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Abstract

Large Language Models (LLMs) have the capacity to store and recall facts.
Through experimentation with open-source models, we observe that this abil-
ity to retrieve facts can be easily manipulated by changing contexts, even without
altering their factual meanings. These findings highlight that LLMs might behave
like an associative memory model where certain tokens in the contexts serve as
clues to retrieving facts. We mathematically explore this property by studying how
transformers, the building blocks of LLMs, can complete such memory tasks. We
study a simple latent concept association problem with a one-layer transformer
and we show theoretically and empirically that the transformer gathers information
using self-attention and uses the value matrix for associative memory.

1 Introduction

What is the first thing that would come to mind if you were asked not to think of an elephant? Chances
are, you would be thinking about elephants. What if we ask the same thing to Large Language Models
(LLMs)? Obviously, one would expect the outputs of LLMs to be heavily influenced by tokens in the
context [ ]. Could such influence potentially prime LLMs into changing outputs in a nontrivial
way? To gain a deeper understanding, we focus on one specific task called fact retrieval [ ;
] where expected output answers are given. LLMs, which are tralned on vast amounts of

data, are known to have the capablhty to store and recall facts [ ;
; ]. This ability raises natural questions: How robust is fact remeval and to what extent
does it depend on semantic meanings within contexts? What does it reveal about memory in LLMs?

In this paper, we first demonstrate that fact retrieval is not robust and LLMs can be easily fooled
by varying contexts. For example, when asked to complete “The Eiffel Tower is in the city of”,
GPT-2 [ ] answers with “Paris”. However, when prompted with “The Eiffel Tower is not
in Chicago. The FEiffel Tower is in the city of”’, GPT-2 responds with “Chicago”. See Figure 1 for
more examples, including Gemma and LLaMA. On the other hand, humans do not find the two
sentences factually confusing and would answer “Paris” in both cases. We call this phenomenon
context hijacking. Importantly, these findings suggest that LLMs might behave like an associative
memory model. Specifically, we refer to an associative memory model in which LLMs rely on
certain tokens in contexts to guide the retrieval of memories, even if such associations formed are
not inherently semantically meaningful. This contrasts with the ideal behavior, where LLMs would
generalize by understanding new contexts, reasoning through them, and integrating prior knowledge.

This associative memory perspective raises further interpretability questions about how LLMs form
such associations. Answering these questions can facilitate the development of more robust LLMs.
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,—' Context Hijacking }

MODEL CONTEXT NEXT TOKEN

All models The Eiffel Tower is in the city of Paris

The Eiffel Tower is not in Chicago. Therefore, the Eiffel

GPT-2/ Gemma-2B o i in the city of

Chicago

The Eiffel Tower is not in Chicago. However, the
Gemma-2B-IT Chicago river is in Chicago. Therefore, the Eiffel Tower Chicago
is in the city of

The Eiffel Tower is not in Chicago. The Eiffel Tower
is not in Chicago. The Eiffel Tower is not in Chicago.
The Eiffel Tower is not in Chicago. The Eiffel Tower is
not in Chicago. The Eiffel Tower is not in Chicago. The
Eiffel Tower is not in Chicago. The Eiffel Tower is not
in Chicago. Therefore, the Eiffel Tower is in the city of

LLaMA-7B Chicago

Figure 1: Examples of context hijacking for various LLMs, showcasing that fact retrieval is not robust.

Unlike classical models of associative memory in which distance between memory patterns are
measured directly and the associations between inputs and outputs are well-specified, fact retrieval
relies on a more nuanced notion of similarity measured by latent (unobserved) semantic concepts.
To model this, we propose a synthetic task called latent concept association where the output token is
closely related to sampled tokens in the context but wherein similarity is measured via a latent space
of semantic concepts. We then investigate how a one-layer transformer [ ], a fundamental
component of LLMs, can tackle this memory retrieval task in which various context distributions
correspond to distinct memory patterns. We demonstrate that the transformer accomplishes the
task in two stages: The self-attention layer gathers information, while the value matrix functions
as associative memory. Moreover, low-rank structure also emerges in the embedding space of trained
transformers. These findings provide additional theoretical validation for numerous existing low-rank
editing and fine-tuning techniques [ ; 1.

Contributions Specifically, we make the following contributions:

1. We systematically demonstrate context hijacking for various open source LLM models
including GPT-2 [ ], LLaMA-2 [ ] and Gemma [ ], which show that
fact retrieval can be misled by contexts (Sectron 3), reaffirming that LLMs lack robustness
to context changes [ ; ; ;

;

2. We propose a synthetic memory retrieval task termed latent concept association, allowing
us to analyze how transformers can accomplish memory recall (Section 4). Unlike
classical models of associative memory, our task creates associations in a latent, semantic
concept space as opposed to directly between observed tokens. This perspective is crucial
to understanding how transformers can solve fact retrieval problems by implementing
associative memory based on similarity in the latent space.

3. We theoretically (Section 5) and empirically (Section 6) study trained transformers on
this latent concept association problem, showing that self-attention is used to aggregate
information while the value matrix serves as associative memory. And moreover, we
discover that the embedding space can exhibit a low-rank structure, offering additional
support for existing editing and fine-tuning methods [ ; ].

2 Literature review

Associative memory Assoc:1at1ve memory has been explored within the field of neuroscience
[ ; ; ; ]. The most popular models among them is the Hopfield
network [ ] and its modern successors [ ; ; ;

] are closely related to the attention layer used in transformers [ ].
In addltron the attentlon mechanism has also been shown to approximate another associative memory
model known as sparse distributed memory [ ]. Beyond attention, Radhakrishnan et al. [ ]
and Jiang and Pehlevan [ ] show that overparameterzed autoencoders can implement associative
memory as well. This paper studies fact retrieval as a form of associative memory. Another closely
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(a) Hijacking generically (b) Hijacking based on Relation ID P190

Figure 2: Context hijacking can cause LLMs to output false target. The figure shows efficacy score versus
the number of prepends for various LLMs on the COUNTERFACT dataset under two hijacking schemes.

related area of research focuses on memorization in deep neural networks. Henighan et al. [ ]
shows that a simple neural network trained on toy model will store data points in the overfitting regime
while storing features in the underfitting regime. Feldman [ ] and Feldman and Zhang [ ]
study the interplay between memorization and long tail distributions while Kim et al. [ ] and
Mahdavi et al. [ ] study the memorization capacity of transformers.

Interpreting transformers and LLMs There’s a growing body of work on understanding how
transformers and LLMs work [ ; ; ; ;

1, 1nclud1ng training dynamics [ ; ; ] and in- context learnrng [

; ]. Recent papers have 1ntroduced synthetrc tasks to better understand the
mechanrsms of transformers [ ; ; ], such as those focused
on Markov chains [ ; ; ; ] Most notably, Bietti et al. [ ] and
subsequent works [ ; ] study weights in transformers as associative memory but their
focus is on understanding induction head [ ] and one-to-one map between input query and

output memory. An increasing amount of research is dedicated to understanding the internals of pre-
trained LLMs, broadly categorized under the term “mechanistic interpretability” [ ; ;

1.

