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Abstract

Heterophily, or the tendency of connected nodes in networks to have different class
labels or dissimilar features, has been identified as challenging for many Graph
Neural Network (GNN) models. While the challenges of applying GNNs for node
classification when class labels display strong heterophily are well understood,
it is unclear how heterophily affects GNN performance in other important graph
learning tasks where class labels are not available. In this work, we focus on the
link prediction task and systematically analyze the impact of heterophily in node
features on GNN performance. We first introduce formal definitions of homophilic
and heterophilic link prediction tasks, and present a theoretical framework that
highlights the different optimizations needed for the respective tasks. We then
analyze how different link prediction encoders and decoders adapt to varying levels
of feature homophily and introduce designs for improved performance. Based
on our definitions, we identify and analyze six real-world benchmarks spanning
from homophilic to heterophilic link prediction settings, with graphs containing
up to 30M edges. Our empirical analysis on a variety of synthetic and real-
world datasets confirms our theoretical insights and highlights the importance of
adopting learnable decoders and GNN encoders with ego- and neighbor-embedding
separation in message passing for link prediction tasks beyond homophily.

1 Introduction

Graph-structured data are powerful and widely used in the real world, representing relationships
beyond those in Euclidean data through links. Link prediction, which aims to predict missing edges
in a graph, is an important task with applications spanning from recommendation systems [41]
to knowledge graphs [38], and social networks [8]. Traditional algorithms for link prediction are
heuristic-based and impose strong assumptions on the link generation process. To alleviate the reliance
on handcrafted features, recent link prediction approaches are transformed by Graph Neural Networks
(GNNs), which can effectively learn node representations in an end-to-end fashion. Vanilla GNN for
link prediction (GNN4LP) methods keep the original GNN model for encoding node embeddings,
followed by a decoder acting on pairwise node embeddings, e.g. dot product [20]. However,
these methods are not effective at capturing pairwise structural proximity information [54, 24],
i.e. neighborhood heuristics such as the number of common neighbors. To further enhance model
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capabilities, the current state-of-the-art GNN4LP approaches augment GNNs by incorporating
pairwise structural information [6, 52, 51, 49, 43].

Nevertheless, as the core of today’s SOTA approaches, GNNs rely on the message-passing mechanism
which works well when the underlying data exhibit homophily, i.e. connected nodes tend to share
similar attributes with each other. Such inductive bias has been widely analyzed and has been
shown to be an important factor for GNN’s superior performance in the task of node classification
on homophilic graphs [55, 14, 28, 29]. It has also been widely observed that GNN’s performance
degrades on heterophilic graphs in node classification tasks, where connected nodes tend to have
different labels [1, 58, 60, 34, 17, 27]. In contrast, there are merely works focusing on the problem of
heterophily in link prediction tasks: almost all existing definitions of homophily rely on the node class
labels [25, 35], which are often not available for the link prediction tasks. Furthermore, prior works
on GNN4LP have largely focused on the effects of pairwise structural information to link prediction
performance, while there is no dedicated work focusing on the effects of feature heterophily. In
light of this, this work aims to characterize the notion of heterophily in the link prediction problem,
understand the effects of heterophily and feature similarity in existing models that leverage node
features, and explore designs to improve the use of dissimilar features in GNN link prediction. We
detail our contributions as follows:

• Definitions of Non-homophilic Link Prediction: We introduce formal definitions of homophilic
and non-homophilic link prediction tasks: instead of relying on the magnitude of feature similarity,
our definitions are based on the separation of feature similarity scores between edges and non-edges,
which is justified by a concise theoretical framework that highlights the different optimizations
needed for the respective tasks.

• Designs Empowering GNNs for Non-homophilic Link Prediction: We identify designs for
GNN encoders and link probability decoders that improve performance for non-homophilic link
prediction settings and show that (1) decoders with sufficient complexity are required for capturing
non-homophilic feature correlations between connected nodes; (2) ego- and neighbor-embedding
separation in GNN message passing improves their adaptability to feature similarity variations.

• Benchmarks for Non-homophilic Link Prediction: We introduce six real-world datasets spanning
from homophilic to heterophilic settings for link prediction, with edge counts ranging from 88K
to over 30M, to benchmark the performance of various GNN models. These datasets come from
diverse domains and exhibit different levels of feature similarity, providing a robust foundation for
evaluating GNN adaptability to non-homophilic conditions in link prediction tasks.

• Empirical Analysis on Impacts of Feature Heterophily: We conduct comprehensive empirical
analyses using both synthetic and real-world graphs. Through synthetic graphs with controlled
feature similarity levels, we analyze how link prediction methods with different designs adapt to
varying levels of heterophily. On real-world graphs, we evaluate both overall performance and
local behavior across edges with different node degrees and feature similarities, revealing important
insights about model adaptability in practice.

2 Related Work

Graph Neural Networks for Link Prediction. Traditional algorithms for link prediction are primar-
ily heuristic-based, which have strong assumptions on the link generation process. These approaches
compute the similarity scores between two nodes based on certain structures or properties [2, 3, 5, 51].
Later, various representation-based algorithms for link prediction were proposed, which aim at
learning low-dimensional node embeddings that are used to predict the likelihood of link existence
between certain node pairs and usually involve the use of GNNs [21, 15, 42]. Compared with the
heuristic-based algorithms, representation-based algorithms do not require strong assumptions and
perform learning over the graph structure and node features in a unified way. A representative method
is the Variational Graph Autoencoder [20], which uses GCN as the encoder for learning node repre-
sentations and inner product as the decoder for pairwise link existence predictions. More recently, the
state-of-the-art methods for link prediction are built on top of the representation-based algorithms
and augment them with additional pairwise information. For instance, subgraph-based approaches
perform link prediction between two nodes by first extracting their enclosing subgraphs and subse-
quently applying the standard representation-based algorithms on the extracted subgraphs [52, 6, 62].
Concurrently, other works have been proposed to augment GNN learning with common neighbor
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information [43, 49, 43]. Despite the tremendous success, prior link prediction works mainly assume
homophily, where node pairs with similar features or neighbors are more likely to link together. In
contrast, this work considers a more general setting where there may be a spectrum of low-to-high
homophily in the underlying data, characterizes a notion of heterophily in link prediction and ex-
plores how popular approaches perform under this characterization. Related work also examines
the influence of data for link prediction from a joint perspective of graph structure and feature
proximity [30, 22]. While these works provide valuable insights into the interplay between structural
and feature information, our work specifically focuses on characterizing and analyzing the impact
of node feature through the lens of heterophily, offering complementary insights into how varying
degrees of feature similarity affect link prediction performance.

