
Scaling transformer neural networks for skillful and
reliable medium-range weather forecasting

Tung Nguyen1 Rohan Shah1, 2 Hritik Bansal1 Troy Arcomano3 Romit Maulik3, 4

Veerabhadra Kotamarthi3 Ian Foster3 Sandeep Madireddy3 Aditya Grover1

1UCLA 2CMU 3Argonne National Laboratory 4Penn State University

Abstract

Weather forecasting is a fundamental problem for anticipating and mitigating the
impacts of climate change. Recently, data-driven approaches for weather fore-
casting based on deep learning have shown great promise, achieving accuracies
that are competitive with operational systems. However, those methods often
employ complex, customized architectures without sufficient ablation analysis,
making it difficult to understand what truly contributes to their success. Here
we introduce Stormer, a simple transformer model that achieves state-of-the-art
performance on weather forecasting with minimal changes to the standard trans-
former backbone. We identify the key components of Stormer through careful
empirical analyses, including weather-specific embedding, randomized dynam-
ics forecast, and pressure-weighted loss. At the core of Stormer is a random-
ized forecasting objective that trains the model to forecast the weather dynamics
over varying time intervals. During inference, this allows us to produce multi-
ple forecasts for a target lead time and combine them to obtain better forecast
accuracy. On WeatherBench 2, Stormer performs competitively at short to medium-
range forecasts and outperforms current methods beyond 7 days, while requiring
orders-of-magnitude less training data and compute. Additionally, we demonstrate
Stormer’s favorable scaling properties, showing consistent improvements with
increases in model size and training tokens. Code and checkpoints are available at
https://github.com/tung-nd/stormer.

5-day ForecastInitial Conditions

26 December 2020 00:00 UTC 31 December 2020 00:00 UTC 31 December 2020 00:00 UTC

Ground Truth

m
/s

Figure 1: Illustration of an example 5-day forecast of near-surface wind speed (color-fill) and mean
sea level pressure (contours). On December 31, 2020, an extratropical cyclone impacted Alaska
setting a new North Pacific low-pressure record. We evaluate the ability of Stormer to predict this
record-breaking event 5 days in advance. Using initial conditions from 0000 UTC, 26 December 2011,
Stormer successfully forecasts the location and strength of this extreme event with great accuracy.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

68740 https://doi.org/10.52202/079017-2196

https://github.com/tung-nd/stormer

1 Introduction

Weather forecasting is a fundamental problem for science and society. With increasing concerns about
climate change, accurate weather forecasting helps prepare and recover from the effects of natural
disasters and extreme weather events, while serving as an important tool for researchers to better
understand the atmosphere. Traditionally, atmospheric scientists have relied on numerical weather
prediction (NWP) models [2]. These models utilize systems of differential equations describing fluid
flow and thermodynamics, which can be integrated over time to obtain future forecasts [29, 2]. Despite
their widespread use, NWP models suffer from many challenges, such as parameterization errors
of important small-scale physical processes, including cloud physics and radiation [44]. Numerical
methods also incur high computation costs due to the complexity of integrating a large system of
differential equations, especially when modeling at fine spatial and temporal resolutions. Furthermore,
NWP forecast accuracy does not improve with more data, as the models rely on the expertise of
climate scientists to refine equations, parameterizations, and algorithms [30].

