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Abstract

When machine learning systems face dataset shift, model calibration plays a pivotal
role in ensuring their reliability. Calibration error (CE) provides insights into the
alignment between the predicted confidence scores and the classifier accuracy.
While prior works have delved into the implications of dataset shift on calibration,
existing CE estimators either (i) assume access to labeled data from the target
domain, often unavailable in practice, or (ii) are derived under a covariate shift
assumption. In this work we propose a novel, label-free, consistent CE estimator
under label shift. Label shift is characterized by changes in the marginal label
distribution p(Y ), with a constant conditional p(X|Y ) distribution between the
source and target. We introduce a novel calibration method, called LaSCal, which
uses the estimator in conjunction with a post-hoc calibration strategy, to perform
unsupervised calibration on the target distribution. Our thorough empirical analysis
demonstrates the effectiveness and reliability of the proposed approach across
different modalities, model architectures and label shift intensities.

1 Introduction

Reliable uncertainty estimation is crucial for predictive models, particularly in safety-critical appli-
cations, where decisions based on predictions have significant consequences [Amodei et al., 2016,
Kompa et al., 2021]. The calibration error (CE) [Naeini et al., 2015, Guo et al., 2017, Vaicenavicius
et al., 2019] measures the discrepancy between predicted probabilities and observed class frequencies,
indicating the reliability of the model’s predictions. When a calibrated model predicts an 80% chance
of flu, we expect 80 out of 100 patients with similar symptoms to have the flu. Estimating CE and
addressing miscalibration typically requires i.i.d. labeled held-out data. However, real-world settings
often violate these assumptions: (i) the source (train) may differ from the target (test) distribution,
known as dataset shift [Quiñonero Candela et al., 2009], leading to a false sense of confidence in
the model and suboptimal decision-making [Park et al., 2020]; and (ii) obtaining labeled target data
for CE estimation is often unrealistic or prohibitively expensive, e.g., in medical diagnostics during
disease outbreaks acquiring labeled patient data is needed, but costly. Thus, traditional post-hoc
calibration methods (e.g., temperature scaling [Guo et al., 2017] or isotonic regression [Zadrozny and
Elkan, 2002]), which rely on labeled calibration sets in an i.i.d. setting, are not directly applicable.

The two most common types of dataset shift are: (i) covariate shift, where the feature distribution
changes between the source and target domains, denoted as ps(X) ̸= pt(X), but the conditional
label distribution remains the same, i.e., ps(Y |X) = pt(Y |X); and (ii) label shift, where the label
distribution differs, that is ps(Y ) ̸= pt(Y ), while the conditional feature distribution remains the
same, i.e., ps(X|Y ) = pt(X|Y ) [Moreno-Torres et al., 2012, Quiñonero Candela et al., 2009]2.

∗Equal contribution.
2Label shift corresponds to anti-causal learning: predicting cause Y from effects X [Schölkopf et al., 2012]);

e.g., during a pneumonia outbreak p(Y ) (flu) rises but the symptoms p(X|Y ) (cough given flu) remain the same.
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Table 1: Properties of related calibration methods. LaSCal is accuracy preserving, and relies on a
consistent CE estimator designed for unsupervised calibration under label-shift.

Calibration method Label shift No target labels Accuracy preserving Consistent estimator under
label shift assumption

TempScal (Source) [Guo et al., 2017] ✗ ✗ ✓ ✗
CPCS [Park et al., 2020] ✗ ✓ ✓ ✗
TransCal [Wang et al., 2020] ✗ ✓ ✓ ✗
HeadToTail [Chen and Su, 2023] – ✓ ✓ ✗
LaSCal (Ours) ✓ ✓ ✓ ✓

Previous methods, such as TransCal [Wang et al., 2020], CPCS [Park et al., 2020], and HeadToTail
[Chen and Su, 2023], address calibration under dataset shift, but are specifically designed around the
covariate shift assumption. Notably, while HeadToTail also assumes a change in the label distribution
between the source and target domains (i.e., ps(Y ) ̸= pt(Y )) by using long-tailed source data and
balanced target data, it only partially addresses the label shift scenario. As a result, how to effectively
estimate and maintain calibration under label shift assumption – especially in the absence of target
domain labels – remains an open question3.

To address this gap, we derive a novel CE estimator of a model facing label shift, which allows us to
reliably estimate CE without requiring labeled target data. Compared to prior work (see Table 1), it is
the only label-free, consistent CE estimator under the label shift assumption. We build on ideas from
unsupervised domain adaptation, and employ importance weighting to estimate the degree of shift
in the target distribution. We utilize current state-of-the-art methods, e.g., ELSA Tian et al. [2023],
RLLS Azizzadenesheli et al. [2019], etc., which yield per-class importance weights to account for the
label shift. Note that in contrast to our work, these methods focus only on the predictive performance
of a model, neglecting the model’s calibration altogether.

Furthermore, we propose a novel, accuracy-perserving, post-hoc calibration method, called LasCal
(Label-Shift Calibration), which utilizes the proposed CE estimator as a loss function. We conduct
experiments across a variety of datasets, models, weight estimators, intensities of shift on the target
distribution, and imbalance factors of the source distribution to validate its performance. Our results
demonstrate that LasCal effectively performs unsupervised calibration on the target domain, yielding
better calibrated models, compared to traditional i.i.d. calibration methods, calibration methods
designed for covariate shift [Chen and Su, 2023, Park et al., 2020, Wang et al., 2020], and label shift
adaptation methods that rely on calibration using a labeled validation (source) set [Alexandari et al.,
2020, Wen et al., 2024].

To summarize, we make the following contributions:

1 We derive the first label-free, consistent calibration error estimator under label shift (§3);

2 We propose a post-hoc calibration method, LaSCal, which outperforms existing methods in
unsupervised calibration tasks in the presence of label shift (§4.1);

3 We analyze the properties of LaSCal, and demonstrate its robustness across various datasets,
modalities, model architectures and domain-shift scenarios (§4.2).

Our codebase is released at the following repository: https://github.com/tpopordanoska/
label-shift-calibration.

2 Related Work

Estimating CE is a challenging task as it requires estimating an expectation conditioned on a
continuous random variable: E [Y | f (X)], where X is the input, Y is a one-hot label, and f is a
probabilistic model. The CE is often estimated using binning [Zadrozny and Elkan, 2001, Naeini
et al., 2015], i.e., in the binary setting, the unit interval [0, 1] is split into intervals (bins) of either
equal width [Nguyen and O’Connor, 2015] or equal mass (adaptive binning) [Vaicenavicius et al.,

3We design a CE estimator under the label shift assumption, which involves scenarios where both the source
and target label distributions may be imbalanced. In contrast, HeadToTail operates under a covariate shift
assumption ([Chen and Su, 2023, Section 3.1]), and is applied only in a specific type of label shift.
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2019]. Calibration of a multi-class model is often quantified via expected CE (ECE) [Naeini et al.,
2015], used to assess the so-called top-label (or confidence) calibration [Guo et al., 2017], which
only considers the confidence of the predicted class. Class-wise calibration [Kull et al., 2019] is a
stronger notion, requiring calibrated scores for each class: fk(X) is compared with E [Yk | fk (X)]
for each class k. Canonical calibration [Vaicenavicius et al., 2019, Popordanoska et al., 2022] is
the strictest notion, requiring the whole probability vector to be calibrated, i.e., f(X) should match
E [Y | f (X)]. In this work, we focus on binary and class-wise CE, estimated using adaptive binning.

Numerous calibration methods address neural network miscalibration, falling into two categories:
post-hoc and trainable strategies. Post-hoc methods adjust the output scores using held-out calibration
set. One of the earliest approaches in binary classification is Platt scaling [Platt, 1999], which has been
extended to a multi-class setting via matrix, vector and temperature scaling [Guo et al., 2017]. Other
approaches include isotonic regression [Zadrozny and Elkan, 2002], ensemble temperature scaling
[Zhang et al., 2020], Beta [Kull et al., 2017] and Dirichlet calibration [Kull et al., 2019]. Trainable
methods incorporate a calibration objective alongside the classification loss [Kumar et al., 2018,
Mukhoti et al., 2020, Popordanoska et al., 2022]. All of these strategies focus on a supervised setting,
and do not account for dataset shift. Recent studies [Ovadia et al., 2019, Karandikar et al., 2021]
have shown that models calibrated with traditional i.i.d. calibration methods lose their calibration
under dataset shift. Subsequently, several works address calibration under covariate shift assumption:
CPCS [Park et al., 2020], TransCal [Wang et al., 2020], and HeadToTail [Chen and Su, 2023], which
calibrate on the target domain without labels. In contrast, we focus on the label shift setting. Our
work introduces a general calibration error estimator under label shift, usable as a training objective in
post-hoc and trainable calibration methods. Importantly, post-hoc calibration is done on the unlabeled
target data, enhancing performance and reliability compared to standard source data calibration.