Graph Neural Networks Addressing Heterophily. There is a rich literature on graph neural
networks addressing heterophily, but most of them tackle the node classification task [1, 58, 60, 34,
17, 27]. Very few works focus on the problem of link prediction under heterophily. Among them,
Zhou et al. [56] propose to disentangle the node representations from latent dissimilar factors, and
Di Francesco et al. [9] extend the physics-inspired GRAFF [10], originally designed for handling
heterophilic node classification tasks, to heterophilic link prediction tasks. These works use the
same class-dependent homophily measure as typically used in node classification, while our work
emphasizes the influence of features in link prediction and more systematically benchmarks model
performance against different homophily levels.

3 Notation and Preliminaries

Let G = (V, E) be an undirected and unweighted homogeneous graph with node set V and edge set E .
We denote the 1-hop (immediate) neighborhood centered around v as N(v) (G may have self-loops),
and the corresponding neighborhood that does not include the ego (node v) as N̄(v). We represent
the graph by its adjacency matrix A ∈ {0, 1}n×n and its node feature set as X with matrix form
X ∈ Rn×F , where the vector xv corresponds to the ego-feature of node v, and {xu : u ∈ N̄(v)} to
its neighbor-features. We further represent the degree of a node v by dv , which denotes the number
of neighbors in its immediate neighborhood N̄(v).

Graph Neural Networks for Link Prediction. Following [23, 53], we define the task of link
prediction to be estimating the likelihood of reconstructing the actual adjacency matrix. Formally,

ŷi,j = Âi,j = p(i, j|G,X), (1)

where ŷi,j or Âi,j is the predicted link probability between nodes (i, j) and was traditionally
calculated by heuristics-based algorithms. For (i, j) in the training set, we set the ground truth
probability yi,j = Ai,j . Existing GNN4LP approaches typically use a GNN-based method for
encoding node representations (denoted by ENC) and some decoder function (denoted by DEC)
between node embedding pairs:

ŷi,j = Âi,j = DEC(zi, zj), where zi = ENC(i,G,X), zj = ENC(j,G,X). (2)

The original graph autoencoder approach [20] uses a two-layer GCN [21] as the encoder and a dot
product as the decoder. There are many different choices of encoders that do not need to strictly
follow the original GNN architecture. For the decoder, while dot product remains a popular simple
choice [20, 33], more expressive alternatives include concatenation followed by an MLP.

Graph Feature Similarity. We measure the “graph feature similarity” through averaging the
mean-centered feature similarity from connected node pairs.

Definition 1 (Node Feature Similarity) For a node pair (u, v) with xu and xv as the node features
and a similarity function ϕ : (·, ·) 7→ R, we define the node feature similarity as k(u, v) = ϕ(xu,xv).

In this work, we set ϕ(xu,xv) =
x̄u·x̄v

∥x̄u∥∥x̄v∥ to be the mean-centered cosine similarity of node features,
where we denote the mean feature vector of all nodes in the graph as x̄ = 1

|V|
∑

v∈V xv, and the
mean-centered node feature for node v as x̄v = xv − x̄. Empirically, we find that the mean-centering
operation is crucial for accurate characterization of the pairwise feature similarity and its impact on
link prediction performance. We further define the graph feature similarity as follows.

3

65825 https://doi.org/10.52202/079017-2104



(a) Homophilic, larger M (b) Homophilic, lower M (c) Heterophilic (d) Gated

Figure 1: Categorizing link prediction tasks based on the distribution of feature similarity scores of
positive node pairs (i.e., edges – colored in green) and negative node pairs (non-edges – colored in
red): two distributions whose density is visualized in the plots are (approximately) separated by the
threshold(s) M . Homophilic and heterophilic link prediction differs in whether the positive similarity
scores fall into the larger or smaller side of the threshold M , while the magnitude of M indicates the
variance of positive similarity. Gated link prediction is a more complex case where the distribution of
positive and negative similarity scores cannot be separated by a single threshold.

Definition 2 (Graph Feature Similarity) We measure the graph feature similarity K through aver-
aging the feature similarity of all its connected nodes pairs: K =

∑
(u,v)∈E

k(u,v)
|E| .

Unlike the homophily measures defined on node class labels which are non-negative [25], the feature
similarity k(u, v) ∈ [−1, 1] can additionally be negative, indicating negative correlations. We refer
to the graph as positively correlated if K > 0 and negatively correlated if K < 0.

4 Homophilic & Heterophilic Link Prediction

While existing works on node classification usually define homophilic or heterophilic graphs by
whether the majority of connected nodes share the same class labels [25, 35], the class information is
not available for link prediction. Instead, we argue that the homophilic and heterophilic link prediction
tasks should be defined based on how the distributions of feature similarity scores between connected
and unconnected nodes are separated, as these definitions capture the fundamental differences on how
link prediction scores are correlated with feature similarity scores. Within the category of homophilic
or heterophilic tasks, we further show that the variation of the positive feature similarity scores affects
the rate of change for the link prediction scores. We present definitions with intuitive examples in
§4.1 and theoretical analysis in §4.2.

4.1 Categorizing Link Prediction on Distributions of Feature Similarity

We begin our discussion by considering the distributions of feature similarity scores for a random
positive (edge) and negative (non-edge) node pair in the graph: consider the set of feature similarity
scores for positive (edge) node pairs in the graph as Kpos, and negative (non-edge) node pairs as
Kneg. We first formalize different categories of link prediction tasks, which are defined by how the
distributions of Kpos and Kneg are (approximately) separated:

Definition 3 (Homophilic Link Prediction) The task is homophilic if M ∈ R exists such that for
most samples K̃pos ⊂ Kpos and K̃neg ⊂ Kneg it satisfies sup(K̃neg) < M ≤ inf(K̃pos).

Prior works have mostly focused on the homophilic category for the link prediction problem while
overlooking other possibilities. For other cases where the homophilic conditions are not satisfied,
we refer to them generally as non-homophilic link prediction problems. In the definition below, we
formalize an easy type of non-homophilic link prediction problem:

Definition 4 (Heterophilic Link Prediction) The task is heterophilic if M ∈ R exists such that for
most samples K̃pos ⊂ Kpos and K̃neg ⊂ Kneg it satisfies sup(K̃pos) ≤ M < inf(K̃neg).

We give intuitive examples of homophilic and heterophilic link prediction tasks in Fig. 1: the key
difference between homophilic and heterophilic tasks is whether Kpos is predominantly distributed
above threshold M while Kneg is below M (homophilic), or vice versa (heterophilic), as shown in
Fig. 1a vs. 1c. The categorizations of homophilic/heterophilic link prediction tasks should not be
confused with the magnitude of M that indicates the variance of positive similarity scores: while its

4

65826https://doi.org/10.52202/079017-2104



magnitude does not determine the type of the link prediction problem, our analysis in the next section
does show that it affects the rate of change for the link prediction scores.

However, beyond the heterophilic setting defined above, there are other non-homophilic settings
with even more complexity, where the distribution of Kpos and Kneg cannot be separated by a single
threshold M . Most of these cases are too complex to be formalized and studied theoretically, but we
formalize one of them (Fig. 1d) below and later report empirical results (§ 6).

