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Abstract

We study the problem of online sequential decision-making given auxiliary
demonstrations from experts who made their decisions based on unobserved con-
textual information. These demonstrations can be viewed as solving related but
slightly different problems than what the learner faces. This setting arises in many
application domains, such as self-driving cars, healthcare, and finance, where ex-
pert demonstrations are made using contextual information, which is not recorded
in the data available to the learning agent. We model the problem as zero-shot
meta-reinforcement learning with an unknown distribution over the unobserved
contextual variables and a Bayesian regret minimization objective, where the un-
observed variables are encoded as parameters with an unknown prior. We pro-
pose the Experts-as-Priors algorithm (ExPerior), an empirical Bayes approach
that utilizes expert data to establish an informative prior distribution over the
learner’s decision-making problem. This prior distribution enables the application
of any Bayesian approach for online decision-making, such as posterior sampling.
We demonstrate that our strategy surpasses existing behaviour cloning, online,
and online-offline baselines for multi-armed bandits, Markov decision processes
(MDPs), and partially observable MDPs, showcasing the broad reach and utility of
ExPerior in using expert demonstrations across different decision-making setups.

1 Introduction
Reinforcement learning (RL) has found success in complex decision-making tasks, spanning areas
such as game playing [1, 2, 3], robotics [4, 5], and aligning with human preferences [6]. However,
RL’s considerable sample inefficiency, necessitating millions of training frames for convergence,
remains a significant challenge. A notable body of work within RL has been dedicated to integrating
expert demonstrations to accelerate the learning process, employing strategies like offline pretraining
[7] and the use of combined offline-online datasets [8, 9]. While these approaches are theoretically
sound and empirically validated [10, 11], they typically presume homogeneity between the offline
and online datasets. A vital question arises about the effectiveness of these methods when expert
data embody heterogeneous tasks, indistinguishable by the learner.

An important example of such heterogeneity is in situations where experts operate with additional
information not available to the learner, a scenario previously explored in imitation learning with
unobserved contexts [12, 13, 14, 15]. Existing literature either relies on the availability of experts
to query during training [16, 17, 18, 19] or focuses on the assumptions that enable imitation learn-
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Figure 1: Illustration of ExPerior in a goal-oriented task. Step 1 (Offline): The experts demonstrate their
policies for different goal types while observing them. Step 2 (Offline): The expert data DE only contains the
trajectories states/actions — goal types are not collected. We form an informative prior distribution over the
goal types (unobserved factors) usingDE. Step 3 (Online): The goal type is unknown but drawn from the same
distribution of goals in Step 1. The learner uses the learned prior for posterior sampling.

ing with unobserved contexts, sidestepping online reward-based interactions [20, 21]. Recent con-
tributions by Hao et al. [22, 23] suggest using offline expert data for online RL, albeit without
accounting for unobserved variations. Our work addresses the more general challenge of online
decision-making given auxiliary offline expert data with unobserved heterogeneity. We view such
demonstrations as solving related yet distinct problems from those faced by the learner, where dif-
ferences remain invisible to the learner. For instance, in a personalized education scenario, while a
learning agent can observe characteristics like grades or demographics, it might remain oblivious to
factors such as learning styles, which are visible to an expert teacher and can significantly influence
teaching methods. Naı̈ve imitation without access to this ”private” information will only learn a sin-
gle policy for each observed characteristic [24], leading to sub-optimal actions. On the other hand,
a purely online approach requires extensive trial and error to result in meaningful decisions.

We integrate offline expert data with online RL, treating the scenario as a zero-shot meta-
reinforcement learning (meta-RL) problem with an unknown distribution over unobserved con-
textual variables. Unlike typical meta-RL frameworks where the learner is exposed to multi-
ple instances during training (different students in our example) to learn the underlying distribu-
tion [25, 26], our approach only leverages offline expert data to infer the distribution of unobserved
factors, embodying a zero-shot meta-RL paradigm [27].

Contributions. We define a Bayesian regret minimization objective and consider unobserved vari-
ables as parameters under an unknown prior distribution. We use empirical Bayes to derive an
informative prior over the unobserved variables from expert data. We use the learned prior distribu-
tion to drive exploration in the online RL task, using approaches like posterior sampling [28]. We
propose two procedures to learn such a prior: (1) a parametric approach that can utilize any existing
knowledge about the parametric form of the prior distribution, and (2) a nonparametric approach that
employs the principle of maximum entropy when such prior knowledge does not exist. We call our
framework Experts-as-Priors or ExPerior for short. See Figure 1 for a goal-oriented RL example.
ExPerior outperforms existing offline, online, and offline-online baselines in multi-armed bandits,
Markov decision processes (MDPs), and partially observable MDPs. For multi-armed bandits, we
find the Bayesian regret incurred by ExPerior is proportional to the entropy of the optimal action
under the prior distribution, aligning with the entropy of expert policy if the experts are optimal.
We introduce a frequentist algorithm for multi-armed bandits and prove a Bayesian regret bound
proportional to a term that closely resembles the entropy of the optimal action. Our results suggest
using the entropy of expert demonstrations to evaluate the impact of unobserved factors.

2 Related Work
Our work is an addition to the recent body of reinforcement learning research that leverages of-
fline demonstrations to speed up online learning [29, 10, 30, 7, 9]. Classic algorithms such as
DDPGfD [31] and DQfD [32] achieve this by combining imitation learning and RL. They modify
DDPG [5] and DQN [1] by warm-starting the algorithms’ replay buffers with expert trajectories
and ensuring that the offline data never gets overridden by online trajectories. Closely related to
our study is the meta-RL literature, which aims to accelerate learning in a given RL task by using
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prior experience from related tasks [33, 34, 35]. These papers present model-agnostic meta-learning
training objectives to maximize the expected reward from novel tasks as efficiently as possible.

Two unique features distinguish our problem from the settings considered above. First, our setting
assumes heterogeneity within the offline data and with the online RL task that is unobserved to the
learner, while the (optimal) experts are privy to that heterogeneity. Second, we assume the learner
will only interact with one online task, making our setup similar to zero-shot meta-RL [27, 36, 37].
Most similar to our work is the ExPLORe algorithm [38], which assigns optimistic rewards to the
offline data during the online interaction and runs an off-policy algorithm using both online and
labelled offline data as buffers. For our setting, the algorithm incentivizes the learner to explore the
expert trajectories, leading to faster convergence. We consider this work one of our baselines.

Our methodology utilizes only the state-action trajectory data from expert demonstrations without
task-specific information or reward labels. Other similar methods require additional offline informa-
tion. For example, Nair et al. [30] assume that the offline data contains the reward labels and use that
to pre-train a policy, which is then fine-tuned online. Mendonca et al. [39] require task labelling for
each trajectory and use the offline data to learn a single meta-learner. Similarly, Zhou et al. [40] and
Rakelly et al. [41] require the task label and reward labels. They then infer the task during online
interaction and use the task-specific offline data. Lee et al. [42] requires a large amount of noisy
expert data with reward labels, in addition to the optimal trajectory data, for good performance.
Finally, our methodology builds on posterior sampling [43]. Hao et al. [22, 23] consider a similar
problem using posterior sampling to leverage offline expert demonstration data to improve online
RL. However, they assume homogeneity between the expert data and online tasks. In contrast, our
setting accounts for heterogeneity.

3 Problem Setup
Decision Model for Unobserved Heterogeneity. To account for unobserved heterogeneity, we
consider a generalization of finite-horizon Markov Decision Processes (MDPs) with a notion of
probabilistic contextual variables [44, 13, 21]. The underlying model for the MDP will additionally
depend on an unobserved variable that encapsulates the information hidden from the learner. For
example, consider a personalized education setup where teaching a student corresponds to a task, and
the learning agent can observe students’ characteristics, like their demographic status and grades.
Other factors, such as the student’s learning style (e.g., visual learners or self-study), may not be
readily available, even though they are important in determining the optimal teaching style.

