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Abstract

World models empower model-based agents to interactively explore, reason, and
plan within imagined environments for real-world decision-making. However, the
high demand for interactivity poses challenges in harnessing recent advancements
in video generative models for developing world models at scale. This work intro-
duces Interactive VideoGPT (iVideoGPT), a scalable autoregressive transformer
framework that integrates multimodal signals—visual observations, actions, and re-
wards—into a sequence of tokens, facilitating an interactive experience of agents via
next-token prediction. iVideoGPT features a novel compressive tokenization tech-
nique that efficiently discretizes high-dimensional visual observations. Leveraging
its scalable architecture, we are able to pre-train iVideoGPT on millions of human
and robotic manipulation trajectories, establishing a versatile foundation that is
adaptable to serve as interactive world models for a wide range of downstream tasks.
These include action-conditioned video prediction, visual planning, and model-
based reinforcement learning, where iVideoGPT achieves competitive performance
compared with state-of-the-art methods. Our work advances the development
of interactive general world models, bridging the gap between generative video
models and practical model-based reinforcement learning applications. Code and
pre-trained models are available at https://thuml.github.io/iVideoGPT.

1 Introduction

Recent years have witnessed remarkable advancements in generative models of multimodal contents,
including text [1], audio [9], and images [22], with video generation now emerging as a new
frontier [11]. A particularly significant application of these generative video models, learned in an
unsupervised way on diverse Internet-scale data, is to construct predictive world models [53, 28]
at scale. These world models are expected to accumulate commonsense knowledge about how the
world works, enabling the prediction of potential future outcomes (e.g., visual observations and
reward signals) based on the actions of agents. By leveraging these world models, agents employing
model-based reinforcement learning (RL) can imagine, reason, and plan inside world models [20, 29],
thus acquiring new skills more safely and efficiently with a handful of trials in the real world.

Despite the fundamental connection, significant gaps remain between generative models for video
generation and visual world models for agent learning. One primary challenge is achieving the
best of both interactivity and scalability. In model-based RL, world models predominantly utilize
recurrent network architecture. This design naturally allows the transition of observations or latent
states conditioned on actions in each step, facilitating interactive behavior learning [29, 80, 34].
However, these recurrent models mostly focus on games or simulated environments with simple
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Figure 1: Practical applications of iVideoGPT, which is designed to scale, allowing pre-training on
millions of human and robotic manipulation trajectories. This results in a single, versatile foundation
of interactive world models, adaptable to a wide range of downstream tasks.

visuals and have limited capability to model complex, in-the-wild data at scale [48, 81]. On the
other hand, Internet-scale video generative models [37, 7, 11] can synthesize realistic long videos
that are controllable via text descriptions [109] or future action sequences [101] at the beginning of
generation. Although suitable for high-level planning [19], their trajectory-level interactivity does
not provide sufficient granularity needed by agents to intervene step-by-step during the simulation to
learn precise basic skills efficiently. This dilemma naturally raises the question:

How can we leverage the advancements in scalable video generative models for developing
interactive visual world models?

In this work, we explore world models that are both interactive and scalable within a GPT-like
autoregressive transformer framework [90, 75]. Pioneering efforts have been made recently through
diffusion models [102] and masked generative models [12]. Nevertheless, utilizing autoregressive
transformers offers distinct advantages such as seamless integration with the established Large Lan-
guage Model (LLM) ecosystem [110] and greater flexibility in handling diverse conditions without
the need for specific architectural modifications like adapter modules [77, 107]. We present Inter-
active VideoGPT (iVideoGPT), a scalable world model architecture that incorporates multimodal
signals, including visual observations, actions, and rewards, in an interactively autoregressive manner.
Unlike multimodal LLMs that discretize visual observations into tokens frame-by-frame using image
tokenizers [55], a key innovation of iVideoGPT for enhancing scalability is to learn compressive
tokenization for each observation conditioned on rich contextual observations, achieving an asymp-
totic 16× reduction in token sequence length. We highlight that more compact video tokenization
could not only facilitate more efficient training and generation but also enhance video quality. This is
achieved by decoupling context from dynamics, allowing the model to focus on predicting the motion
of objects while maintaining temporal consistency within the scene [99].

We demonstrate a series of practical applications of iVideoGPT for visual robotic manipulation,
as illustrated in Figure 1. Mirroring the two-phase approach popularized by LLMs, our method
involves pre-training followed by domain-specific adaptation. During pre-training, iVideoGPT is
scalable for action-free video prediction across a mixture of over one million robotic and human
manipulation trajectories [70, 25]. The pre-trained iVideoGPT serves as a single, adaptable foundation
of interactive world models for various downstream tasks, such as action-conditioned video prediction
[21, 16], visual planning [86], and visual model-based RL [105]. Additionally, we showcase the
pre-trained transformer’s preliminary zero-shot video generation capability without fine-tuning,
requiring only tokenizer adaptation for unseen domains. We further explore a variant of iVideoGPT
for goal-conditioned video prediction, underscoring the flexibility of sequence modeling.

The main contributions of this work can be summarized as follows:

• We introduce Interactive VideoGPT (iVideoGPT), an autoregressive transformer architecture
for scalable world models, which features compressive tokenization for visual observations.

• We pre-train iVideoGPT on a large-scale dataset comprising millions of robotic and human
manipulation trajectories and adapt it to domain-specific tasks. The pre-trained models have
been publicly available to encourage further research.

• Extensive experiments covering video prediction, visual planning, and visual model-based
RL demonstrate that iVideoGPT can simulate accurate and realistic experiences and provide
competitive performance compared with state-of-the-art methods.
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Figure 2: Conceptual comparison among architectures, illustrated using a single context frame
(T0 = 1) for simplicity. (a) Recurrent architectures for world models like Dreamer [29] and MuZero
[80] provide step-level interactivity but limited scalability. (b) Recent video generation advancements
like VideoGPT [101] and Stable Video Diffusion [8, 7] use non-causal temporal modules that can
only offer trajectory-level interactivity. (c) Our model utilizes an autoregressive transformer that
separately maps each step into a sequence of tokens, achieving both scalability and interactivity.

2 Problem Formulation

A world model is an internal model learned by the agent to simulate the environment. This
environment is typically modeled as a partially observable Markov decision process (POMDP)
(S,O, ϕ,A, p, r, γ). At each step, st ∈ S represents the underlying state of the environment, and
ot = ϕ(st) is the observation received by the agent, only providing incomplete information of st.
After taking an action at ∈ A, p(st+1|st, at) defines the transition probability from state st to st+1.
The agent also receives immediate rewards rt+1 = r(st, at), and aim to learn a policy π such that
at ∼ π(o1:t) maximizing the γ-discounted accumulated rewards Ep,π[

∑
t γ

t−1rt].

While world models can be learned from many types of data, video is one modality that is task-
agnostic, widely available, and embeds broad knowledge that can be learned in a self-supervised
way. Thus, we formulate learning world models for visual control as an interactive video prediction
problem [102, 12] where O = RH×W×3 is the space of video frames2. Concretely, given a short
history visual observations of T0 frames o1:T0

, at each step t = T0, . . . , T − 1, the agent takes an
action at based on its policy and previous imagined observations, and then the world model need to
approximate and sample the transition p(ot+1, rt+1 | o1:t, aT0:t) to feedback the agent.

As depicted in Figure 2, a majority of advanced video generation models [101, 8, 104], including
VideoGPT, can not deal with the interactive video prediction problem because they design non-causal
modules fusing information along the temporal dimension, lacking the ability for causal, intermediate
action control during generation (see extended discussion in Appendix C.2). Existing world models
in the literature of MBRL [29, 80], such as Dreamer, utilize recurrent architecture but lack scalability.