Label shift, also known as prior probability shift, [Lipton et al., 2018, Azizzadenesheli et al., 2019,
Alexandari et al., 2020] is often intertwined with the broader concept of unsupervised domain
adaptation [Kouw and Loog, 2021]. Several different methods address label shift: importance re-
weighting [Lipton et al., 2018, Azizzadenesheli et al., 2019, Saerens et al., 2002, Tian et al., 2023],
kernel mean matching (KMM) [Zhang et al., 2013], and generative adversarial training [Guo et al.,
2020]. There are two popular importance re-weighting approaches: one based on maximizing the
likelihood function and the other based on inverting a confusion matrix. Saerens et al. [2002] propose
an Expectation Maximization (EM) procedure to estimate the class priors shift between the source and
target distributions. Importantly, EM does not require retraining or hyperparameter tuning. However,
it assumes calibrated predictions, which modern neural networks often lack [Guo et al., 2017]. To
address this, hybrid methods combining calibration techniques and domain adaptation methods
have been proposed. Alexandari et al. [2020] propose Bias-Corrected Temperature Scaling (BCTS)
alongside EM. Lipton et al. [2018] propose Black-Box Shift Learning (BBSL), which estimates the
re-weighting coefficients even if the model is poorly calibrated. As an improvement over BBSL,
Azizzadenesheli et al. [2019] propose a technique with statistical guarantees: Regularized Learning
under Label Shifts (RLLS). They introduce a regularization hyperparameter, addressing the high
estimation error of the importance weights in the low target sample regime. Both BBSL and RLLS
estimate importance weights from a confusion matrix of a held-out validation set. Both methods cope
with label shift when the classifier is miscalibrated, but require model retraining with the importance
weights. Recently, Tian et al. [2023] propose a moment-matching framework [Tian et al., 2023] to
address label shift, named Efficient Label Shift Adaptation (ELSA). Wen et al. [2024] propose an
algorithm called Class Probability Matching with Calibrated Networks (CPMCN), which improves
the computational efficiency and empirically outperforms existing methods. Importantly, the goal
of these works is to improve the classifier’s predictive performance on the label-shifted domain
without addressing its calibration. While some methods [Alexandari et al., 2020, Wen et al., 2024]
include a calibration step on the labeled validation (source) data to obtain importance weights, they
do not calibrate the models on the target domain. In contrast, we propose an approach for target
domain calibration without relying on labeled target data. In the absence of target labels, we leverage
importance weight estimators to re-weigh the source data.

3 Methods

We consider a classification setting where X ∈ X = Rd is the input, and Y ∈ Y = {0, 1}k is the
one-hot encoded target, with d as the feature space dimensionality, and k the number of classes. The
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data consists of: labeled source data {(xi, yi)}ni=1 and unlabeled target data {xi}n+m
i=n+1. The notation

ps(·) and pt(·) denotes distributions on the source and target domain, respectively. The support on
the target domain is a subset of Y , i.e., the target data does not contain new classes. We use capital
letters for unbounded random variables, and lower case letters with subscripts for elements of the
data sample. Note that we may still treat elements of the data sample as random variables.

Consider a probabilistic classifier f : X → ∆k, where ∆k is a (k − 1)-dimensional probability
simplex over k classes, and let Z = f(X) denote the predicted probability distribution for input X .
We focus on class-wise calibration error [Kull et al., 2019, Kumar et al., 2019, Gruber and Buettner,
2022], given by:

CWCEp (f)
p
=

1

k

k∑
c=1

E [|P (Yc = 1 | Zc)− Zc|p] , (1)

where Yc denotes the cth entry in the one-hot label, and Zc denotes the cth class confidence score.
Since the CE is defined w.r.t. the data distribution, the model’s calibration decreases under domain
shift, also empirically shown by Ovadia et al. [2019], Karandikar et al. [2021]. However, those works
estimate CE on the target shifted data using labels, often unavailable in practice. Thus, we derive an
Lp classwise CE estimator for label-free target distribution exhibiting label shift.

Calibration error estimator under label shift. We consider a label shift: ps(Y ) ̸= pt(Y ) and
ps(X | Y ) = pt(X | Y ). We assume the target distribution is absolutely continuous w.r.t. the source;
i.e., for every Y ∈ Y with pt(Y ) > 0, we require ps(Y ) > 0 [Lipton et al., 2018] 4. Assuming
access to n labeled source samples, and m unlabeled target samples, we aim to find an estimator:

ĈWCEp(f)
p =

1

k

1

m

k∑
c=1

m+n∑
j=n+1

∣∣∣ ̂Ept
[Yc | zjc]− zjc

∣∣∣p , (2)

where the expectations are taken w.r.t. the target, and zjc denotes the cth entry of the vector zj .

The main challenge is estimating the conditional expectation ̂Ept [Yc | zjc] without labels from the
target distribution. To re-weigh the source label distribution, we use importance weights ω =
(ω1, . . . , ωk)

T , where ωi := pt(Yc = 1)/ps(Yc = 1), which we estimate using unsupervised domain
adaption methods [Tian et al., 2023, Alexandari et al., 2020, Azizzadenesheli et al., 2019, Lipton
et al., 2018]. Then, for the conditional expectation, we have:

Ept [Yc | Zc = zc] =
∑

yc∈{0,1}

yc
pt(Yc = yc, Zc = zc)

pt(Zc = zc)
=

pt(Zc = zc | Yc = 1)pt(Yc = 1)

pt(Zc = zc)
(3)

=
ps(Zc = zc|Yc = 1)ps(Yc = 1)ωc

pt(Zc = zc)
≈

1
n ω̂c

∑n
i=1 κ(Zc = zc, zic)yic

1
m

∑m+n
i=n+1 κ(Zc = zc, zic)

(4)

where ωc = pt(Yc=1)
ps(Yc=1) , ω̂c is its empirical estimate, and κ is any consistent kernel over its domain

[Silverman, 1986]. Under the label shift assumption, we estimate pt(Z|Y ) using ps(Z|Y ) because
p(X|Y ) remains constant, with Z = f(X) and f being a fixed model. The weights ω̂ are estimated
for each Y ∈ Y using labeled source and unlabeled target data, along with the model f . The error
rate of the conditional expectation estimator in Equation (4) is determined by the maximum error rate
of its components: the weight ω̂c and the ratio estimator. Empirically, we use the RLLS estimator,
with an error rate: O(n−1/2 +m−1/2) [Azizzadenesheli et al., 2019, Lemma 1] (same as the ratio
estimator [Scott and Wu, 1981, Theorem 1]).

Proposition 3.1 Given a kernel κ consistent over its domain [Silverman, 1986], ̂Ept [Yc | Zc] is a
pointwise consistent estimator of Ept [Yc | Zc], that is:

plim
n,m→∞

1
n ω̂c

∑n
i=1 κ(Zc, zic)yic

1
m

∑m+n
i=n+1 κ(Zc, zic)

=
pt(Zc = zc | Yc = 1)pt(Yc = 1)

pt(Zc = zc)
(5)

4The support of the target label distribution should be contained within the source label distribution support.
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Proof sketch. The proof structure follows [Popordanoska et al., 2022, Proposition 3.2], which
demonstrates the pointwise consistency of the ratio estimator. Since the weight estimator is also
consistent [Azizzadenesheli et al., 2019, Lemma 1], by the same argument for the product of two
convergent sequences of random variables (Proposition 3.2), the conditional expectation estimator is
also pointwise consistent.

Plugging Equation (4) back into Equation (2), for CE under label shift we get:

ĈWCEp(f)
p =

1

k

1

m

k∑
c=1

m+n∑
j=n+1

∣∣∣∣∣∣∣
1
n ω̂c

∑n
i=1 κ(zjc, zic)yic

1
m−1

∑m+n
i=n+1
i ̸=j

κ(zjc, zic)
− zjc

∣∣∣∣∣∣∣
p

. (6)

The estimator has values ∈ [0, 2]. Since the ratio is pointwise consistent by Proposition 3.1, and
following Popordanoska et al. [2022, Proposition 3.5], the CE estimator is consistent for any consistent
kernel. Depending on the kernel, the estimator can be differentiable and integrated into post-hoc and
trainable calibration methods 5. We use a binning kernel, returning 1 when zic and zjc fall in the
same bin, and 0 otherwise. The binning estimator yields consistency under well known conditions on
the number of bins as a function of the number of observations [Lugosi and Nobel, 1996].

Unsupervised calibration under label shift. The CE estimator can be integrated in any post-hoc
calibration method, e.g., temperature scaling. In the supervised i.i.d. setting, the optimal temperature
T ∗ is obtained by minimizing the cross entropy loss. In the label shift setting, we propose using
LaSCal to find T ∗ by minimizing the classwise calibration error obtained by the estimator in
Equation (6). In particular, let lj denote the logits corresponding to zj , and σ(·) the softmax function.
We find the optimal temperature T ∗ as:

T ∗ = argmin
T

1

k

1

m

k∑
c=1

m+n∑
j=n+1

∣∣∣ ̂Ept [Yc | σ(lj/T )c]− σ(lj/T )c

∣∣∣p . (7)

4 Experiments and Discussion

Datasets. To assess the performance of LaSCal for calibrating models facing label shift, we ex-
periment using natural image datasets [Krizhevsky et al., 2009], as well as datasets derived from
real-world scenarios [Koh et al., 2021]. In particular, we use the CIFAR-10/100 Long Tail (LT)
datasets [Cao et al., 2019], which are simulated from CIFAR [Krizhevsky et al., 2009] with an
imbalance factor (IF) defined as a ratio of the number of samples in the most and least prevalent
class. We additionally use Wilds [Koh et al., 2021] with different modalities: Camelyon17 [Bandi
et al., 2018] and iWildCam [Beery et al., 2021] with images, and Amazon [Ni et al., 2019] with
text. Camelyon17 consists of histopathological images of patient lymph node sections with potential
metastatic breast cancer. The labels denote whether the central region contains a tumor (binary).
iWildCam consists of images from animal traps in the wild, while the labels are different animal
species. The Amazon dataset contains review text samples paired with 1-out-of-5 star ratings as
labels. Please refer to Appendix A.1 for details about the datasets.

Metrics. Unless stated otherwise, we report L2 calibration error (CE) ×100 [Kumar et al., 2019],
fix the number of bins to 15, and use adaptive binning strategy [Vaicenavicius et al., 2019]). In
multi-class settings, we report the sum of per-class CE. We perform a bootstrap procedure, i.e.,
repeatedly resampling with replacement and estimating CE on each subset, and we report the mean
and standard deviation of the estimates. In the reliability diagrams, we report L1 top-label CE (ECE).