To address the above challenges of NWP models, there has been an increasing interest in data-driven
approaches based on deep learning for weather forecasting [11, 42, 48]. The key idea involves
training deep neural networks to predict future weather conditions using historical data, such as the
ERA5 reanalysis dataset [16, 17, 40, 41]. Once trained, these models can produce forecasts in a few
seconds, as opposed to the hours required by typical NWP models. Because of the similar spatial
structure between weather data and natural images, early works in this space attempted to adopt
standard vision architectures such as ResNet [39, 8] and UNet [49] for weather forecasting, but their
performances lagged behind those of numerical models. However, significant improvements have
been made in recent years due to better model architectures and training recipes, and increasing data
and compute [22, 35, 32, 3, 26, 5, 7]. Pangu-Weather [3], a 3D Earth-Specific Transformer model
trained on 0.25◦ data (721×1440 grids), was the first model to outperform operational IFS [47].
Shortly after, GraphCast [26] scaled up the graph neural network architecture proposed by Keisler [22]
to 0.25◦ data and showed improvements over Pangu-Weather. Despite impressive forecast accuracy,
existing methods often involve highly customized neural network architectures with minimal ablation
studies, making it difficult to identify which components contribute to their success. For example, it is
unclear what the benefits of 3D Earth-Specific Transformer over a standard Transformer are, and how
critical the multi-mesh message-passing in GraphCast is to its performance. A deeper understanding,
and ideally a simplification, of these existing approaches is essential for future progress in the field.
Furthermore, establishing a common framework would facilitate the development of foundation
models for weather and climate that extend beyond weather forecasting [32].

In this paper, we show that a simple architecture with a proper training recipe can achieve state-of-the-
art performance. We start with a standard vision transformer (ViT) architecture, and through extensive
ablation studies, identify the three key components to the performance of the model: (1) a weather-
specific embedding layer that transforms the input data to a sequence of tokens by modeling the
interactions among atmospheric variables; (2) a randomized dynamics forecasting objective that trains
the model to predict the weather dynamics at random intervals; and (3) a pressure-weighted loss that
weights variables at different pressure levels in the loss function to approximate the density at each
pressure level. During inference, our proposed randomized dynamics forecasting objective allows a
single model to produce multiple forecasts for a specified lead time by using different combinations
of the intervals for which the model was trained. For example, one can obtain a 3-day forecast by
rolling out the 6-hour predictions 12 times or 12-hour predictions 6 times. Combining these forecasts
leads to significant accuracy improvements, especially for long lead times. We evaluate our proposed
method, namely Scalable transformers for weather forecasting (Stormer), on WeatherBench 2 [41],
a widely used benchmark for data-driven weather forecasting. Stormer achieves competitive forecast
accuracy of key atmospheric variables for 1–7 days and outperforms the state-of-the-art beyond 7
days. Notably, Stormer achieves this performance by training on more than 5× lower-resolution data
and orders-of-magnitude fewer GPU hours compared to the baselines. Finally, our scaling analysis
shows that the performance of Stormer improves consistently with increases in model capacity and
data size, demonstrating the potential for further improvements.

2 Background and Preliminaries
Given a dataset D = {Xi}Ni=1 of historical weather data, the task of global weather forecasting is
to forecast future weather conditions XT ∈ RV×H×W given initial conditions X0 ∈ RV×H×W ,

2

68741https://doi.org/10.52202/079017-2196

Figure 2: Different approaches to weather forecasting. Direct and continuous methods output
forecasts directly, but continuous forecasting is adaptable to various lead times by conditioning on
T . Iterative forecasting generates forecasts at small intervals δt, which are rolled out for the final
forecast. Our proposed randomized iterative forecasting combines continuous and iterative methods.

in which T is the target lead time, e.g., 7 days; V is the number of input and output atmospheric
variables, such as temperature and humidity; and H ×W is the spatial resolution of the data, which
depends on how densely we grid the globe. This formulation is similar to many image-to-image
tasks in computer vision such as segmentation or video frame prediction. However, unlike the RGB
channels in natural images, weather data can contain up to 100s of channels. These channels represent
actual physical variables that can be unbounded in values and follow complex laws governed by
atmospheric physics. Therefore, the ability to model the spatial and temporal correlations between
these variables is crucial to forecasting.