3 Interactive VideoGPT

In this section, we introduce Interactive VideoGPT, a scalable world model architecture with great
flexibility to integrate multimodal signals, including visual observations, actions, rewards, and other
potential sensory inputs. At its core, iVideoGPT consists of a compressive tokenizer to discretize
video frames and an autoregressive transformer predicting subsequent tokens (Section 3.1). This
model can acquire common knowledge of motions and interactions in various scenes through pre-
training on diverse human and robotic manipulation videos (Section 3.2) and then effectively transfer
to downstream tasks incorporating additional modalities (Section 3.3).

3.1 Architecture

Compressive tokenization. Transformers particularly excel in operating over sequences of discrete
tokens. VQGAN [22] is a commonly used visual tokenizer that converts from raw pixels to discrete
tokens. Instead of using an image tokenizer to discretize each frame independently [55, 63, 27],
leading to rapidly increasing sequence lengths, or using a 3D tokenizer that compresses videos

2Due to this connection, we use the terms "video frame" and "visual observation" interchangeably.
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Figure 3: Architecture of iVideoGPT, simplified to show only a single context frame (T0 = 1). (a)
Compressive tokenization utilizes a conditional VQGAN that discretizes future frames conditioned
on context frames to handle temporal redundancy, significantly reducing the number of video tokens.
(b) An autoregressive transformer integrates multimodal signals—visual observations, actions, and
rewards—into a sequence of tokens, enabling interactive agent experiences through next-token
prediction. Actions and rewards are optional and not included in action-free video pre-training.

spatiotemporally at the expense of interactivity [101, 104], we propose to tokenize videos with a
novel conditional VQGAN consisting of dual encoders and decoders {(Ec, Dc), (Ep, Dp)}. As
illustrated in Figure 3a, initial context frames o1:T0

, rich in contextual information, are independently
tokenized and reconstructed through N tokens: z(1:N)

t = Ec(ot), ôt = Dc(zt) for t = 1, . . . , T0. In
contrast, due to the temporal redundancy between context and future frames, only essential dynamics
information, such as the position and pose of moving objects, needs to be encoded. This is achieved
using a conditional encoder and decoder, which require a far smaller number of n tokens (n ≪ N ):

z
(1:n)
t = Ep(ot|o1:T0), ôt = Dp(zt|o1:T0) for t = T0 + 1, . . . , T. (1)

We implement this conditioning mechanism using cross-attention between multi-scale feature maps
(see details in Appendix A.1). Overall, the proposed tokenizer is trained with the following objective:

Ltokenizer =

T0∑
t=1

LVQGAN(ot;Ec(·), Dc(·)) +
T∑

t=T0+1

LVQGAN(ot;Ep(·|o1:T0), Dp(·|o1:T0)), (2)

where LVQGAN(o;E,D) is a combination of a L1 reconstruction loss, a commitment loss [89], a
perceptual loss [44], and optionally an adversarial loss [22].

There are primarily two benefits of the proposed tokenization. First, it significantly reduces the
sequence length of tokenized videos, which grows linearly with the number of frames but at a much
smaller rate n. In this work, we set N = 16× 16 and n = 4× 4, resulting in an asymptotic reduction
of 16×, facilitating faster rollouts for model-based planning and reinforcement learning. Second, by
conditional encoding, transformers predicting subsequent tokens can maintain temporal consistency
of the context much easier and focus on modeling essential dynamics information [99]. We discuss
the assumptions and limitations of our tokenization in Section 6.

Interactive prediction with Transformers. After tokenization, the video is flattened into a se-
quence of tokens: x = (z

(1)
1 , . . . , z

(N)
1 , [S], z(1)2 , . . . , z

(N)
2 , . . . , [S], z(1)T0+1, . . . , z

(n)
T0+1, . . . ) with a

length of L = (N + 1)T0 + (n+ 1)(T − T0)− 1. Special slot tokens [S] are inserted to delineate
frame boundaries and facilitate the integration of extra low-dimensional modalities such as actions
(see Section 3.3 for details). As Figure 3b, a GPT-like autoregressive transformer is utilized for
interactive video prediction through next-token generation frame-by-frame. In this work, we take
the model size of GPT-2 [76] but adopt the LLaMA architecture [87] in order to embrace the latest
innovations for LLM architecture, applying pre-normalization using RMSNorm [106], SwiGLU
activation function [83], and rotary positional embeddings [85].

4
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3.2 Pre-Training

Large language models can gain extensive knowledge from Internet text in a self-supervised way
via next-word prediction. Similarly, the action-free video pre-training paradigm for world models
[81, 99, 62] involves video prediction as a pre-training objective, providing Internet-scale supervision
with physical world knowledge absent in LLMs. We pre-train iVideoGPT on this generic objective,
applying a cross-entropy loss to predict subsequent video tokens:

Lpre-train = −
∑L

i=(N+1)T0+1
log p(xi|x<i), (3)

where L is the total sequence length and (N + 1)T0 + 1 marks the first token index of the frames to
be predicted. Notably, we do not train iVideoGPT to generate context frames, making its capacity
focus on dynamics information, as previously discussed.

Pre-training data. While there are numerous videos available on the Internet, due to computational
limitations, we specifically pre-train iVideoGPT for the robotic manipulation domain. We leverage
a mixture of 35 datasets from the Open X-Embodiment (OXE) dataset [70] and the Something-
Something v2 (SSv2) dataset [25], totaling 1.4 million trajectories (see Appendix A.2 for details).
OXE is a diverse collection of robot learning datasets from a variety of robot embodiments, scenes,
and tasks. These datasets are highly heterogeneous but can be easily unified in the action-free
video prediction task. To further enhance the diversity, we also include SSv2, a dataset of human-
object interaction videos, as previous work has demonstrated knowledge transfer from these human
manipulation videos for learning a world model for robotic manipulation tasks [99, 62].

Flexibility of sequence modeling. A sequence of tokens provides a flexible way to specify tasks,
inputs, and outputs [60, 76]. To preliminarily showcase this flexibility, we introduce a variant of
iVideoGPT for goal-conditioned video prediction: p(oT0+1:T |o1:T0

, oT ), where the model predicts
a video sequence reaching a specified goal observation oT . This is simply achieved by rearranging
the frame sequence as õ1:T = (oT , o1, o2, . . . , oT−1) while keeping the architecture and training
procedure consistent as above (see details in Appendix A.2). Qualitative results of goal-conditioned
prediction are shown in Figure 4, with further exploration left for future work3.

3.3 Fine-Tuning

Action conditioning & reward prediction. Our architecture is also designed to flexibly incorporate
additional modalities for learning interactive world models, as illustrated in Figure 3b. Actions are
integrated by linear projection and adding to the slot token embeddings. For reward prediction,
instead of learning independent reward predictors, we add a linear head to the last token’s hidden
state of each observation. This multi-task learning approach can enhance the model’s focus on
task-relevant information, thereby improving prediction accuracy for control tasks [57]. We use a
mean-squared error loss for reward prediction in addition to the cross-entropy loss in Eq. (3).

Tokenizer adaptation. We choose to update the full model, including the tokenizer, for downstream
tasks, finding this strategy more effective than parameter-efficient fine-tuning methods [39]. This is
likely due to the limited diversity of our pre-trained data compared to Internet-scale images, which,
while extensive, may also not adequately cover specific real-world applications like robotics. Minimal
literature explores adapting a VQGAN tokenizer to domain-specific data. As our tokenization is
designed for decoupling dynamics information from context conditions, we hypothesize that while our
model may encounter unseen objects like different robot types in downstream tasks, the fundamental
knowledge of physics—such as motions and interactions—learned by the transformer from diverse
scenes is commonly shared. This hypothesis is supported by our experiments transferring iVideoGPT
from mixed pre-training data to the unseen BAIR dataset [21], where the pre-trained transformer
can zero-shot generalize to predict natural motions, requiring only the tokenizer to be fine-tuned
for unseen robot grippers (see Figure 8). This property is particularly important for scaling GPT-
like transformers to large sizes, enabling lightweight alignment across domains while keeping the
transformer intact. We leave an in-depth analysis of tokenizer adaptation for future work.