Models. For the experiments we conduct on CIFAR-10/100 we use ResNet [He et al., 2016] models
initialized from scratch with different depths (20, 32, 56, 110). For experiments on iWildCam we
report results with a standard ResNet-50 [He et al., 2016], two ViT-large transformer-based models
[Dosovitskiy et al., 2020] (with an image resolution of 224 or 384), and Swin-Large [Liu et al., 2021]
(all pre-trained on ImageNet). For experiments on Amazon, we use pre-trained transformer-based
models: BERT [Devlin et al., 2018], RoBERTa [Liu et al., 2019], DistillBert [Sanh et al., 2019]
and DistillRoBERTa [Sanh et al., 2019]. For the experiments on Camelyon17, we use a ResNet-50
pre-trained on ImageNet. Please refer to Appendix A.2 for implementation details.

5Popordanoska et al. [2022] and Zhang et al. [2020] proposed Dirichlet and Triweight kernels, respectively.
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4.1 Calibration under label shift

We compare the performance of LaSCal as a method for post-hoc calibration of a model trained
on a source distribution against several (state-of-the-art) baselines. We compare against: (i) Uncal:
uncalibrated model trained on source data; (ii) TempScal calibrated model using temperature scaling
on source data; (iii) CPCS [Park et al., 2020], TransCal [Wang et al., 2020], and HeadToTail Chen
and Su [2023]: calibrated models using adapted versions of TempScal, derived under covariate shift
assumption. HeadToTail additionally assumes long-tailed source data, and balanced target data.
(iv) EM-BCTS [Alexandari et al., 2020] and CPMCN [Wen et al., 2024]: methods for label shift
adaptation, where a calibration step is performed on the source data prior to obtaining the importance
weights. Note that TempScal relies only on labeled source data, while the other baselines also
incorporate unlabeled target data. Additionally, in Appendix A.3 we include other common, post-hoc,
source-domain calibration methods: vector scaling (VectScal) [Guo et al., 2017], an ensemble method
designed to improve the expressivity of TempScal, abbreviated as EnsTempScal [Zhang et al., 2020],
and one-versus-all isotonic regression (IROvA) [Zadrozny and Elkan, 2002].

We train ResNet models on the CIFAR-10/100 LT variants, and use IF = 10, i.e., the least frequent
class is subsampled to 10% of the original size, while the target is balanced. The iWildCam and
Amazon datasets have an i.i.d. validation set, serving as our source distribution, and an i.i.d. test set, to
which we apply label shift and use it as our target distribution. We use the i.i.d. test set to ensure that
the input distribution p(X) remains the same. On iWildCam, we select the 20 most frequent classes
from the target dataset. On both iWildCam and Amazon, we obtain a uniform target distribution by
subsampling each class, based on the frequency of the least frequent class.

Performance of LaSCal across various modalities, datasets and models. In Table 2, we report CE on
the label-shifted (balanced) target domain before and after calibration with various post-hoc methods.
We observe that LaSCal either achieves a lower macro-averaged CE across models compared to other
methods, or performs on par with the top-performing method, irrespective of the input modality.
Compared to the second best method – EM-BCTS – where the calibration is performed on the labeled
source data, the proposed LaSCal is explicitly derived for unsupervised calibration on a label-shifted
target distribution. Notably, LaSCal significantly outperforms other baselines on CIFAR-100, where
around 50% of the classes contain less than 30 source data points (see Figure 5 in Appendix A.1). This
highlights LaSCal’s effectiveness even in low data regimes6. In Appendix A.3, we report accuracy,
additional experiments using other IFs on CIFAR-10/100, and provide results for the scenario where
the source is balanced and the target is long-tailed, as commonly studied in related works [Tian et al.,
2023, Alexandari et al., 2020, Lipton et al., 2018, Azizzadenesheli et al., 2019].

Performance of LaSCal compared to temperature scaling using labels. In Fig. 1 (Left), we evaluate
how closely LaSCal (without labels) approaches the performance of temperature scaling applied on
the target distribution using labels, referred to as TempScal (Target), which serves as a competitive
baseline. For comparison, we also include temperature scaling applied on the source distribution,
referred to as TempScal (Source), representing a lower reference point for the method’s performance.
Throughout these experiments, we keep the input distribution p(X) fixed. Across different models on
iWildCam and Amazon, we observe that LaSCal performs favorably relative to TempScal (Source)
and closes the gap with TempScal (Target), demonstrating its effectiveness in unsupervised calibration.

Label shift with changing input distribution. We consider an alternative setting where both the
label p(Y ) and input p(X) distributions change, which is common in real-world applications7. We
investigate this scenario by using the out-of-distribution (OOD) test sets of Amazon and iWildCam
(p(X) changes), to which we apply label shift, and use them as our target distribution. The iWildCam
OOD test set contains images of camera traps from locations absent from the source distribution,
with variation in illumination, camera angle, background, vegetation, etc. [Beery et al., 2021]. The
Amazon OOD test set contains reviews from users outside of the source distribution. In Fig. 1 (Right),
we report the CE after post-hoc calibration using temperature scaling on the source distribution
(TempScal), using HeadToTail8, and LaSCal. We observe that both HeadToTail and LaSCal signifi-

6We noticed that the optimal temperature obtained by LaSCal for CIFAR-100 is considerably higher than
related methods. We hypothesize the discrepancy arises from the optimization process.

7For example, in medical diagnosis, the model might be facing label shift because of a pandemic, while also
dealing with patient data from different demographics between training and testing.

8We chose HeadToTail because it is explicitly designed to address the setting where both the input and label
distributions change between source and target domains.
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Table 2: CE on label-shifted target domain before and after calibration with various post-hoc methods.
LaSCal performs unsupervised calibration by minimizing CE on the unlabeled target distribution and
either outperforms, or performs competitively with the other methods in all scenarios.

Model Uncal TempScal CPCS TransCal HeadToTail EM-BCTS CPMCN LaSCal

CIFAR-10-LT (IF=10)
ResNet-20 8.87±0.38 4.55±0.18 4.61±0.17 5.05±0.20 4.71±0.14 3.77±0.12 3.79±0.11 4.44±0.17

ResNet-32 10.45±0.41 5.03±0.24 5.18±0.21 6.59±0.32 4.87±0.15 4.99±0.24 5.19±0.21 4.81±0.17

ResNet-56 11.25±0.31 4.82±0.18 5.10±0.18 6.96±0.20 4.75±0.14 4.41±0.11 4.42±0.12 4.57±0.15

ResNet-110 11.89±0.35 5.12±0.18 5.12±0.17 7.51±0.26 4.78±0.14 4.40±0.12 4.43±0.13 4.70±0.16

Macro average 10.62 4.88 5.00 6.53 4.78 4.39 4.46 4.63

CIFAR-100-LT (IF = 10)
ResNet-20 65.66±0.23 24.61±0.24 24.12±0.23 48.15±0.29 19.93±0.21 25.01±0.21 25.02±0.24 5.62±0.08

ResNet-32 71.16±0.24 28.29±0.24 24.84±0.25 57.55±0.24 28.37±0.23 26.17±0.21 24.76±0.20 5.80±0.07

ResNet-56 72.24±0.21 29.71±0.22 25.03±0.24 59.27±0.28 29.72±0.27 26.33±0.23 24.53±0.22 5.88±0.07

ResNet-110 72.80±0.21 31.55±0.25 26.51±0.25 60.52±0.27 31.58±0.27 28.22±0.24 26.49±0.22 6.19±0.08

Macro average 70.47 28.54 25.13 56.37 27.40 26.43 25.20 5.87

Amazon Reviews
RoBERTa 11.44±0.79 4.91±0.31 4.20±0.39 4.36±0.36 4.36±0.36 2.72±0.35 1.36±0.17 3.66±0.29

DistillRoBERTa 17.82±0.98 5.21±0.45 3.60±0.31 7.75±0.60 2.90±0.21 2.13±0.28 2.81±0.23 2.72±0.23

BERT 27.33±0.98 7.75±0.55 4.34±0.39 16.98±0.98 3.62±0.30 3.95±0.40 9.32±0.54 3.72±0.34

DistillBERT 22.18±1.14 6.54±0.51 3.94±0.32 11.89±0.75 3.43±0.29 3.41±0.36 5.48±0.34 3.40±0.28

Macro average 19.19 6.10 4.02 10.25 3.58 3.05 4.74 3.38

iWildCam
ResNet50 18.44±0.74 16.38±0.61 11.52±0.93 13.81±0.48 15.53±0.56 15.84±0.57 19.43±0.69 13.07±0.45

Swin-Large 22.07±0.84 17.39±0.66 17.57±0.69 16.42±0.49 16.55±0.57 16.81±0.63 18.03±0.62 15.43±0.54

ViT-Large 17.94±0.71 16.78±0.66 20.24±0.80 13.64±0.48 16.53±0.66 24.83±1.31 19.33±0.80 13.07±0.50

Vit-Large (384) 18.99±0.86 18.78±0.80 21.92±0.96 14.81±0.52 17.92±0.77 19.78±0.73 20.74±0.72 17.27±0.66

Macro average 19.36 17.33 17.81 14.67 16.63 19.31 19.38 14.71

RoBERTa

DistillRoBERTa           

BERT     

DistillBERT           

ResNet50

       ViT-Large

                    ViT-Large (384)

   Swin-Large
1.01

0.71

1.13

0.511.050.94

1.26

0.62

0.93
0.82 0.96

0.83

1.060.91

1.01

0.95

Label shift with fixed input distribution

TempScal (Source)
TempScal (Target)
LaSCal

RoBERTa

DistillRoBERTa           

BERT     

DistillBERT           

ResNet50

       ViT-Large

                    ViT-Large (384)

   Swin-Large

1.001.11

1.64

1.50
0.86

0.94

0.75

0.95

Label shift with changing input distribution

TempScal (Source)
HeadToTail
LaSCal

Figure 1: Left. Comparison of LaSCal with temperature scaling on the source distribution (TempScal
Source) or target distribution (TempScal Target), using labels. Right. CE after post-hoc calibration
on iWildCam and Amazon when the target distribution exhibits both label and covariate shift w.r.t.
the source. We report CE normalized by the number of classes (5 for Amazon and 20 for iWildCam)
for illustration purposes. Lower numbers are better.

cantly outperform TempScal across all models. Furthermore, despite the more challenging setting,
we observe that LaSCal performs on par or outperforms the HeadToTail method.