Definition 5 (Gated Link Prediction) The task is gated if it is neither homophilic nor heterophilic,
but M1,M2 ∈ R exist such that M2 ≥ sup(K̃pos) ≥ inf(K̃pos) ≥ M1.

4.2 Differences between Homophilic & Heterophilic Link Prediction

In §4.1, we have situated our discussions of link prediction tasks based on how the positive and
negative samples are separated in the feature similarity score space. In this section, we reveal on a
stylized learning setup the fundamental differences in optimizations for homophilic and heterophilic
link prediction tasks.

Figure 2: Link prediction scores
ŷu′v′ for decoders optimized under
homophilic (yellow) and heterophilic
(blue) setups in Thm. 1 (for M = 0.5).

Theoretical Assumptions. Assume a training graph with
node v ∈ V whose feature vectors are 2-dimensional unit
vectors and can be represented as xv = (cos θv, sin θv).
We consider a DistMult decoder for predicting the link
score for candidate node pair u, v ∈ V with feature vec-
tors xu,xv. Specifically, the link score is calculated as
ŷu,v = (xu ⊗ xv)

Tw + b, where w and b are learnable
parameters for the decoder, with training loss function
L = y ·ReLU(−ŷ) + (1− y) ·ReLU(ŷ) such that ŷ ≥ 0
for all edges (positive samples) and ŷ < 0 otherwise. Fur-
thermore, we assume that the Kpos and Kneg are ideally
separable by a threshold M ∈ [0, 1] in the feature similar-
ity score space such that the homophilic or heterophilic
conditions hold for all samples.

With the above assumptions, we now show that (1) the predicted link score and feature similarity
scores are positively correlated for homophilic tasks, while negatively correlated for heterophilic
tasks; (2) the change rate for the predicted link probability with respect to the feature similarity is
determined by the magnitude of the threshold M that separates the positive and negative samples.

Theorem 1 Following the above assumptions, consider two DistMult decoders that are fully opti-
mized for homophilic and heterophilic link prediction problems respectively. Given an arbitrary node
pair (u′, v′) with node features xu′ = (cos θu′ , sin θu′) and xv′ = (cos θv′ , sin θv′) and pairwise
feature similarity k(u′, v′), the following holds for the predicted link probability ŷu′v′ :

• For the homophilic problem where sup(Kneg) < inf(Kpos) = M ≤ 1, when bounding ŷu,v = 1 if
k(u, v) = 1 during training, ŷu′v′ increases with k(u′, v′) at a linear rate of 1

(1−M) ;

• For the heterophilic problem where −1 ≤ sup(Kpos) = M < inf(Kneg), when bounding ŷu,v = 1
if k(u, v) = −1 during training, ŷu′v′ decreases with k(u′, v′) at a linear rate of 1

(1−M) .

We give the proof in App. §B.1 and visualize in Fig. 2 how the predicted link score ŷu′v′ changes
under the homophilic and heterophilic settings. Though the above results are derived under simplified
assumptions, it clearly highlights the different optimizations needed for homophilic and heterophilic
link prediction tasks that have not been studied in prior literature. In §6, we observe that these
differences go beyond our theoretical assumptions and affect the performance of all GNN encoders
and link prediction decoders on datasets with higher complexity, which warrant our study of effective
encoder and decoder choices for non-homophilic link prediction in the next section.

5 Encoder & Decoder Choices for Link Prediction Beyond Homophily

In §4, we gave formal definitions of homophilic and heterophilic link prediction tasks and highlight
their differences in model optimizations. As non-homophilic settings are largely overlooked in prior
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literature, we aim to verify whether existing GNN message passing designs for node features remain
effective beyond homophily. We follow the encoder-decoder perspective in [16] and discuss designs
for both GNN encoder and link prediction decoder that adapt to non-homophilic settings.

5.1 Decoder Choice for Heterophilic & Gated Link Prediction

For homogeneous graphs that only have one edge type (as opposite to heterogeneous or knowledge
graphs), popular decoder choices for deriving link probability from node representations are either
a simple dot product (DOT) operation or more complex multi-layer perceptron (MLP). While the
MLP decoder has a stronger representation power due to its non-linearity, the inner product decoder
is more preferred in large-scale applications due to its fast inference speed: it is well established
that maximum inner product search (MIPS) can be approximated with sublinear complexity using
packages such as Faiss [12]. A prior work [44] has benchmarked the performance of different
link prediction decoders on several OGB datasets [18] and proposed a sublinear approximation of
MLP decoder during inference time. However, no study has been conducted on the performance of
decoders for non-homophilic link prediction tasks across the negative to positive similarity spectrum.

Our takeaways for effective decoder choices for non-homophilic link prediction tasks are as follows:
(1) for non-homophilic (e.g., gated) tasks, only non-linear decoders such as MLP are suitable; (2) for
heterophilic tasks, a linear decoder with learnable weights (e.g., DistMult [47]) can be used in lieu
of MLP to achieve better scalability while maintaining comparable performance; (3) dot product
decoder is only suitable for homophilic link prediction tasks.

Theoretically, we formalize our first takeaway with the below theorem, which shows the limitations
of using linear decoders (such as DOT and DistMult) in non-homophilic link prediction tasks:

Theorem 2 No parameter exists for a single linear decoder that perfectly separates link probability
for edges and non-edges for gated link prediction.

We give the proof in Appendix §B.2. For linear models, while both DistMult and DOT product
decoders share the same time complexity during inference, we observe empirically in §6 that DistMult
outperforms DOT decoder by up to 55% on non-homophilic link prediction tasks. Intuitively, the
learnable weights in DistMult decoder allow the model to capture the negative correlation between
connected node features and improve its effectiveness for heterophilic tasks.

5.2 Improving GNN Representation Power with Heterophily-adjusted Designs

We now consider the impact of GNN architectures on non-heterophilic link prediction performance. In
particular, we examine whether the effective designs for node classification beyond class homophily
can be transferred to link prediction tasks beyond feature homophily. A design that significantly
improves classification performance under low class homophily is the separation of ego- and neighbor-
embeddings in GNN message passing, which has consistently shown to improve classification
performance across multiple studies [60, 36]. As real-world graphs usually follow a power-law
degree distribution and exhibit large variation in node degrees, prior work has used the robustness
of GNN models to degree shift as a proxy to measure the generalization ability of GNN models for
heterophilic node classification [60]. We follow a similar approach in the theorem below and show
that a GNN model that embeds ego- and neighbor-features together is less capable of generalizing
under heterophilic settings than a graph-agnostic model. We give the proof in Appendix §B.3.

Theorem 3 Consider the same DistMult decoder and loss function L as the assumptions in §4.2,
but trained on a heterophilic graph where (1) feature vectors for all nodes can be either x1 =
(cos θ1, sin θ1) or x2 = (cos θ2, sin θ2), and (2) nodes u and v are connected if and only if xu ̸= xv .
Assume two DistMult decoders are trained, one baseline with node features xu, and the other with
GNN representations ru instead of node features xu, where ru is obtained with a linear GNN model
ru = 1

|N̄(u)|+1
xu + 1

|N̄(u)|+1

∑
l∈N̄(u) xl that considers self-loops in its message passing process.