Knowledge editing and adversarial attacks on LLMs Fact recall and knowledge editing have
been extensrvely studied [ ; ;

; ], including the use of in- context learnrng to ed1t facts [ ]. Th1s
paper arms to explore a different aspect by examining the robustness of fact recall to variation in
prompts. A closely related line of work focuses on adversarial attacks on LLMs [see , for
a review]. Specifically, prompt-based adversarial attacks [ ; ; ] focus on
the manipulation of answers W1th1n spemﬁc classrﬁcatron tasks Whlle other works concentrate on
safety issues [ ; 1. Yu
etal. [ ] and Luo et al. [ ] also study jailbreak phenomena Wrthln the context of modern
Hopﬁeld network. There are also works showrng LLMs can be distracted by irrelevant contexts
in problem solving [ ], question answering [ ; ; ] and factual reasoning
[ ]. Although phenomena akin to context hijacking have been reported in different instances, the
goals of this paper are to give a systematic robustness study for fact retrieval, offer a framework for
interpreting it in the context of associative memory, and deepen our understanding of LLMs.

3 Context hijacking in LLMs

In this section, we run experiments on LLMs including GPT-2 [ ], Gemma [ ] (both
base and instruct models) and LLaMA-2-7B [ ] to explore the effects of context hijacking
on manipulating LLM outputs. As an example, consider Figure 1. When we prompt the LLMs
with the context “The Eiffel Tower is in the city of”’, all 4 LLMs output the correct answer (“Paris”).
However, as we see in the example, we can actually manipulate the output of the LLMs simply by
modifying the context with additional factual information that would not confuse a human. We call
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this context-hijacking. Due to the different capacities and capabilties of each model, the examples in
Figure 1 use different hijacking techniques. This is most notable on LLaMA-2-7B, which is a much
larger model than the others. Of course, as expected, the more sophisticated attack on LLaMA also
works on GPT-2 and Gemma. Additionally, the instruction-tuned version of Gemma can understand
special words like “not” to some extent. Nevertheless, it is still possible to systematically hijack
these LLMs, as demonstrated below.

We explore this phenomenon at scale with the COUNTERFACT dataset introduced in [ ],a
dataset of difficult counterfactual assertions containing a diverse set of subjects, relations, and linguis-
tic variations. COUNTERFACT has 21, 919 samples, each of which are given by a tuple (p, 04,0 , s, 7).
From each sample, we have a context prompt p with a true target answer o, (target_true) and a
false target answer o_ (target_false), e.g. the prompt p = “Eiffel Tower can be found in” has true
target o, = “Paris” and false target o = “Guam”. Additionally, the main entity in p is the subject
s (s = “Eiffel Tower”) and the prompt is categorized into relations r (for instance, other samples
with the same relation ID as the example above could be of the form “The location of {subject} is”,
“{subject} can be found in”, “Where is {subject}? It is in”). For additional details on how the dataset
was collected, see [ ].

For a hijacking scheme, we report the Efficacy Score (ES) [ ], which is the proportion of
samples for which the token probabilities satisfy Pr[o | > Pr[o,] after modifying the context,
that is, the proportion of the dataset that has been successfully manipulated. We experiment with
two hijacking schemes for this dataset. We first hijack by prepending the text “Do not think of
{target_false}” to each context. For instance, the prompt “The Eiffel Tower is in” gets changed to
“Do not think of Guam. The Eiffel Tower is in”. In Figure 2a, we see that the efficacy score rises
significantly after hijacking. Here, we prepend the hijacking sentence k times for k = 0, ..., 5 where
k = 0 yields the original prompt. We see that additional prepends increase the score further.

In the second scheme, we make use of the relation ID r to prepend factually correct sentences. For
instance, one can hijack the example above to “The Eiffel Tower is not located in Guam. The Eiffel
Tower is in”. We test this hijacking philosophy on different relation IDs. In particular, Figure 2b
reports hijacking based on relation ID P190 (“twin city”). And we see similar patterns that with
more prepends, the ES score gets higher. It is also worth noting that one can even hijack by only
including words that are semantically close to the false target (e.g., “France” for false target “French”).
This suggests that context hijacking is more than simply the LLM copying tokens from contexts.
Additional details and experiments for both hijacking schemes and for other relation IDs are in
Appendix C.

These experiments show that context hijacking changes the behavior of LLMs, leading them to

output incorrect tokens, without altering the factual meaning of the context. It is worth noting that

similar fragile behaviors of LLMs have been observed in the literature in different contexts [ ;
; ; ; ]. See Section 2 for more details.

Context hijacking indicates that fact retrieval in LLMs is not robust and that accurate fact recall
does not necessarily depend on the semantics of the context. As a result, one hypothesis is to view
LLMs as an associative memory model where special tokens in contexts, associated with the fact,
provide partial information or clues to facilitate memory retrieval [ ]. To better understand
this perspective, we design a synthetic memory retrieval task to evaluate how the building blocks of
LLMs, transformers, can solve it.

4 Problem setup

In the context of LLMs, fact or memory retrieval, can be modeled as a next token prediction problem.
Given a context (e.g., “The capital of France is”), the objective is to accurately predict the next token
(e.g., “Paris”) based on the factual relation between context and the following token.

Previous papers [ ; ; ; ] have studied the connection between attention and
autoassociative and heteroassociative memory. For autoassociative memory, contexts are modeled as
a set of existing memories and the goal of self-attention is to select the closest one or approximations
to it. On top of this, heteroassociative memory [ ; ] has an additional projection to remap
each output to a different one, whether within the same space or otherwise. In both scenarios, the
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goal is to locate the closest pattern within the context when provided with a query (up to a remapping
if it’s heteroassociative).

Fact retrieval, on the other hand, does not strictly follow this framework. The crux of the issue
is that the output token is not necessarily close to any particular token in the context but rather a
combination of them and the “closeness” is intuitively measured by latent semantic concepts. For
example, consider context sentence “The capital of France is” with the output “Paris”. Here, none of
the tokens in the context directly corresponds to the word “Paris”. Yet some tokens contain partial
information about “Paris”. Intuitively, “capital” aligns with the “isCapital” concept of “Paris”, while
“France” corresponds to the “isFrench” concept linked to “Paris” where all the concepts are latent. To
model such phenomenon, we propose a synthetic task called latent concept association where the
output token is closely related to tokens in the context and similarity is measured via the latent space.

4.1 Latent concept association

We propose a synthetic prediction task where for each output token y, tokens in the context (denoted
by x) are sampled from a conditional distribution given y. Tokens that are similar to y will be
favored to appear more in the context, except for y itself. The task of latent concept association is to
successfully retrieve the token y given samples from p(z|y). The synthetic setup simplifies by not
accounting for the sequential nature of language, a choice supported by previous experiments on
context hijacking (Section 3). We formalize this task below.

To measure similarity, we define a latent space. Here, the latent space is a collection of m binary
latent variables Z;. These could be viewed as semantic concept variables. Let Z = (Z1, ..., Z,,) be
the corresponding random vector, z be its realization, and Z be the collection of all latent binary
vectors. For each latent vector z, there’s one associated token ¢t € [V] = {0, ...,V — 1} where V is
the total number of tokens. Here we represent the tokenizer as ¢ where ¢(z) = ¢. In this paper, we
assume that ¢ is the standard tokenizer where each binary vector is mapped to its decimal number. In
other words, there’s a one to one map between latent vectors and tokens. Because the map is one to
one, we sometimes use latent vectors and tokens interchangeably. We also assume that every latent
binary vector has a unique corresponding token, therefore V' = 2.