Top-label calibration. While classwise calibration is central to our analysis, top-label calibration
remains a popular approach in related works. To gain insights about this notion of calibration,
we present reliability diagrams in Fig. 2 for DistillRoBERTa trained on Amazon, allowing us to
visually assess the calibration quality across confidence levels. We report CE of (a) an uncalibrated
model, (b) after applying temperature scaling on the source domain, (c) after label-shift adaption
using EM-BCTS, and (d) after applying temperature scaling using LaSCal. The blue bars indicate
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(d) LaSCal

Figure 2: Reliability diagrams on Amazon using DistillRoBERTa before and after calibration. Temp-
Scal (Source) and EM-BCTS perform IID calibration on the source distribution. LaSCal calibrates
the model on the unlabeled target distribution. We report L1 top-label CE in the bottom right corner.

the accuracy per bin, and the red bars represent the gap of each bin to perfect calibration, i.e., the
difference between accuracy and confidence for a given bin (darker shades signify under-confidence,
while brighter red colors denote over-confidence). We observe that LaSCal provides better calibration
(i.e., lower ECE) compared to other baselines, as also confirmed by the reported L1 top-label CE
in the bottom right corner of each plot. Furthermore, note that while the classwise CE values of
EM-BCTS are better than LaSCal (Table 2), the diagrams reveal that top-label confidence scores
obtained with LaSCal are favorable compared to EM-BCTS in most bins.
Building on this, we adapt our approach to top-label calibration, and we include the adapted estimator,
along with empirical comparisons with competing calibration methods in Appendix B. The results on
Amazon and iWildCam further validate the effectiveness of LaSCal, which continues to outperform
other methods, demonstrating its superior calibration capabilities in the top-label setting.

4.2 Empirical analysis of the estimator’s properties

Robustness analysis. Using the Camelyon17 dataset, we conduct a series of experiments to assess
the impact of various factors on the performance of the CE estimator, and report the results in Fig. 3.
We partition the original training set as the source distribution, and we use the i.i.d. validation set
to form a target set with varying label distribution shifts. We chose this dataset because (i) the
application is both realistic and safety-critical; (ii) the dataset is balanced across source and target,
enabling us to alter both distributions as per the setting we are trying to verify; (iii) the problem is
binary, allowing us to study the estimator properties on a simple problem. For all experiments, we use
a ResNet-50 model pre-trained on ImageNet, subsequently fine-tuned on the Camelyon17 dataset.

Across the experiments, we construct the train and validation sets, sampled from the source dis-
tribution, by keeping all negative samples and sampling a portion of the positives. Unless stated
otherwise, we report results by sampling 20% of the positive samples for training: i.e., 5 : 1 ratio
of negative to positive points. We compare the estimated CE values (without labels) to the ground
truth (with labels), across different experimental scenarios, designed to assess the impact of a change
in the data distribution and the sample size on the CE estimation. To account for the variability in
data resampling, we average the results across 10 iterations. For each iteration, we apply bootstrap
sampling and compute the mean and variance of the estimated CE. Finally, we report the overall
mean and standard deviation (depicted as shaded region in the plot) across all iterations.

Impact of data distribution changes. In Fig. 3a, we investigate the effect of increasing the label
shift intensity of the target distribution. We impose a constraint such that the size of the source and
target distribution is the same (n = m), and we systematically shift the target by modifying the ratio
of negative to positive samples: 5 : 1, 4 : 1, ..., 1 : 1, ..., 1 : 4. Therefore, in the most favorable
scenario (5 : 1), the source and target distribution are the same (no label shift), while in the extreme
1 : 4, we have 4 times as many positive samples in the target data (which could occur, e.g., during a
disease outbreak). We observe that the estimated CE closely follows the ground truth, even in the
most extreme case. Furthermore, we observe that the variance increases with the intensity of the
shift, indicating greater uncertainty and reducing the confidence one should have in the CE estimates.
In Fig. 3b we analyze the effect of changing the ratio of source to target samples (n : m), while
keeping the total number of points (n + m) constant. The source distribution has a 5 : 1 ratio of
negative to positive points, while the target is balanced. We observe that the estimator achieves
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Figure 3: Robustness analysis. We report mean and standard deviation over multiple iterations
of resampling the data. 5 : 1 denotes “no shift”, and the severity increases from left to right.
LaSCal generalizes well to a wide range of shifts, ratios of source to target samples, and sample sizes.

optimal performance when the source and target data sizes are equal (n : m). As the ratio increases,
the estimated values begin to diverge slightly from the ground truth. However, the true values lie
within the estimator’s standard deviation in most cases, demonstrating that even in more extreme
settings – 5× more source than target samples – our estimator yields reliable CE estimates.

Impact of data size. In Fig. 3c, we constrain that n = m, and we incrementally vary the sample size
from 1, 000 to 10, 000 samples. In practice, low data regimes are common where annotated data is
costly to obtain. We observe that the CE estimates deviate from the ground truth the most when
using the fewest data points (i.e., 1000), and improve as the data quantity increases. Furthermore, our
estimator has a positive bias w.r.t. ground truth in the small data regime, indicating that the estimator
tends to be conservative in that setting. Such tendency is preferable in this context, as it prevents
mistakenly reporting good performance of a model on the basis of not enough samples. In essence,
our method errs on the side of caution, ensuring reliability even in data-constrained environments.

Method analysis. We further investigate (i) how different weight estimation methods influence the
estimator’s effectiveness, and (ii) to what extent our CE estimates (without labels) deviate from the
values obtained using labeled target data.

Impact of the weight estimation method. Our estimator relies on the availability of per-class impor-
tance weights, which can be obtained using domain adaptation methods, such as ELSA [Tian et al.,
2023], RLLS [Azizzadenesheli et al., 2019] and BBSL [Lipton et al., 2018]. In Fig. 4 (Left), we
compare the performance of these methods when integrated in our estimator. We observe that RLLS
emerges as the most favorable compared to the others, providing reasonable importance weights in
all settings. See Appendix A.4 for experiments involving other weight estimators.

Performance evaluation. In Fig. 4 (Right), we investigate the CE measured by our estimator, compared
to the ground-truth CE (obtained using labels from the target domain). Additionally, we report the
CE on the source domain as a reference point. We observe that the calibration error increases from
the source to target domain when the model is facing label shift. Importantly, our estimator (ĈEt)
effectively closes the gap to the ground-truth (CEt), consistently yielding accurate CE estimates
across models on Amazon and iWildCam.

5 Discussion and Conclusion

In this work, we addressed the problem of estimating CE of an unlabeled target distribution under
label shift. We observe that prior state-of-the-art methods Wang et al. [2020], Chen and Su [2023]
only address CE estimation under the covariate shift assumption: ps(X) ̸= pt(X) and ps(Y |X) =
pt(Y |X); while, to the best of our knowledge, we propose the first CE estimator under the label shift
assumption: ps(Y ) ̸= pt(Y ) and ps(X|Y ) = pt(X|Y ). We demonstrated that it yields CE estimates
closely reflecting the ground truth. Furthermore, we showcase that our estimator can be successfully
used as a post-hoc calibration method – LaSCal – for unsupervised model calibration on a target
distribution. Overall, our experiments indicate that LaSCal can effectively minimize the CE across
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Figure 4: Left. Impact of the weight estimation method on our estimator. Right. Our estimator
(ĈEt) effectively closes the gap to the ground truth (CEt). We report CE normalized by the number
of classes (5 for Amazon and 20 for iWildCam) for illustration purposes.

different intensities of label shift and various modalities. Finally, we analyze the properties of the
estimator and contribute towards a nuanced understanding of its strengths and weaknesses.

Limitations. First, LaSCal is specifically designed to address label-shift, however, other types of
dataset-shift are equally important, e.g., covariate shift [Shimodaira, 2000]. Note that our experiments
in §4.1 shed light on the scenario where the models encounter both label shift and shift in p(X), and
we observed favorable results compared to prior work. Nevertheless, we consider designing consistent
CE estimators under covariate shift a crucial direction for future work. Second, the estimator we
propose is dependent on how well the importance weights reflect the ground truth between the classes,
which we obtain from current methods [Tian et al., 2023, Azizzadenesheli et al., 2019, Alexandari
et al., 2020]. Expectedly, we inherit some limitations of such methods: if certain classes are under-
represented, the importance weights could be unreliable. However, our experiments in Appendix A.4
showcase that our estimator consistently improves as the weights become more accurate. Third, the
estimator requires a sufficient number of data samples, e.g., 4000 samples in Figure 3c, to accurately
estimate the calibration error. In severely data-scarce settings, this requirement may limit potential
applications. However, the error rate of our estimator is (n−1/2 +m−1/2), which is the same as the
weight estimation methods (see Azizzadenesheli et al. [2019, Lemma 1] for the RLLS method, and
Garg et al. [2020, page 8, top paragraph] for the EM-BCTS method). Therefore, the data requirement
is not unique to our method, but rather it is common across all weight estimation-based approaches.