We further assume a degree shift between training and test sets, where all training nodes have degree
d while the test nodes have degree d′. Then for any d′ > 0 when d = 0, or 1 ≤ d′ < d when d ≥ 2,
the DistMult decoder optimized on GNN representations ru reduce the separation distance between
edges and non-edges for the test nodes compared to the baseline optimized with node features xu.
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Figure 3: Comparing link prediction methods on synthetic graphs with varying levels of feature
similarity: (a) and (b) focus on decoders, while (c) focuses on encoders. We include MLP decoder
without GNN as a graph agnostic baseline in all plots. Numerical results are reported in Table 2.

6 Empirical Analysis

We aim to understand through empirical analysis (1) what are the performance trends of link prediction
methods under different link prediction tasks in the full spectrum of negative to positive feature
similarity, and (2) how different encoder and decoder designs adapt to non-homophilic link prediction
tasks, including variations of feature similarity and node degrees within the same graph. We first
introduce the link prediction methods that we consider in our experiments, and then present the results
on synthetic and real-world datasets. More details about setups and results are available in App. A.3

Link Prediction Methods. As in the previous sections, we follow an encoder-decoder framework and
consider different combinations of both components. For decoders, we consider the options mentioned
in §5.1: (1) Dot Product (DOT), (2) Multi-Layer Perceptron (MLP), and (3) DistMult [47].

For encoders, we consider two GNN methods to study how separating ego- and neighbor-embeddings
affects link prediction performance: (1) GraphSAGE [15] which separates ego- and neighbor-
embeddings during message passing, and (2) Graph Convolutional Network (GCN) [21], which
does not make this separation. We couple these encoders with the decoders above to form six
GNN4LP models.

Furthermore, to understand how message passing designs affect performance for GNN4LP models
that leverage both node features and pairwise structural information, we consider BUDDY [6], a
state-of-the-art method reported in a recent benchmark [23]. BUDDY augments GNN encoders with
subgraph sketching to capture structural information. Specifically, we consider three variants: (3)
BUDDY-GCN, which uses GCN for feature aggregation, (4) BUDDY-SIGN, which uses SIGN
aggregation [38] to separate ego- and neighbor-embeddings during message passing, and (5) NoFeat,
a structure-only baseline that excludes node features and relies solely on structural information for
link prediction. All BUDDY variants use an MLP decoder as part of their architecture.

Finally, we also consider these link prediction heuristics tested in [6]: Common Neigbhors (CN) [32],
Resource Allocation (RA) [57], Adamic-Adar (AA) [2], and Personalized PageRank (PPR) [19].

6.1 Experiments on Synthetic Graphs

We generate synthetic graphs that resemble different types of link prediction tasks (i.e., homophilic,
heterophilic, and gated) by varying the feature similarity between connected nodes. These graphs
provide controlled environments that allow us to focus on the effects of feature similarity on link
prediction performance without mingling them with other data factors such as structural proximity.
We give the details of the synthetic graph generation process and the experiment setup in App. §A.

Performance Trend Across the Full Similarity Specturm. We visualize the performance trends per
method in Fig. 3 and present the numerical results in Table 2. We observe that the performance of all
feature-consuming methods is significantly affected by the level of feature similarity: most methods
reach their best performance at the positive extreme (homophilic tasks) and the second best at the

3 Our experiment code is available at https://github.com/GemsLab/HeteLinkPred.
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negative extreme (heterophilic tasks); between the two extremes (gated tasks), the performance of all
methods drops significantly as the feature similarity score approaches 0, which creates a U-shaped
performance trend across the feature similarity spectrum. It is worth noting that graph-agnostic MLP
decoder without GNN (NoGNN) also exhibits the U-shaped performance trend, which suggests the
challenges of leveraging node features effectively in these settings for non-GNN methods as well.
Intuitively, as the similarity scores for a random pair of nodes follow a normal distribution centered
around 0, the performance drop when average feature similarity scores approach 0 can be contributed
to the reduced distinguishability between the similarity scores of edges and non-edges in the graph.
For feature agnostic heuristics such as Common Neighbors and Personalized PageRank, they show
mostly unproductive performance except at the positive extreme. This suggests that graphs formed
by positive feature correlations are also likely to show strong structural proximity, which is beneficial
for the heuristic-based methods for the homophilic link prediction task.

Decoder Choices: MLP and DistMult over DOT. We further validate our main points in §5
regarding how different decoder choices adapt to non-homophilic link prediction settings. In Fig. 3a-b,
we compare the performance of different decoders with fixed SAGE and GCN encoders, respectively.
With both SAGE and GCN encoders, we observe that DOT decoder performs the worst among
all choices across all feature similarity levels: it is outperformed by MLP decoder with a margin
of 50% in the negative extreme and 10% in the positive extreme under SAGE encoder. DistMult
decoder performs significantly better than the DOT decoder, especially in the region of negative
feature similarity: at the negative extreme, DistMult decoder outperforms DOT decoder by 55% and
even outperforms MLP decoder by 5.6%. Empirically, we observe that the optimization process of
DistMult is more stable than MLP when using a SAGE encoder in the negative similarity region,
allowing it to reach optimal performance without suffering from instabilities at the negative extreme.
However, the performance of DistMult coupled with SAGE decoder is significantly lower than MLP
with up to 37% gap between the negative and positive extremes, where the link prediction tasks are
gated instead of being homophilic or heterophilic. This validates our theoretical analysis in §5.1
that the linear decoders like DOT and DistMult are not suitable for the settings where non-linear
separation between similarity scores of edges and non-edges are required. With GCN encoder, the
performance of DistMult decoder is mostly on par with MLP decoder across the spectrum, which
shows that the performance bottleneck is on the encoder side rather than the decoder side. Overall,
MLP decoder is the most robust choice across different feature similarity levels and link prediction
tasks, yielding the best performance in all but one cases when coupled with SAGE encoder, with
DistMult being a more scalable alternative for homophilic and heterophilic link prediction tasks.

Encoder Choices: Importance of Ego- and Neighbor-Embedding Separation. In Fig. 3c, we
compare the performance of different encoder choices with fixed MLP decoder, which is the best-
performing decoder option for nearly all cases. In addition to GCN and SAGE encoders that rely
only on node features, we also include variants of BUDDY [6] that leverage structural proximity
and (optionally) node features. Comparing between SAGE and GCN encoders, we observe that
SAGE consistently outperforms GCN across all feature similarity levels by up to 44%. For BUDDY
variants with SIGN and GCN feature encoders, we also observe consistently better performance with
SIGN encoder across all feature similarity levels with up to 9.0% gain. Both comparisons suggest
the importance of adopting ego- and neighbor-embedding separation in GNN encoder design for
link prediction: as discussed in §5.2, this design allows GNN encoders to learn representations that
are more robust to variations of node degrees and feature similarity levels in the graph instead of
overfitting to specific degrees or similarity scores, which we also observe in the real-world datasets.