Let C be the set of all unobserved context variables that can describe the unobserved heterogene-
ity of the decision-making problem (e.g., the set of all possible learning styles). A contextual
MDP M = (S,A, T , R,H, ρ, µ⋆) is parameterized by states S, actions A, transition function
T : S × A × C → ∆(S), reward function R : S × A × C → ∆(R), horizon H > 0, initial
state distribution ρ ∈ ∆(S), and context distribution µ⋆. We assume the transition/reward functions
and µ⋆ are unknown, and for simplicity, ρ does not depend on the context variable. For each unob-
served context c ∼ µ⋆, we consider T episodes, where at the beginning of each episode t ∈ [T ],
an initial state s1 ∼ ρ is sampled. Then, at each timestep h ∈ [H], the learner chooses an action
ah ∈ A, observes a reward rh ∼ R (sh, ah, c) and the next state sh+1 ∼ T (sh, ah, c). Without
loss of generality, we assume the states are partitioned by [H] to make the notation invariant to the
timestep. Let Π be the set of all Markovian policies. For a policy function π : S → ∆(A) ∈ Π and
context variable c, we define the value function Vc (π) = E

[∑H
h=1 rh

∣∣∣ π, c] and the Q-function as

Qπ
c (s, a) := E

[∑H
h′=h rh′

∣∣∣ sh = s, ah = a, π, c
]

for all s ∈ S, a ∈ A. Moreover, we define the
optimal policy for a context variable c ∈ C as πc := argmaxπ∈Π Vc (π). Note that since the context
variable is unobserved, the learner’s policy will not depend on it. The learning agent’s goal is to
learn history-dependent distributions p1, . . . , pT ∈ ∆(Π) over Markovian policies to minimize the
expected regret, defined as Reg := Ec∼µ⋆

[∑T
t=1 Vc(πc)− Eπt∼pt [Vc(π

t)]
]
.

In the personalized education example, the above setup assumes a fixed distribution µ⋆ over the set of
learning styles and aims to minimize expected regret over the population of students. Our setup and
regret assume the unobserved factors remain fixed during training. This captures scenarios wherein
the unobserved variables correspond to less-variant factors (a student’s learning style is more likely
to remain unchanged). No learning algorithm can control the regret value if we allow the unobserved
factors to change arbitrarily throughout T episodes without access to hidden information; consider
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a two-armed bandit with a context value drawn with uniform probability from C = {c1, c2} that can
change at each episode. Assume the expected reward of the first arm under c1 and c2 is one and
zero, respectively, and it is reversed for the other arm. Any algorithm that does not have access to c
would result in linear regret since each action is sub-optimal with a probability of 0.5, independent
of the algorithm’s choice.
Remark. Our setup can be formulated as a Bayesian model parameterized by C, and our regret
can be seen as the Bayesian regret of the learner. However, the distribution µ⋆ is not the learner’s
prior belief about the true model as it is often formulated in Bayesian learning, but a distribution
over potential contexts that the learner can encounter. Our setup can thus be seen as a meta-learning
problem. In fact, it is zero-shot meta-learning since we do not assume having access to more than
one online RL task during training — we only learn the prior distribution using the offline data.

Expert Demonstrations. In addition to the online setting described above, we assume the
learner has access to an offline dataset of expert demonstrations DE, where each demonstration
τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) refers to an interaction of the expert with a decision-making
task during a single episode, containing the actions made by the expert and the resulting states. We
assume that the unobserved context variables for DE are drawn i.i.d. from distribution µ⋆, and the
expert had access to such unobserved variables (private information) during their decision-making.
Moreover, we assume the expert follows a near-optimal strategy [22, 23].
Assumption 1 (Noisily Rational Expert). For any c ∈ C, experts select actions based on a dis-
tribution defined as pE (a | s ; c) ∝ exp {β ·Qπc

c (s, a)}, for all s ∈ S, a ∈ A, and some known
competence value of β ∈ [0,∞]. In particular, the expert follows the optimal policy if β → ∞.

We assume experts do not provide any rationale for their strategy, nor do we have access to rewards
in the offline data; this is a combination of imitation and online learning rather than offline RL [22].

4 Experts-as-Priors Framework for Unobserved Heterogeneity
Our goal is to leverage offline data to help guide the learner through its interaction with the decision-
making task. The key idea is to use expert demonstrations to infer a prior distribution over C and
then to use a Bayesian approach such as posterior sampling [28] to utilize the inferred prior for a
more informative exploration. If the current context is from the same distribution of contexts in the
offline data, we expect that using such priors will lead to faster convergence to optimal trajectories
compared to the commonly used non-informative priors. Consider the personalized education ex-
ample. Suppose we have gathered offline data on an expert’s teaching strategies for students with
similar observed information like grade, age, location, etc. The teacher can observe more fine-
grained information about the students that is generally absent from the collected data (e.g., their
learning style). Our work relies on the following observation: The space of the optimal strategies
for students with similar observed information but different learning styles is often much smaller
than the space of all possible strategies. With the inferred prior distribution, the learner needs only
to focus on the span of potentially optimal strategies for a new student, allowing for significantly
more efficient exploration.

We resort to empirical Bayes and use maximum marginal likelihood estimation [45] to construct a
prior distribution from DE. Given a probability distribution (prior) µ on C, the marginal likelihood
of an expert demonstration τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) ∈ DE is given by

PE (τE ; µ) = Ec∼µ

[
ρ(s1) ·

H∏
h=1

pE (ah | sh ; c) T (sh+1 | sh, ah, c)
]
. (1)

We aim to find a prior distribution to maximize the log-likelihood of DE under the model described in
(1). This is equivalent to minimizing the KL divergence between the marginal likelihood PE and the
empirical distribution of expert demonstrations, which we denote by P̂E. In particular, we form an
uncertainty set over the set of plausible priors as P(ϵ) :=

{
µ ; DKL

(
P̂E

∥∥∥ PE (· ; µ)
)
≤ ϵ
}

, where
the value of ϵ can be chosen based on the number of samples so the uncertainty set contains the
true prior with high probability [27]. However, the set of plausible priors does not uniquely identify
the appropriate prior. In fact, even for ϵ = 0, P(ϵ) can have infinite plausible priors. To solve this
ill-posed problem, we propose two approaches, parametric and nonparametric prior learning.

Parametric Experts-as-Priors. For settings where we have existing knowledge about the paramet-
ric form of the prior, we can directly apply maximum marginal likelihood estimation to learn it. In

4

65479https://doi.org/10.52202/079017-2091



particular, we define the parametric expert prior as the following. Note that we can calculate the
gradients of the marginal likelihood using the score function estimator [46].
Definition 1 (Parametric Expert Prior). Let Θ be a set of plausible prior distribution parameters
(e.g., Beta distribution parameters for a Bernoulli bandit). We call µθ⋆ a parametric expert prior, iff
θ⋆ ∈ argminθ∈Θ

∑
τ∈DE

− log PE (τ ; µθ).

Nonparametric Experts-as-Priors. For settings where there is no existing knowledge on the para-
metric form of the prior, we can employ the principle of maximum entropy to choose the least
informative prior that is compatible with expert data:
Definition 2 (Max-Entropy Expert Prior). Let µ0 be a non-informative prior on C (e.g., a uniform
distribution). Given some ϵ > 0, we define the maximum entropy expert prior µME as the solution
to the following optimization problem:

µME = argmin
µ

DKL (µ ∥ µ0) s.t. µ ∈ P(ϵ). (2)

Note that the set of plausible priors P(ϵ) is a convex set, and therefore, (2) is a convex optimization
problem. We can derive the solution to problem (2) using Fenchel’s duality theorem [47, 48]:
Proposition 1 (Max-Entropy Expert Prior). Let N = |DE| be the number of demonstrations in DE.
For each c ∈ C and demonstration τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) ∈ DE, define mτE(c) as
the (partial) likelihood of τE under c, i.e., mτE(c) =

∏H
h=1 pE (ah | sh ; c) T (sh+1 | sh, ah, c).

Denote m(c) ∈ RN as the vector with elements mτE(c) for τE ∈ DE. Moreover, let λ⋆ ∈ R≥0 be
the optimal solution to the Lagrange dual problem of (2). Then, the solution to optimization (2) is:

µME(c) = lim
n→∞

exp
{
m(c)⊤αn

}
Ec′∼µ0

[exp {m(c′)⊤αn}]
,

where {αn}∞n=‘1 is a sequence converging to the following supremum:

sup
α∈RN

− logEc∼µ0

[
exp

{
m(c)⊤α

}]
+

λ⋆

N

N∑
i=1

log

(
N · αi

λ⋆

)
. (3)

The proof is provided in Appendix A.3. Instead of solving for λ⋆, we set it as a hyperparameter
and then solve (3). Even though Proposition 1 requires the correct form of Q-functions for different
values of c, we will see in the following sections that we can parameterize the Q-functions and
treat those parameters as a proxy for the unobserved factors. Once such a prior is derived, we can
employ any Bayesian approach for decision-making. We provide a pseudo-algorithm for ExPerior
in Algorithm 1. The following sections will detail the algorithm for bandits and MDPs.