Broader impact. Our proposed approach effectively reduces CE under label shift, and allows for a
more comprehensive and realistic evaluation of model calibration. We consider the ethical risks to be
essentially the same as for any probabilistic classifier. Overall, we consider this paper a significant
step toward improving the model’s robustness and reliability, crucial for safety-critical applications.
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Supplementary Material
LaSCal: Label-Shift Calibration without target labels

The Supplementary material is organized as follows:

• Details about the datasets we use for the experiments (§A.1).
• Implementation details (§A.2)
• Additional experiments with LaSCal (§A.3).
• The proposed estimator with different importance weight estimators (§A.4).

A Experiments

In this section, we include more details about the used datasets and training procedures. We also
report additional experiments to evaluate the performance of our proposed method using different
importance weight estimators.

A.1 Details about the datasets

We report statistics for all datasets in Table 3.

CIFAR-10/100 [Krizhevsky et al., 2009, Cao et al., 2019]. Using the CIFAR datasets we examine
two different types of label shift. In Task A the source distribution is long-tailed, whereas the
target is uniform. In Task B the source distribution is uniform, and the target is long-tailed. The
CIFAR-10/100 Long-Tail datasets are simulated from CIFAR-10/100, respectively, with different
imbalance factors (IF). The IF controls the ratio between the number of samples in the most frequent
and the least frequent class. For example, an imbalance factor of 10 indicates that the least frequent
class appears 10 times less than the most frequent one. In Figure 5 we show the number of target
images per class on the long-tailed CIFAR-10/100 with imbalance factors ranging from 1.25 to 100.

In Task A we keep the target distribution unchanged (i.e., balanced across classes), and we resample
the source distribution with various IF. In the main paper, we presented a setting with source IF = 10
in Table 2. Additional results using different imbalance factors induced on the source distribution are
given in Tables 11 – 16. In Task B the models are trained on the original (balanced) CIFAR datasets,
and in Table 10 in Appendix A.3 we report the performance of our CE estimator on label-shifted
target distribution with various imbalance factors.

Table 3: Statistics for all datasets used in the paper. Note that we report the original number of classes
and samples of the datasets we use.

Dataset Modality Num. classes Train samples Val samples Test samples

CIFAR-10 Images 10 40,000 10,000 10,000
CIFAR-100 Images 100 40,000 10,000 10,000
Camelyon17 Images 2 302436 33560 –
iWildCam Images 182 129809 7314 8154
Amazon Text 5 245502 46950 46950

Camelyon17 [Bandi et al., 2018] consists of 96 × 96 whole-side images (WSI) of breast-cancer
metastases in lymph node sections collected from hospitals in the Netherlands. In each WSI, the
tumor regions are annotated manually by pathologists. The labels indicate whether the central 32×32
region contains a tumor. As Camelyon17 contains only a training and validation set—drawn from
the same (source) distribution—both of which are balanced across the positive and negative class,
we perform the following: (i) We use the validation set as testing dataset, which we convert to our
desired target distribution by resampling the positive class; (ii) From the training dataset, we allocate
a validation dataset with the same size as the testing dataset. Then, we subsample the validation
dataset the same way as we subsample the training dataset, so that both are effectively drawn from
the same (source) distribution (e.g., used in the ablation studies in Section 4.3).

iWildCam [Beery et al., 2021] consists of images obtained from animal camera traps (i.e., heat or
motion-activated static cameras placed in the wild) which are set in countries in different parts of
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Figure 5: Number of target samples per class in simulated long-tail CIFAR-10/100 datasets with
different imbalance factors (IF).

the world. The label of each image is one of the 182 animal species. The training and validation set
features the same long-tail distribution among classes. As testing data from the target distribution, we
use the original test dataset and we perform the following: (i) we keep only the 20 most frequent
classes; (ii) we resample the dataset such that classes follow a uniform distribution (thus representing
the target label-shifted distribution), with an imposed minimal frequency of 84 samples per testing
class. Therefore, the number of samples in the test dataset (target distribution) is 1680, while the
validation set (source distribution) contains 6003 samples.

Amazon [Ni et al., 2019] consists of texts which represent user reviews, while the label is 1-out-of-5
score of the review. The training and validation set (the source distribution) follows the same long-tail
distribution among classes. As the testing dataset is also long-tail, we resample each class based on
the frequency of the least frequent class, yielding a test set following a uniform distribution of classes,
representing the target, where each class appears 527 times. Therefore, the number of samples in the
test dataset (target distribution) is 2860.

A.2 Implementation details

We conduct all experiments on consumer-grade GPUs, that is, all experiments can be conducted on a
single Nvidia 3090. We use PyTorch [Paszke et al., 2019] for all deep-learning-based implementations.
Below we provide further information about the training procedure for each of the datasets, along
with implementation details of the weight estimators we use.

CIFAR-10/100 (Long-Tail). We keep the same training procedure for both CIFAR-10/100 and
their long-tail variants. Namely, we train all models with stochastic gradient descent (SGD) for 200
epochs, with a peak learning rate of 0.1, linearly warmed up for the first 10% of the training, and then
decreased to 0.0 until the end. We apply weight decay of 0.0005, and clip the gradients when their
norm exceeds 5.0. During training, we augment the images by applying random horizontal flips.

WILDS datasets (Camelyon17, iWildCam and Amazon). We keep the same training procedure
across all WILDS datasets, with the only difference across datasets being the data augmentation and
the used models. Namely, we train all models with AdamW Loshchilov and Hutter [2017] for 10
epochs, with a peak learning rate of 0.0005, linearly warmed up for the first 10% of the training
and then decreased to 0.0 until the end. We apply weight decay of 0.001, and clip the gradients
when their norm exceeds 5.0. During training, for models trained on Amazon we do not apply any
data augmentation on the input text, while for models trained on Camelyon17 and iWildCam we
obtain a random crop of the image with size 224 × 224, perform horizontal flipping, and apply
color jitter with parameters: brightness=(0.6, 1.4), contrast=(0.6, 1.4), saturation=(0.6, 1.4). During
testing, we obtain a single crop with size 224× 224 from the center of the image. For all ImageNet
pre-trained models we use Timm [Wightman et al., 2019] (Camelyon17 and iWildCam), while for all
pre-trained language models, we use HuggingFace transformers [Wolf et al., 2019]. On Camelyon17
and iWildCam, we train a diverse set of transformer based-models which are pre-trained on ImageNet:
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ResNet50 [He et al., 2016], ViT-Large and ViT-Large with input resolution of 384 [Dosovitskiy et al.,
2020], and Swin-Large [Liu et al., 2021]. On Amazon, we train different transformer-based language
models: BERT (bert-base-uncased) [Devlin et al., 2018], D-BERT (distilbert-base-uncased) [Sanh
et al., 2019], RoBERTa (roberta-base) [Liu et al., 2019], and D-RoBERTa (distilroberta-base) [Sanh
et al., 2019].

Weight estimators. Our proposed method relies on estimating importance weights using techniques
from the unsupervised domain adaptation literature. Most of the weight estimators (RLLS [Aziz-
zadenesheli et al., 2019], BBSL [Lipton et al., 2018], EM-BCTS [Saerens et al., 2002]) that we use
are implemented in https://github.com/kundajelab/abstention. For the ELSA [Tian et al.,
2023] method, we used the original implementation provided by the authors. In some of our settings,
we detected issues with the weight estimation methods, prompting us to set a minimal value of the
confidence scores to 1 × 10−15 for EM-BCTS, 1 × 10−3 for ELSA, and 1 × 10−2 for BBSL, in
order to get a reasonable estimate of the weights in most cases. We also encountered issues with
the BBSL method on the iWildCam dataset, due to the source distribution containing 0-frequency
classes. RLLS consistently delivered the most accurate and stable weight estimations, thus, we report
our main results using this method. Note that in certain experiments, some of the importance weight
estimation methods (e.g., BBSL) yield poor estimates, resulting in abnormal values for the calibration
error. However, addressing these issues is beyond the scope of this paper, as they are specific to the
weight estimation methods, and not with our CE estimator.

A.3 Additional experiments with LaSCal as a post-hoc calibration method

In Table 4 we report additional performance evaluation of LaSCal compared to other post-hoc
calibration strategies on CIFAR-10/100, where the model is trained on a long-tail source distribution
obtained with various imbalance factors (IF). We report CE on the balanced target distribution. The
missing values of the HeadToTail method are due to singular matrix error encountered when running
the method, using the original code of the paper.