There are three major approaches to data-driven weather forecasting. The first and simplest is
direct forecasting, which trains the model to directly output future weather “XT = fθ(X0) for each
target lead time T . Most early works in the field adopt this approach [11, 42, 48, 39, 8, 49]. Since
the weather is a chaotic system, forecasting the future directly for large T is challenging, which
may explain the poor performances of these early models. Moreover, direct forecasting requires
training one neural network for each lead time, which can be computationally expensive when the
number of target lead times increases. To avoid the latter issue, continuous forecasting uses T as
an additional input: “XT = fθ(X0, T), allowing a single model to produce forecasts at any target
lead time after training. MetNet [43, 12, 1] employed the continuous approach for nowcasting at
different lead times up to 24 hours, WeatherBench [39] considered continuous forecasting as one
of the baselines, and ClimaX [32] used this approach for pretraining. However, since this approach
still attempts to forecast future weather directly, it suffers from the same challenging problem of
forecasting the chaotic weather in one step. Finally, iterative forecasting trains the model to produce
forecasts at a small interval “Xδt = fθ(X0), in which δt is typically from 6 to 24 hours. To produce
longer-horizon forecasts, we roll out the model by iteratively feeding its predictions back in as
input. This is a common paradigm in both traditional NWP systems and the two state-of-the-art
deep learning methods, Pangu-Weather and GraphCast. One drawback of this approach is error
accumulation when the number of rollout steps increases, which can be mitigated by a multi-step loss
function [22, 26, 5, 7]. In iterative forecasting, one can forecast either the weather conditions Xδt or
the weather dynamics ∆δt = Xδt −X0, and Xδt can be recovered by adding the predicted dynamics
to the initial conditions. In this work, we adopt the latter approach, which we refer to as iterative
dynamics forecasting. We show empirically that our approach achieves superior performance relative
to the former approach in Section 4.2. Figure 2 summarizes these different approaches.

3 Methodology

We introduce Stormer, a skillful method for weather forecasting, and show that a simple architecture
can achieve competitive forecast performances with a well-designed framework. We first present the
overall training and inference procedure of Stormer, then describe the model architecture we use in
practice. Section 4.2 empirically demonstrates the importance of each component of Stormer.

3

68742 https://doi.org/10.52202/079017-2196

2 4 6 8 10
Lead time (days)

1.0

1.5

2.0

2.5

3.0

RM
SE

T2m (K)

t = 6 t = 24

(a) Time interval comparison.

2 4 6 8 10
Lead time (days)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

RM
SE

T2m (K)

ViT Embedding Weather Embedding

(b) Patch embedding comparison.

2 4 6 8 10
Lead time (days)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

RM
SE

T2m (K)

Additive Embedding AdaLN

(c) Time embedding comparison.

Figure 3: Preliminary results on forecasting surface temperature that led to the design choices of
Stormer: (a) Different intervals are better at different lead times, (b) Weather-specific embedding is
superior to standard ViT embedding, and (c) Adaptive layer norm outperforms additive embedding.

3.1 Training

We adopt the iterative approach for Stormer, and train the model to forecast the weather dynamics
∆δt = Xδt − X0, which is the difference between two consecutive weather conditions, X0 and
Xδt, across the time interval δt. A common practice in previous works [22, 26] is to use a small
fixed value of δt such as 6 hours. However, as we show in Figure 3a, while small intervals tend to
work well for short lead times, larger intervals excel at longer lead times (beyond 7 days) due to less
error accumulation. Therefore, having a model that can produce forecasts at different intervals and
combine them in an effective manner has the potential to improve the performance of single-interval
models. This motivates our randomized dynamics forecasting objective, which trains Stormer to
forecast the dynamics at random intervals δt by conditioning on δt:

L(θ) = Eδt∼P (δt),(X0,Xδt)∼D
î
||fθ(X0, δt)−∆δt||22

ó
, (1)

in which P (δt) is the distribution of the random interval. In our experiments, unless otherwise
specified, P (δt) is a uniform distribution over three values δt ∼ U{6, 12, 24}. These three time
intervals play an important role in atmospheric dynamics. The 6 and 12-hour values help to encourage
the model to learn and resolve the diurnal cycle (day-night cycle), one of the most important
oscillations in the atmosphere driving short-term dynamics (e.g., temperature over the course of a
day). The 24-hour value filters the effects of the diurnal cycle and allows the model to learn longer,
synoptic-scale dynamics which are particularly important for medium-range weather forecasting [19].