Algorithm 1 Experts-as-Priors (ExPerior-MaxEnt)

1: Input: Expert demonstrations DE, Reference distribution µ0, λ⋆ ≥ 0, and unknown c ∼ µ⋆.
2: µME ← MAXENTROPYEXPERTPRIOR(µ0,DE, λ

⋆)
3: history← {}
4: for episode t← 1, 2, . . . do
5: sample ct ∼ µME (· | history) // posterior sampling
6: for timestep h← 1, 2, . . . , H do
7: take action at

h ∼ πct (· | sh)
8: observe rth ∼ R(sth, a

t
h, c), s

t
h+1 ∼ T

(
sth, a

t
h, c
)
, and append (at

h, r
t
h, s

t
h+1) to history

9: end for
10: end for

5 Learning in Bandits
K-armed Bandits. For K-armed bandits, note that S = ∅, H = 1, and A = {1, . . . ,K}. Each
expert demonstration τE = a will be the pulled arm by the expert for a particular bandit, and the
(partial) likelihood function in Proposition 1 can be simplified as mτE(c) = pE (a ; c). This likeli-
hood function only depends on the context variable c through the expert policy pE, and since pE only
depends on c through the mean reward function (Assumption 1), we can consider the set of mean
reward functions as a proxy for the unobserved context variables C. e.g. in a Bernoulli K-armed
bandit setting, we can define CBer =

{
a 7→ ⟨ea,ϑ⟩ ; ϑ ∈ [0, 1]K

}
.
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Figure 2: The Bayesian regret of ExPerior and baselines for K-armed Bernoulli bandits (K = 10). We consider
three categories of prior distributions based on the entropy of the optimal action.

Posterior Sampling. With the above parameterizations of C, we can use Proposition 1 to derive the
maximum entropy prior distribution over the context parameters. However, we cannot sample from
the exact posterior since the derived prior is not a conjugate prior for standard likelihood functions.
Instead, we resort to approximate posterior sampling via stochastic gradient Langevin dynamics
(SGLD) [49]. We call this method ExPerior-MaxEnt in our experiments. We also employ a
parametric approach as discussed in section 4, which we call ExPerior-Param. In particular, we
use the Beta distribution as our prior model and learn the parametric expert prior in Definition 1.

In the following, we evaluate our approach compared to online methods that do not use expert data
and offline behaviour cloning. We provide an empirical regret analysis for ExPerior based on the
informativeness of expert data, number of actions, and number of training episodes. We also discuss
the robustness of ExPerior to misspecified expert models and the advantage of ExPerior-MaxEnt
to ExPerior-Param when the parametric prior model is misspecified. To characterize the effect of
expert data on the learner’s performance, we propose an alternative forK-armed bandits inspired by
the successive elimination and derive a Bayesian regret bound for it.

Experiments. We consider K-armed Bernoulli bandits for our experimental setup. We evaluate
the learning algorithms in terms of the Bayesian regret over multiple (prior) distributions µ⋆ over
the unobserved contexts. In particular, we consider up to Nµ⋆ = 64 different beta distributions,
where their parameters are chosen to span a different range of heterogeneity, consisting of tasks
with various expert data informativeness. To estimate the Bayesian regret, we sample Ntask = 128
bandit tasks from each prior distribution and calculate the average regret. We use NE = 1000 expert
demonstrations for each prior distribution in our experiments. We compare ExPerior to the following
baselines: (1) Behaviour cloning (BC), which learns a policy by minimizing the cross-entropy loss
between the expert demonstrations and the agent’s policy solely based on offline data. (2) Naı̈ve
Thompson sampling (Naı̈ve-TS) that chooses the action with the highest sampled mean from a
posterior distribution under an uninformative prior. (3) Naı̈ve upper confidence bound (Naı̈ve-UCB)
algorithm that selects the action with the highest upper confidence bound. Both Naı̈ve-TS and
Naı̈ve-UCB ignore expert demonstrations. (4) UCB-ExPLORe, a variant of the algorithm proposed
by Li et al. [38] tailored to bandits. It labels the expert data with optimistic rewards and then uses it
alongside online data to compute the upper confidence bounds for exploration, and (5) Oracle-TS,
which performs exact Thompson sampling with the true prior distribution µ⋆. For a fair comparison,
we also consider a variant of Oracle-TS, which uses SGLD for approximate posterior sampling.

Comparison to baselines. Figure 2 demonstrates the average Bayesian regret for various prior dis-
tributions over T = 1,500 episodes withK = 10 arms. To better understand the effect of expert data,
we categorize the prior distributions by the entropy of their optimal actions into low entropy (less
than 0.8), high entropy (greater than 1.6), and medium entropy. Oracle-TS and ExPerior-Param
outperform other baselines, yet the performance of ExPerior-MaxEnt is comparable to the SGLD
variant of Oracle-TS. This indicates that the maximum entropy prior derived from Proposition 1
closely approximates the true prior distribution, µ⋆, and the performance difference with Oracle-TS
is primarily due to approximate posterior sampling. Moreover, the pure online algorithms Naı̈ve-TS
and Naı̈ve-UCB, which disregard expert data, display similar performance across different entropy
levels, contrasting with other algorithms that show significantly reduced regret in low-entropy con-
texts. This underlines the impact of expert data in settings where the unobserved confounding has
less effect on the optimal actions. Specifically, in the extreme case of no unobserved heterogeneity,
BC is anticipated to yield optimal performance. Additionally, Naı̈ve-UCB surpasses UCB-ExPLORe
in medium and high entropy settings, possibly due to the over-optimism of the reward labelling in
Li et al. [38], which can hurt the performance when the expert demonstrations are uninformative.

Empirical regret analysis for Experts-as-Priors. We examine how the quality of expert demon-
strations affects the Bayesian regret achieved by ExPerior. Settings with highly informative demon-
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Figure 3: (a) Empirical analysis of ExPerior’s regret in Bernoulli bandits based on the (left) number of arms,
(middle) entropy of the optimal action, and (right) number of episodes. (b) The regret bound from Theorem 2
vs. the entropy of the optimal action. The linear relationship is consistent with the middle panel of (a).

Table 1: Ablation experiments to assess the robustness of ExPerior to misspecified expert models. Random-
optimal experts choose the optimal action with probability γ and choose random actions with probability 1 −
γ. ExPerior-MaxEnt achieves consistent out-performance by setting the hyperparameter β = 10. while
ExPerior-Param get almost similar results for β = 1 and β = 2.5.

Optimal Noisily-Rational Random-Optimal
β = 0.1 β = 1 β = 2.5 β = 10 γ = 0.0 γ = 0.25 γ = 0.5 γ = 0.75

ExPerior-MaxEnt (β = 0.1) 51.7 ± 5.1 52.3 ± 5.3 52.3 ± 5.3 52.0 ± 5.1 51.7 ± 5.0 52.3 ± 5.3 52.1 ± 5.1 52.0 ± 5.1 51.8 ± 5.0
ExPerior-Param (β = 0.1) 11.1 ± 4.3 33.1 ± 7.3 12.6 ± 3.5 11.7 ± 3.8 10.9 ± 4.2 40.1 ± 9.6 12.3 ± 4.7 11.4 ± 4.0 10.7 ± 4.2
ExPerior-MaxEnt (β = 1) 45.7 ± 3.4 52.2 ± 5.3 51.6 ± 5.1 50.0 ± 4.8 47.3 ± 3.8 52.5 ± 5.3 51.0 ± 4.8 49.1 ± 4.2 48.0 ± 3.6
ExPerior-Param (β = 1) 9.1 ± 3.0 21.3 ± 1.3 13.4 ± 2.9 10.1 ± 3.0 9.4 ± 3.1 22.8 ± 1.3 9.8 ± 3.0 8.6 ± 2.7 8.8 ± 2.9
ExPerior-MaxEnt (β = 2.5) 37.0 ± 1.9 52.1 ± 5.3 51.0 ± 4.9 47.1 ± 4.5 38.3 ± 2.0 52.1 ± 5.1 48.9 ± 4.1 44.8 ± 3.2 40.5 ± 2.1
ExPerior-Param (β = 2.5) 8.5 ± 2.8 24.3 ± 1.2 19.0 ± 2.1 12.8 ± 2.9 9.2 ± 3.1 24.6 ± 1.2 15.9 ± 3.0 10.9 ± 3.2 8.8 ± 2.9
ExPerior-MaxEnt (β = 10) 38.5 ± 9.4 52.0 ± 5.2 47.6 ± 4.4 39.7 ± 2.9 29.7 ± 3.6 52.5 ± 5.3 41.9 ± 2.6 37.7 ± 2.8 31.9 ± 3.0
ExPerior-Param (β = 10) 11.2 ± 4.8 26.9 ± 1.2 25.0 ± 1.5 21.0 ± 2.1 11.8 ± 3.3 26.8 ± 1.1 23.2 ± 1.8 20.1 ± 2.5 16.1 ± 3.0
Oracle-TS 8.5 ± 2.7 8.5 ± 2.7 8.5 ± 2.7 8.5 ± 2.7 8.5 ± 2.7 8.5 ± 2.7 8.5 ± 2.7 8.5 ± 2.7 8.5 ± 2.7
Oracle-TS (SGLD) 24.2 ± 3.9 24.2 ± 3.9 24.2 ± 3.9 24.2 ± 3.9 24.2 ± 3.9 24.2 ± 3.9 24.2 ± 3.9 24.2 ± 3.9 24.2 ± 3.9