3Unless otherwise specified, action- and goal-free video prediction is used as the default pre-training objective
to obtain pre-trained models for all experiments.
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Figure 4: Qualitative evaluation: video prediction results of iVideoGPT on Open X-Embodiment,
RoboNet, and VP2. Zoom in for details. Extended examples can be found in Appendix B.1.

4 Experiments

In this section, we evaluate iVideoGPT in three different control-relevant settings and compare its
performance with prior state-of-the-art methods. We demonstrate that iVideoGPT is versatile to
provide competitive performance across a range of tasks (Section 4.1, 4.2, and 4.3) and conduct
in-depth analysis to understand the tokenization and prediction ability, data efficiency, model scaling,
and computational efficiency (Section 4.4). Experimental details can be found in Appendix A.

4.1 Video Prediction

Setup. The BAIR robot pushing dataset [21] consists of 43k training and 256 test videos, where we
predict 15 frames from a single initial frame, a standard protocol of prior works. The RoboNet dataset
[16] contains 162k videos across 7 robotic arms. Following prior works, we use 256 videos for testing,
predicting 10 frames from two frames. Notably, RoboNet overlaps with our pre-training data OXE,
from which we have carefully filtered test videos. We compare against a variety of video prediction
models, including variational [91, 98, 4], diffusion [93], masked [104, 27], and autoregressive models
[101], across four metrics: FVD [88], PSNR [40], SSIM [97], and LPIPS [108].

Results. As shown in Table 1, iVideoGPT provides competitive performance compared to state-
of-the-art methods, MAGVIT [104] for BAIR and FitVid [4] for RoboNet, while achieving both
interactivity and scalability in its architecture. Initially pre-trained action-free, our model flexibly
allows for action-conditioning, which notably improves FVD for BAIR by almost 20%. Although
primary experiments are at a low resolution of 64×64, iVideoGPT can be easily extended to 256×256
for RoboNet. We highlight that MaskViT, a prior method leveraging per-frame tokenization, suffers
from temporal inconsistency and flicker artifacts in VQGAN reconstructions. Our model, which
employs compressive tokenization conditioned on consistent contextual information, improves this
and significantly outperforms MaskViT. For qualitative results, refer to Figure 4.

4.2 Visual Planning

Setup. VP2 is a control-centric benchmark [86] that evaluates video prediction models for visual
model-predictive control (MPC) [24, 20] across four Robosuite [117] and seven RoboDesk tasks [47].

6
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Table 1: Video prediction results on the BAIR robot pushing and RoboNet datasets. We report the
mean and standard deviation for each metric calculated over three runs. "-" marks that the value is
not reported in the original papers. LPIPS and SSIM scores are scaled by 100 for convenient display.

BAIR [21] FVD↓ PSNR↑ SSIM↑ LPIPS↓
action-free & 64×64 resolution

VideoGPT [101] 103.3 - - -
MaskViT [27] 93.7 - - -
FitVid [4] 93.6 - - -
MCVD [93] 89.5 16.9 78.0 -
MAGVIT [104] 62.0 19.3 78.7 12.3
iVideoGPT (ours) 75.0±0.20 20.4±0.01 82.3±0.05 9.5±0.01

action-conditioned & 64×64 resolution

MaskViT [27] 70.5 - - -
iVideoGPT (ours) 60.8±0.08 24.5±0.01 90.2±0.03 5.0±0.01

RoboNet [16] FVD↓ PSNR↑ SSIM↑ LPIPS↓
action-conditioned & 64×64 resolution

MaskViT [27] 133.5 23.2 80.5 4.2
SVG [91] 123.2 23.9 87.8 6.0
GHVAE [98] 95.2 24.7 89.1 3.6
FitVid [4] 62.5 28.2 89.3 2.4
iVideoGPT (ours) 63.2±0.01 27.8±0.01 90.6±0.02 4.9±0.00

action-conditioned & 256×256 resolution

MaskViT [27] 211.7 20.4 67.1 17.0
iVideoGPT (ours) 197.9±0.66 23.8±0.00 80.8±0.01 14.7±0.01
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Figure 5: Visual MPC results on the VP2 benchmark. We report the mean and min/max performance
of iVideoGPT over 3 control runs. On the right, we show the mean scores averaged across all tasks
except flat block due to low simulator performance, normalized by the performance of the simulator.

Each environment’s training dataset includes noisy scripted interaction trajectories. Following the
protocol from the original benchmark paper, we trained iVideoGPT on 5k trajectories for Robosuite
and 35k for RoboDesk, comparing our models with established baselines.

Results. Figure 5 presents the success rates of iVideoGPT compared to baseline models. While Tian
et al. [86] observed that excellent perceptual metrics do not always correlate with effective control
performance, iVideoGPT outperforms all baselines in two RoboDesk tasks with a large margin and
achieves comparable average performance to the strongest model, SVG′ [91]. In Appendix C.3, we
analyze iVideoGPT’s suboptimal performance on the open slide task, which is attributed to both
limitations of discretization in our model and imperfect built-in reward design of the benchmark.

4.3 Visual Model-based Reinforcement Learning

iVideoGPT

EncEnv

𝑣𝜋 𝜋

…

Latent Imagination

Enc𝒟
Env

𝜋 𝑣

Standard model-free RL

MBPO
(ours)

Dreamer
backpropagate

𝒟

World model rollouts

Figure 6: Powerful iVideoGPTs enable a sim-
ple yet performant MBRL algorithm, decou-
pling model rollouts and policy learning.

Setup. We conduct experiments on six robotic ma-
nipulation tasks of varying difficulty from Meta-
World [105]. Leveraging iVideoGPT as interactive
world models, we have developed a model-based RL
method adapted from MBPO [42], which augments
the replay buffer with synthetic rollouts to train a stan-
dard actor-critic RL algorithm (see Appendix A.5 for
the pseudo-code). Our implementation builds upon
DrQ-v2 [103], a state-of-the-art visual model-free RL
method. We also compare against a state-of-the-art
model-based RL algorithm, DreamerV3 [32], with
and without world model pre-training [81].
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Figure 7: Visual model-based RL on Meta-world. (Left) Aggregated results report interquartile mean
and 95% confidence interval (CI) [2] across a total of 30 runs over six tasks. (Right) Individual results
for each task, report mean and 95% CI across five runs, measuring success rates over 20 evaluation
episodes. PT denotes pre-training.

Results. Figure 7 shows that our model-based algorithm not only remarkably improves the sample
efficiency over its model-free counterpart but also matches or exceeds the performance of DreamerV3.
To our knowledge, this reports the first successful application of MBPO to visual continuous control
tasks. These results highlight the opportunity, with powerful world models, to eliminate the need for
latent imagination—a common strategy used in advanced MBRL systems to train policies on rollouts
of latent states within world models [29, 80] (see comparison in Figure 6). Our development of
performant MBRL algorithms decouples model and policy learning, where iVideoGPT simply serves
as a drop-in replacement of the environment. This can substantially simplify the design space, thereby
greatly enhancing the practicality and effectiveness of MBRL algorithms in real-world applications.

Comparison to recurrent world models. We argue that recurrent world models lack the capacity
for large-scale pre-training on real-world data—a crucial capability for modern foundation models.
To validate this, we pre-train DreamerV3 XL (200M parameters, comparable to iVideoGPT) on the
same dataset. As shown in Figure 11 in the Appendix, DreamerV3 fails to capture natural robot
dynamics, yielding low-quality, blurred predictions. Further evaluation on the Meta-World benchmark
in Figure 7 reveals that DreamerV3 cannot benefit from such ineffective pre-training.