From a practical standpoint, this randomized objective provides two benefits. First, randomizing
δt enlarges the training data, serving as data augmentation. Second, it allows a single trained
model to generate various forecasts for a specified lead time T by creating different combinations of
intervals δt that sum to T . For example, to forecast 7 days ahead, one could use 12-hour forecasts 14
times or 24-hour forecasts 7 times. Our experiments show that combining these forecasts is crucial
for achieving good accuracy, especially for longer lead times. While both our approach and the
continuous approach use the time interval as an additional input, we perform iterative forecasting
instead of direct forecasting. This avoids the challenge of directly modeling chaotic weather and
offers more flexibility for combining different intervals at test time.

3.1.1 Pressure-weighted loss

Due to the large number of variables being predicted, we use a physics-based weighting function to
weigh variables near the surface higher. Since each variable lies on a specific pressure level, we can
use pressure as a proxy for the density of the atmosphere at each level. This weighting allows the
model to prioritize near-surface variables, which are important for weather forecasting and have the
most societal impact. The final objective function that we use for training is:

L(θ) = E

[
1

V HW

V∑
v=1

H∑
i=1

W∑
j=1

w(v)L(i)(“∆vij
δt −∆vij

δt)2
]
. (2)

The expectation is over δt,X0, and Xδt which we omit for notational simplicity. In this equation,
w(v) is the weight of variable v, and L(i) is the latitude-weighting factor commonly used in previous

4

68743https://doi.org/10.52202/079017-2196

works to account for the non-uniformity when we grid the spherical globe [40, 22, 35, 32, 3, 26]. The
pressure-weighted loss was first introduced by GraphCast [26], and we show that it also helps with a
different architecture.

3.1.2 Multi-step finetuning

To produce forecasts at a lead time beyond the training intervals, we roll out the model several times.
Since the model’s forecasts are fed back as input, the forecast error accumulates as we roll out more
steps. To alleviate this issue, we finetune the model on a multi-step loss function. Specifically, for
each gradient step, we roll out the model K times, and average the objective (2) over the K steps:

L(θ) = E

[
1

KVHW

K∑
k=1

V∑
v=1

H∑
i=1

W∑
j=1

w(v)L(i)(“∆vij
kδt −∆vij

kδt)
2

]
. (3)

In practice, we implement a three-phase training procedure for Stormer. In the first phase, we train
the model to perform single-step forecasting, which is equivalent to optimizing the objective in (2).
In the second and third phases, we finetune the trained model from the preceding phase with K =
4 and K = 8, respectively. We use the same sampled value of the interval δt for all K steps. We
tried randomizing δt at each rollout step, but found that doing so destabilized training as the loss
value at each step is of different magnitudes, hurting the final performance of the model. Multi-step
finetuning was used in FourCastNet [35] and also adopted in more recent works [22, 26].

3.2 Inference

At test time, Stormer can produce forecasts at any time interval δt used during training. Thus the
model can generate multiple forecasts for a target lead time T by creating different combinations of
δt that sum to T . We consider two inference strategies for generating forecasts:

Homogeneous In this strategy, we only consider homogeneous combinations of δt, i.e., combinations
with just one value of δt. For example, for T = 24 we consider [6, 6, 6, 6], [12, 12], and [24].

Best m in n We generate n different, possibly heterogeneous combinations of δt, validate each
combination, and pick m combinations with the lowest validation losses for testing.

The two strategies offer a trade-off between efficiency and expressivity. The homogeneous strategy
only requires running three combinations for each lead time T , while best m in n provides greater
expressivity. Upon determining these combinations and executing the model rollouts, we obtain the
final forecast by averaging the individual predictions. This approach achieves a similar effect to
ensembling in NWP, where multiple forecasts are generated by running NWP models with different
perturbed versions of the initial condition [27]. As target lead times extend beyond 5–7 days and
individual forecasts begin to diverge due to the chaotic nature of the atmosphere, averaging these
forecasts is a Monte Carlo integration approach to handle this sensitivity to initial conditions and
the uncertainty in the analyses used as initial conditions [31]. We note that our inference strategy is
distinguished from that used in Pangu-Weather: while Pangu-Weather trains a separate model for
each time interval δt, we train a single model for all δt values by conditioning on δt. Additionally,
while Pangu-Weather relies on a single combination of intervals to minimize rollout steps, our method
improves forecast accuracy by averaging multiple forecasts derived from diverse combinations.