Under the latent concept association model, the goal is to retrieve specific output tokens given partial
information in the contexts. This is modeled by the latent conditional distribution:

p(z]2") = wr(z]z") + (1 — w)Unif(2)

where
o) o {SPDHE0) 2 €N
0 z ¢ N(2%).

Here Dy is the Hamming distance, A(2*) is a subset of Z\{z*} and 8 > 0 is the temperature parame-
ter. The use of Hamming distance draws a parallel with the notion of distributional semantics in natural
language: “a word is characterized by the company it keeps” [ 1. In words, p(z|2z*) says that with
probability 1 —w, the conditional distribution uniformly generate random latent vectors and with prob-
ability w, the latent vector is generated from the informative conditional distribution 7(z|z*) where
the support of the conditional distribution is A/(z*). Here, 7 represents the informative conditional dis-
tribution that depends on z* whereas the uniform distribution is uninformative and can be considered
as noise. The mixture model parameter w determines the signal to noise ratio of the contexts.

Therefore, for any latent vector z* and its associated token, one can generate L context token words
with the aforementioned latent conditional distribution:

* Uniformly sample a latent vector z*

e Forl=1,...,L — 1, sample z; ~ p(z|z*) and t; = 1(z;).

» Forl = L, sample z ~ 7(z|z*) and t1, = ¢(z2).
Consequently, we have © = (t1,..,t7,) and y = ¢(z*). The last token in the context is generated
specifically to make sure that it is not from the uniform distribution. This ensures that the last token

can use attention to look for clues, relevant to the output, in the context. Let D be the sampling
distribution to generate (x,y) pairs. The conditional probability of y given x is given by p(y|z).
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With slight abuse of notation, given a token ¢ € [V], we define N'(¢) = N (¢71(¢)). we also define
Dy (t,t") = Dy (t=1(t),c=1(t')) for any pair of tokens ¢ and t'.

For any function f that maps the context to estimated logits of output labels, the training objective is
to minimize this loss of the last position:

E(ayept [((f(2),y)]

where ¢ is the cross entropy loss with softmax. The error rate of latent concept association is defined
by the following:

Rpr(f) = Play)~pr [argmax f(z) # y]
And the accuracy is 1 — Rp (f).

4.2 Transformer network architecture

Given a context x = (ty,..,t1) which consists of L tokens, we define X € {0,1}V*L to be its
one-hot encoding where V' is the vocabulary size. Here we use x to represent the one-hot encoding
function (i.e., x(z) = X). Similar to [ ; ], we also consider a simplified
one-layer transformer model without residual connections and normalization:

fH(a) = [WETanttn(WEX(33))] 4.1)
L
where
(WxU)" (WoU)
attn(U) = UU(K—\/EQ)7

Wi € R4 is the key matrix, and W¢ € R% ¥4 is the query matrix and d,, is the attention head
size. o : REXL — (0,1)F%L is the column-wise softmax operation. Wy, € R?*? is the value
matrix and Wg € R4*V is the embedding matrix. Here, we adopt the weight tie-in implementation
which is used for Gemma [ ]. We focus solely on the prediction of the last position, as it is
the only one relevant for latent concept association. For convenience, we also use h(z) to mean
[attn(Wgx(x))] .,» Which is the hidden representation after attention for the last position, and fE(x)
to represent the logit for output token t¢.

5 Theoretical analysis

In this section, we theoretically investigate how a single-layer transformer can solve the latent
concept association problem. We first introduce a hypothetical associative memory model that utilizes
self-attention for information aggregation and employs the value matrix for memory retrieval. This
hypothetical model turns out to mirror trained transformers in experiments. We also examine the
role of each individual component of the network: the value matrix, embeddings, and the attention
mechanism. We validate our theoretical claims in Section 6.

5.1 Hypothetical associative memory model

In this section, we show that a simple single-layer transformer network can solve the latent concept
association problem. The formal result is presented below in Theorem 1; first we require a few more
definitions. Let W (t) be the ¢-th column of the embedding matrix Wg. In other words, this is the
embedding for token ¢. Given a token ¢, define V1 () to be the subset of tokens whose latent vectors
are only 1 Hamming distance away from ¢’s latent vector: N7 (t) = {t' : Dg(¥',t)) = 1} N N (¢).
For any output token ¢, A7 (¢) contains tokens with the highest probabilities to appear in the context.

The following theorem formalizes the intuition that a one-layer transformer that uses self-attention
to summarize statistics about the context distributions and whose value matrix uses aggregated
representations to retrieve output tokens can solve the latent concept association problem defined in
Section 4.1.

Theorem 1 (informal). Suppose the data generating process follows Section 4.1 where m > 3,
w=1and N(t) = V \ {t}. Then for any ¢ > 0, there exists a transformer model given by (4.1)
that achieves error ¢, i.e. Rpr (1) < e given sufficiently large context length L.

https://doi.org/10.52202/079017-2163 67717



More precisely, for the transformer in Theorem 1, we will have W = 0 and W = 0. Each row of
WE is orthogonal to each other and normalized. And Wy is given by

Wy =Y Wet)( > Wal (5.1)

telV] t’e/\f1 ()
A more formal statement of the theorem and its proof is given in Appendix B (Theorem 7).

Intuitively, Theorem 1 suggests having more samples from p(z|y) can lead to a better recall rate. On
the other hand, if contexts are modified to contain more samples from p(z|j) where § # y, then it is
likely for transformer to output the wrong token. This is similar to context hijacking (see Section 5.5).
The construction of the value matrix is similar to the associative memory model used in [ ;

], but in our case, there is no explicit one-to-one input and output pairs stored as memories.
Rather, a combination of inputs are mapped to a single output.

While the construction in Theorem 1 is just one way that a single-layer transformer can tackle this
task, it turns out empirically this construction of Wy is close to the trained Wy, even in the noisy case
(w # 1). In Section 6.1, we will demonstrate that substituting trained value matrices with constructed
ones can retain accuracy, and the constructed and trained value matrices even share close low-rank
approximations. Moreover, in this hypothetical model, a simple uniform attention mechanism is
deployed to allow self-attention to count occurrences of each individual tokens. Since the embeddings
are orthonormal vectors, there is no interference. Hence, the self-attention layer can be viewed as
aggregating information of contexts. It is worth noting that, in different settings, more sophisticated
embedding structures and attention patterns are needed. This is discussed in the following sections.

5.2 On the role of the value matrix

The construction in Theorem 1 relies on the value matrix acting as associative memory. But is it
necessary? Could we integrate the functionality of the value matrix into the self-attention module to
solve the latent concept association problem? Empirically, the answer seems to be negative as will be
shown in Section 6.1. In particular, when the context length is small, setting the value matrix to be
the identity would lead to subpar memory recall accuracy.

This is because if the value matrix is the identity, the transformer would be more susceptible to the
noise in the context. To see this, notice that given any pair of context and output token (x, y), the
latent representation after self-attention k() must live in the polyhedron S, to be classified correctly
where Sy, is defined as:

Sy ={v: (We(y) — Wg(t))"v > 0 where t & [V]\ {y}}

Note that, by definition, for any two tokens y and ¢, S, N Sy = (. On the other hand, because of the
self-attention mechanism, A (x) must also live in the convex hull of all the embedding vectors:

CV = Conv(WE(0),..,WE(|V| - 1))
In other words, for any pair (z, y) to be classified correctly, h(z) must live in the intersection of S,
and C'V. Due to the stochastic nature of z, it is likely for h(x) to be outside of this intersection. The

remapping effect of the value matrix can help with this problem. The following lemma explains this
intuition.