4.4 Model Analysis

Zero-shot prediction. We first analyze the zero-shot video prediction ability of large-scale pre-
trained iVideoGPT on the unseen BAIR dataset. Interestingly, we observe in the second row of
Figure 8 that iVideoGPT, without fine-tuning, predicts a natural movement of a robot gripper—albeit
a different one from our pre-training dataset. This indicates that while, due to insufficient diversity of
pre-training data, our model has a limited ability of zero-shot generalization to completely unseen
robots, it effectively separates scene context from motion dynamics. In contrast, with an adapted
tokenizer, the transformer that is not fine-tuned itself successfully transfers the pre-trained knowledge
and predicts movements for the new robot type in the third row, providing a similar perceptual quality
as the fully fine-tuned transformer in the fourth row. Quantitative results can be found in Figure 9a.

Few-shot adaptation. Large-scale pre-trained models have proven effective, especially in data-
scarce scenarios. Figure 9a shows iVideoGPT’s performance when fine-tuned with various sizes
of action-free BAIR trajectories. We observe that pre-training offers minimal benefits when full
downstream data is available, yet the advantages become significant under data scarcity (with 100
or 1,000 trajectories). We also adapt iVideoGPT using 1,000 action-conditioned BAIR trajectories,
achieving an FVD of 82.3. The fast adaptation ability with a handful of data is particularly crucial in
model-based RL. As shown in Figure 7, world models trained from scratch may generate inaccurate
predictions, thereby degenerating the sample efficiency that is vital for model-based agents.

Model scaling. All previous experiments are conducted using an iVideoGPT with 12 transformer
layers and 768-dimensional hidden states (138M parameters). To initially investigate the scaling
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t = 1t = 0 t = 3 t = 5 t = 7 t = 9 t = 11 t = 13 t = 15
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Predicted 
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(tokenizer fine-tuned)

t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14

Predicted 
(full fine-tuned)

BAIR (action-free)

Figure 8: Zero-shot prediction by pre-trained transformer in iVideoGPT. Without fine-tuning, the
transformer predicts natural movements of a different robot gripper using the pre-trained tokenizer
(second row) but accurately predicts for the correct gripper type with an adapted tokenizer (third row).

(a) Few-shot adaptation (b) Model scaling

4x4 tokenizer
0.180 LPIPS
1.45s Time
10.6GB Mem.

Compressive tokenizer (Ours)
0.059 LPIPS
1.46s Time
22.3GB Mem.

16x16 tokenizer
0.036 LPIPS
22.8s Time
Training OOM

Training GPU
Memory (GB)

(c) Tokenization efficiency

Figure 9: Model analysis. (a) Video prediction results with various fine-tuning strategies and data
sizes on BAIR. (b) Validation losses for the 138M and 436M transformer models on the pre-training
dataset. (c) Computational efficiency and reconstruction quality of different tokenizers.

behavior of our model, we trained a larger iVideoGPT with 24 layers and 1024-dimensional hidden
states (436M parameters). Figure 9b illustrates the validation loss curves on the pre-trained dataset.
It shows that (1) the validation loss (perplexity) continues to decrease regardless of model size, and
(2) increasing the model size accelerates the loss decrease. These results align with our expectation
that larger model sizes and increased computation [48] can build more powerful iVideoGPTs.

Tokenization efficiency. We evaluate the effectiveness of our compressive tokenization by com-
paring it against standard VQGAN tokenizers that independently convert each frame into 16× 16
and 4× 4 tokens. We train three tokenizers from scratch on RoboNet for the same number of steps.
As Figure 9c, the tokenizer with 4 × 4 tokens suffers from low reconstruction quality due to its
insufficient capacity. Our proposed tokenization method slightly compromises reconstruction quality
compared to the standard 16× 16 tokenizer but can provide more consistent contextual information,
which is beneficial for video prediction tasks. More importantly, it significantly enhances computa-
tional efficiency with a significantly fewer amount of tokens, which greatly saves time and memory,
allowing us to scale the model size with fewer costs (see quantitative results in Appendix B.5).

Context-dynamics decoupling. Our tokenizer is designed with a bottleneck of much fewer tokens,
focusing only on capturing necessary dynamics information for future frames while sharing contextual
information with initial frames to reconstruct raw pixels. To explicitly visualize this decoupling of
context and dynamics information, we drop cross-attention blocks to context frames in the decoder
when reconstructing future frames. The results in Figure 10 show that the decoder can still reproduce
the movement trajectories accurately but with minimal contextual information. This visualization
supports the explanation of our model’s generalization capability shown in Figure 8.

Goal-conditioned prediction. In Figure 4, we also showcase video prediction generated by goal-
conditioned iVideoGPT, pre-trained on massive human and robotic videos (Section 3.2). Unlike
action-free prediction, which often results in trajectories diverging from the ground truth, the goal-
conditioned model produces more accurate paths to reach specified goals. We believe this highlights
the potential of leveraging the flexibility of a unified sequence modeling paradigm.
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Figure 10: Context-dynamics decoupling in our compressive tokenization. By removing cross-
attention from future frames to context frames, the decoder can still reconstruct a trajectory that
moves in the same way as the original, but the visual context is almost entirely missing.

5 Related Work

World models for visual control. Learning general world models in visual domains remains a
significant challenge in model-based reinforcement learning. A straightforward method involves
learning action-conditioned video prediction models [69, 45]. Advanced model-based RL algorithms
[29, 31, 32, 80, 34, 33] utilize latent imagination for more efficient and accurate rollouts but compli-
cate themselves by tightly coupling model and policy learning. We show that this complexity can be
reduced with powerful world models that have accumulated generalizable knowledge beyond specific
tasks. Recent efforts to facilitate this include leveraging scalable architectures like transformers [63]
and pre-training from large-scale data [99, 62]. Of particular relevance to our work are UniSim [102]
and Genie [12], which have developed extensively trained world models with diffusion and masked
models, respectively, though neither is publicly available. Our work distinguishes itself by utilizing a
generic autoregressive transformer framework, advancing the flexibility of scalable world models.

Video generation and prediction. Recent developments in Internet-scale video generation models
now enable the synthesis of realistic videos conditioned on class labels, text descriptions, and
initial frames—the last one also known as the video prediction problem. Various models have been
developed, including deterministic RNNs [84, 96], variational autoencoders [18, 3, 30, 4], diffusion
[38, 11], masked [104, 27], and autoregressive models [101, 50, 55]. However, most recent works do
not treat video prediction as a dynamics modeling problem and perform spatiotemporal compression
[101, 8], thus providing limited interactivity to serve as world models. We achieve both compressive
tokenization and interactivity by context-aware representation, employing cross-attention mechanisms
with minimal inductive bias. This method diverges from previous techniques that rely on motion
vectors [43] or optical flows [52] and offers a more generic form of video tokenization.

6 Discussion

We introduced Interactive VideoGPT (iVideoGPT), a generic and efficient world model architecture
that leverages a scalable autoregressive transformer to integrate multimodal signals into a sequence
of tokens, providing an interactive agent experience via next-token prediction. iVideoGPT has been
pre-trained on millions of human and robotic manipulation trajectories and adapted to a wide range of
downstream tasks. As a powerful foundation of world models, it enables accurate and generalizable
video prediction as well as simplified yet performant model-based planning or reinforcement learning.

Limitations and future work. While iVideoGPT marks significant progress, there is substantial
room for improvement. We found limited diversity in publicly available robotic data, including the
large-scale Open X-Embodiment dataset, and initiated efforts to transfer knowledge from human
videos [25]. We believe iVideoGPT should be pre-trained on more extensive data [26] to bridge
knowledge between humans and robots. This also requires iVideoGPT to incorporate more modal-
ities, such as multi-view observations, proprioceptive robot states, and actions, within the unified
formulation beyond action-free video prediction. Specifically, to process high-dimensional visual
observations, our compressive tokenization assumes that initial frames provide sufficient contexts for
future frames, which works for low-level control tasks as model-based agents often foresee tens of
steps, but may falter in scenarios with long videos and significant camera motion. This issue can be
mitigated by keyframe extraction [51] but leaves an important future avenue of exploration. Finally,
extending to more complex real-robot tasks is essential, as the benefits of model scaling to even larger
sizes remain unobserved in this work within visually simple simulation for downstream control tasks.
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A Implementation and Experimental Details

The main hyperparameters of our experiment are detailed in Tables 2, 3, and 5. In this section, we
provide a comprehensive explanation of all experimental details.