Importance of Node Features vs. Structural Proximity. Here we compare two approaches in
Fig. 3c: (1) SAGE+MLP, which combines node features with implicit graph structural information
captured through GNN message passing, and (2) BUDDY-SIGN, which additionally incorporates
explicit structural proximity (e.g., number of shared neighbors) through subgraph sketching. We find
that BUDDY-SIGN’s performance is consistently lower than SAGE+MLP across all feature similarity
levels, with the gap reaching up to 26% between the negative and positive extremes. This suggests that
when graph connections are predominantly driven by feature similarity (as in our synthetic graphs),
the additional structural information from subgraph sketching may not provide added benefit beyond
the structural information already captured by GNN message passing. While real-world graphs
are typically influenced by both feature similarity and structural proximity, these results emphasize
the importance of carefully balancing these two information sources in link prediction models,
particularly for non-homophilic settings where structural proximity alone may be less informative.

8

65830https://doi.org/10.52202/079017-2104



Table 1: Results on real-world graphs. "*" denotes results quoted from [6].
Dataset ogbl-collab ogbl-citat2 e-comm facebook PPI amzn-comp
#Nodes 235,868 2,927,963 346,439 4,039 56,944 13,752
#Edges 2,358,104 30,387,995 682,340 88,234 1,612,348 491,722

Feat. Sim 0.70±0.23 0.40±0.22 0.18±0.63 0.11±0.23 0.11±0.46 0.07±0.35

Metrics Hits@50 MRR MRR MRR MRR MRR

HEURISTICS

CN 56.44* 51.47* 19.96 53.83 62.77 55.05
AA 64.35* 51.89* 19.96 54.90 64.66 57.94
RA 64.00* 51.98* 19.96 55.50 64.26 58.03

DOT DECODER

GCN 10.64±0.42 40.38±1.52 33.83±1.34 39.95±0.14 13.35±0.43 24.67±0.60

SAGE 19.71±0.52 71.39±0.28 52.30±5.11 49.59±0.05 18.94±0.17 42.25±0.54

DISTMULT DECODER

GCN 25.62±0.82 62.31±0.68 53.09±2.37 45.63±0.19 14.31±0.29 31.59±1.04

SAGE 43.50±1.13 82.26±0.02 50.15±6.56 50.64±0.19 22.26±0.35 58.42±0.12

MLP DECODER

NoGNN 6.07±0.18 27.64±0.21 24.65±0.21 16.57±0.08 1.96±0.01 21.15±0.23

GCN 30.17±2.90 73.57±0.35 54.82±3.42 49.02±0.23 17.67±2.28 52.90±0.86

SAGE 48.64±0.39 83.67±0.07 54.60±0.09 50.12±0.05 35.30±0.55 58.38±0.07

BUDDY WITH MLP DECODER

NoFeat 66.06±0.22 83.36±0.14 6.68±0.00 42.06±7.87 66.42±0.03 53.53±0.02

GCN 66.21±0.33 87.05±0.04 13.13±1.91 52.99±0.13 65.12±0.49 60.99±0.33

SIGN 66.64±0.64 87.53±0.12 10.95±3.68 51.81±0.13 53.22±0.21 60.05±0.42

6.2 Experiments on Real-world Graphs

Next we compare performance of different link prediction methods on real-world graphs of varying
sizes and feature similarities. Unlike our synthetic graphs where the feature similarity of connected
nodes is controlled, real-world graphs tend to have a significantly larger variation in feature similarity
across edges. Our analysis aims to not only compare the overall performance of the methods, but
also to understand their local performance discrepancies across feature similarity variations within a
graph, which is typically overlooked in the literature.

Experiment Setups. Based on our definitions (§4.1), we employ 6 real-world datasets spanning
from homophilic to non-homophilic link prediction tasks: ogbl-collab [18], ogbl-citation2 [18],
e-comm [61], facebook [39], PPI [63], and amazon-computers [40]. The details and experiment setup
are in App. §A. We report dataset statistics in Table 1 and show feature similarity distributions of edges
vs. random node pairs in Fig. 6 (App. A): while ogbl-collab and ogbl-citation2 are approximately
homophilic, e-comm, facebook, PPI and amazon-computers are non-homophilic. We have also
identified additional real-world datasets exhibiting feature heterophily in App. §C.

Motivated by prior findings about the interplay of node degree and heterophily [46, 59, 26], we analyze
how different encoder and decoder choices perform across edges with varying graph properties.
Specifically, we group edges into buckets based on two key properties: (1) the degrees of their
connected nodes and (2) their feature similarity scores. For each bucket, we compute the average link
prediction performance of different methods, with detailed methodology in App. §A. To understand
how encoders and decoders adapt to these property variations, we fix one component (encoder or
decoder) while varying the other, and visualize the resulting performance differences across buckets.
The main results are shown in Fig. 5, with additional analyses in Fig. 7-10.

Significance of Decoder Choices. We first compare the performance of different decoder choices
while fixing the encoder. As we observed on the synthetic datasets, for both GCN and SAGE encoders,
MLP has the highest overall performance, followed by DistMult and DOT. In terms of the robustness
to local variations of node degrees and feature similarity scores, we observe in Fig. 5c that despite
MLP only outperforms DOT by 2.3% on the full test split, it outperforms DOT on the majority of the
feature similarity range by up to 7.4% as DOT overfits to the lowest feature similarity bucket; we also
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Figure 5: Pairwise comparison of encoder or decoder choices on test edges grouped by node degrees
(x-axis) and feature similarity (y-axis): Green denotes MRR increases and purple denotes decreases.
More plots in Fig. 7-10.

observe similar overfitting of DistMult to the highest feature similarity bucket in Fig. 5a, despite it
being significantly more robust than DOT. Overall, MLP is the most robust choice for link prediction
tasks on real-world graphs with varying feature similarity levels.

Significance of Encoder Choices. We finally compare different encoder choices while fixing the
decoder. Matching our observations on synthetic datasets, we find that SAGE encoder outperforms
the GCN encoder by significant margin under most datasets and decoder choices. On e-comm dataset,
the performance of GCN on the full test split is on-par with SAGE under MLP decoder, but we
observe in Fig. 5d that GCN largely overfits to the edges in the high feature similarity and low
degree bucket, with SAGE outperforming GCN by up to 3.5% in the remaining buckets. The similar
overfitting is also observed on SIGN vs. GCN with BUDDY and MLP decoder on ogbl-citation2
(Fig. 5b). These observations show that the separation of ego- and neighbor-embeddings in the SAGE
and SIGN encoders help GNNs to better adapt to local variations in feature similarity and node
degrees in the real-world graphs.