strations, where unobserved factors minimally affect the optimal action, should exhibit near-zero
regret since there is no diversity in the unobserved contexts, and the experts are near-optimal. Con-
versely, in scenarios where unobserved factors significantly influence the optimal actions, we antic-
ipate the regret to align with standard online regret bounds, similar to the outcomes of Thompson
sampling with a non-informative prior. We conduct trials with ExPerior and Oracle-TS across vari-
ous numbers of arms over T = 1,500 episodes, calculating the mean and standard error of Bayesian
regret across distinct prior distributions. As depicted in Figure 3 (a), both ExPerior and Oracle-TS

yield sub-linear regret relative to K and T , comparable to the established regret bound of O(
√
KT )

for Thompson sampling. However, the middle panel indicates that the regret of ExPerior is propor-
tional to the entropy of the optimal action, having an almost linear relationship. This observation
seems to be in contrast with the standard Bayesian regret bounds for Thompson sampling under
correct prior that have shown a sublinear relationship of O

(√
Ent(πc)

)
, where Ent(πc) denotes the

entropy of the optimal action under µ⋆ [50]. We analyze this observation in section 5.1.

Ablations. We also run additional experiments to assess the robustness of ExPerior to misspecified
experts. We create expert data from different experts with various competence levels, such as opti-
mal, noisily rational, and random-optimal experts, where the latter chooses an action optimally with
a fixed probability and randomly otherwise. Table 1 shows ExPerior’s robustness to different expert
models. Setting β = 10 for training ExPerior-MaxEnt and β = 1 for ExPerior-Param achieves
consistent out-performance among different expert types. Moreover, We evaluate the advantage
of learning nonparametric max-entropy prior over misspecified parametric priors in Table 2. Even
though ExPerior-Param with a Beta prior outperforms ExPerior-MaxEnt, ExPerior-MaxEnt is
superior to ExPerior-Param if the prior mismatches the correct form (e.g., Gaussian or Gamma).

5.1 An Alternative Frequentist Approach for K-armed Bandits

To analyze the effect of expert data on the Bayesian regret, we devise an alternative frequentist
approach, based on the successive elimination algorithm [51], which follows a similar intuition to
Experts-as-Priors. In particular, we prove a bound on its Bayesian regret and show that the derived
bound is proportional to a term that closely resembles the entropy of the optimal action, showing
that the observation in the middle panel of Figure 3 (a) is consistent within different approaches.
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Table 2: Superiority of ExPerior-MaxEnt compared to ExPerior-Param with misspecified parametric prior.

ExPerior-Param ExPerior-MaxEnt Gamma Prior Beta-SGLD Prior Normal Prior Oracle-TS Oracle-TS (SGLD)
Low Entropy 0.7± 0.3 11.6± 1.3 39.3± 2.2 60.2± 6.3 546.5± 153.4 0.9± 0.4 11.0± 1.6
Mid-Entropy 6.8± 0.8 25.7± 1.2 36.8± 0.9 40.4± 2.0 492.5± 185.6 7.3± 0.8 21.2± 1.0
High-Entropy 24.5± 2.8 41.3± 2.2 51.8± 3.6 45.6± 2.0 461.8± 104.8 21.5± 2.2 39.9± 3.2

Algorithm 2 Successive Elimination with Expert Sampling

1: Input: Episodes T , Arms A, expert policy P̂E, step size pmin, unknown c ∼ µ⋆, and δ ∈ (0, 1).
2: for t = 1 . . . T do
3: try an active arm a with a relative frequency of ⌈ P̂E(a)

pmin
⌉. // all arms are active at t = 0.

// nt(a) is the number of times arm a is pulled by episode t and V t
c (a) is its empirical mean reward.

4: increment nt(a) and update V t
c (a).

5: construct UCBt
a = V t

c (a)+
√

log (4T 4K/δ)/2nt(a) and LCBt
a = V t

c (a)−
√

log (4T 4K/δ)/2nt(a).
6: de-activate all arms a s.t. ∃a′ with UCBa ≤ LCBa′ , and normalize P̂E.
7: end for

The idea of successive elimination is to identify suboptimal arms and deactivate them over time.
In particular, it runs a uniform sampling policy among active arms and builds confidence intervals
for each. It then deactivates all the arms with an upper confidence bound smaller than at least
one arm’s lower confidence bound. We modify this algorithm using the policy derived from expert
demonstrations instead of a uniform sampling policy. Recall that in K-armed bandits, each expert
trajectory τE represents the pulled arm by the expert. Hence, the empirical distribution of expert
demonstrations can be seen as a sampling policy over different arms. To simplify the analysis, we
employ a deterministic sampling approach by pulling each arm a fixed number of times based on its
probability. To do so, we discretize the expert policy with a step size pmin, which leads to a relative
frequency of ⌈P̂E(a)/pmin⌉ for an arm a. In particular, we can choose pmin = mina; P̂E(a)̸=0 P̂E(a).
We provide the concrete algorithm in Algorithm 2 and prove the following Bayesian regret bound:
Theorem 2. Consider a stochasticK-armed bandit and let p be the empirical expert policy. Assume
that (i) the mean reward function is bounded in [0, 1] for all arms, (ii) T ≥ 1

mina;p(a)̸=0 p(a) , (iii) the
expert is optimal, i.e., ∀a ∈ A : p(a) = PE (a ; µ

⋆) and β → ∞, and (iv) the learner follows
Algorithm 2. Then, with probability at least 1− δ,

Reg ≲
√

T log (TK/δ)
∑

a,a′∈A,a̸=a′

√
p(a)

p(a) + p(a′)

(
1− p(a)

p(a) + p(a′)

)[√
p(a) +

√
p(a′)

]
. (4)

See Appendix A.4 for the proof. Two terms in (4) depend on expert data: (1) The relative standard
deviation between any two pairs of arms and (2) a scaling factor that depends on the magnitude
of probability that the arms are optimal. For homogeneous demonstrations, where the expert data
only includes one unique pulled arm, the standard deviation (Term 1) is zero, resulting in zero regret.
However, in extreme heterogeneity, where the empirical expert distribution is uniform over the arms,
we have Reg ≲ K

√
KT log T . 2 Finally, to assess the relationship between the regret bound and

the entropy of the expert data, we fix K = 2, T = 100, and plot the bound from (4) as a function of
the entropy of the optimal action for various prior distributions. Figure 3 (b) demonstrates a linear
relationship, similar to the regret incurred by ExPerior in Figure 3 (a). This observation opens up
new directions to further analyze the regret for ExPerior and similar approaches in MDPs.

6 Learning in Markov Decision Processes (MDPs)
For MDPs, we need to parameterize both the mean reward and transition functions. However, we
assume the transition functions are invariant to the context variables to simplify our methodology
and avoid extra modelling assumptions. Under this assumption, it is sufficient to parameterize the
optimal Q-functions, e.g., using a deep Q-network (DQN) and treat those parameters as a proxy for
the unobserved context variables, i.e., CMDP := {(s, a) 7→ Q (s, a ; θ) ; θ ∈ Θ}, where Θ is the
set of parameters for a DQN. We can then derive a closed-form log-pdf of the posterior distribution
under the maximum entropy prior. See Appendix A.5 for details. The derived posterior log-pdf can

2Although this bound is worse than the standard successive elimination by a factor of K, our empirical
results show that ExPerior is still on par with standard regrets in the non-informative cases.
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Table 3: The average reward per episode in Frozen Lake (PODMP) after 90,000 training steps.