A.1 Architecture

Table 2: Hyperparameters of iVideoGPT architectures.

VQGAN Low-resolution High-resolution

Parameters 114M 310M
Resolution 64× 64 256× 256
Down blocks 3 5
Down layers per block 2 2
Down channels [128, 256, 512] [128, 256, 256, 512, 768]
Mid block attention False False
Up blocks 3 5
Up layers per block 3 3
Up channels [512, 256, 128] [768, 512, 256, 256, 128]
Embedding dim 64 64
Codebook size 8192 8192
Norm GroupNorm GroupNorm
Norm group 32 32
Activation SiLU SiLU
Max cross-att. resolution 16 32

Transformer Small Medium

Parameters 138M 436M
Layers 12 24
Heads 12 16
Hidden dim 768 1024
Feedforward dim 3072 4096
Dropout 0.1 0.1
Activation SiLU SiLU

Tokenizier. As illustrated in Figure 3, we use a conditional VQGAN for compressive tokenization.
This comprises two encoder-decoder pairs: (Ec, Dc) for context frames (referred to as the context
encoder-decoder) and (Ep, Dp) for future frames (referred to as the prediction encoder-decoder).
Both pairs share the same architecture (detailed in Table 2), but the prediction encoder-decoder
has a tighter bottleneck, focusing solely on encoding dynamic information. Specifically, it uses a
4× 4 convolution to downsample 16× 16 embeddings into 4× 4 before looking up the codebook.
Consequently, the prediction encoder-decoder needs to be conditioned on the features of the context
encoder-decoder to incorporate rich contextual information. This conditioning is implemented via a
multi-scale cross-attention mechanism, similar to ContextWM [99].

The intuition behind the multi-scale cross-attention across feature maps is as follows: the context
encoder extracts contextual features at varying levels of abstraction, while the prediction encoder uses
cross-attention to adaptively filter out contextual information and distill dynamics information. During
decoding, the prediction decoder blocks employ cross-attention to retrieve contextual information at
corresponding levels, facilitating the gradual reconstruction of the scene. This framework enhances
the model’s ability to understand and manipulate complex scenes by focusing on dynamic changes,
rather than being overwhelmed by irrelevant visual details.

Specifically, at the end of each encoder block, let F lc ∈ Rc×h×w be the feature map of a context
frame, and F lp ∈ Rc×h×w be the feature map of a future frame. Before being processed by the next
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Table 3: Hyperparameters of iVideoGPT training and evaluation.

Low-resolution (64 × 64) High-resolution (256 × 256)

VQGAN Pre-train BAIR RoboNet VP2 Pre-train RoboNet

GPU days 17 2 8 4 16 9
Training steps 1× 106 2× 105 6× 105 2× 105 2.5× 105 1.5× 105

Disc. start - - - - - 1× 105

Batch size 64 64 64 64 32 32
Sequence length 16 16 12 12 16 12
Context frames 2 1 2 2 2 2
Sampled future frames 6 7 6 6 6 6
Learning rate 5× 10−4 1× 10−4 1× 10−4 1× 10−4 5× 10−4 1× 10−4

LR Schedule Constant
Weight decay 0.0
Grad clip 1.0
Warmup steps 500
Loss balancing Equal weights
Optimizer AdamW
Mixed precision bf16

Transformer Pre-train BAIR RoboNet VP2 Pre-train RoboNet

GPU days 19 1.5 10 3 9 26
Training steps 7× 105 1× 105 6× 105 2× 105 3.5× 105 5× 105

Batch size 64 64 64 64 16 32
Sequence length 16 16 12 12 16 12
Context frames 2 1 2 2 2 2
Learning rate 1× 10−4

LR Schedule Cosine
Weight decay 0.01
Grad clip 1.0
Warmup steps 5000
Loss balancing N/A or equal weights
Optimizer AdamW
Mixed precision bf16

Sampling temperature 1.0
Sampling top-k 100

block, F lp is augmented with F lc as follows:

F l+1
c = EncBlockl+1

c (F lc)

F l+1
p = EncBlockl+1

p (Augment(F lp, F
l
c))

(4)

This is achieved by performing cross-attention between the 2hw positions of the feature maps:

Flatten: Q = Norm
(
Reshape

(
F lp

))
+ PosEmbQ ∈ Rhw×c

K = V = Norm
(
Reshape

(
F lc

))
+ PosEmbKV ∈ Rhw×c

Cross-Attention: R = Attention
(
QWQ,KWK , V WV

)
∈ Rhw×c

Residual-Connection: Augment(F lp, F
l
c) = SiLU

(
F lp +Reshape (R)

)
∈ Rc×h×w.

(5)

To reduce memory usage, we apply the cross-attention mechanism only when the feature map size
is below a certain threshold (16× 16 for a 64× 64 original resolution and 32× 32 for a 256× 256
resolution). This mechanism is symmetrically performed across the context and prediction decoder.

Since attention mechanisms can flexibly handle varied input lengths, the conditioning mechanism
can be easily extended to accommodate different numbers of context frames. Each context frame is
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independently processed by the context encoder and decoder, and their feature maps are concatenated
to serve as inputs for cross-attention in the prediction encoder and decoder.

Our VQGAN for 256× 256 resolution is initialized from the pretrained model from aMUSEd4 [73].
We do not use discriminators for 64× 64 resolution, effectively converting the VQGAN into a vanilla
VQVAE with an additional perceptual loss.

Transformer. We flatten a video into a sequence of tokens:

x = (z
(1)
1 , . . . , z

(N)
1 , [S1], z(1)2 , . . . , z

(N)
2 , . . . , [S2], z(1)T0+1, . . . , z

(n)
T0+1, . . . ), (6)

where we use two types of slot tokens [S1] and [S2] before the start of context frames and future
frames, respectively. Context and future frames do not share token IDs, resulting in a transformer
vocabulary of 16,386 tokens: the first 8,192 for context frames, the next 8,192 for future frames, and
the last two for slot tokens. We adopt the autoregressive transformer architecture from LLaMA [87],
but instantiate it to smaller models matching the size of GPT-2. We considered two model sizes,
listed in Figure 2. Most of our experiments utilize a 138M parameter transformer, while preliminary
scaling analysis is conducted using a 436M model.

A.2 Action-free Video Pre-training

Data mixture. We pre-train iVideoGPT using 35 datasets from the Open X-Embodiment Dataset
(OXE) [70] and Something-Something-v2 (SSv2) [25]. To construct our training dataset from OXE,
we implement a filtering and weighting process similar to Octo [67]. Initially, we exclude datasets
lacking image streams and those derived from mobile robots. Subsequently, datasets exhibiting
excessive repetition or possessing low image resolutions are eliminated. The remaining datasets
were categorized as either "large" or "small," and each was assigned a weight based on its size and
diversity. We select 1% of samples from each subset as validation data and use the rest for training.
For SSv2, we manually select 95 classes with clear motion trends from the original 174 video classes
as our pre-training data with a weighting of 15%. We use the official splits of SSv2 for training and
validation. For a comprehensive breakdown of the mixture, refer to Table 4.