7 Conclusion

We characterized non-homophilic link prediction through the distributions of feature similarities
between linked and unlinked nodes, and proposed a theoretical framework highlighting the op-
timizations needed for different tasks. Our analysis revealed how link prediction encoders and
decoders adapt to varying feature homophily levels, identifying key designs—learnable decoders
(e.g., MLP or DistMult) with GNN encoders that separate ego- and neighbor-embeddings—for
improved link prediction performance beyond homophily. Experiments on synthetic and real-world
datasets demonstrated the effectiveness of these designs across the feature similarity spectrum.

In summary, our work advances the understanding of heterophilic link prediction, and lays the
groundwork for future research. First, we believe that there is a need for introducing more feature-
heterophilic benchmark datasets for link prediction. Expanding the diversity of available datasets
would enhance the generality and practical significance of studies in this area, allowing for more
robust validation of methodologies and mitigating potential biases from the scarcity of strongly
heterophilic benchmarks. Second, additional in-depth theoretical frameworks could provide a more
comprehensive understanding of the complexities inherent in real-world networks. This includes
exploring the interplay between feature similarity and structural similarity and how these relationships
influence the performance of different link prediction methods.
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A Additional Details on Experiments

Computing Resources. For most experiments, we use a workstation with a 12-core AMD Ryzen 9
3900X CPU, 64GB RAM, and an NVIDIA Quadro P6000 GPU with 24 GB GPU Memory. BUDDY
experiments on ogbl-citation2 require higher CPU RAM, in which case we use a server with 128GB
RAM and an NVIDIA A100 GPU with 48 GB GPU Memory.

Synthetic Graph Generation. The synthetic graphs are generated by random sampling 10,000
nodes with their features in ogbl-collab [18] and connect 2% of all possible node pairs whose feature
similarity falls within specified ranges; all graphs share the same set of nodes and features and only
differ in their edges. More specifically, we calculate the pairwise feature similarity between all node
pairs and create 50-quantiles of feature similarity scores. We select the 3 smallest quantiles, the 3
largest quantiles, and 4 quantiles in equal intervals in between, resulting in 10 quantiles. We then
create 10 synthetic graphs by connecting node pairs whose feature similarity scores fall within the
same quantile. Thus, by gradually increasing the range of similarity for connected nodes, we create
graphs which resemble different types of link prediction tasks and average feature similarity. We
list the average feature similarity score of each synthetic graph in Table 3: the negative extreme
is the most negatively correlated graph featuring edges with feature similarity scores ranging in
[−1,−0.33], which resembles the heterophilic link prediction task; the positive extreme is the most
positively correlated graph with edges similarity scores in [0.44, 1.00], resembling the homophilic
link prediction task. Other synthetic graphs correspond to the gated link prediction task with feature
similarity scores ranging from the negative to positive spectrum.

Comparing with synthetic graph generation methods in existing literature studying heterophilous
graphs, most of these methods focus on node classification tasks. For example, [1] and [60] propose
modified preferential attachment processes where edge probabilities are determined by both class
compatibility matrices and node degrees, while [7] employs a contextual stochastic block model
(CSBM). However, these approaches control homophily/heterophily levels based on node class labels,
which are typically unavailable in link prediction settings. More recently, [22] proposed NetInfoF for
generating link prediction benchmarks by controlling correlations between node features and edge
existence. However, their approach only supports three discrete correlation levels (fully, partially, or
uncorrelated) and cannot generate graphs with negatively correlated features among connected nodes.
In contrast, our generation process allows for fine-grained control over feature similarity distributions
and can produce graphs spanning the full spectrum from negative to positive feature correlations.

Experiment Setups of the Synthetic Graphs. For each generated synthetic graph, we randomly
split the edges into training, validation, and test sets with a ratio of 8:1:1. We repeat each experiment
3 times with different random seeds and report the average performance with standard deviation in
Table 2. We use 2 convolutional layers for SAGE and GCN, and 256 hidden dimensions for all neural
network models.

Additional Experiment Setups of the Real-world Datasets. We consider three real-world datasets:
(1) ogbl-collab [18], a collaboration network between researchers, with nodes representing authors,
edges representing co-authorship, and node features as the average word embeddings of the author’s
papers; (2) ogbl-citation2 [18], a citation network where nodes represent papers and edges represent
citations, with the average word embeddings of the paper’s title and abstract as node features; (3)
e-comm [61], a sparse graph extracted from [37] representing exact matches of queries and related
products in Amazon Search, with BERT-embeddings of queries and product information as node
features. For ogbl-collab and ogbl-citation2, we follow the recommended metrics (Hit@50 and MRR,
respectively) and train-validation-test splits provided by OGB [18]. For e-comm, we use the splits
shared by [61], adopt the SpotTarget approach [61] as graph mini-batch sampler for training and use
MRR as the evaluation metric. We report each method’s average performance on the full test split
across 3 runs with different random seeds, and present the results in Table 1.

Creation of Node Degree and Feature Similarity Buckets on Real-world Datsets. To create these
buckets, we first calculate each edge’s feature similarity score and the minimum degree of its two
connected nodes. We then create on each graph three buckets per property based on the distribution
of feature similarity scores and node degrees, with each bucket covering one-third quantile, except
for node degrees of e-comm, where only two buckets are created due to its sparsity.
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Figure 6: Comparison of feature similarity distributions for edges and random node pairs on real-
world datasets used in our experiments. For similarity scores of random node pairs, we randomly
sample 1000 nodes and compute the pairwise cosine similarity between these node features. Similarity
score distributions for random node pairs are good approximations of the distributions for non-edge
node pairs due to the sparsity of the graphs.
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Figure 7: Number of edges in each bucket on different datasets.
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Table 2: Results on synthetic graphs. We report MRR averaged over 3 runs.
Graph Index 0 1 2 3 4
Feat. Sim K −0.38±0.04 −0.31±0.01 −0.28±0.01 −0.14±0.00 −0.04±0.00

CN 0.69 0.65 0.66 1.58 2.44
RA 0.69 0.65 0.66 1.64 2.58
AA 0.69 0.65 0.66 1.63 2.57

PPR 10.91 3.30 2.46 3.17 3.68

GCN+DOT 15.88±0.37 8.16±0.11 5.96±0.07 3.55±0.02 3.79±0.00

SAGE+DOT 25.53±0.09 9.35±0.02 6.32±0.02 3.80±0.07 3.51±0.04

GCN+DistMult 46.19±0.98 17.20±0.16 12.57±0.05 4.86±0.03 3.58±0.11

SAGE+DistMult 80.97±0.32 23.85±0.04 14.66±0.03 6.05±0.08 6.57±0.05

NoGNN+MLP 57.84±0.37 23.83±0.08 18.30±0.09 9.05±0.02 7.89±0.04

GCN+MLP 45.69±0.47 17.43±0.08 12.62±0.08 5.03±0.06 3.98±0.06

SAGE+MLP 75.39±0.64 43.37±2.35 33.64±1.01 19.85±0.68 23.84±3.15

BUDDY-NoFeat 27.51±0.05 10.12±0.95 6.72±0.85 2.37±0.37 2.15±0.11

BUDDY-GCN 69.47±0.65 24.26±0.56 17.60±0.43 6.46±0.10 4.99±0.07

BUDDY-SIGN 75.27±2.33 26.65±0.96 20.81±0.39 9.59±0.29 7.57±0.05

Graph Index 5 6 7 8 9
Feat Sim K 0.07±0.00 0.24±0.01 0.34±0.01 0.40±0.02 0.54±0.09