3.3 Model architecture

We instantiate the framework in Section 3.1 with a simple Transformer [45]-based architecture. Due
to the similarity of weather forecasting to various dense prediction tasks in computer vision, one
might consider applying Vision Transformer (ViT) [10] for this task. However, weather data is distinct
from natural images, primarily due to its significantly higher number of input channels, representing
atmospheric variables with intricate physical relationships. For example, the wind fields are closely
related to the gradient and shape of the geopotential field, and redistribute moisture and heat around
the globe. Effectively modeling these interactions is critical to forecast accuracy.

3.4 Weather-specific embedding

The standard patch embedding module in ViT, which uses a linear layer for embedding all input
channels within a patch into a vector, may not sufficiently capture the complex interactions among

5

68744 https://doi.org/10.52202/079017-2196

input atmospheric variables. Therefore, we adopt for our architecture a weather-specific embedding
module, consisting of two components, variable tokenization and variable aggregation.

Variable tokenization Given an input of shape V ×H ×W , variable tokenization linearly embeds
each variable independently to a sequence of shape (H/p) × (W/p) ×D, in which p is the patch
size and D is the hidden dimension. We then concatenate the output of all variables, resulting in a
sequence of shape (H/p)× (W/p)× V ×D.

Variable aggregation We employ a single-layer cross-attention mechanism with a learnable query
vector to aggregate information across variables. This module operates over the variable dimension on
the output of the tokenization stage to produce a sequence of shape (H/p)×(W/p)×D. This module
offers two primary advantages. First, it reduces the sequence length by a factor of V , significantly
alleviating the computational cost as we use transformer to process the sequence. Second, unlike
standard patch embedding, the cross-attention layer allows the models to learn non-linear relationships
among input variables, enhancing the model’s capacity to capture complex physical interactions. We
present the complete implementation details of the weather-specific embedding in Section B.

Figure 3b shows the superior performance of weather-specific embedding to standard patch embedding
at all lead times from 1 to 10 days. A similar weather-specific embedding module was introduced by
ClimaX [32] to improve the model’s flexibility when handling diverse data sources with heterogeneous
input variables. We show that this specialized embedding module outperforms the standard patch
embedding even when trained on a single dataset, due to its ability to model interactions between
atmospheric variables through cross-attention effectively.

3.4.1 Stormer Transformer block

Following weather-specific embedding, the tokens are processed by a stack of transformer blocks [45].
In addition to the input X0, the block also needs to process the time interval δt. We do this by replacing
the standard layer normalization module used in transformer blocks with adaptive layer normalization
(adaLN) [37]. In adaLN, instead of learning the scale and shift parameters γ and β as independent
parameters of the network, we regress them with an one-layer MLP from the embedding of δt.
Compared to ClimaX [32] which only adds the lead time embedding to the tokens before the first
attention layer, adaLN is applied to every transformer block, thus amplifying the conditioning signal.
Figure 3c shows the consistent improvement of adaLN over the additive lead time embedding used
in ClimaX. Adaptive layer norm was widely used in both GANs [21, 4] and Diffusion [9, 36] to
condition on additional inputs such as time steps or class labels. Figure 7 illustrates Stormer’s
architecture. We refer to [32] for illustrations of the weather-specific embedding block.

4 Experiments

We compare Stormer with state-of-the-art weather forecasting methods, and conduct extensive
ablation analyses to understand the importance of each component in Stormer. We also study Stormer
scalability by varying model size and the number of training tokens. We conduct all experiments on
WeatherBench 2 (WB2) [41], a standard benchmark for data-driven weather forecasting.