Lemma 2. Suppose the data generating process follows Section 4.1 where m > 3, w = 1 and
N () ={t": Dg(t,t')) = 1}. For any single layer transformer given by (4.1) where each row of
W is orthogonal to each other and normalized, if Wy, is constructed as in (5.1), then the error rate
is 0. If Wy, is the identity matrix, then the error rate is strictly larger than 0.

Another intriguing phenomenon occurs when the value matrix is the identity matrix. In this case, the
inner product between embeddings and their corresponding Hamming distance varies linearly. This
relationship can be formalized by the following theorem.

Theorem 3. Suppose the data generating process follows Section 4.1 where m > 3, w = 1 and
N (t) = V \ {t}. For any single layer transformer given by (4.1) with Wy, being the identity matrix,
if the cross entropy loss is minimized so that for any sampled pair (z,y),

plylz) = p(ylx) = softmax(f; (x))
there exists a > 0 and b such that for two tokens t # ',

(We(t), We(t')) = —aDp(t,t') +b
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5.3 Embedding training and geometry

The hypothetical model in Section 5.1 requires embeddings to form an orthonormal basis. In
the overparameterization regime where the embedding dimension d is larger than the number of
tokens V/, this can be approximately achieved by Gaussian initialization. However, in practice, the
embedding dimension is typically smaller than the vocabulary size, in which case it is impossible
for the embeddings to constitute such a basis. Empirically, in Section 6.2, we observe that with
overparameterization (d > V'), embeddings can be frozen at their Gaussian initialization, whereas in
the underparameterized regime, embedding training is required to achieve better recall accuracy.

This raises the question: What kind of embedding geometry is learned in the underparameterized
regime? Experiments reveal a close relationship between the inner product of embeddings for two
tokens and the Hamming distance of these tokens (see Figure 3b and Figure D.5 in Appendix D.2).
Approximately, we have the following relationship:

W (), We(t') = {Zﬁ)aDH(t,t’) +b ijﬁ?

for any two tokens ¢ and ¢’ where by > b and @ > 0. One can view this as a combination of the
embedding geometry under Gaussian initialization and the geometry when Wy, is the identity matrix
(Theorem 3). Importantly, this structure demonstrates that trained embeddings inherently capture
similarity within the latent space. Theoretically, this embedding structure (5.2) can also lead to low
error rate under specific conditions on by, b and a, which is articulated by the following theorem.

(5.2)

Theorem 4 (Informal). Following the same setup as in Theorem 1, but embeddings obey (5.2), then
under certain conditions on a, b and if by and context length L are sufficiently large, the error rate
can be arbitrarily small, i.e. Rpr (fL) < eforany0 <e < 1.

The formal statement of the theorem and its proof is given in Appendix B (Theorem 8).

Notably, this embedding geometry also implies a low-rank structure. Let’s first consider the special
case when by = b. In other words, the inner product between embeddings and their corresponding
Hamming distance varies linearly.

Lemma 5. If embeddings follow (5.2) and b = by and N'(t) = V '\ {t}, then rank(Wg) < m + 2.

When by > b, the embedding matrix will not be strictly low rank. However, it can still exhibit
approximate low-rank behavior, characterized by an eigengap between the top and bottom singular
values. This is verified empirically (see Figure D.9-D.12 in Appendix D.4).

5.4 The role of attention selection

As of now, attention does not play a significant role in the analysis. But perhaps unsurprisingly, the
attention mechanism is useful in selecting relevant information. To see this, let’s consider a specific
setting where for any latent vector z*, N'(z*) = {z : 2§ = 21} \ {z*}.

Essentially, latent vectors are partitioned into two clusters based on the value of the first latent variable,
and the informative conditional distribution 7 only samples latent vectors that are in the same cluster
as the output latent vector. Empirically, when trained under this setting, the attention mechanism will
pay more attention to tokens within the same cluster (Section 6.3). This implies that the self-attention
layer can mitigate noise and concentrate on the informative conditional distribution 7.

To understand this more intuitively, we will study the gradient of unnormalized attention scores. In
particular, the unnormalized attention score is defined as:

ury = (WeWe ()" (WoWg(t'))//da-

Lemma 6. Suppose the data generating process follows Section 4.1 and N'(z*) = {z : 2§ =
21} \ {2*}. Given the last token in the sequence ty, then

L
Vo (5) = VU (We) ' WY (up W (t) = b Y b, We(t))
1=

where for token t, oy = Zlel 1[t; = t] and py is the normalized attention score for token t.
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Figure 3: Key components of the single-layer transformer working together on the latent concept association
problem. (a) Fixing the value matrix W7y, as the identity matrix results in lower accuracy compared to training
Wy, The figure reports average accuracy for both fixed and trained Wy with L = 64. (b) When training
in the underparameterized regime, the embedding structure is approximated by (5.2). The graph displays
the average inner product between embeddings of two tokens against the corresponding Hamming distance
between these tokens when m = 8. (c) The self-attention layer can select tokens within the same cluster. The
figure shows average attention score heat map with m = 8 and the cluster structure from Section 5.4.

Typically, «; is larger when token ¢ and ¢;, belong to the same cluster because tokens within the
same cluster tend to co-occur frequently. As a result, the gradient contribution to the unnormalized
attention score is usually larger for tokens within the same cluster.

5.5 Context hijacking and the misclassification of memory recall

In light of the theoretical results on latent concept association, a natural question arises: How do these
results connect to context hijacking in LLMs? In essence, for the latent concept association problem,
the differentiation of output tokens is achieved by distinguishing between the various conditional
distributions p(z|y). Thus, adding or changing tokens in the context x so that it resembles a different
conditional distribution can result in misclassification. In Appendix D.5, we present experiments
showing that mixing different contexts can cause transformers to misclassify. This partially explains
context hijacking in LLMs (Section 3). On the other hand, it is well-known that the error rate is
related to the KL divergence between conditional distributions of contexts [Cov99]. The closer
the distributions are, the easier it is for the model to misclassify. Here, longer contexts, primarily
composed of i.i.d samples, suggest larger divergences, thus higher memory recall rate. This is
theoretically implied by Theorem 1 and Theorem 4 and empirically verified in Appendix D.6. Such
result is also related to reverse context hijacking (Appendix C) where prepending sentences including
true target words can improve fact recall rate.

6 Experiments

The main implications of the theoretical results in the previous section are:

1. The value matrix is important and has associative memory structure as in (5.1).

2. Training embeddings is crucial in the underparameterized regime, where embeddings exhibit
certain geometric structures.

3. Attention mechanism is used to select the most relevant tokens.

To evaluate these claims, we conduct several experiments on synthetic datasets. Additional experi-
mental details and results can be found in Appendix D.