CN 2.81 6.26 11.97 18.62 70.49
RA 2.96 6.48 12.61 20.24 77.16
AA 2.96 6.50 12.37 19.21 71.91

PPR 3.86 7.44 13.21 19.62 62.06

GCN+DOT 4.16±0.04 8.11±0.02 14.27±0.05 20.23±0.10 61.57±0.22

SAGE+DOT 2.29±0.10 6.95±0.08 14.79±0.02 23.95±0.02 79.90±0.13

GCN+DistMult 4.08±0.01 7.97±0.01 13.99±0.03 19.85±0.08 62.92±0.82

SAGE+DistMult 6.71±0.13 7.33±0.08 16.05±0.02 27.52±0.05 88.97±0.35

NoGNN+MLP 8.86±0.13 14.78±0.21 23.59±0.32 31.88±0.55 70.55±0.83

GCN+MLP 4.19±0.02 8.12±0.05 14.03±0.02 20.07±0.14 62.24±0.39

SAGE+MLP 30.35±0.12 35.33±0.75 49.73±1.42 64.38±0.88 89.79±0.74

BUDDY-NoFeat 2.30±0.08 5.10±0.97 10.54±2.05 18.13±0.04 67.96±0.01

BUDDY-GCN 5.39±0.05 10.11±0.45 19.34±1.47 29.44±2.36 84.44±1.22

BUDDY-SIGN 8.45±0.08 16.17±0.44 27.49±2.33 38.39±4.77 87.59±1.40
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Figure 8: Performance comparison on ogbl-collab among different node degree and edge similarity
scores buckets.
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Figure 9: Performance comparison on ogbl-citation2 among different node degree and edge similarity
scores buckets.
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Figure 10: Performance comparison on e-comm among different node degree and edge similarity
scores buckets.

B Proofs of Theorems

B.1 Proof of Theorem 1

Proof 1 We prove separately for homophilic and heterophilic link prediction problems.

Homophilic Link Prediction Problem. For homophilic link prediction problem, we have 1 ≥
inf(Kpos) = M > sup(Kneg). As M = inf(Kpos), a pair of nodes u, v ∈ V must exist in
the training graph with feature vectors xu = (cos θu, sin θu) and xv = (cos θv, sin θv) such that
k(u, v) = cos(θu − θv) = M .

Now let us consider a fully optimized DistMult decoder for the problem. We parameterize the DistMult
decoder with w = (w1, w2) and b; in this case, the predicted link probability

ŷuv = (xu ⊗ xv)
Tw + b = w1 cos θu cos θv + w2 sin θu sin θv + b

As M = inf(Kpos), any pairs of nodes (u′, v′) that has feature similarity k(u′, v′) slightly smaller
than M should have ŷu′v′ ≤ 0. Therefore, we must have ŷuv = 0. Furthermore, since we are
bounding ŷu′v′ = 1 if k(u′, v′) = 1 during training, we must have ŷuu = 1 and ŷvv = 1. Using
ŷuv = 0, ŷuu = 1 and ŷvv = 1, we can obtain the solutions for w1, w2 and b as follows:

w1 =
1

1− cos(θu − θv)
, w2 =

1

1− cos(θu − θv)
, b =

1

cos(θu − θv)− 1
+ 1

As w1 = w2 = 1
1−M , we have the similarity score for arbitrary node pair (u′, v′) as

ŷu′v′ =
1

1−M
cos(θu′ − θv′) +

1

M − 1
+ 1 =

1

1−M
k(u′, v′) +

1

M − 1
+ 1

We can verify that the above link prediction model is fully optimized with loss function L = 0 as it
always yield ŷuv ≥ 0 for k(u′, v′) ≥ M and ŷuv < 0 for k(u′, v′) < M . Therefore, we show that
ŷu′v′ increases with k(u′, v′) at a linear rate of 1

(1−M) for homophilic link prediction problem.
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Heterophilic Link Prediction Problem. For heterophilic link prediction problem, we have −1 ≤
sup(Kpos) = M < inf(Kneg). As M = sup(Kpos), a pair of nodes u, v ∈ V must exist in
the training graph with feature vectors xu = (cos θu, sin θu) and xv = (cos θv, sin θv) such that
k(u, v) = cos(θu − θv) = M .

Similar to the homophilic case, as M = sup(Kpos), any pairs of nodes (u′, v′) that has feature
similarity k(u′, v′) slightly larger than M should have ŷu′v′ ≤ 0. Therefore, we must have ŷuv = 0.
Furthermore, since we are bounding ŷu′v′ = 1 if k(u′, v′) = −1 during training, for nodes u∗ and
v∗ where xu∗ = −xu and xv∗ = −xv, we must have ŷuu∗ = 1 and ŷvv∗ = 1. Using ŷuv = 0,
ŷuu∗ = 1 and ŷvv∗ = 1, we can obtain the solutions for w1, w2 and b as follows:

w1 = − 1

1 + cos(θu − θv)
, w2 = − 1

1 + cos(θu − θv)
, b = 1− 1

1 + cos(θu − θv)

As w1 = w2 = − 1
1+M , we have the similarity score for arbitrary node pair (u′, v′) as

ŷu′v′ = − 1

1 +M
cos(θu′ − θv′) + 1− 1

1 +M
= − 1

1 +M
k(u′, v′) + 1− 1

1 +M

We can similarly verify that the above link prediction model is fully optimized with loss function
L = 0 as it always yield ŷuv ≥ 0 for k(u′, v′) ≤ M and ŷuv < 0 for k(u′, v′) > M . Therefore, we
show that ŷu′v′ decreases with k(u′, v′) at a linear rate of 1

(1−M) for heterophilic link prediction
problem. ■

B.2 Proof of Theorem 2

Proof 2 The decision boundary for gated link prediction is non-linear since it involves multiple
disjoint intervals for each class (edge and non-edge). A linear model can only create a single
threshold x0 to separate the classes: one region for x ≤ x0 and the other for x > x0. Therefore,
there always exists misclassified points regardless of the choice of x0. ■

B.3 Proof of Theorem 3

Proof 3 We begin by considering the decoder trained with the linear GNN representation ru that
does not separate ego- and neighbor-embeddings in its message passing. Following our assumptions,
the aggregated representation r1 for training nodes with feature x1 is r1 = 1

d+1x1 +
d

d+1x2, and r2
can be obtained similarly.