Table 4: CE on label-shifted target domain before and after calibration with various post-hoc methods.
Model Uncal TempScal VectScal EnsTempScal IROvA CPCS TransCal HeadToTail LaSCal

CIFAR-10-LT (IF = 5)
ResNet-20 8.38±0.24 4.71±0.16 4.68±0.15 4.96±0.16 5.55±0.20 4.90±0.20 4.67±0.17 4.60±0.13 4.41±0.12

ResNet-32 10.38±0.25 5.41±0.16 5.34±0.16 5.78±0.17 6.23±0.20 5.63±0.19 5.99±0.17 4.68±0.14 4.69±0.15

ResNet-56 11.86±0.31 5.37±0.16 5.47±0.17 5.17±0.18 6.53±0.27 5.65±0.16 7.19±0.18 4.76±0.12 4.74±0.13

ResNet-110 13.19±0.30 5.69±0.18 5.77±0.17 5.33±0.14 6.80±0.27 5.70±0.20 9.37±0.31 – 4.84±0.13

CIFAR-100-LT (IF = 5)
ResNet-20 65.16±0.25 26.45±0.24 27.50±0.28 27.55±0.26 31.14±0.24 26.26±0.28 47.48±0.25 21.69±0.25 5.97±0.07

ResNet-32 71.32±0.20 28.75±0.29 28.84±0.22 29.54±0.28 31.08±0.24 27.66±0.25 57.39±0.24 28.67±0.26 6.19±0.08

ResNet-56 73.07±0.18 33.18±0.28 30.27±0.27 32.57±0.29 31.51±0.23 29.03±0.27 61.13±0.26 33.12±0.27 6.47±0.07

ResNet-110 73.99±0.19 35.23±0.28 30.74±0.25 34.29±0.27 32.15±0.22 29.58±0.28 62.93±0.27 35.27±0.27 6.61±0.08

CIFAR-10-LT (IF = 2)
ResNet-20 9.09±0.14 5.55±0.13 5.48±0.13 5.96±0.13 6.30±0.14 5.87±0.13 5.28±0.12 – 4.69±0.12

ResNet-32 11.02±0.24 6.29±0.13 6.05±0.14 6.85±0.12 7.22±0.21 6.61±0.11 6.58±0.14 – 5.39±0.13

ResNet-56 13.86±0.38 6.84±0.12 6.81±0.12 6.71±0.13 9.52±0.63 7.14±0.13 9.18±0.21 – 5.43±0.11

ResNet-110 13.63±0.58 7.23±0.20 7.19±0.29 6.84±0.31 8.28±0.24 7.55±0.22 9.28±0.26 – 6.44±0.23

CIFAR-100-LT (IF = 2)
ResNet-20 61.35±0.27 32.12±0.30 32.82±0.25 33.10±0.29 37.73±0.26 32.23±0.29 42.40±0.29 27.98±0.26 6.64±0.08

ResNet-32 70.53±0.21 33.85±0.27 34.66±0.29 34.44±0.31 37.08±0.24 32.83±0.28 56.77±0.26 29.74±0.26 6.99±0.07

ResNet-56 74.42±0.17 37.08±0.30 36.31±0.30 36.92±0.28 37.47±0.26 33.52±0.29 63.66±0.27 37.10±0.29 7.44±0.08

ResNet-110 75.50±0.17 41.37±0.27 38.95±0.31 41.02±0.32 40.02±0.26 36.06±0.33 66.23±0.24 41.32±0.28 7.55±0.08

In Table 5 we report additional performance evaluation of LaSCal against traditional, i.i.d, post-hoc
calibration methods. Note that VectScal, EnsTempScal, and IROvA are not specifically designed
for label-shift scenarios and rely solely on labeled source data. In contrast, LaSCal is tailored for
situations where label shift occurs, leveraging both the labeled source data and unlabeled target data
to perform calibration. This enables LaSCal to adapt to changes in the class distribution between
the source and target domains, providing better calibration under such conditions, as reflected in the
reported results.

In Figure 6 and Figure 7 we show reliability diagrams for CIFAR-10 using ResNet-20, and Amazon
using DistillBERT, respectively, before and after calibration. Similar to the results presented in the
main text, we observe that LaSCal obtains lowest ECE.
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Table 5: CE on label-shifted target domain before and after calibration with various post-hoc methods.
Model Uncal VectScal EnsTempScal IROvA LaSCal

CIFAR-10-LT (IF=10)
ResNet-20 8.87±0.38 5.30±0.19 4.72±0.20 5.19±0.24 4.44±0.17

ResNet-32 10.45±0.41 5.13±0.19 5.43±0.22 5.78±0.26 4.81±0.17

ResNet-56 11.25±0.31 5.14±0.17 4.69±0.18 6.01±0.25 4.57±0.15

ResNet-110 11.89±0.35 5.20±0.20 4.97±0.17 5.89±0.29 4.70±0.16

Macro average 10.62 5.19 4.95 5.72 4.63

CIFAR-100-LT (IF = 10)
ResNet-20 65.66±0.23 25.91±0.22 25.37±0.20 28.75±0.24 5.62±0.08

ResNet-32 71.16±0.24 26.14±0.22 27.84±0.23 27.76±0.24 5.80±0.07

ResNet-56 72.24±0.21 26.67±0.25 28.95±0.27 28.52±0.21 5.88±0.07

ResNet-110 72.80±0.21 28.36±0.26 30.96±0.26 29.96±0.19 6.19±0.08

Macro average 70.47 26.77 28.28 28.75 5.87

Amazon Reviews
RoBERTa 11.44±0.79 5.48±0.45 4.86±0.43 4.88±0.42 3.66±0.29

DistillRoBERTa 17.82±0.98 5.84±0.41 5.27±0.41 4.80±0.40 2.72±0.23

BERT 27.33±0.98 8.47±0.52 7.74±0.59 7.02±0.45 3.62±0.30

DistillBERT 22.18±1.14 7.36±0.47 6.52±0.54 6.40±0.46 3.40±0.28

Macro average 19.19 6.79 6.10 5.78 3.38

iWildCam
ResNet50 18.44±0.74 21.10±1.13 16.61±0.58 16.07±0.70 13.07±0.45

Swin-Large 22.07±0.84 20.89±0.99 17.36±0.62 16.49±0.69 15.43±0.54

ViT-Large 17.94±0.71 20.96±0.95 17.07±0.69 16.87±0.86 13.07±0.50

Vit-Large (384) 18.99±0.86 21.64±1.07 18.69±0.75 16.49±0.77 17.27±0.66

Macro average 19.36 21.15 17.43 16.48 14.71
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Figure 6: Reliabiliy diagrams on CIFAR-10 using ResNet-20 before and after calibration.
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Figure 7: Reliability diagrams on Amazon using DistillRoBERTa before and after calibration.

As some of the post-hoc calibration strategies are not accuracy-preserving, in Tables 6 to 8 we report
accuracy for the uncalibrated model, as well as for vector scaling, and isotonic regression. We observe
that the change in accuracy is negligible in most cases.
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Table 6: Accuracy of CIFAR-10/100 before and after calibration with non accuracy-perserving
calibration methods. The error bars represent 95% CI.

CIFAR-10-LT (IF=10) CIFAR-100-LT (IF=10)

Uncal VectScal IROvA Uncal VectScal IROvA

ResNet-20 78.24±0.81 77.18±0.82 77.34±0.82 44.81±0.97 44.00±0.97 43.91±0.97

ResNet-32 80.74±0.77 80.74±0.77 80.61±0.77 47.73±0.98 46.55±0.98 46.68±0.98

ResNet-56 81.71±0.76 81.09±0.77 81.25±0.77 47.18±0.98 46.76±0.98 46.30±0.98

ResNet-110 81.29±0.76 81.22±0.77 81.09±0.77 49.78±0.98 49.22±0.98 49.35±0.98

Table 7: Accuracy on iWildCam.
Uncal VectScal IROvA

ResNet50 70.83±2.17 68.33±2.22 68.69±2.22

Swin-Large 70.83±2.17 67.02±2.25 69.52±2.20

ViT-Large 66.96±2.25 63.99±2.30 64.52±2.29

Vit-Large (384) 69.64±2.20 66.61±2.26 67.86±2.23

Table 8: Accuracy on Amazon.
Uncal VectScal IROvA

RoBERTa 56.26±1.82 55.00±1.82 54.48±1.83

DistillRoBERTa 56.99±1.81 55.63±1.82 55.91±1.82

BERT 53.36±1.83 52.48±1.83 52.13±1.83

DistillBERT 55.03±1.82 53.99±1.83 53.64±1.83

In Table 9 we show the full comparison of LaSCal and other post-hoc calibration methods, in a setting
where additionally to the label shift, the input distribution changes. Across most settings, our method
achieves best or second best calibration error.

Table 9: Label shift with changing input distribution p(X)
Model Uncal TempScal VectScal EnsTempScal IROvA CPCS TransCal HeadToTail LaSCal (TS)

Amazon Reviews
RoBERTa 11.91±0.44 5.02±0.26 5.49±0.24 4.97±0.24 4.96±0.24 4.16±0.21 4.38±0.23 4.38±0.24 3.58±0.16

DistillRoBERTa 19.30±0.72 5.53±0.27 6.11±0.24 5.56±0.31 5.00±0.23 3.37±0.20 8.33±0.38 2.35±0.13 2.44±0.13

BERT 28.05±0.63 8.19±0.32 8.42±0.26 8.08±0.31 6.96±0.28 3.87±0.22 17.77±0.56 3.12±0.17 3.34±0.20

DistillBERT 25.44±0.60 7.50±0.35 8.26±0.33 7.43±0.38 7.07±0.30 4.16±0.20 14.00±0.46 3.19±0.18 3.36±0.18

Macro average 21.18 6.56 7.07 6.51 6.0 3.89 11.12 3.26 3.18

iWildCam
ResNet50 21.43±0.48 17.28±0.38 16.69±0.36 17.28±0.34 3.75±0.27 36.63±0.74 13.51±0.26 15.35±0.33 16.13±0.35

Swin-Large 26.75±0.59 18.84±0.40 22.26±0.52 18.80±0.39 4.85±4.90 38.65±0.89 17.49±0.34 17.20±0.35 13.86±0.28

Vit-Large 16.05±0.35 15.03±0.31 14.48±0.32 15.08±0.28 14.53±0.39 22.43±0.54 11.95±0.26 14.07±0.26 11.76±0.26

Vit-Large (384) 20.03±0.42 19.02±0.37 19.18±0.39 19.05±0.33 4.30±0.45 21.00±0.40 15.29±0.33 17.72±0.33 15.91±0.35

Macro average 21.07 17.54 18.15 17.55 6.86 29.68 14.56 16.09 14.41

Additionally, several related works Tian et al. [2023], Alexandari et al. [2020], Lipton et al. [2018],
Azizzadenesheli et al. [2019] predominantly focus on an alternative type of label shift, where the
source is balanced (i.e., the classes have equal frequency), while the target follows a long-tail
distribution. We report results for such settings in Table 10, where we induce label shift on the target
data with imbalance factors with magnitudes: 10 and 100. The accuracy remains unaffected by
the induced label shift. As before, we perform experiments with ResNet models of varying depths
to verify that our findings generalize across models of different complexities. The results on both
datasets reveal that the estimator yields reliable CE values in the absence of labeled target data,
irrespective of the IF intensity.