Data: We train and evaluate Stormer on the ERA5 dataset from WB2, which is the curated version
of the ERA5 reanalysis data provided by ECMWF [17]. In its raw form, ERA5 contains hourly
data from 1979 to the current time at 0.25◦ (721×1440 grids) resolution, with different atmospheric
variables spanning 137 pressure levels plus the Earth’s surface. WB2 downsamples this data to
6-hourly with 13 pressure levels and provides different spatial resolutions. In this work, we use the
1.40625◦ (128×256 grids) data. We use four surface-level variables – 2-meter temperature (T2m),
10-meter U and V components of wind (U10 and V10), and Mean sea-level pressure (MSLP), and
five atmospheric variables – Geopotential (Z), Temperature (T), U and V components of wind (U and
V), and Specific humidity (Q), each at 13 pressure levels {50, 100, 150, 200, 250, 300, 400, 500, 600,
700, 850, 925, 1000}. We use 1979 to 2018 for training, 2019 for validation, and 2020 for testing.

Stormer architecture: For the main comparison in Section 4.1, we report the results of our largest
Stormer model with 24 transformer blocks, 1024 hidden dimensions, and a patch size of 2, which is
equivalent to ViT-L except for the smaller patch size. We vary the model size and patch size in the
scaling analysis. For the remaining experiments, we report the performance of the same model as for
the main result, but with a larger patch size of 4 for faster training.

6

68745https://doi.org/10.52202/079017-2196

2 4 6 8 10 12 14
0.5

1.0

1.5

2.0

2.5

3.0

3.5
T2m (K)

2 4 6 8 10 12 14

1

2

3

4

5
U10m (m/s)

2 4 6 8 10 12 14

1

2

3

4

5

V10m (m/s)

2 4 6 8 10 12 14

200

400

600

800

RM
SE

MSLP (Pa)

2 4 6 8 10 12 14
0

200

400

600

800

1000
Z500 (m2/s2)

2 4 6 8 10 12 14

1

2

3

4

T850 (K)

2 4 6 8 10 12 14
0.50

0.75

1.00

1.25

1.50

1.75

2.00
Q700 (g/kg)

2 4 6 8 10 12 14
Lead time (days)

1

2

3

4

5

6

7
U850 (m/s)

2 4 6 8 10 12 14
1

2

3

4

5

6

7
V850 (m/s)

Climatology Pangu-Weather GraphCast Stormer

Figure 4: Global forecast results of Stormer and the baselines. We show the latitude-weighted RMSE
for select variables. Stormer is on par or outperforms the baselines for the shown variables. During
the later portion of the forecasts, Stormer gains ∼ 1 day of forecast skill with respect to climatology
compared to the next best deep learning model. We note that Stormer was trained on much lower
resolution data (1.40625◦) compared to Pangu-Weather (0.25◦) and GraphCast (0.25◦).

Training: For the main result in Section 4.1, we train Stormer in three phases, as described in
Section 3.1.2. We train the model for 100 epochs for the first phase, 20 epochs for the second, and 20
epochs for the third. We perform early stopping on the validation loss aggregated across all variables,
and evaluate the best checkpoint of the final phase on the test set. For the remaining experiments, we
only train Stormer for the first phase due to computational constraints.

Evaluation: We evaluate Stormer and two deep learning baselines on forecasting nine key variables:
T2m, U10, V10, MSLP, Z500, T850, Q700, U850, and V850. These variables are also used to report
the headline scores in WB2. For each variable, we evaluate the forecast accuracy at lead times from 1
to 14 days, using the latitude-weighted root-mean-square error (RMSE) metric. For the main results,
we use best m in n inference for rolling out Stormer as it yields the best result, with m = 32 and
n = 128 chosen randomly from all possible combinations. For the remaining experiments, we use
homogeneous inference for faster evaluations. We provide results on the non-ensemble version of
Stormer, probabilistic metrics with IC perturbations, a comparison between two inference strategies,
and additional ablation studies in Appendix C.