Fixed # Hazard = 9 Fixed β = 1

β = 0.1 β = 1 β = 2.5 β = 10 # Hazard = 2 # Hazard = 5 # Hazard = 7 # Hazard = 9

(POMDP)
ExPerior-MaxEnt -22.58 ± 1.17 6.00 ± 0.00 3.58 ± 0.89 1.62 ± 1.85 11.47 ± 0.52 5.71 ± 0.67 6.00 ± 0.00 6.00 ± 0.00
ExPerior-Param -23.32 ± 0.69 -4.31 ± 1.80 5.27 ± 0.51 6.00 ± 0.00 12.00 ± 0.37 2.11 ± 1.41 5.42 ± 0.40 -4.31 ± 1.80
Naı̈ve Boot-DQN -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -14.36 ± 5.88 -20.57 ± 2.91 -20.39 ± 1.75 -23.32 ± 0.69
ExPLORe 5.99 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 -30.68 ± 12.40 -10.64 ± 16.64 -13.00 ± 19.00 6.00 ± 0.00
Optimal 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 12.00 ± 0.37 6.53 ± 0.31 6.00 ± 0.00 6.00 ± 0.00

(MDP)
ExPerior-MaxEnt -23.36 ± 1.26 12.26 ± 0.29 12.68 ± 0.03 12.71 ± 0.03 13.02 ± 0.18 12.78 ± 0.11 12.78 ± 0.06 12.26 ± 0.29
ExPerior-Param -25.53 ± 2.35 12.64 ± 0.08 12.70 ± 0.03 12.68 ± 0.03 13.00 ± 0.18 12.78 ± 0.12 12.73 ± 0.07 12.64 ± 0.08
Naı̈ve Boot-DQN -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -23.32 ± 0.69 -14.39 ± 5.22 -20.99 ± 2.86 -20.39 ± 1.75 -23.32 ± 0.69
ExPLORe 11.74 ± 0.41 11.75 ± 0.63 11.96 ± 0.28 12.3 ± 0.22 -113.84 ± 17.50 -54.89 ± 13.75 -10.00 ± 7.60 11.75 ± 0.63
Optimal 12.71 ± 0.03 12.71 ± 0.03 12.71 ± 0.03 12.71 ± 0.03 13.02 ± 0.18 12.78 ± 0.11 12.76 ± 0.06 12.64 ± 0.03

then be used as the loss function for DQN Langevin Monte Carlo [52, 53] as the counterpart for
Thompson sampling with SGLD. However, running Langevin dynamics can lead to highly unstable
policies due to the complexity of the optimization landscape in DQNs. Instead, we use a heuristic
that combines the learned prior distribution with bootstrapped DQNs [54].

The original method of Bootstrapped DQNs utilizes an ensemble of L randomly initialized Q-
networks. It samples a Q-network uniformly at each episode and uses it to collect data. Then,
each Q-network is trained using the temporal difference loss on parts of or possibly the entire
collected data. This method and its subsequent iterations [55, 56, 57] achieve deep exploration
by ensuring diversity among the learned Q-networks. To incorporate Bootstrapped DQN into
the ExPerior framework and utilize the expert data, we can formulate the ensemble as a discrete
prior distribution over the Q-networks. Let θens =

(
θ1
ens, . . . ,θ

L
ens

)
be the parameter vector

for an ensemble of Q-functions. We can define the ensemble prior, parameterized by θens, as
µθens

(θ) := 1
L

∑L
i=1 I

(
θi
ens = θ

)
for any θ ∈ Θ. Based on this prior model, we can learn the

parametric expert prior using maximum marginal likelihood estimation, as formulated below.
Proposition 3 (Ensemble Marginal Likelihood). Consider a contextual MDP M =
(S,A, T , R,H, ρ, µ⋆). Assume the transition function T does not depend on the context variables
and Assumption 1 holds. Then, the negative marginal log-likelihood of expert data DE under the
ensemble prior µθens is upper bounded by

− log PE (DE ; µθens) ≤
1

L

L∑
i=1

∑
τ∈DE

∑
(s,a)∈τ

log

(∑
a′∈A

exp
{
β ·Q

(
s, a′ ; θi

ens

)})
− β ·Q

(
s, a ; θi

ens

)
,

where β is the competence level of the expert in Assumption 1.

Proposition 3 is proved in Appendix A.6. We can then initialize the Q-networks in the Bootstrapped
DQN method using ensemble parameters that minimize the above upper bound. We will refer to this
method as ExPerior-Param. As an alternative approach, instead of minimizing the above upper
bound, we can match the discrete prior distribution µθens

to the max-entropy prior by initializing
the Q-functions in the ensemble with parameters sampled from the max-entropy expert prior. In
particular, we can apply SGLD on the log-pdf of the max-entropy prior derived in Appendix A.5.
We will refer to this approach as ExPerior-MaxEnt.

Experimental Setup. One challenge in RL is the reward sparsity, where the learner needs to ex-
plore the environment deeply to observe rewards. Utilizing expert demonstrations can significantly
improve the efficiency of exploration. Here, we focus on ”Deep Sea,” a sparse-reward tabular RL
environment proposed by Osband et al. [56] to assess deep exploration for different RL methods.
The environment is an M ×M grid, where the agent starts at the top-left corner of the map, and
at each time step, it chooses an action from A = {left, right} to move to the left or right col-
umn, while going down by one row. In the original version of Deep Sea, the goal is always on the
bottom-right corner of the map. We introduce unobserved contexts by defining a distribution over
the goal columns while keeping the goal row the same. We consider four types of goal distributions
where the goal is situated at (1) the bottom-right corner of the grid, (2) uniformly at the bottom of
any of the right-most M

4 columns, (3) uniformly at the bottom of any of the right-most M
2 columns,

and (4) uniformly at the bottom of any of the M columns. We set M = 30 and generate N = 1,000
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Figure 4: The average reward per episode over 2,000 episodes in ”Deep Sea.” The goal is located at the right
column, uniformly at the right-most quarter of the columns, uniformly at the right-most half, and uniformly at
random over all the columns, respectively. ExPerior outperforms the baselines in all instances.

samples from the optimal policies as offline expert demonstrations. To further evaluate ExPerior
and showcase its applicability to partially-observed MDP, we also consider the ”Frozen Lake” envi-
ronment, which requires the learner to navigate to a goal while avoiding hazards [17]. The learner
cannot observe the hazard location, while the expert has access to the whole map. Taking action,
reaching the goal, and hitting the hazard incur rewards of -2, 20, and -100, respectively. The frozen
lake map is 5 × 5, where the hazard (weak ice) is randomly located in the interior squares. We
consider different settings with 2, 5, 7, and 9 potential locations for the hazard. At the start of each
episode, the hazard will be chosen randomly within the potential locations. We generate N = 1,000
samples from noisily rational experts with different competence levels for this environment.

Baselines. We compare ExPerior to the following: (1) ExPLORe, proposed by Li et al. [38] to accel-
erate off-policy reinforcement learning using unlabeled prior data. In this method, the offline demon-
strations are assigned optimistic reward labels generated using the online data with regular updates.
This information is then combined with the buffer data to perform off-policy learning. (2) Naı̈ve
Boot-DQN, which is the original Bootstrapped DQN with randomly initialized Q-networks [54].

Deep Sea Results. Figure 4 demonstrates the average reward per episode achieved by the baselines
for T = 2,000 episodes. For each goal distribution, we run the baselines with 30 different seeds and
take the average to estimate the expected reward. ExPerior outperforms the baselines in all instances.
However, the gap between ExPerior and the fully online Naı̈ve Boot-DQN, which measures the
effect of using the expert data, decreases as we go from the low-entropy setting (upper left) to the
high-entropy distribution over the contexts (bottom right). This is consistent with the empirical and
theoretical results discussed in section 5 and confirms our expectation that the expert demonstrations
may not be helpful under strong unobserved confounding (strong heterogeneity). The ExPLORe
baseline substantially underperforms, even compared to the fully online Naı̈ve Boot-DQN (except
for the first distribution with zero-entropy). We suspect this is because ExPLORe uses actor-critic
methods as its backbone model, which are shown to struggle with deep exploration [58].