A.4 Effect of different importance weight estimators

In this section, we report additional experiments to assess the effectiveness of our proposed approach
using various importance weight estimation methods: RLLS, ELSA, EM-BCTS, and BBSL.

In Tables 11 – 16 we report accuracy, ground truth CE (using labels) and estimated CE using different
importance weight estimators. The models are trained on CIFAR-10/100-LT. Each table corresponds
to different IF imposed on the source distribution, and we report CE with different Lp norms: L1 or
L2. For all experiments, the target distribution is uniform. The subscripts s and t denote the source
and target distributions, respectively.

When encountering a less severe label shift: Table 12 (IF = 5) and Table 13 (IF = 2), we observe
a comparable performance across all weight estimators. However, under more pronounced label
shift: Table 11 (IF = 10), in several settings we encounter issues with ELSA, EM-BCTS and BBSL

19

65404 https://doi.org/10.52202/079017-2088



Table 10: Performance evaluation of our estimator on a label-shifted target distribution using different
imbalance factors, with models trained on balanced CIFAR-10/100. Across both shifts, LaSCal (ĈEt)
yields accurate estimates compared to the ground truth (with labels), and effectively handles even the
severe case with IF = 100. The error bars represent 95% CI for Acc, and average standard deviation
across classes for CE.

IF=10.0 IF=100.0

Model Acct CEt CEt ĈEt CEt ĈEt

CIFAR-10
ResNet-20 87.22±0.65 8.76±0.12 7.95±0.32 8.70±0.40 10.77±0.50 12.13±0.72

ResNet-32 88.47±0.63 10.72±0.21 9.36±0.42 9.71±0.52 10.57±0.41 10.88±0.53

ResNet-56 88.53±0.62 10.02±0.14 8.47±0.37 8.82±0.48 10.10±0.55 10.78±0.53

ResNet-110 90.00±0.59 13.74±0.33 10.42±0.62 10.36±0.60 10.45±0.58 10.83±0.58

CIFAR-100
ResNet-20 61.19±0.96 59.15±0.26 57.08±0.42 57.54±0.48 53.83±0.78 53.38±0.83

ResNet-32 62.71±0.95 67.24±0.24 65.16±0.46 65.77±0.42 61.10±0.80 60.20±0.81

ResNet-56 65.07±0.93 74.59±0.19 72.58±0.35 73.55±0.45 68.67±0.80 69.51±0.84

ResNet-110 65.96±0.93 76.04±0.18 73.83±0.35 74.27±0.38 67.72±0.75 68.15±0.83

methods, resulting in abnormal CE values. In contrast, the RLLS method yields stable and reliable
values across all settings. The CE estimates obtained using RLLS often closely align with those of
the CE estimator that utilizes ground truth weights, denoted as ω∗.

Table 11: Comparison of different importance weight estimators. The source is obtained with an
IF = 10. We measure L2 CE. The abnormal values on CIFAR-100-LT with BBSL and ELSA are
due to issues with the weight estimators in this setting.

Model Accs Acct CEs CEt ĈEt(ω
∗) ĈEt(ω̂)

RLLS
ĈEt(ω̂)
ELSA

ĈEt(ω̂)
EM-BCTS

ĈEt(ω̂)
BBSL

CIFAR-10-LT
ResNet-20 83.10±1.15 78.24±0.81 8.19±0.41 8.86±0.33 9.26±0.29 8.93±0.33 9.06±0.31 8.57±0.48 9.01±0.40

ResNet-32 85.48±1.08 80.74±0.77 9.18±0.50 10.45±0.40 11.75±0.40 12.16±0.38 12.03±0.39 11.20±0.47 12.19±0.39

ResNet-56 85.38±1.08 81.71±0.76 9.87±0.54 11.24±0.32 11.67±0.33 11.71±0.24 11.62±0.34 11.19±0.49 11.77±0.30

ResNet-110 84.94±1.10 81.29±0.76 10.06±0.58 11.95±0.38 12.28±0.35 12.21±0.33 12.18±0.33 11.69±0.41 12.26±0.35

CIFAR-100-LT
ResNet-20 52.24±1.57 44.81±0.97 61.28±0.38 65.67±0.24 65.63±0.28 63.97±0.28 96.61±0.54 63.09±0.27 134078.52±1462.04

ResNet-32 53.48±1.57 47.73±0.98 65.99±0.38 71.24±0.26 71.42±0.28 70.03±0.14 83.05±0.31 69.06±0.17 464.12±4.54

ResNet-56 54.21±1.57 47.18±0.98 66.12±0.37 72.21±0.18 72.46±0.16 71.33±0.34 1048.32±11.97 69.89±0.21 12147.40±393.55

ResNet-110 56.58±1.56 49.78±0.98 68.87±0.45 72.87±0.16 73.03±0.17 72.11±0.17 77.34±0.24 70.72±0.15 82.88±0.22

Table 12: Comparison of different importance weight estimators. The source is obtained with an
IF = 5. We measure L2 CE.

Model Accs Acct CEs CEt ĈEt(ω
∗) ĈEt(ω̂)

RLLS
ĈEt(ω̂)
ELSA

ĈEt(ω̂)
EM-BCTS

ĈEt(ω̂)
BBSL

CIFAR-10-LT
ResNet-20 84.77±0.99 82.77±0.74 7.21±0.23 8.40±0.22 8.93±0.23 8.89±0.24 9.07±0.23 8.75±0.32 8.92±0.22

ResNet-32 86.68±0.93 83.47±0.73 8.03±0.31 10.36±0.26 10.40±0.23 10.44±0.24 10.41±0.22 10.17±0.29 10.47±0.24

ResNet-56 86.03±0.95 84.17±0.72 9.59±0.70 11.82±0.30 11.74±0.24 11.68±0.28 11.77±0.29 11.53±0.29 11.73±0.28

ResNet-110 86.44±0.94 85.04±0.70 9.99±0.71 13.17±0.36 13.52±0.31 13.54±0.30 13.58±0.28 13.35±0.35 13.47±0.31

CIFAR-100-LT
ResNet-20 52.92±1.39 50.39±0.98 62.49±0.32 65.19±0.30 65.16±0.19 65.74±0.23 67.02±0.24 64.19±0.27 68.56±0.19

ResNet-32 55.52±1.39 50.64±0.98 68.51±0.45 71.24±0.25 71.35±0.18 72.05±0.25 73.16±0.19 70.17±0.19 74.04±0.23

ResNet-56 56.59±1.38 53.33±0.98 70.27±0.32 73.16±0.14 73.17±0.25 73.60±0.23 75.48±0.17 71.96±0.16 75.62±0.20

ResNet-110 57.26±1.38 54.16±0.98 71.39±0.30 73.85±0.20 74.10±0.19 74.05±0.15 74.95±0.24 72.45±0.21 76.00±0.16
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Table 13: Comparison of different importance weight estimators. The source is obtained with an
IF = 2. We measure L2 CE.

Model Accs Acct CEs CEt ĈEt(ω
∗) ĈEt(ω̂)

RLLS
ĈEt(ω̂)
ELSA

ĈEt(ω̂)
EM-BCTS

ĈEt(ω̂)
BBSL

CIFAR-10-LT
ResNet-20 86.74±0.78 85.78±0.68 5.27±0.33 9.05±0.14 9.48±0.16 9.53±0.15 9.59±0.14 9.55±0.17 9.54±0.14

ResNet-32 86.94±0.78 86.82±0.66 5.59±0.35 11.00±0.25 11.14±0.21 11.03±0.25 11.01±0.22 11.01±0.23 11.06±0.21

ResNet-56 88.41±0.74 87.93±0.64 7.84±0.53 13.80±0.33 13.85±0.34 13.94±0.39 13.94±0.35 13.93±0.33 13.93±0.35

ResNet-110 88.33±0.74 87.51±0.65 7.71±0.52 13.60±0.55 13.83±0.53 13.99±0.48 13.93±0.51 13.79±0.51 14.01±0.47

CIFAR-100-LT
ResNet-20 56.81±1.15 56.71±0.97 60.41±0.27 61.43±0.23 61.17±0.21 61.80±0.18 61.76±0.18 61.15±0.29 123.74±1.72

ResNet-32 58.43±1.14 58.59±0.97 70.46±0.26 70.48±0.22 70.53±0.28 71.24±0.15 71.33±0.21 70.22±0.25 71.66±0.15

ResNet-56 60.42±1.13 59.96±0.96 73.93±0.18 74.49±0.17 74.30±0.19 74.86±0.16 74.74±0.20 74.07±0.17 74.86±0.22

ResNet-110 62.88±1.12 61.99±0.95 74.93±0.20 75.45±0.08 75.39±0.20 75.74±0.20 75.88±0.15 75.07±0.16 75.68±0.18

Table 14: Comparison of different importance weight estimators. The source is obtained with an
IF = 10. We measure L1 CE.