4.1 Comparison with State-of-the-art models

We compare the forecast performance of Stormer with Pangu-Weather [3] and GraphCast [26], two
leading deep learning methods for weather forecasting. Pangu-Weather employs a 3D Earth-Specific
Transformer architecture trained on the same variables as Stormer, but with hourly data and a higher
spatial resolution of 0.25◦. GraphCast is a graph neural network that was trained on 6-hourly ERA5
data at 0.25◦, using 37 pressure levels for the atmospheric variables, and two additional variables,

7

68746 https://doi.org/10.52202/079017-2196

2 4 6 8 10
Lead time (days)

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

T2m (K)

t = 6 t = 12 t = 24 Stormer

(a) Impact of randomized forecasting.

2 4 6 8 10
Lead time (days)

1.0

1.5

2.0

2.5

RM
SE

T2m (K)

Unweighted Weighted

(b) Impact of weighted loss.

2 4 6 8 10
Lead time (days)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

RM
SE

T2m (K)

X t forecast t forecast

(c) Absolute vs. dynamics forecast.

Figure 5: Ablation studies showing the importance of different components in Stormer: (a) Random-
ized forecasting, (b) Pressure-weighted loss, and (c) Dynamics forecasting.

total precipitation and vertical wind speed. Both Pangu-Weather and GraphCast are iterative methods.
GraphCast operates at 6-hour intervals, while Pangu-Weather uses four distinct models for 1-, 3-, 6-,
and 24-hour intervals, and combines them to produce forecasts for specific lead times. We include
Climatology as a simple baseline. We also compare Stormer with IFS HRES, the state-of-the-art
numerical forecasting system, and IFS ENS (mean), which is the ensemble version of IFS. Since
WB2 does not provide forecasts of these numerical models beyond 10 days, we defer the comparison
against these models to Appendix C.1.

Results: Figure 4 evaluates different methods on forecasting nine key weather variables at lead times
from 1 to 14 days. For short-range, 1–5 day forecasts, Stormer’s accuracy is on par with or exceeds
that of Pangu-Weather, but lags slightly behind GraphCast. At longer lead times, Stormer excels,
consistently outperforming both Pangu-Weather and GraphCast from day 6 onwards by a large
margin. Moreover, the performance gap increases as we increase the lead time. At 14 day forecasts,
Stormer performs better than GraphCast by 10%− 20% across all 9 key variables. Stormer is also the
only model in this comparison that performs better than Climatology at long lead times, while other
methods approach or even do worse than this simple baseline. The model’s superior performance at
long lead times is attributed to the use of randomized dynamics training, which improves forecast
accuracy by averaging out multiple forecasts, especially when individual forecasts begin to diverge.

Moreover, we also note that Stormer achieves this performance with much less compute and training
data compared to the two deep learning baselines. We train Stormer on 6-hourly data of 1.40625◦

with 13 pressure levels, which is approximately 190× less data than Pangu-Weather’s hourly data
at 0.25◦ and 90× less than that used for GraphCast, which also uses 6-hourly data but at a 0.25◦

resolution with 37 pressure levels. The training of Stormer was completed in under 24 hours on 128
A100 GPUs. In contrast, Pangu-Weather took 60 days to train four models on 192 V100 GPUs, and
GraphCast required 28 days on 32 TPUv4 devices. This training efficiency will facilitate future works
that build upon our proposed framework.

4.2 Ablation studies

We analyze the significance of individual elements within Stormer by systematically omitting one
component at a time and observing the difference in performance.

Impact of randomized forecasts: We evaluate the effectiveness of our proposed randomized iterative
forecasting approach. Figure 5a compares the forecast accuracy on surface temperature of Stormer
and three models trained with different values of δt. Stormer consistently outperforms all single-
interval models at all lead times, and the performance gap widens as the lead time increases. We
attribute this result to the ability of Stormer to produce multiple forecasts and combine them to
improve accuracy. We note that Stormer achieves this improvement with no computational overhead
compared to the single-interval models, as the different models share the same architecture and were
trained for the same duration.

Impact of pressure-weighted loss: Figure 5b shows the superior performance of Stormer when
trained with the pressure-weighted loss. Intuitively, the weighting factor prioritizes variables that
are nearer to the surface, as these variables are more important for weather forecasting and climate
science.