Training details. During training, we sample sequences of frames by first randomly selecting
a training video and then uniformly sampling a segment of a specified length and step size, i.e.,
neighboring frames in the segment are spaced a certain number of steps apart in the original video.
We observe that datasets are collected at different frequencies. To maintain consistency, we adjust
sampling with varied step sizes, aligning each with its respective dataset frequency, as listed in Table
4. For tokenizer training, the initial frames of the segment are used as context frames, and from the
remaining frames, we randomly sample a subset as future frames to reduce memory requirements
and increase batch size. For transformer training, we use the full segment of frames. The number of
frames in minibatches for each dataset is detailed in Table 3. We use a mixture of OXE and SSv2 for
training the tokenizer to ensure visual diversity, while only OXE is used for training the transformer.
For data augmentation, we apply random resized crop and color jitter, ensuring consistency across
the sequence. During both tokenizer and transformer training, we blend different losses with equal
weights. Unless specified otherwise, we follow the same implementation details when fine-tuning
iVideoGPT on downstream tasks.

Goal-conditioned prediction. To train a goal-conditioned variant of iVideoGPT on the same
dataset, we first fine-tune the previously obtained tokenizer using two randomly sampled frames as
context for 550k training steps. Then, we train a transformer from scratch with the rearranged frame
segment õ1:T = (oT , o1, o2, . . . , oT−1) for 1 million steps. The architecture and training procedures
remain consistent with the above setup.

License. The Open X-Embodiment dataset follows the Apache license. RoboNet is licensed
under Creative Commons Attribution 4.0, while BAIR follows Creative Commons BY 4.0. The
Something-Something-V2 dataset is subject to the Data License Agreement.

4https://github.com/huggingface/amused under openrail++ license
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Table 4: iVideoGPT pre-training data mixture from the Open X-Embodiment [70] and Something-
Something-V2 [25] datasets.

Dataset Num of trajectories Step size Sampling weight

Fractal (RT-1) [10] 87,212 1 12.8%
Bridge [94] 28,935 2 12.8%
BC-Z [41] 43,264 3 12.8%
RoboNet [16] 82,649 1 12.8%
Kuka [46] 580,392 3 8.5%
Language Table [56] 442,226 3 4.2%
Stanford MaskViT [27] 9,200 1 4.2%
UIUC D3Field [95] 768 1 2.2%
Taco Play [78, 61] 3,603 5 0.5%
Jaco Play [17] 1,085 3 0.5%
Roboturk [58] 1,995 3 0.5%
Viola [115] 150 7 0.5%
Toto [111] 1,003 10 0.5%
Columbia Cairlab Pusht Real [14] 136 3 0.5%
Stanford Kuka Multimodal Dataset [54] 3,000 7 0.5%
Stanford Hydra Dataset [6] 570 3 0.5%
Austin Buds Dataset [116] 50 7 0.5%
NYU Franka Play Dataset [15] 456 1 0.5%
Furniture Bench Dataset [35] 5,100 3 0.5%
UCSD Kitchen Dataset [100] 150 1 0.5%
UCSD Pick and Place Dataset [23] 1,355 1 0.5%
Austin Sailor Dataset [65] 240 7 0.5%
UTokyo PR2 Tabletop Manipulation [68] 240 3 0.5%
UTokyo Xarm Pick and Place [59] 102 3 0.5%
UTokyo Xarm Bimanual [59] 70 3 0.5%
KAIST Nonprehensile [49] 201 3 0.5%
DLR SARA Pour [72] 100 3 0.5%
DLR SARA Grid [71] 107 3 0.5%
DLR EDAN Shared Control [92, 74] 104 3 0.5%
ASU Table Top [113, 112] 110 4 0.5%
UTAustin Mutex [82] 1,500 7 0.5%
Berkeley Fanuc Manipulation [114] 415 3 0.5%
CMU Playing with Food [79] 174 3 0.5%
CMU Play Fusion [13] 576 2 0.5%
CMU Stretch [5, 62] 135 3 0.5%

Something-Something-V2 [25] 120,581 1 15.0%

Total 1,417,954 - 100.0%
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Algorithm 1 Model-Based Policy Optimization (MBPO), adapted from [42]

1: Initialize actor-critic πϕ, vψ , world model pθ
2: Initialize real replay buffer Dreal with random policy
3: Initially train model pθ on Dreal
4: Initialize imagined replay buffer Dimag with random rollouts using pθ
5: for N steps do
6: // Training
7: if model update step then
8: Update world model pθ on a mini-batch from Dreal
9: end if

10: Update actor-critic πϕ, vψ with model-free objectives on a mini-batch from Dimag ∪ Dreal
11: // Data collection
12: if model rollout step then
13: Sample a mini-batch of ot uniformly from Dreal
14: Perform k-step model rollout starting from ot using policy πϕ; add to Dimag
15: end if
16: Take action in environment according to πϕ; add to Dreal
17: end for

A.3 Video Prediction

Evaluation metrics. We evaluate our model across four different metrics5: Structural Similarity
Index Measure (SSIM) [97], Peak Signal-to-noise Ratio (PSNR) [40], Learned Perceptual Image
Patch Similarity (LPIPS) [108] and Fréchet Video Distance (FVD) [88]. Following prior works
[3, 91, 4, 104], we account for the stochastic nature of video prediction by sampling 100 future
trajectories per test video and selecting the best one for the final PSNR, SSIM, and LPIPS scores. For
FVD, we use all 100 samples.

A.4 Visual Planning

We use the official repository6 to evaluate our model on the VP2 benchmark. The reported baseline
results are provided by the authors of the benchmark. For the Robosuite tasks, a cost below 0.05 is
considered a success.

A.5 Visual Model-based RL

Environments. Meta-world [105], following MIT License, is a benchmark of 50 robotic manip-
ulation tasks. We select six tasks for our experiments: Button Press Topdown Wall, Plate Slide,
Hammer, Door Lock, Handle Pull Side, and Coffee Push. We set the maximum episode length to 200
environment steps with an action repeat of 2 and a frame stack of 3 across these tasks and adjust the
number of training steps to match the varying difficulty levels. During experiments, we observed
that high rewards do not consistently correlate with high success rates in the original Meta-world
implementation. This discrepancy presents a challenge to the learning stability of agents. To address
this, we introduce an additional bonus for task success rbonus = 10.0 alongside the original task
reward rtask:

r = rtask + rbonus · Itask success. (7)

Moreover, Meta-world features hard-exploration tasks, resulting in significant variance in the learning
curves, which poses challenges to the accurate evaluation of RL algorithm performance. To mitigate
this issue, we initialize the replay buffer of all compared methods, with 5 successful demonstration
trajectories for all tasks except Door Lock. This strategy, commonly used to accelerate reinforcement
learning [36], helps stabilize the training process and provides a more reliable evaluation.

5We use public implementations of metrics: https://github.com/francois-rozet/piqa under MIT
license for SSIM and PSNR, https://github.com/richzhang/PerceptualSimilarity under BSD-2-
Clause license for LPIPS, and https://github.com/universome/stylegan-v under NVidia license for
FVD.

6https://github.com/s-tian/vp2
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Table 5: Hyperparameters of model-based RL with iVideoGPT.

Model-based RL Hyperparameter Value

Model rollout

Init rollout batch size 640
Interval 200 env. steps
Batch size 32
Horizon 10

Model training

Init training steps 1000
Tokenizer training interval 40 env. steps
Transformer training interval 10 env. steps
Batch size 16
Sequence length 12
Context frames 2
Sampled future frames (tokenizer) 5
Learning rate 1× 10−4

Weight decay 0
Optimizer Adam

Model-based RL Real data ratio 0.5

iVideoGPT 
(252M)

Dreamer XL 
(200M)

t = 0 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 0 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14Action-free 
Prediction

Figure 11: Qualitative evaluation on the Open X-Embodiment dataset for Dreamerv3-XL pre-trained
on the same dataset as ours.

Implementation Details. We have developed a simple model-based RL algorithm using iVideoGPT
as a world model within the MBPO [42] framework, with DrQ-v2 [103] as the base actor-critic RL
algorithm. Please refer to Algorithm 1 for the pseudo-code. Our implementation is based on the
official DrQ-v2 code7, using the same hyperparameters and architecture for actor-critic learning.
Hyperparameters specific to model-based RL are listed in Table 5. We use a symlog transformation
[32] for reward prediction in iVideoGPT.