Model Accs Acct CEs CEt ĈEt(ω
∗) ĈEt(ω̂)

RLLS
ĈEt(ω̂)
ELSA

ĈEt(ω̂)
EM-BCTS

ĈEt(ω̂)
BBSL

CIFAR-10-LT
ResNet-20 83.10±1.15 78.24±0.81 31.55±1.00 35.87±0.64 35.49±0.58 34.90±0.63 34.90±0.53 35.91±0.91 35.04±0.78

ResNet-32 85.48±1.08 80.74±0.77 32.77±1.26 37.58±0.73 39.21±0.66 39.48±0.70 39.35±0.64 40.53±0.77 39.46±0.62

ResNet-56 85.38±1.08 81.71±0.76 33.83±1.24 38.01±0.55 38.98±0.65 38.97±0.49 38.53±0.64 39.38±0.91 39.02±0.60

ResNet-110 84.94±1.10 81.29±0.76 34.24±1.22 38.97±0.63 39.66±0.58 39.68±0.58 39.46±0.60 40.81±0.81 39.68±0.67

CIFAR-100-LT
ResNet-20 52.24±1.57 44.81±0.97 145.74±0.54 157.00±0.28 156.73±0.30 147.16±0.27 198.71±0.35 150.78±0.25 5083.67±8.64

ResNet-32 53.48±1.57 47.73±0.98 151.01±0.60 162.27±0.24 162.60±0.27 154.11±0.14 185.44±0.25 157.72±0.20 400.14±0.65

ResNet-56 54.21±1.57 47.18±0.98 151.08±0.57 163.37±0.19 164.01±0.12 155.91±0.31 509.24±1.47 158.69±0.23 1504.61±1.23

ResNet-110 56.58±1.56 49.78±0.98 153.41±0.65 163.44±0.13 163.65±0.20 156.95±0.13 169.43±0.22 158.98±0.13 175.28±0.19

Table 15: Comparison of different importance weight estimators. The source is obtained with an
IF = 5. We measure L1 CE.

Model Accs Acct CEs CEt ĈEt(ω
∗) ĈEt(ω̂)

RLLS
ĈEt(ω̂)
ELSA

ĈEt(ω̂)
EM-BCTS

ĈEt(ω̂)
BBSL

CIFAR-10-LT
ResNet-20 84.77±0.99 82.77±0.74 28.66±0.58 29.99±0.47 31.26±0.55 31.75±0.60 32.25±0.56 32.60±0.86 31.86±0.62

ResNet-32 86.68±0.93 83.47±0.73 28.84±0.77 33.59±0.66 32.88±0.71 33.20±0.67 33.03±0.74 33.83±0.85 33.26±0.66

ResNet-56 86.03±0.95 84.17±0.72 32.71±1.45 36.76±0.56 36.71±0.52 35.96±0.54 36.12±0.53 36.67±0.67 35.96±0.57

ResNet-110 86.44±0.94 85.04±0.70 33.15±1.54 37.97±0.85 38.98±0.62 39.15±0.65 39.03±0.66 39.21±0.74 38.92±0.67

CIFAR-100-LT
ResNet-20 52.92±1.39 50.39±0.98 149.05±0.58 155.00±0.31 154.74±0.19 153.35±0.18 157.83±0.16 152.64±0.23 161.53±0.27

ResNet-32 55.52±1.39 50.64±0.98 155.64±0.56 161.56±0.27 161.79±0.14 160.31±0.21 163.52±0.16 159.33±0.16 164.22±0.23

ResNet-56 56.59±1.38 53.33±0.98 157.25±0.38 163.20±0.25 163.55±0.18 161.88±0.17 166.54±0.13 160.84±0.16 165.55±0.21

ResNet-110 57.26±1.38 54.16±0.98 157.92±0.43 163.76±0.16 164.03±0.19 162.17±0.16 164.27±0.17 160.80±0.20 165.03±0.09

Table 16: Comparison of importance weight estimators.The source is obtained with an IF = 2. We
measure L1 CE.

Model Accs Acct CEs CEt ĈEt(ω
∗) ĈEt(ω̂)

RLLS
ĈEt(ω̂)
ELSA

ĈEt(ω̂)
EM-BCTS

ĈEt(ω̂)
BBSL

CIFAR-10-LT
ResNet-20 86.74±0.78 85.78±0.68 22.60±0.64 28.86±0.40 29.90±0.56 30.17±0.52 30.26±0.55 30.28±0.50 30.26±0.60

ResNet-32 86.94±0.78 86.82±0.66 23.62±0.72 32.73±0.51 33.21±0.56 33.04±0.54 32.79±0.51 32.84±0.62 33.05±0.55

ResNet-56 88.41±0.74 87.93±0.64 26.15±0.98 36.66±0.71 36.76±0.85 37.15±0.93 36.92±0.89 37.13±0.74 37.01±0.86

ResNet-110 88.33±0.74 87.51±0.65 26.75±0.87 36.80±1.20 37.25±1.08 38.23±0.98 37.83±1.01 37.37±1.03 38.15±1.00

CIFAR-100-LT
ResNet-20 56.81±1.15 56.71±0.97 146.17±0.37 148.09±0.27 147.38±0.24 147.77±0.23 148.02±0.19 146.95±0.29 181.77±0.32

ResNet-32 58.43±1.14 58.59±0.97 158.73±0.29 158.92±0.24 159.20±0.26 159.44±0.12 159.73±0.20 158.42±0.19 160.46±0.12

ResNet-56 60.42±1.13 59.96±0.96 161.93±0.21 162.95±0.15 163.12±0.15 163.18±0.16 163.21±0.18 162.60±0.14 163.19±0.16

ResNet-110 62.88±1.12 61.99±0.95 162.72±0.19 163.96±0.08 164.01±0.17 164.06±0.14 164.18±0.11 163.30±0.12 163.98±0.16
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B Top-label calibration

In the main paper, we focus on classwise calibration error, as it provides a more comprehensive
measure of calibration by assessing the alignment of the model’s confidence across all classes, rather
than just the highest prediction. However, top-label calibration is widely used in the literature, so we
demonstrate here how our estimator can be extended to handle this form of calibration.

For top-label calibration, we focus on the maximum score Q = max(f(X)), which corresponds
to the top prediction. As before, the class labels are represented as one-hot encoded variables
Y ∈ {e1, . . . , ek} ⊂ ∆k, where ei is the one-hot vector corresponding to class i. The top-label Lp

calibration error is [Kumar et al., 2019, Kull et al., 2019, Gruber and Buettner, 2022]:

TCEp(f)
p = E

[∣∣∣P[Y = eargmax f(X) | Q
]
−Q

∣∣∣p] (8)

We aim to find an estimator of the form:

T̂CEp(f)
p =

1

m

m+n∑
j=n+1

∣∣∣Êpt
[1(Y = eargmax f(X)) | qj ]− qj

∣∣∣p , (9)

where the expectations are taken w.r.t. the target, and qj denotes the top-label prediction for input xj .
For the estimator of the conditional expectation we compute:

Ept
[1(Y = eargmax f(X)) | Q = q] ≈

1
n

∑k
c=1

∑
i∈Sc

ω̂cκ(Q = q, qi)1(yi = argmax f(xi))
1
m

∑m+n
i=n+1 κ(Q = q, qi)

,

(10)
where Sc is the subset of samples where the true label is c, and 1 is an indicator function returning 1
if the predicted label matches the true label for sample xi, and 0 otherwise.

Table 17: Amazon experiments
Model Uncal TempScal HeadToTail EM-BCTS CPMCN LaSCal

RoBERTa 6.03±0.50 1.14±0.16 0.93±0.17 0.40±0.11 0.37±0.10 0.29±0.08

DistillRoBERTa 10.73±0.63 1.83±0.25 0.58±0.12 0.43±0.09 0.66±0.14 0.42±0.11

BERT 17.32±0.67 3.71±0.35 0.73±0.13 0.75±0.15 2.19±0.21 0.61±0.12

DistillBERT 13.59±0.72 2.22±0.25 0.33±0.10 0.37±0.09 1.72±0.25 0.30±0.09

Macro-average 11.42±0.59 2.23±0.17 0.64±0.09 0.49±0.07 1.24±0.19 0.41±0.09

Table 18: iWildCam experiments
Model Uncal TempScal HeadToTail EM-BCTS CPMCN LaSCal

ResNet50 3.21±0.40 1.66±0.27 1.06±0.24 0.64±0.15 2.40±0.34 0.74±0.17

Swin-Large 5.92±0.57 1.88±0.28 1.07±0.25 1.48±0.27 1.17±0.28 1.17±0.26

ViT-Large 2.43±0.41 1.59±0.33 1.48±0.26 3.32±0.43 2.34±0.33 0.62±0.14

ViT-Large (384) 2.69±0.40 1.96±0.33 1.85±0.34 1.93±0.34 2.18±0.37 0.81±0.16

Macro-average 3.56±0.41 1.77±0.26 1.37±0.27 1.84±0.21 2.02±0.23 0.84±0.12

The results presented in Tables 17 and 18 show that the observations remain the same as in the main
paper: (i) LaSCal significantly reduces the CE of all models across datasets; (ii) LaSCal outperforms
the baselines, achieving state-of-the-art results on the datasets and settings we experiment with.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our contributions: a novel CE
estimator, a post-hoc method for unsupervised calibration, and extensive empirical validation.
The assumptions and scope (label shift scenario) are properly defined.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in a separate paragraph in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: To the best of our knowledge, all assumptions are provided. The pointwise
consistency results are supported by sketch proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The method, datasets, metrics, and models are described in sufficient detail
in the main text. Appendix A.1 and A.2 contain more details about the datasets and
the implementation. The code is released at: https://github.com/tpopordanoska/
label-shift-calibration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets we use are publicly available, and the code is released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main text specifies enough details to understand the results. The full
detailed information about datasets, hyperparameters and other implementation details is
given in Appendix A.1 and A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main results (Table 2 and Figure 3) report mean and standard deviation
values obtained using bootstrap (repeatedly resampling with replacement and estimating CE
on each subset).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In appendix A.2 we provide information about the resources used in our
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impact and ethical risks are discussed in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper will not release data or models with a risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We appropriately cite the creators of all datasets, models, and code packages
we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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