6.1 On the value matrix Wy,

In this section, we study the necessity of the value matrix W4y, and its structure. First, we conduct ex-
periments to compare the effects of training versus freezing Wy as the identity matrix, with the context
lengths L set to 64 and 128. Figure 3a and Figure D.1 show that when the context length is small, freez-
ing Wy, can lead to a significant decline in accuracy. This is inline with Lemma 2 and validates it in a
general setting, implying the significance of the value matrix in maintaining a high memory recall rate.
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Next, we investigate the degree of alignment between the trained value matrix Wy and the con-
struction in (5.1). The first set of experiments examines the similarity in functionality between the
two matrices. We replace value matrices in trained transformers with the constructed ones like in
(5.1) and then report accuracy with the new value matrix. As a baseline, we also consider randomly
constructed value matrix, where the outer product pairs are chosen randomly (detailed construction
can be found in Appendix D.1). Figure D.2 indicates that the accuracy does not significantly decrease
when the value matrix is replaced with the constructed ones. Furthermore, not only are the constructed
value matrix and the trained value matrix functionally alike, but they also share similar low-rank
approximations. We use singular value decomposition to get the best low rank approximations of
various value matrices where the rank is set to be the same as the number of latent variables (m). We
then compute smallest principal angles between low-rank approximations of trained value matrices
and those of constructed, randomly constructed, and Gaussian-initialized value matrices. Figure D.3
shows that the constructed ones have, on average, smallest principal angles with the trained ones.

6.2 On the embeddings

In this section, we explore the significance of embedding training in the underparamerized regime
and embedding structures. We conduct experiments to compare the effects of training versus freezing
embeddings with different embedding dimensions. The learning rate is selected as the best option
from {0.01,0.001} depending on the dimensions. Figure D.4 clearly shows that when the dimension
is smaller than the vocabulary size (d < V'), embedding training is required. It is not necessary in
the overparameterized regime (d > V'), partially confirming Theorem 1 because if embeddings are
initialized from a high-dimensional multi-variate Gaussian, they are approximately orthogonal to
each other and have the same norms.

The next question is what kind of embedding structures are formed for trained transformers in the
underparamerized regime. From Figure 3b and Figure D.5, it is evident that the relationship between
the average inner product of embeddings for two tokens and their corresponding Hamming distance
roughly aligns with (5.2). Perhaps surprisingly, if we plot the same graph for trained transformers
with a fixed identity value matrix, the relationship is mostly linear as shown in Figure D.6, confirming
our theory (Theorem 3).

As suggested in Section 5.3, such embedding geometry (5.2) can lead to low rank structures. We verify
this claim by studying the spectrum of the embedding matrix Wg. As illustrated in Appendix D.4,
Figure D.9-D.12 demonstrate that there are eigengaps between top and bottom singular values,
suggesting low-rank structures.

6.3 On the attention selection mechanism

In this section, we examine the role of attention pattern by considering a special class of latent concept
association model as defined in Section 5.4. Figure 3¢ and Figure D.7 clearly show that the self-
attention select tokens in the same clusters. This suggests that attention can filter out noise and focus
on the informative conditional distribution 7. We extend experiments to consider cluster structures
that depend on the first two latent variables (detailed construction can be found in Appendix D.3) and
Figure D.8 shows attention pattern as expected.

7 Conclusions

In this work, we first presented the phenomenon of context hijacking in LLMs, which suggested that
fact retrieval is not robust against variations of contexts. This indicates that LLMs might function
like associative memory where tokens in contexts are clues to guide memory retrieval. To investigate
this perspective further, we devised a synthetic task called latent concept association and examined
theoretically and empirically how single-layer transformers are trained to solve this task. These
results provide further insights into the inner workings of transformers and LLMs, and can hopefully
stimulate further work into interpreting and understanding the mechanisms by which LLMs predict
tokens and recall facts.
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A Limitations

The context hijacking experiments were only conducted on open-source models and not on commer-
cial models like GPT-4. Nevertheless, even in the official GPT-4 technical report [ ], there is
an example similar to context hijacking (the Elvis Perkins example). In that example, the prompt
is “Son of an actor, this American guitarist and rock singer released many songs and albums and
toured with his band. His name is "Elvis" what?”. GPT-4 answers with Presley, even though the
answer is Perkins (Elvis Presley is not the son of an actor). GPT-4 can be viewed as distracted by
all the information related to music and answers Presley. In fact, it is known that LLMs can be
easily distracted by contexts in use cases other than fact retrieval such as problem-solving [ 1.
So we reasonably suspect that similar behavior still exists in larger models but is harder to exploit.
On the other hand, the theoretical section only focuses on single-layer transformer network. While
single-layer networks already demonstrate some interesting phenomena including low-rank structures,
the functionality of multi-layer transformers is much different compared to single-layer transformers
with the notable emergence of induction head [ ].

B Additional Theoretical Results and Proofs

B.1 Proofs for Section 5.1
Theorem 1 can be stated more formally as follows:

Theorem 7. Suppose the data generating process follows Section 4.1 where m > 3, w = 1, and
N (t) = V \ {t}. Assume there exists a single layer transformer given by (4.1) such that a) Wy = 0
and Wq = 0, b) Each row of W is orthogonal to each other and normalized, and c) Wv; is given by

Wy =Y We@)( Y. We()?).
=% JEN1()

100m2 log(3/¢) 80m2|N (y)|
xp(—F)—exp(—3))?’ (exp(—F)—exp(—

RDL (fL) S g,

Then if L > max{ @ 7353 } for any vy, then
B

where 0 < e < 1.

Proof. First of all, the error is defined to be:
RDL (fL) = P(m,y)wDL [argmax fL(‘r) 7é y]

= PPy, [argmax f*(z) # y]
Let’s focus on the conditional probability P, [argmax f©(z) # y].
By construction, the single layer transformer model has uniform attention. Therefore,

h(z)= Y a;Wgl(i)

ieN ()

where o; = % Z£=1 1{t), = i} which is the number of occurrence of token i in the sequence.

By the latent concept association model, we know that

oy exp(=Dul(i,y)/8)
pily) = I;

where Z =3, v, exp(=Du (i, )/ B).
Thus, the logit for token y is

And the logit for any other token ¢ is
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For the prediction to be correct, we need

mgax f;(x) — fé: () >0

By Lemma 3 of [ ], we know that for all A € (0, 1), if INS’)l < %—g, we have
P o~ plily)] > 8) P Y s —plily)| > A) < Bexp(—LA%/25)
1€ Yy
€N (y)

Therefore, if L > max{ 251°§(23/ €) , 20'2/25”)' }, then with probability at least 1 — &, we have,

max |a; — p(i <A
o = plily)| <

fl@) =@ = > a- Y o

i€EN1(y) JEN1()
= > ai— Y plly)+ Y p(ily)
i€EN1(y) ieN1(y) i€EN1(Y)
= 3w+ DD pGl) - >
JEN1() JEN1(9) JEN1(9)
> > plily)— Y plily) —2mA
1€N1(y) JEN1(9)

> exp(~3) - exp(—) — 2mA

Note that because of Lemma 10, there’s no neighboring set that is the superset of another.

exp(—4)—exp(—2
Therefore as long as A < W’

fy (@) = fi(z) >0
for any .

100m? log(3/<) 80m> N (y)|
exp(—g)—exp(—5))2 (exp(—%)—exp(—

P,y largmax f5(x) # y] < e

Finally, if . > max{( e } for any y, then

And
RDL (fL> = IFD(a:,y)NDL [argmax fL (!L‘) 7é y]
=Py, fargmax f5(z) # y] < e

B.2 Proofs for Section 5.2

Lemma 2. Suppose the data generating process follows Section 4.1 where m > 3, w = 1 and
N(t) ={t : Dg(t,t')) = 1}. For any single layer transformer given by (4.1) where each row of
Wg is orthogonal to each other and normalized, if Wy is constructed as in (5.1), then the error rate
is 0. If Wy, is the identity matrix, then the error rate is strictly larger than 0.