Frozen Lake Results. We run all the baselines for 90,000 steps with 30 different seeds. Table 3
shows the average reward after 500 evaluation steps at the end of the training. ExPerior outperforms
the baselines in almost all instances except for the case of β = 0.1, which corresponds to a nearly
random expert. On the other hand, ExPLORe achieves near-optimal results for β = 0.1. We hypoth-
esize that ExPLORe’s performance is mainly due to the superiority of their base actor-critic model
since it can achieve near-optimal performance even when the expert trajectories are low-quality.

7 Conclusion
We introduce the Experts-as-Priors (ExPerior) framework, a novel empirical Bayes approach to
address the problem of sequential decision-making using expert demonstrations with unobserved
heterogeneity. We ground our methodology in the maximum entropy principle to infer a prior dis-
tribution from expert data that guides the learning process in different setttings, including bandits,
Markov decision processes (MDPs), and partially-observed MDPs. Our experimental evaluations
demonstrate that we can effectively leverage the expert demonstrations to enhance learning effi-
ciency under unobserved confounding. In multi-armed bandits, we illustrated through empirical
analysis that the Bayesian regret incurred by our method is proportional to the entropy of the opti-
mal action, highlighting its capacity to adapt based on the informativeness of the expert data. Our
work offers a practical framework readily applied to a broad spectrum of decision-making tasks.
One limitation of our work is the limited set of experiments, especially the lack of experiments with
human-in-the-loop. Future directions include extending to more complex environments and further
investigating the theoretical properties of our RL algorithm.
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A Proofs
A.1 Notation

We assume C is a measurable set with an appropriate σ-algebra and there exists a probability measure
µ0 on C. We denote Lp(C, µ0) as the space of all measurable functions f : C → R such that
∥f∥p =

(∫
C |f |p dµ0

)1/p
< ∞. Moreover, we define L∞(C, µ0) as the space of all essentially

bounded measurable functions from C to R. Unless stated otherwise, we assume the probability
measures are absolutely continuous w.r.t. µ0, and their density functions are in L1(C, µ0). We
may abuse the notation and use the same symbol for a probability measure and its Radon–Nikodym
derivative w.r.t. µ0. Finally, we use E [·] to denote expectation under the probability measure µ0.

A.2 Useful Lemmas

Here, we state and prove a set of results that will be useful for the rest of this section. The first one
is Fenchel’s duality theorem:
Lemma 4 (Fenchel’s Duality [59]). Let X and Y be Banach spaces, let f : X → R ∪ {+∞} and
g : Y → R ∪ {+∞} be convex functions and let A : X → Y be a bounded linear map. Define the
primal and dual values p, d ∈ [−∞,+∞] by the Fenchel problems

p = inf
x∈X

f(x) + g(Ax)

d = sup
y∗∈Y ∗

−f∗(A∗y∗)− g∗(−y∗),

where f∗ and g∗ are the Fenchel conjugates of f and g defined as f∗(x∗) = supx∈X ⟨x∗, x⟩−f(x)
(similarly for g), X∗ is the dual space of X and ⟨·, ·⟩ is its duality pairing, and A∗ : Y ⋆ → X⋆ is
the adjoint operator of A, i.e., ⟨A∗y∗, x⟩ = ⟨y∗, Ax⟩. Suppose A dom(f) ∩ cont(g) ̸= ∅, where
dom(f) := {x ∈ X ; f(x) <∞} and cont(g) are the continuous points of g. Then, strong duality
holds, i.e., p = d.

Proof. See the proof of Theorem 4.4.3 in Borwein and Zhu [59].

We can use Fenchel’s duality to solve generalized maximum entropy problems. In particular, we
prove a generalization of Theorem 2 in [48] for density functions in L1(C, µ0):
Lemma 5. For any function µ ∈ L1(C, µ0), define the extended KL divergence as

ψ(µ) :=

{
DKL (µ ∥ µ0) If ∥µ∥1 = 1,

+∞ o.w.

Moreover, assume a set of bounded feature functions m1,m2, . . . ,mN : C → R is given and denote
m as the vector of all N features. Consider the linear function Am : L1(C, µ0) → RN defined as

∀µ ∈ L1(C, µ0) : Am(µ) := (E [m1 · µ] ,E [m2 · µ] , . . . ,E [mN · µ]) .
We define the generalized maximum entropy problem as the following:

inf
µ∈L1(C,µ0)

ψ(µ) + ζ (Am(µ)) , (5)

for an arbitrary closed proper convex function ζ : RN → R. Then the following holds:

1. The dual optimization of (5) is given by

sup
α∈RN

− logE
[
exp

{
m⊤α

}]
− ζ∗ (−α) , (6)

where ζ⋆ is the convex conjugate function of ζ.

2. Denote α1,α2, . . . as a sequence in RN converging to supremum (6), and define the fol-
lowing Gibbs density functions

µα
Gibbs (c) :=

exp
{
m(c)⊤α

}
E [exp {m⊤α}] .

Then,

inf
µ∈L1(C,µ0)

ψ(µ) + ζ (Am(µ)) = lim
n→∞

ψ(µαn

Gibbs) + ζ
(
Am(µαn

Gibbs)
)
.
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Proof. Part 1: We first derive the convex conjugate of ψ. Note that
(
L1(C, µ0)

)⋆
= L∞(C, µ0)

with the pairing

∀h ∈ L∞(C, µ0), µ ∈ L1(C, µ0) : ⟨h, µ⟩ :=
∫
C
h(c) · µ(c) dµ0.

Hence, by Donsker and Varadhan’s variational formula

∀h ∈ L∞(C, µ0) : ψ
⋆(h) = sup

µ∈L1(C,µ0)

⟨h, µ⟩ − ψ(µ) = logE [exp {h}] . (7)

Moreover, the adjoint operator of Am is given by A⋆
m : RN → (C → R):

∀α ∈ RN , c ∈ C : A⋆
m (α) (c) = m (c)

⊤
α. (8)

Using (7) and (8) and Lemma 4 concludes the proof.

Part 2: Denote the primal and dual objective functions by

P (µ) := ψ(µ) + ζ (Am(µ)) ,

D(α) := − logE
[
exp

{
m⊤α

}]
− ζ∗ (−α) ,

and their optimal values as P ∗ and D∗. For any ν ∈ L1(C, µ0), note that

DKL (ν ∥ µ0)−DKL (ν ∥ µα
Gibbs) =

∫
C
ν log ν dµ0 −

(∫
C
ν log ν dµ0 −

∫
C
ν logµα

Gibbs dµ0

)
=

∫
C

(
m(c)⊤α

)
ν(c) dµ0 − logE

[
exp

{
m⊤α

}]
= Am(ν)⊤α− logE

[
exp

{
m⊤α

}]
. (9)

Using (9), we can re-write the dual objective function as:

∀α ∈ RN , ν ∈ L1(C, µ0) : D(α) = −DKL (ν ∥ µα
Gibbs) + DKL (ν ∥ µ0)−Am(ν)⊤α− ζ⋆(−α).

(10)

Moreover, note that

−Am(ν)⊤α− ζ⋆(−α) = −Am(ν)⊤α−
(
sup
x

⟨x,−α⟩ − ζ(x)

)
≤ −Am(ν)⊤α−

(
⟨Am(ν),−α⟩ − ζ(Am(ν))

)
= ζ(Am(ν)). (11)

Combining (10) and (11), we get

∀α ∈ RN , ν ∈ L1(C, µ0) : D(α) ≤ −DKL (ν ∥ µα
Gibbs) + DKL (ν ∥ µ0) + ζ(Am(ν))

= −DKL (ν ∥ µα
Gibbs) + P (ν). (12)

Now, fix an arbitrary ϵ > 0, and consider a sequence of µ1, µ2, . . . ∈ L1(C, µ0) such that for all
j ∈ N:

P (µj)− P ∗ <
ϵ

2j
. (13)

We can re-write (13) using the fact P ∗ = D∗ = limn→∞D(αn):

∀j ∈ N : lim
n→∞

P (µj)−D(αn) <
ϵ

2j
(14)

In particular, by setting ν = µj in (12) and combining the result with (14), we get

∀j ∈ N : lim
n→∞

DKL

(
µj
∥∥∥ µαn

Gibbs

)
<

ϵ

2j
.