Baselines. To compare our method with DreamerV3, which lacks native pre-training support, we
use APV [81]—a method enabling action-free pre-training on DreamerV2—as a baseline, modified
to incorporate DreamerV3 features. We pre-train this model on the same dataset as iVideoGPT.

B Extended Experimental Results

B.1 Qualitative Evaluation

We present additional examples of video predictions by iVideoGPT on various datasets in Figures 12,
13, 15, 16, 17, 18, and 19. We also include an additional showcase of zero-shot predictions by the
pre-trained transformer in iVideoGPT in Figure 14, supplementing Figure 8 of the main text.

Additionally, we showcase prediction examples from the large-scale pre-trained DreamerV3-XL on
the Open X-Embodiment dataset in Figures 11.

B.2 Human Study

Numerical metrics like FVD don’t always align with human-judged visual quality. To address this,
we conduct a human user study on the prediction results of various models. Due to the lack of official

7https://github.com/facebookresearch/drqv2 under MIT License
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Figure 12: Additional qualitative evaluation on the Open X-Embodiment dataset for action-free video
prediction.

pretrained models for most baselines, we are only able to compare iVideoGPT with VideoGPT [101]
and MCVD [93] on the action-free BAIR dataset. We generate videos using these three models
from the test set and ask users to label preferences between two randomly sampled videos based on
the physical naturalness and feasibility of robot-object interactions. A total of 386 annotations are
collected from 9 participants. The results in Figure 20 demonstrate that iVideoGPT is preferred by
human annotators more.

B.3 Visual Planning

Quantitative results on the VP2 benchmark are reported in Table 6.

B.4 Visual Model-based RL

Comparison to FitVid-based world models. Although FitVid [4] is originally designed for the
video prediction task and has not been used as world models for MBRL, we have implemented a
baseline using FitVid by replacing iVideoGPT in our implementation. To predict rewards, we add
an MLP head on top of FitVid’s latent states, parallel to the image decoder. As shown in Figure 21,
MBPO with iVideoGPT outperforms FitVid on 5 out of 6 tasks and performs comparably on the
remaining one. We also qualitatively observe that FitVid’s imagined trajectories are blurrier compared
to ours, which hinders its ability to simulate real environments accurately and may hurt MBRL
performance.

B.5 Computational Efficiency

We report training and inference time and memory usage with various tokenizers in Table 7 and 8,
respectively. Our proposed compressive tokenization provides significant memory savings during
training and faster rollouts during generation. We note that although we use a more complicated
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Figure 13: Additional qualitative evaluation on the Open X-Embodiment dataset for goal-conditioned
video prediction.
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(tokenizer fine-tuned)
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Figure 14: Additional zero-shot prediction by the pre-trained transformer in iVideoGPT, supplement-
ing Figure 8 of the main text.
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Figure 15: Additional qualitative evaluation on the BAIR dataset, given future actions.
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Figure 16: Additional qualitative evaluation on the RoboNet dataset, highlighting accurate movements
of the pushed objects.
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Figure 17: Additional qualitative evaluation on the RoboNet dataset, in high resolution (256× 256).
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Figure 18: Additional qualitative evaluation on the VP2 benchmark.
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Figure 19: Additional qualitative evaluation on Meta-world tasks. True and predicted rewards are
labeled at the top left corner. Zoom in for details.
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Figure 20: Human study. Videos generated by three models, VideoGPT, MCVD, and iVideoGPT, on
the action-free BAIR dataset are presented to human users, who label their preferences based on the
physical naturalness and feasibility of robot-object interactions.

Table 6: Quantitative results on the VP2 benchmark, reporting mean, min, and max performance over
various control runs.

Tasks Success
rate

iVideoGPT
(ours) FitVid SVG′ MCVD MaskViT Struct-

VRNN Simulator

Robosuite
push

mean 0.7833 0.6760 0.7980 0.7733 0.8260 0.5540 0.9350
max 0.7950 0.7900 0.8400 0.7900 0.8500 0.6000 0.9500
min 0.7750 0.6400 0.7600 0.7400 0.7900 0.5000 0.9200

Flat
block

mean 0.0333 0.0917 0.0200 0.0500 0.0400 0.0467 0.1333
max 0.0417 0.1333 0.0333 0.0667 0.1000 0.1333 0.1333
min 0.0250 0.0667 0.0000 0.0333 0.0000 0.0000 0.1333

Open
drawer

mean 0.3750 0.2533 0.1667 0.1167 0.0400 0.0267 0.7667
max 0.3917 0.3333 0.2667 0.1333 0.1000 0.1000 0.7667
min 0.3500 0.1333 0.0667 0.1000 0.0000 0.0000 0.7667

Open
slide

mean 0.1611 0.3533 0.5733 0.1833 0.0867 0.1267 0.7167
max 0.1917 0.4000 0.7333 0.2000 0.1667 0.2333 0.7333
min 0.1250 0.2667 0.4667 0.1667 0.0333 0.0667 0.7000

Blue
button

mean 0.9556 0.9400 0.9733 0.9500 0.9467 0.8667 1.0000
max 0.9833 0.9667 1.0000 1.0000 0.9667 0.9000 1.0000
min 0.9333 0.8667 0.9333 0.9000 0.9333 0.8000 1.0000

Green
button

mean 0.8250 0.8400 0.8133 0.8333 0.6400 0.6800 0.9667
max 0.8667 0.9000 0.9000 0.8333 0.7000 0.8000 0.9667
min 0.7833 0.7667 0.7667 0.8333 0.6000 0.5667 0.9667

Red
button

mean 0.9222 0.5867 0.7600 0.7333 0.2400 0.3067 0.9000
max 0.9333 0.6333 0.8667 0.7333 0.3333 0.3333 0.9000
min 0.9000 0.5000 0.6333 0.7333 0.1333 0.2333 0.9000

Upright
block

mean 0.4472 0.5133 0.4867 0.5667 0.6200 0.3333 0.9000
max 0.4667 0.5667 0.6667 0.6000 0.7333 0.3667 0.9000
min 0.4250 0.5000 0.4000 0.5333 0.5000 0.3000 0.9000

tokenizer design, it is not the bottleneck of generation time. Additionally, although we use more
tokens for context frames compared to the 4× 4 tokenizer, generation time is primarily influenced by
the number of forward passes of the autoregressive transformer, which remains the same.

Table 7: Training efficiency of the transformer with various tokenizers, measured on 40G A100 GPUs
with a per-device batch size of 16.

Tokenizer Speed (#iters/sec) Memory (GB)

4× 4 3.10 10.6
16× 16 N/A OOM
Ours 2.62 22.3
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Table 8: Generation efficiency with various tokenizers, measured on an RTX 4090 GPU with a batch
size of 1.

Tokenizer Tokenize (sec) Generation (sec) Detokenize (sec) Memory (GB)

4× 4 0.27 1.13 0.05 1.98
16× 16 0.26 22.5 0.04 1.90
Ours 0.29 1.11 0.06 2.33
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Figure 21: Visual model-based RL on Meta-world, comparing to an additional baseline using FitVid
as world models.

C Extended Discussions

C.1 Differences with IRIS

Discrete tokenization and autoregressive transformers are prevalent in contemporary deep learning
due to their simplicity and generality. iVideoGPT generally shares this architecture with IRIS [63],
but possesses distinguishing features, summarized as follows:

• Pre-training and fine-tuning paradigm: iVideoGPT is designed for a paradigm that
involves pre-training on large-scale videos and fine-tuning on various downstream tasks. In
contrast, IRIS focuses solely on MBRL with Transformer-based world models trained from
scratch in the Atari domain.

• Efficient tokenization: iVideoGPT proposes novel compressive tokenization to significantly
reduce the number of tokens, saving time and memory (see Table 7 and 8), while IRIS uses
per-frame tokenization.