Proof. Following the proof for Theorem 7, let’s focus on the conditional probability:
P,y largmax f* (z) # y]

By construction, we have

h(z)= > a;Wg(i)

€N (y)
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where o; = 2521 1{ty, = i} which is the number of occurrence of token 7 in the sequence.
Let’s consider the first case where Wy, is constructed as in (5.1). Then we know that for some other
token g # vy,
fy (@) = f3(x) = Z Q; — Z a;=1- Z Q;
1EN1(y) PEN1(F) 1ENL(T)
By Lemma 10, we have that for any token § # v,
fy(@) = f7 (@) >0
Therefore, the error rate is always 0.

Now let’s consider the second case where Wy, is the identity matrix. Let j be a token in the set N7 (y).
Then there is a non-zero probability that context x contains only j. In that case,

h(x) = Wg(j)
However, we know that by the assumption on the embedding matrix,
fy @) = [ (@) = (Wey) = We (i) h(z) = —[[We ()] <0

This implies that there’s non zero probability that y is misclassified. Therefore, when Wy is the
identity matrix, the error rate is strictly larger than 0. O

Theorem 3. Suppose the data generating process follows Section 4.1 where m > 3, w = 1 and
N (t) =V \ {t}. For any single layer transformer given by (4.1) with Wy being the identity matrix,
if the cross entropy loss is minimized so that for any sampled pair (z,y),

plylz) = plylz) = softmax(f, ())
there exists a > 0 and b such that for two tokens t # t/,
(We(t), We(t')) = —aDu(t,t') +b
Proof. Because for any pair of (z,y), the estimated conditional probability matches the true condi-

tional probability. In particular, let’s consider two target tokens y1, yo and context x = (¢;, ..., ¢;) for
some token ¢; such that p(z|y1) > 0 and p(x|y2) > 0, then

pyalz)  plzlye)p(y2)  plzly2)  p2ly2)

The second equality is because p(y) is the uniform distribution. By our construction,

plyile) _ plely)p(y) _ plely) _ plelyy) _ exp((We (1) — We(y2))Th(x))

T Ay ) E
Pl DI oxp(W(ya) ~ W) h(o) = exp(Ws(n) ~ W) W)

By the data generating process, we have that

%(DH(%ZD) — Dy(tiy1)) = (We(y1) — We(y2)) We(t;)

Let t; = ys3 such that y3 # y1, ys # ¥, then

%DH(?J& v1) — We(y) " Wg(ys) = %DH(?J& y2) — We(y2)" We(ys)

For simplicity, let’s define

U(y1,y2) = %Dﬂ(yl,m) ~ Wa(y) " We(ys)

Therefore,
‘Il(y?)a Z/l) = \Il(y3, y?)
Now consider five distinct labels: 1, ¥2, y3, ¥4, ¥5. We have,

U(ys,y1) = (Y3, y2) = V(ya, y2) = V(y4,¥5)
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In other words, ¥ (ys, y1) = V(y4, y5) for arbitrarily chosen distinct labels y1, y3, y4, y5. Therefore,
U(t,t') is a constant for ¢ # t'.

For any two tokens ¢ # ¢/,
—Dy(t,t) - Wgt)TWg({t') =C

|~

Thus,
L
Wet)TWg(t') = fEDH(t,t’) +C

B.3 Proofs for Section 5.3
Theorem 4 can be formalized as the following theorem.

Theorem 8. Following the same setup as in Theorem 7, but embeddings follow (5.2) then if b > 0,
exp(—1)—exp(—2
A >00<A< M, L > max{ 251°§(23/5), 20'2/2(1’)' } for any y, and

2m
2exp(%)
O0<a<

ENEEPTE

and
a(m —2)m + Ay (b —a)A, — IV‘ W22 4bm? exp(— ) + MT_Q(f(m —2)m?
o> omA THEE N —— }
exp(—3) —exp(—f) —2m 1 — =5—=am?exp(—3)

we have

Rpu(f) <e

where 0 < e < 1.

Proof. Following the proof of Theorem 7, let’s also focus on the conditional probability
P, [argmax f© () # y]
By construction, the single layer transformer model has uniform attention. Therefore,

h(z)= Y a;Wgl(i)

ieN ()

where o; = % 25:1 1{t;, = i} which is the number of occurrence of token ¢ in the sequence. For
simplicity, let’s define o, = 0 such that

h(z)= > a;Wg(i)

i€[V]

25 log(3/s)

Similarly, we also have that if L > max{ 20W W }, then with probability at least 1 — ¢,

we have,
max ja; —p(ily)| < A
Also define the following:
= > We()"( D aWg(i

FEN1 (k) i€[V]
ok(y) = We(y)" Wi(k)

Thus, the logit for token y is
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Let’s investigate ¢y (z). By Lemma 9,

Pr(@) = > il Y Wie(l) We()

i€[V] JEN1(K)
(bo — b) Z aj—l—ZaZ m —2)Dg(k,i) + (b—a)m)

JEN1(K) i€V]

Thus, for any k1, ks € [V],
Qbkl (.TC) - ¢k2 (:L') - (bO - b)( Z Qg — Z aj2)
J1EN1 (K1) J2€N1(k2)
+ > aia(m = 2)(Dy (ki) — Dy (ky,i))
i€[V]

Because —m < Dy (ko,i) — Dy (k1,1) < m, we have

(bO - b)( Z Qg — Z ajz) —a(m—2)m

J1EN1 (k1) J2 €N (k2)

< d)k’l( )7¢k2(1') <

(bo — b)( Z o, — Z aj,) +a(m—2)m

j1EN1 (k1) j2 €N (k2)

For prediction to be correct, we need

max f, (z) — fi (z) > 0
Y

This also means that

[V|—1
max > (ok(y) = vr(®)) dr(z) > 0
k=0

One can show that for any k, if 1. =1 (k) = .= (y) ® =1 (§) ® = (k) where ® means bitwise XOR,
then

vp(y) — vi(H) = v (9) — vi(y) (B.1)
First of all, if kK = y, then k= 7, which means

v(y) — ve(y) = v(9) — v (y) = bo + aDu(y,) — b
If k # y, g, then (B.1) implies that

Dy (k,y) — Dy(k,§) = Dy (k,§) — Dy (k,y)

We know that Dy (k, y) is the number of 1sin . =1 (k) ® +~*(y) and,

TR e ) =ty @t @) @ (k) @ (y) =t @) @0 (k)

Similarly, 3
TR @ (g) =T ) @ (k)

Therefore, (B.1) holds and we can rewrite f, (x) — f1(x) as

V-1
FE@) = @) = 3 (ely) — @) onla)
k=0
— (b — b+ Dy (3,5)) (&, (&) — d3(x))
T 3 a(Dy(k,y) — Dir(k, 7)) (6 (x) — d(2))

k#y,9,Du (k,y)2Du (k,7)
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We already know that by > b > 0 and a > 0, thus, by — b+ aDg(y,y) > 0 for any pair y, §.