Hence, limj∈∞ limn→∞ DKL

(
µj
∥∥ µαn

Gibbs

)
= 0. From properties of the KL divergence, it follows

that limj→∞ P (µj) = limn→∞ P (µαn

Gibbs), concluding the proof.
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A.3 Max-Entropy Prior

Proposition 1. Let N = |DE| be the number of demonstrations in DE. For each c ∈ C and demon-
stration τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) ∈ DE, define mτE(c) as the (partial) likelihood of
τE under c:

mτE(c) =

H∏
h=1

pE (ah | sh ; c) T (sh+1 | sh, ah, c) . (15)

Denote m(c) ∈ RN as the vector with elements mτE(c) for τE ∈ DE. Moreover, let λ⋆ ∈ R≥0 be
the optimal solution to the Lagrange dual problem of (2). Then, the solution to optimization (2) is
as follows:

µME(c) = lim
n→∞

exp
{
m(c)⊤αn

}
Ec∼µ0

[exp {m(c)⊤αn}]
,

where {αn}∞n=1 is a sequence converging to the following supremum:

sup
α∈RN

− logEc∼µ0

[
exp

{
m(c)⊤α

}]
+
λ⋆

N

N∑
i=1

log

(
N · αi

λ⋆

)
.

Proof. We first simplify the KL-divergence between the empirical distribution of the expert trajec-
tories P̂E and the marginal likelihood PE (· ; µ):

DKL

(
P̂E

∥∥∥ PE (· ; µ)
)
=

∑
τ(i)∈DE

P̂E(τ
(i)) log

P̂E(τ
(i))

PE
(
τ (i) ; µ

)
= − logN − 1

N

∑
τ(i)∈DE

log PE

(
τ (i) ; µ

)
(P̂E(τ

(i)) = 1
N )

= − logN − 1

N

∑
τ(i)∈DE

logE [mτ(i) · µ]− 1

N

∑
s
(i)
1 ∈DE

log ρ
(
s
(i)
1

)
.

By (1) and (15)

Using the above equality, we can re-write the definition of uncertainty set P(ϵ) as

P(ϵ) =

{
µ ; − 1

N

∑
τ∈DE

logE [mτ · µ]− ϵ− logN − 1

N

∑
s1∈DE

log ρ (s1) ≤ 0

}
.

Therefore, we can re-write the optimization (2) as

µME = argmin
µ∈L1(C,µ0)

ψ(µ) s.t. − 1

N

∑
τ∈DE

logE [mτ · µ]− ϵ− logN − 1

N

∑
s1∈DE

log ρ (s1) ≤ 0,

(16)

where the extended KL divergence ψ(µ) is defined as:

ψ(µ) :=

{
DKL (µ ∥ µ0) If ∥µ∥1 = 1,

+∞ o.w.

Note that P(ϵ) is a convex set. To see this, consider µ1, µ2 ∈ P(ϵ). Then, for any 0 ≤ λ ≤ 1, we
have µ = (1− λ)µ1 + λµ2 ∈ P(ϵ) since E [mτ · µ] is linear in µ and − log is convex. Moreover, It
is easy to see there exists a strictly feasible solution for (16) (e.g., consider the true distribution µ⋆

over C). Thus, strong duality holds, and we can form the Lagrangian function as

L(µ, λ) := ψ(µ) + λ

(
1

N

∑
τ∈DE

− logE [mτ · µ]
)

− λ

(
ϵ+ logN +

1

N

∑
s1∈DE

log ρ (s1)

)
.
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Given that λ⋆ ∈ R≥0 is the optimal solution to the Lagrange dual problem, the maximum entropy
prior µME will be the solution to

inf
µ∈L1(C,µ0)

L(µ, λ⋆) = inf
µ∈L1(C,µ0)

ψ(µ) + λ⋆

(
1

N

∑
τ∈DE

− logE [mτ · µ]
)

+ constant in µ. (17)

Now, for each x ∈ RN , define the convex function ζ(x) := λ⋆

N

(∑N
i=1 − log xi

)
. Moreover, for

µ ∈ L1(C, µ0), define Am(µ) := (E [mτ(1) · µ] ,E [mτ(2) · µ] , . . . ,E [mτ(N) · µ]). Then,

L(µ, λ⋆) = ψ(µ) + ζ (Am(µ)) . (18)

Combining (17) and (18), the maximum entropy prior µME is the solution to

inf
µ∈L1(C,µ0)

ψ(µ) + ζ (Am(µ)) .

Using Lemma 5 and noting that

ζ∗(x∗) =
λ⋆

N

(
N∑
i=1

−1− log

(
−N

λ⋆
· x∗i
))

concludes the proof.

A.4 Regret Bound for K-armed Bandit

Theorem 2. Consider a stochasticK-armed bandit and let p be the empirical expert policy. Assume
that (i) the mean reward function is bounded in [0, 1] for all arms, (ii) T ≥ 1

mina;p(a)̸=0 p(a) , (iii) the
expert is optimal, i.e., ∀a ∈ A : p(a) = PE (a ; µ

⋆) and β → ∞, and (iv) the learner follows
Algorithm 2. Then, with probability at least 1− δ,

Reg ≲
√

T log (TK/δ)
∑

a,a′∈A,a̸=a′

√
p(a)

p(a) + p(a′)

(
1− p(a)

p(a) + p(a′)

)[√
p(a) +

√
p(a′)

]
.

Proof. Fix δ ∈ (0, 1) and c ∈ C. Let E be the event that
∣∣∣V t

c (a)− Vc(a)
∣∣∣ ≤ √

log(4T 4K/δ)
2nt(a)

for all
arms a ∈ A, all t ≤ T , and all T ∈ N, where nt(a) is the number of times that arm a was pulled by
time t. Note that since T ≥ 1

pmin
, each arm will be pulled at least once and nt(a) ≥ 1.

We first show that P (E) ≥ 1− δ. Fix T , arm a, and t ≤ T . Suppose nt(a) = j for 1 ≤ j ≤ T . By
Hoeffding’s inequality, we have

P

(∣∣∣V t
c (a)− Vc(a)

∣∣∣ ≤
√

log (4T 4K/δ)

2j

)
≥ 1− δ

2T 4K
. (19)

Now, using the union bound over all episodes and all actions, we get

P

(
∃a ∈ A, T ∈ N, t ≤ T, j ≤ t :

∣∣V t
c (a)− Vc(a)

∣∣ >√ log (2T 4K/δ)

2j

)

≤
∞∑

T=1

∑
a∈A

T∑
t=1

t∑
j=1

P

(∣∣V t
c (a)− Vc(a)

∣∣ >√ log (2T 4K/δ)

2j

)

≤
∞∑

T=1

∑
a∈A

T∑
t=1

t · δ

2T 4K
By (19)

≤
∞∑

T=1

δ

2T 4K
× T 2 ×K =

∞∑
T=1

δ

2T 2
≤ δ,

which concludes that P (E) ≥ 1− δ.
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The rest of the proof computes the regret for when E holds. For simplicity and without loss of
generality, we assume all expert probabilities are dividable by pmin. Recall that we follow a de-
terministic sampling approach and choose each arm according to its relative frequency p(·)

pmin
for

multiple batches, where each batch loops over all active actions. Let ta be the episode in which we
eliminate an arm a in favour of another arm. Then, it is easy to show that

∀a′ ∈ active arms by ta : p(a′) · ta ≤ nta(a
′), (20)

This lower bound corresponds to the case where no other arm is eliminated before eliminating a.
Moreover, we have an upper bound for nta(a) considering the worst-case scenario in which the only
remaining arms are a and ac, where ac is the optimal action for unobserved context c:

nta(a) ≤
p(a)

p(a) + p(ac)
· ta. (21)

Now, let Regc(a) be the total regret contributed by the arm a for a given context c ∼ C. We can
upper bound the regret as

Regc(a) = nta(a) (Vc(ac)− Vc(a))

(i)

≤ 2nta(a)

(√
log (4T 4K/δ)

2nta(a)
+

√
log (4T 4K/δ)

2nta(ac)

)

≤ 2
p(a)

p(a) + p(ac)
· ta
(√

log (4T 4K/δ)

2nta(a)
+

√
log (4T 4K/δ)

2nta(ac)

)
By (21)

=
√
2log (4T 4K/δ) · p(a)

p(a) + p(ac)
· ta
(√

1

nta(a)
+

√
1

nta(ac)

)

≤
√
2log (4T 4K/δ) · p(a)

p(a) + p(ac)
· ta
(√

1

tap(a)
+

√
1

tap(ac)

)
By (20)

=
√
2talog (4T 4K/δ) · p(a)

p(a) + p(ac)

(√
1

p(a)
+

√
1

p(ac)

)
(ii)

≤
√
2T log (4T 4K/δ) · p(a)

p(a) + p(ac)

(√
1

p(a)
+

√
1

p(ac)

)
,

where (i) holds since the confidence intervals of arm a and ac overlap at episode ta (otherwise, a
would have been eliminated before ta), and (ii) follows from the fact that ta ≤ T .