Similar to Proof 1, we parameterize the DistMult decoder with w = (w1, w2) and b. Suppose node u
has feature vector x1 and node v has feature vector x2. As the training graph is heterophilic and
(u, v) is connected on the graph, we should have ŷuv > 0 in this case. Without the loss of generality,
we set ŷuv = 1. Furthermore, as self-loops (u, u) and (v, v) are not connected in the graph, we
should also have ŷuu = α < 0 and ŷvv = α < 0. Using ŷuv = 1, ŷuu = α < 0 and ŷvv = α < 0,
we can obtain the solutions for w1, w2 and b as follows:

w1 = w2 = − (α− 1)(d+ 1)2

(d− 1)2(cos(θ1 − θ2)− 1)

b =
2 sin(θ1 + θ2)

(
−d2 + (α+ d(αd− 2)) cos(θ1 − θ2) + 2αd− 1

)
(d− 1)2(−2 sin(θ1 + θ2) + sin(2θ1) + sin(2θ2))

Now we apply the optimized DistMult decoder on the test nodes with degree d′. For the test node u′

with feature vector x1, the aggregated representation r′1 is r′1 = 1
d′+1x1 +

d′

d′+1x2. Similarly, r′2 can
be obtained.

Assume the test nodes u′ has feature vector x1 and node v′ has feature vector x2. Based on
assumptions, (u′, v′) should be connected in the heterophilic graph. Plugging in the optimized
DistMult parameters, the predicted link probability ŷu′v′ for positive (edge) node pairs can be written
as

ŷu′v′ =
2α (d− d′) (dd′ − 1)− 4dd′ + (d′)

2
+ d2

(
(d′)

2
+ 1

)
+ 1

(d− 1)2 (d′ + 1)
2
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On the other hand, for nodes with the same feature vectors (e.g., self-loops), they should not be
connected in the graph. The predicted link probability ŷu′u′ for self-loops can be written as

ŷu′u′ =
α
(
−4dd′ + (d′)

2
+ d2

(
(d′)

2
+ 1

)
+ 1

)
+ 2 (d− d′) (dd′ − 1)

(d− 1)2 (d′ + 1)
2

Thus, the separation distance between edges and non-edges for the test nodes on DistMult decoder
optimized with GNN representations can be represented as

∆GNN = |ŷu′v′ − ŷu′u′ |.

Now let us consider the baseline DistMult decoder optimized with node features xu. It is straight
forward to see that if the decoder is optimized such that ŷuv = 1, ŷuu = α < 0 and ŷvv = α < 0, we
will continue to have ŷu′v′ = 1 and ŷu′u′ = α for the test nodes, as the decoder is graph-agnostic.
Thus, the separation distance between edges and non-edges for the test nodes on the baseline DistMult
decoder can be represented as ∆baseline = 1− α.

The GNN-based DistMult decoder reduces the separation distance between edges and non-edges for
the test nodes compared to the baseline DistMult decoder when ∆GNN < ∆baseline. Solving this
inequality for integers d and d′ under the constraints of d ≥ 0, d′ ≥ 0, α < 0, we obtain the solutions
as d′ > 0 if d = 0, or 1 ≤ d′ < d if d ≥ 2. ■

C Additional Real-World Datasets Exhibiting Feature Heterophily

In addition to the dataset we employ in experiments, we identified a diverse range of heterophilious
datasets from other graph learning tasks (e.g. graph or node classification). Specifically, we have
identified a range of biological graph datasets from the TUDataset [31] that exhibit feature heterophily
(these datasets are typically used for graph classification). In particular, the following datasets
comprise entirely heterophilic graphs (i.e., every single graph has negative homophily ratios):

• aspirin

• benzene

• malonaldehyde

• naphthalene

• salicylic_acid

• toluene

• uracil

These datasets are substantial in size, as detailed below:

Table 3: Number of entirely heterophilic Graphs in Different Datasets (from TUDataset)
Dataset Number of Graphs
aspirin 111,763
benzene 527,984
malonaldehyde 893,238
naphthalene 226,256
salicylic_acid 220,232
toluene 342,791
uracil 133,770

In addition, some datasets contain instances that are strongly heterophilious (with homophily ratio
-1.0), including bbbp, NCI1, AIDS, and QM9 [45]. Note that such findings are not only limited to
biological datasets. For instance, 73% of graphs from PATTERN [13] (Mathematical Modeling) have
negative homophily ratios.
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Furthermore, we have identified node classification benchmarks from torch-geometric.datasets that
display a wide range of feature homophily ratios, many of which are more heterphilious than e-comm,
the one we proposed in paper. Notably, some real-world benchmarks exhibit negative homophily
ratios. We summarize our findings in Table 4.

In addition to the homophily ratios presented above, we provide the feature similarity distributions for
edges and random node pairs across several datasets in Figure 11, following the same convention as
Figure 5 in our paper. These plots reveal clear signs of heterophily in the existing benchmark graphs.

Table 4: Homophily Ratios for Different Datasets
Dataset Homophily Ratios
Ogbl-ppa 0.74
Ogbl-collab 0.70
Ogbl-citat2 0.40
WikiCS 0.35
PubMed [4] 0.22
e-comm 0.18
DBLP [4] 0.13
Cora [4] / FacebookPagepage [39] 0.12
AQSOL [13] / Yelp 0.12
PPI [63] 0.11
Facebook [48] 0.11
Amazon-Photo [40] 0.10
Amazon-Computers [40] 0.07
Twitch-DE [39] 0.07
Twitch-FR [39] 0.06
BlogCatalog [48] 0.06
CiteSeer [48] 0.05
TWeibo [48] 0.01
Karateclub [50] -0.03
UPFD [11] -0.10
BBBP instances [45] -1.00
NC11 instances [31] -1.00
AIDS instances [31] -1.00
QM9 instances [45] -1.00
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Figure 11: Heterophilic Sample Feature Distributions
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract introduces the paper’s contributions on analyzing impact of
heterophily in node features on GNN performance. A detailed description of the paper’s
contributions can be found at the end of introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed limitations of our work and future directions in the conclusion
(§7).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provided the full set of assumptions in the paper with clear notations. We
justify our theorems through complete and correct proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Information needed to reproduce experimental results have been in-
cluded in §6, Appendix and the our GitHub repository https://github.com/GemsLab/
HeteLinkPred.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code to reproduce experimental results is provided at https://github.
com/GemsLab/HeteLinkPred.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies training and test details in §6 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars for experiments have been included, and the variability captured
have been stated in App. §A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided sufficient information on the computer resources for all our
experiments in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research conducted in this paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper discusses foundational research in GNN and is not tied to particular
applications that could result in potential negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in this paper have been properly credited to the best of the
authors’ knowledge.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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