We also want ¢, (z) — ¢5(x) to be positive. Note that

by() — d3(x) > (b — b)(exp(— ;> exp<—§>—2mm—a<m—2>m

exp(—1)—exp(—2
We need A < W and for some positive A; > 0, by needs to be large enough such that
¢y () = y(x) > Ay

which implies that

a(m —2)m + A
bo > b B.2
0 exp(—}j) exp(— 7) —2mA M B-2)

On the other hand, for k& # y, 7, we have

dr(@) — o) > (bo =) D aj— > az)—alm—2)m

J1EN1(K) Ja N1 (k)

> (bop—b)(—=(m—1) exp(f%) - exp(f%) —2mA) —a(m —2)m

v

(bo — b)(~(m — 1) exp<f%> —exp(—2) + exp<f%> - exp<f%>> — a(m - 2)m

B

IV

—(bo — b)mexp(—%) —a(m—2)m

Then, we have

fy (@) = f7 (@) > (bo —b+a)A — Vi-2

((bo — b)am? exp(—
V-
2

1) +a*(m — 2)m2>

B
> <1 — |V|2 am exp(;))bo —(b—a)A; + Qame exp(fé) - |V|772a2(m — 2)m?

The lower bound is independent of g, therefore, we need it to be positive to ensure the prediction is
correct. To achieve this, we want

1-— vi- 2am2 exp(—%) >0
which implies that 1
= m (B.3)
And finally we need
b > 0= D41~ Babm? exp(—) + Fya’(m — 2m? (B.4)

1-— M WI=2 4m?2 exp(— )

ex — L —eX —a
To summarize, if b > 0, A; > 0,0 < A < w, L > max{ 25 lo§(23/5)’ 20'2@(‘”)‘ } for

2m
any y, and O
2exp(=
B
0l<a< ——7-—+-"—
ST 2m?
and
a(m —2)m + A, (b—a)A; — IV‘_Qame exp(—l) + Ll_QaQ(m —2)m?
b0>maX{ex - 5 A+b’ IV\ P }
p(—3) —exp(—3) — 2m 1-— am? exp(— )
we have
Rpr(ff) <e

where 0 < € < 1.
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Lemma 5. If embeddings follow (5.2) and b = by and N'(t) = V' \ {t}, then rank(Wg) < m + 2.

Proof. By (5.2), we have that
(We(i), We(j)) = —aDu(i,j) + b

Therefore,
(WE)TWE = —aDy + b117”

Let’s first look at Dy which has rank at most m + 1. To see this, let’s consider a set of m + 1 tokens:
{eo,e1,...,em} C V where ¢ = 2% Here e is associated with the latent vector of all zeroes and
the latent vector associated with ey, has only the k-th latent variable being 1.

On the other hand, for any token ¢, we have that,

1= E €L

ki—1(i)p=1

In fact,

Dp(i) = Z (DH(ek) - DH(eo)) + Dg(eo)

k= 1(i)p=1
where Dy (7) is the i-th row of Dy, and for each entry j of Dy (), we have that
Du(i,j)= > (DH<ek,j> —DH(eo,j)) + Dy (eo, j)
ki=1(i)=1
This is because

1 if (e =0

Duy(ex,j) — Du(eo, j) = {—1 if e (e =1

Thus, we can rewrite D (4, j) as

Therefore, every row of Dy can be written as a linear combination of
{Dp(eo),Du(e1), ..., Dr(em)}. In other words, Dy has rank at most m + 1.

Therefore,
rank((Wg)? Wg) = rank(Wg) < m + 2.

Lemma 9. Let 29 and (V) be two binary vectors of size m where m > 2. Then,

Z Dy(z,2V) = (m —2)Dg (29, 2) +m
2:Dpg (2(9,2)=1
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Proof. For z such that Dy (2, 2(9)) = 1, we know that there are two cases. Either 2 differs with 2(°®)
on a entry but agrees with z(1) on that entry or z differs with both z(®) and z(1).

For the first case, we know that there are D (2(?), 2(1)) such entries. In this case, Dy (z, z2(1)) =
Dy (29, 2(1) — 1. For the second case, Dy (2, 2()) = Dy (29, 2(0) 4 1.
Therefore,
Z Dy (z,2Y)
2:Dpr (2,2(9)=1
=Dy (20, 2N Dy (D, 20) 1) + (m — Dy (9, 2N Dy (D, 2V) +1)
= (m —2)Dg(z?, 2y 4 m
O

Lemma 10. Ifm > 3 and N'(t) = V' \ {t}, then N1(t) € N1(t') for any t,t' € [V].

Proof. For any token ¢, A1 (t) contains any token ¢’ such that Dy (¢,t') = 1 by the conditions. Then
given a set V1 (t), one can uniquely determine token ¢. This is because for the set of latent vectors
associated with V1 (t), at each index, there could only be one possible change. O

B.4 Proofs for Section 5.4

*

Lemma 6. Suppose the data generating process follows Section 4.1 and N'(2*) = {z : 2§ =
z1} \ {2*}. Given the last token in the sequence ty, then
L

v“t,tLE(fL) = VU (We)" WY (aupWe(t) — pe an Wg(t))
=1

where for token t, oy = Zle 1[t; = t] and py is the normalized attention score for token t.

Proof. Recall that,

FE(z) = [WETWVattn(WEX(x))]
:L

L
_ T exp(utz L )
=Wg' Wy ; — W)
where Z is a normalizing constant.

P(u) Then we have
= )

Define p;, =

L
i) = WeTWo Y~ by Wa(t)
=1

Note that if £; = ¢ then,

Py,
=D 1 — 9
aut,tL Y27 ( ptl)
Otherwise, R
B _ _pyp
—Pt, Pt
Qui i, L

By the chain rule, we know that

L
Vut,tLﬂ(fL) = vz(fL)T(WE)TWV(Z 1[tl = t ptzWE ptWE tl

HMh

Therefore,
L

Ve, (FF) = V)T (WE)TWY (upWE(t) — e Zptl Wg(t))
=1

where oy = Zle 1)t =t]. O
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C Additional experiments — context hijacking

In this section, we show the results of additional context hijacking experiments on the COUNTERFACT
dataset [ ].

Reverse context hijacking In Figure 2a, we saw the effects of hijacking by adding in “Do not think
of {target_false}.” to each context. Now, we measure the effect of the reverse: What if we prepend
“Do not think of {target_true}.” ?

Based on the study in this paper on how associative memory works in LLMs, we should expect the
efficacy score to decrease. Indeed, this is what happens, as we see in Figure C.1.

Prepending 'Do not think of {target true}.'

0.30 : =
—— openai-community/gpt2
google/gemma-2b
0.25 —— google/gemma-2b-it
—— meta-llama/Llama-2-7b-hf
L 020
o
O
wn
> 0.15
@]
@©
B
£ 0.10
L
0.05
0.00

3 4 5

1 2
Number of prepends

o

Figure C.1: Prepending ‘Do not think of {target true}.’ can increase the chance of LLMs to output
correct tokens. This figure shows efficacy score versus the number of prepends for various LLMs on the
COUNTERFACT dataset with the reverse context hijacking scheme.

Hijacking based on relation IDs We first give an example of each of the 4 relation IDs we hijack
in Table 1.