• Flexible action-conditioning design: iVideoGPT employs slot tokens with optional additive
action embeddings to support both action-free pre-training and action-conditioned fine-
tuning, while IRIS strictly treats discrete Atari actions as tokens.

• Off-policy MBRL implementation: iVideoGPT uses an off-policy RL algorithm while IRIS
performs on-policy learning. On-policy learning needs a large number of model rollouts,
which, combined with inefficient tokenization, results in 7 days for 100k-environment-step
training. In comparison, iVideoGPT only needs ∼4 hours.

C.2 Differences with VideoGPT

We elaborate on the the difference between the tokenizer in VideoGPT [101] and ours, and how they
impact interactivity.
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VideoGPT uses a VQVAE for video that relies on a series of 3D convolutions to downsample across
space and time. For example, it downsamples original pixels from 16× 64× 64 to discrete tokens
of 8 × 32 × 32 or 4 × 16 × 16, depending on the downsampling ratio. The key issue is that this
non-causal downsampling over the temporal dimension results in each token containing information
from a window of frames. As a result, the entire video of a fixed length can only be reconstructed
after VideoGPT generates all tokens. As shown in Figure 2, VideoGPT only allows the input of future
action sequences at the beginning of prediction, preventing an agent from interactively determining
its actions based on predicted observations. In contrast, our tokenizer discretizes video frames
separately, using a conditional mechanism to handle temporal redundancy, enabling frame-by-frame
video generation and allowing for intermediate action intervention.

Moreover, our tokenizer’s novel design, with its cross-attention mechanism, is more efficient in
handling temporal redundancy, converting videos into significantly fewer tokens (L = 511 with
N = 256, n = 16, T = 16, T0 = 1 as stated in Section 3.1). In contrast, VideoGPT finds that using
a larger downsampling ratio than a token size 8× 32× 32, results in worse performance.

C.3 Failure Case Analysis for Visual Planning

Our model performs sub-optimally on the RoboDesk open slide task from the VP2 benchmark. In
this section, we investigate the underlying causes through case studies, attributing the performance
issues to limitations in both our model and the benchmark.

Inaccurate model prediction. Despite achieving excellent overall video prediction metrics, such as
mean square error and perceptual loss, on the validation set for the open slide task, our model predicts
wrong outcomes on a few trajectories. We visualize these trajectories in Figure 22 and find that while
the observation is limited to 64 × 64 resolution, the task of opening the slide requires the model
to capture subtle changes, particularly whether the robot’s gripper has made contact with the slide
handle. Actually, even humans struggle to discriminate this detail with low-resolution inputs. Due to
this uncertainty, the model may incorrectly predict a sequence of imprecise actions as successful. This
overconfidence [66] can be exacerbated in the process of model predictive control, which samples a
large number of action candidates and selects the "best" one according to the model. Our analysis
provides an explanation to the observation by Tian et al. [86] that overall excellent perceptual metrics
do not always correlate with effective control performance, as the worst-case scenarios are critical in
model-predictive control.

Furthermore, we hypothesize that our two-stage architecture of tokenization and prediction can
exacerbate the aforementioned uncertainty, as discrete tokenization inevitably results in some loss of
information from the observations. This hypothesis is supported by the fact that end-to-end models
like SVG′ [91] and FitVid [4] perform significantly better than two-stage models, including ours and
others like MaskViT [27], which uses a visual tokenizer, and Struct-VRNN [64], which employs a
keypoint-based representation.

We anticipate that training and evaluating our model at a higher resolution, such as 256× 256, could
mitigate these issues and enhance control performance. However, we currently conduct experiments
at a lower resolution to ensure a fair comparison with other models.

Imperfect built-in reward design. We observe that no current model in the VP2 benchmark
consistently outperforms other models across all tasks, and iVideoGPT is no exception. Beyond
models’ inaccuracies in prediction for severely out-of-distribution (OOD) actions, our analysis of this
inconsistent performance also reveals flaws in the benchmark’s built-in reward design.

In VP2, scores for sampled actions are estimated mainly by a learned classifier that assesses task
success based on model-predicted frames. This classifier, trained by the VP2 authors, appears to lack
robustness and is easily fooled by OOD inputs, assigning high rewards to low-quality or unlikely-to-
succeed predicted trajectories (see examples in Figure 23). Such an imperfect reward function likely
contributes to the mixed results observed on this benchmark, with iVideoGPT even outperforming the
oracle simulator in one task. Addressing visual planning with imperfect rewards is an independent
research problem and beyond the scope of this paper.
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Figure 22: Failure case analysis on the RoboDesk open slide task from the VP2 benchmark, where,
likely due to the low resolution of observations, our model fails to discriminate between subtle
changes, particularly whether the robot’s gripper has made contact with the slide handle.

Failure trajectory with 
Higher reward  
(-7179.45)
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Reasonable trajectory  
with Lower reward  
(-7308.77)

Figure 23: Imperfect built-in reward in VP2 benchmark. A learned reward model can assign high
rewards to predicted transitions that are less likely to succeed, which can mislead optimizers in
model-predictive control.

D Computational Resources

We implement iVideoGPT in PyTorch, using the diffusers8 and transformers9 libraries. Our
models are trained and evaluated on an A100 and RTX 3090 GPU cluster. Each experiment utilizes 4
GPUs in parallel, with 16 data loader workers per device. GPU days required for training are reported
in Table 2. Experiments at 64 × 64 resolution can be conducted with 24 GB of GPU memory per
device, while 256× 256 resolution requires 40 GB. The Open X-Embodiment dataset is particularly
large, occupying about 5TB of disk space.

E Broader Impact

World models advance the development of autonomous machine intelligence, particularly through
the valuable visual insights offered by videos. However, their full potential remains untapped without
scalable and interactive architectures capable of distilling vast amounts of commonsense knowledge
from multimodal data. This paper, we believe, takes an important step by introducing a flexible
framework with a specific focus on the robotic manipulation domain. Our results may pave the
way for higher-quality world models applicable across diverse domains, enhancing performance in
control tasks of embodied intelligence. Despite the benefits, designing and training these models is
challenging, requiring substantial computational power and increasing the carbon footprint. Using

8https://github.com/huggingface/diffusers under Apache License
9https://github.com/huggingface/transformers under Apache License
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underdeveloped, inaccurate world models for autonomous control could lead to risky actions and
potential physical damage, which can be mitigated by developing uncertainty-aware models to prevent
uncertain actions. Conversely, the advancement of these models could lead to job displacement in
sectors relying on manual control tasks. Additionally, the underlying techniques for world models
can be misused to generate synthetic videos that mimic real events or people. However, since our
model is merely a research prototype, trained only with robotic and human manipulation data and
relatively small in scale, we do not anticipate immediate negative societal impacts such as deepfakes
or job displacement.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our experiments in Section 4 well support our claims and contributions made
in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed limitation in Section 6 and provided failure case analysis in
Appendix C.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We do not contribute theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have described clearly and fully the architecture and experiments in the
main text and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data used in this paper are all publicly available, detailed in Appendix A.
We have released our code at https://github.com/thuml/iVideoGPT.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Table 1, Figure 5, and Figure 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects, and all datasets are utilized in
compliance with licensing requirements. Data representative evaluation practice is done as
described in Appendix A.2. The research poses no harm to society. Details of the datasets
and models have been thoroughly discussed in both the main text and appendix. No sensitive
data is used in this study. Models will be released with licenses for reproducibility, after
publication.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models are only trained with robot and human manipulation data, without
the risk of misuse, such as deepfakes of important events or figures.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited all assets used in the paper. In Appendix A, we explicitly mentioned
and respected the license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have released our pre-trained models, and inference examples are available
at https://github.com/thuml/iVideoGPT.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This study does not involve crowdsourcing experiments and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This study does not involve such participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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paperswithcode.com/datasets
https://github.com/thuml/iVideoGPT


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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