Finally, we upper bound the Bayesian regret by taking the expectation of
∑

a ̸=ac
Regc(a) over c ∼

C. Note that since the expert is optimal, we have p(a) = µ⋆(ac = a) for all k ∈ A.

Reg = Ec∼µ⋆

∑
a ̸=ac

Regc(a)

 (i)

≤
∑
a′∈A

µ⋆ (ac = a′)

 max
c;ac=a′

∑
a̸=a′

Regc(a)


=
∑
a′∈A

p(a′)

 max
c;ac=a′

∑
a ̸=a′

Regc(a)


where (i) follows by partitioning C into {c ; c ∈ C, ac = a′}a′∈A and choosing the worst-case con-
text in each partition.
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From above, we have

Reg ≤
∑
a′∈A

p(a′)

 max
c;ac=a′

∑
a ̸=a′

Regc(a)


≤
√
2T log (4T 4K/δ)

∑
a′∈A

∑
a̸=a′

p(a′)p(a)
p(a) + p(a′)

(√
1

p(a)
+

√
1

p(a′)

)
(ii)

≤
√

8T log (4TK/δ)
∑

a,a′∈A;a ̸=a′

p(a′)p(a)
p(a) + p(a′)

(√
1

p(a)
+

√
1

p(a′)

)

=
√
8T log (4TK/δ)

∑
a,a′∈A;a ̸=a′

√
p(a′)

p(a) + p(a′)
· p(a)

p(a) + p(a′)

(√
p(a) +

√
p(a′)

)
where (ii) holds since 4K/δ > 1. Replacing p(a)

p(a)+p(ac)
with 1− p(a′)

p(a)+p(ac)
concludes the proof.

A.5 Max-Entropy Expert Posterior for MDPs

Proposition 6 (Max-Entropy Expert Posterior for MDPs). Consider a contextual MDP M =
(S,A, T , R,H, ρ, µ⋆). Assume the transition function T does not depend on the context variables.
Moreover, assume the reward distribution is Gaussian with unit variance and Assumption 1 holds.
Then, the log-pdf posterior function under the maximum entropy prior is given as:

∀θ ∈ Θ : logµME (θ | HT ) =−
T∑

t=1

H∑
h=1

1

2

(
rth +max

a′∈A
Es′ [Q (s′, a′ ; θ)]−Q

(
sth, a

t
h ; θ

))2

+
∑
τ∈DE

α⋆
τ ·

∏
(s,a)∈τ

exp {β ·Q (s, a ; θ)}∑
a′∈A exp {β ·Q (s, a′ ; θ)} + constant in θ,

(22)

where HT =

{((
sth, a

t
h, r

t
h, s

t
h+1

)H
h=1

)T
t=1

}
is the history of online interactions, DE is the expert

demonstration data, β is the competence level of the expert in Assumption 1, and {α⋆
τ}τ∈DE are

derived from Proposition 1.

Remark. We note that, in principle, the ExPerior framework allows for context-dependent transition
functions. In this case, the log-pdf in (22) provides an optimistic upper bound on the true posterior
log-pdf function. See Hao et al. [23] for a similar analysis. We leave the general case for future
work. Note that the second term of (22) is simply the log-pdf of the max-entropy prior.

Proof. Since the transition function is context-independent, the likelihood of an expert trajectory τE
can be simplified as:

∀c ∈ C : mτE(c) =

H∏
h=1

pE (ah | sh ; c) ·
H∏

h=1

T (sh+1 | sh, ah) . (23)

The second term in (23) is constant in c. This implies that the likelihood function mτE(c) will
depend on c only through the expert policy, which itself is a function of optimal Q-functions by
Assumption 1. Note that the second term in the definition of mτE can be simply removed since we
can re-weight the parameters α in the optimization step (3) of Proposition 1. Hence, assuming the
deep Q-network is expressive enough, without loss of generality, we can re-define the likelihood
function of an expert trajectory τE = (s1, a1, s2, a2, . . . , sH , aH , sH+1) as

∀θ ∈ Θ : mτE(θ) =

H∏
h=1

exp {β ·Q (sh, ah ; θ)}∑
a′∈A exp {β ·Q (sh, a′ ; θ)}

.
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We can now write the log-pdf of the posterior distribution of θ given HT :

logµME (θ | HT )

= log P (HT | θ) + log µME(θ) + constant in θ

=

L∑
t=1

H∑
h=1

log ρ
(
st1
)
+ logR

(
rth
∣∣ sth, ath ; θ)+ log T

(
sth+1

∣∣ sth, ath)+ logµME(θ) + const.

=

L∑
t=1

H∑
h=1

logR
(
rth
∣∣ sth, ath ; θ)+ logµME(θ) + const., (24)

Now, given the Bellman equations, we can write the mean value of the reward function as

∀s ∈ S, a ∈ A : E [R (s, a ; θ)] = Q (s, a ; θ)−max
a′∈A

Es′ [Q (s′, a′ ; θ)]

The reward distribution is Gaussian with unit variance. Therefore,

∀s ∈ S, a ∈ A, r ∈ R : R (r | s, a ; θ) = N
(
Q (s, a ; θ)−max

a′∈A
Es′ [Q (s′, a′ ; θ)] , 1

)
. (25)

Moreover, by Proposition 1, the log-pdf of the maximum entropy expert prior is given as

∀θ ∈ Θ : logµME(θ) =
∑
τ∈DE

α⋆
τ ·mτ (θ) =

∑
τ∈DE

α⋆
τ ·

∏
(s,a)∈τ

exp {β ·Q (s, a ; θ)}∑
a′∈A exp {β ·Q (s, a′ ; θ)} .

(26)

Combining (24) to (26), we conclude the proof.

A.6 Ensemble Marginal Likelihood

Proposition 3. Consider a contextual MDP M = (S,A, T , R,H, ρ, µ⋆). Assume the transition
function T does not depend on the context variables and Assumption 1 holds. Then, the negative
marginal log-likelihood of expert data DE under the ensemble prior µθens

is upper bounded by

− log PE (DE ; µθens) ≤
1

L

L∑
i=1

∑
τ∈DE

∑
(s,a)∈τ

log

(∑
a′∈A

exp
{
β ·Q

(
s, a′ ; θi

ens

)})
− β ·Q

(
s, a ; θi

ens

)
,

where β is the competence level of the expert in Assumption 1.

Proof. Recalling (1), the log-likelihood of the expert trajectories DE under µθens is given by

− log PE (DE ; µθens) =
∑

τ(i)∈DE

− logEθ∼µθens

[
ρ(s

(i)
1 )

H∏
h=1

pE

(
a
(i)
h

∣∣∣ s(i)h ; θ
)
T
(
s
(i)
h+1

∣∣∣ s(i)h , a
(i)
h

)]

=
∑

τ(i)∈DE

− logEθ∼µθens

[
H∏

h=1

pE

(
a
(i)
h

∣∣∣ s(i)h ; θ
)]

+ constant in θens

(ρ, T do not depend on θ)

=
∑

τ(i)∈DE

− log

(
1

L

L∑
j=1

H∏
h=1

pE

(
a
(i)
h

∣∣∣ s(i)h ; θj
ens

))
(By Definition of µθens )

≤
∑

τ(i)∈DE

1

L

L∑
j=1

H∑
h=1

− log pE

(
a
(i)
h

∣∣∣ s(i)h ; θj
ens

)
By Jensen’s inequality

=
1

L

L∑
i=1

∑
τ∈DE

∑
(s,a)∈τ

[
log

(∑
a′∈A

exp
{
β ·Q

(
s, a′ ; θi

ens

)})
− β ·Q

(
s, a ; θi

ens

)]
By Assumption 1
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