Table 1: Examples of contexts in Relation IDs from COUNTERFACT

RELATION ID r CONTEXT p TRUE TARGET 0«  FALSE TARGET o0_
P190 Kharkiv is a twin city of Warsaw Athens
P103 The native language of Anatole France is French English
P641 Hank Aaron professionally plays the sport baseball basketball
P131 Kalamazoo County can be found in Michigan Indiana

Table 2: Examples of hijack and reverse hijack formats based on Relation IDs

RELATION ID r CONTEXT HIJACK SENTENCE REVERSE CONTEXT HIJACK SENTENCE
P190 The twin city of {subject} is not {target_false}  The twin city of {subject} is {target_true}
P103 {subject} cannot speak {target_false} {subject} can speak {target_true}
P641 {subject} does not play {target_false} {subject} plays {target_true}

P131 {subject} is not located in {target_false} {subject} is located in {target_true}

Similar to Figure 2b, we repeat the hijacking experiments where we prepend factual sentences
generated from the relation ID. We use the format illustrated in Table 2 for the prepended sentences.
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Figure C.2: Context hijacking based on relation IDs can result in LLMs output incorrect tokens. This figure
shows efficacy score versus the number of prepends for various LLMs on the COUNTERFACT dataset with
hijacking scheme presented in Table 2.

We experiment with 3 other relation IDs and we see similar trends for all the LLMs in Figure C.2a,
C.2b, and C.2d. That is, the efficacy score rises for the first prepend and as we increase the number of
prepends, the trend of ES rising continues. Therefore, this confirms our intuition that LLMs can be
hijacked by contexts without changing the factual meaning.

Similar to Figure C.1, we experiment with reverse context hijacking where we give the answers
based on relation IDs, as shown in Table 2. We again experiment with the same 4 relation IDs and
the results are in Figure C.3a - C.3d. We see that the efficacy score decreases when we prepend the
answer sentence, thereby verifying the observations of this study.

Hijacking without exact target words So far, the experiments use prompts that either contain
true or false target words. It turns out, the inclusion of exact target words are not necessary. To see
this, we experiment a variant of the generic hijacking and reverse hijacking experiments. But instead
of saying “Do not think of {target_false}” or “Do not think of {target_true}”. We replace target
words with words that are semantically close. Specifically, for relation P1412, we replace words
representing language (e.g., “French”) with their associated country name (e.g., “France”). As shown
in Figure C.4, context hijacking and reverse hijacing still work in this case.
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Figure C.3: Reverse context hijacking based on relation IDs can result in LLMs to be more likely to be correct.
This figure shows efficacy score versus the number of prepends for various LLMs on the COUNTERFACT
dataset with the reverse hijacking scheme presented in Table 2.
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Figure C.4: Hijacking and reverse hijacking experiments on relation P1412 show that context hijacking does
not require exact target word to appear in the context. This figure shows efficacy score versus the number of
prepends for various LLMs on the COUNTERFACT dataset.

D Additional experiments and figures — latent concept association

In this appendix section, we present additional experimental details and results from the synthetic
experiments on latent concept association.

Experimental setup Synthetic data are generated following the model in Section 4.1. Unless
otherwise stated, the default setup has w = 0.5, 3 = 1 and N'(¢) = V' \ {i} and L = 256. The
default hidden dimension of the one-layer transformer is also set to be 256. The model is optimized
using AdamW [LLH 7] where the learning rate is chosen from {0.01,0.001}. The evaluation dataset
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Figure D.1: Fixing the value matrix Wy as the identity matrix results in lower accuracy compared to training
Wy, especially for smaller context length L. The figure reports accuracy for both fixed and trained Wy
settings, with standard errors calculated over 10 runs.

is drawn from the same distribution as the training dataset and consists of 1024 (x, y) pairs. Although
theoretical results in Section 5 may freeze certain parts of the network for simplicity, in this section,
unless otherwise specified, all layers of the transformers are trained jointly. Also, in this section, we
typically report accuracy which is 1 — error.

D.1 On the value matrix Wy,

In this section, we provide additional figures of Section 6.1. Specifically, Figure D.1 shows that fixing
the value matrix to be the identity will negatively impact accuracy. Figure D.2 indicates that replacing
trained value matrices with constructed ones can preserve accuracy to some extent. Figure D.3
suggests that trained value matrices and constructed ones share similar low-rank approximations. For
the last two sets of experiments, we consider randomly constructed value matrix, where the outer
product pairs are chosen randomly, defined formally as follows:

Wy = > Wg(i)( > We(j)T)

€[v] {7}~ Unif([V) V1 (D

D.2 On the embeddings

This section provides additional figures from Section 6.2. Figure D.4 shows that in the underparame-
terized regime, embedding training is required. Figure D.5 indicates that the embedding structure
in the underparameterized regime roughly follows (5.2). Finally Figure D.6 shows that, when the
value matrix is fixed to the identity, the relationship between inner product of embeddings and their
corresponding Hamming distance is mostly linear.

D.3 On the attention selection mechanism

This section provides additional figures from Section 6.3. Figure D.7-D.8 show that attention
mechanism selects tokens in the same cluster as the last token. In particular, for Figure D.§8, we
extend experiments to consider cluster structures that depend on the first two latent variables. In other
words, for any latent vector z*, we have

N(z*)={z:2f =z and z3 = 25} \ {z"}

D.4 Spectrum of embeddings

We display several plots of embedding spectra (Figure D.9, Figure D.10, Figure D.11, Figure D.12)
that exhibit eigengaps between the top and bottom eigenvalues, suggesting low-rank structures.
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Figure D.2: When the value matrix is replaced with the constructed one in trained transformers, the accuracy
does not significantly decrease compared to replacing the value matrix with randomly constructed ones. The
graph reports accuracy under different embedding dimensions and standard errors are over 5 runs.

D.5 Context hijacking in latent concept association

In this section, we want to simulate context hijacking in the latent concept association model. To
achieve that, we first sample two output tokens y' (true target) and y? (false target) and then generate
contexts ' = (t1,...,t}) and 2% = (3, ..., 13 ) from p(z!|y') and p(z2|y?). Then we mix the two
contexts with rate p,,. In other words, for the final mixed context = (¢4, ..., t1,), ¢; has probability
1 — py, to be ¢} and p,,, probability to be ¢7. Figure D.13 shows that, as the mixing rate increases
from 0.0 to 1.0, the trained transformer tends to favor predicting false targets. This mirrors the
phenomenon of context hijacking in LLMs.

D.6  On the context lengths

As alluded in Section 5.5, the memory recall rate is closely related to the KL divergences between
context conditional distributions. Because contexts contain mostly i.i.d samples, longer contexts
imply larger divergences. This is empirically verified in Figure D.14 which demonstrates that longer
context lengths can lead to higher accuracy.
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Standard errors are over 5 runs.
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the standard errors are over 5 runs. Red lines indicate whend = V.
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runs.
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inner product between embeddings of two tokens against the corresponding Hamming distance between these
tokens. Standard errors are over 10 runs.
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that are averaged over 10 runs.
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heat maps that are averaged over 10 runs.
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Figure D.9: The spectrum of embedding matrix Wg has eigengaps between the top and bottom eigenvalues,
indicating low rank structures. The figure shows results from 4 experimental runs. Number of latent variable
m is 7 and the embedding dimension is 32.
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Figure D.11: The spectrum of embedding matrix Wg has eigengaps between the top and bottom eigenvalues,
indicating low rank structures. The figure shows results from 4 experimental runs. Number of latent variable
m is 8 and the embedding dimension is 32.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Context hijacking is verified empirically. And the study on how single-layer
transformers can solve latent concept association is done both empirically and theoretically.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitation section is included in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are clearly stated in the theorem statements and proofs are
given in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental details of both LLM and synthetic experiments are provided
in the paper.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code is provided in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details are included in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard errors are provided for the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Synthetic experiments can just be done on CPUs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: The paper is mostly theoretical and has no societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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