ≥ ξ(n)
)
→ 0 in probability.

for some ξ(n) depending on n. If ξ(n)
√
1 ∨ log(d/ξ(n)) = o(1), then

lim
n→∞

sup
α∈(0,1)

∣∣Pr(∥T̂n∥∞ ≤ a∥T̂♯
n∥∞

(α)
)
− α

∣∣ = 0, (1.52)

where a∥T̂♯
n∥∞

(α) is the αth conditional quantile of ∥T̂♯
n∥∞ given X1, . . . ,Xn.

Proof. This lemma is adapted from [12] and [13].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction clearly state the paper’s
contributions and scope. And the claim does match theoretical and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our paper in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The appendix contains full set of assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information needed is provided in Section 4 and Appendix A.6. Code
is avaliable in supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is avaliable in the Supplementary Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are provided in Section 4 and Appendix A.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper focuses on statistical inference, and we provide empirical size and
power in numerical studies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Type of compute workers and memory are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper does conform with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is a foundational research and not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors cite the original paper that produced the code package.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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