8

68747https://doi.org/10.52202/079017-2196

2 4 6 8 10
Lead time (days)

0

2

4

6

8

10

12

14

16

RM
SE

T2m (K)

Stormer-S Stormer-B Stormer-L

2 4 6 8 10
Lead time (days)

0.5

1.0

1.5

2.0

2.5

RM
SE

T2m (K)

p=16 p=8 p=4 p=2

Figure 6: Stormer improves consistently with larger models (left) and smaller patch sizes (right).

Dynamics vs. absolute forecasts: We justify our decision to forecast the dynamics ∆δt by comparing
with a counterpart that forecasts Xδt. Figure 5c shows that forecasting the changes in weather
conditions (dynamics) is consistently more accurate than predicting complete weather states. One
possible explanation for this result is that it is simpler for the model to predict the changes between
two consecutive weather conditions than the entire state of the weather; thus, the model can focus on
learning the most significant signal, enhancing forecast accuracy.

4.3 Scaling analysis

We examine Stormer’s scalability in terms of model size and training tokens. We evaluate three
variants – Stormer-S, Stormer-B, and Stormer-L, with parameter counts similar to ViT-S, ViT-B, and
ViT-L, respectively. To understand the impact of training token count, we vary the patch size from 2
to 16, quadrupling the training tokens each time the patch size is halved. Figure 6 shows a significant
improvement in forecast accuracy with larger models, and the performance gap widens with increased
lead time. Since we do not perform multi-step fine-tuning for these models, minor performance
differences at short intervals may magnify over time. While multi-step fine-tuning could potentially
reduce this gap, it is unlikely to eliminate it entirely. Reducing the patch size also improves the
performance of the model consistently. From a practical view, smaller patches mean more tokens and
consequently more training data. From a climate perspective, smaller patches capture finer weather
details and processes not evident in larger patches, allowing the model to more effectively capture
physical dynamics that drive weather patterns.

5 Related Work

Deterministic weather forecasting Deep learning offers a promising approach to weather fore-
casting due to its fast inference and high expressivity. Early efforts [11, 42, 48] attempted training
simple architectures on small weather datasets. To facilitate progress, WeatherBench [40] provided
standard datasets and benchmarks, leading to subsequent works that trained Resnet [15] and UNet
architectures [49] for weather forecasting. These works showed the potential of deep learning but
still displayed inferior accuracy to numerical systems. However, significant improvements have
been made in the last few years. Keisler [22] proposed a graph neural network (GNN) that per-
forms iterative forecasting with 6-hour intervals, performing comparably with some NWP models.
FourCastNet [35] trained an adaptive Fourier neural operator and was the first neural network to
run on 0.25◦ data. Pangu-Weather [3], with its 3D Earth-Specific Transformer design, trained on
high-resolution data, surpassed the benchmark IFS model. Following this, GraphCast [26] scaled
up Keisler’s GNN architecture to 0.25◦, achieving even better results than Pangu-Weather. FuXi [6]
was a subsequent work that trained a SwinV2 [28] on 0.25◦ data and showed improvements over
GraphCast at long lead times. However, FuXi requires finetuning multiple models specialized for
different time ranges, increasing model complexity and computation. FengWu [5] was a concurrent
work with FuXi that also focused on improving long-horizon forecasts, but has not revealed complete
model architecture and training details. ClimODE [46] introduced physical inductive biases to provide
better interpretability but was empirically inferior to existing methods.

Probabilistic weather forecasting In addition to high accuracy, a desired ability of a weather
forecasting model is to quantify forecast uncertainty. One common approach to achieve this is to
combine an existing architecture with a probabilistic loss function. Gencast [38] was one of the first

9

68748 https://doi.org/10.52202/079017-2196

works in this direction, combining the Graphcast architecture with a diffusion objective [18, 21],
followed by Graph-EFM [33], which combined a hierarchical variant of Graphcast with the VAE
objective [23]. This approach allows the model to generate multiple forecasts and estimate uncertainty
after training. In an orthogonal approach, NeuralGCM [25] proposed a hybrid forecasting system
that combined a differentiable dynamical core with ML components for end-to-end training. The
dynamical core allows the method to leverage powerful general circulation models and generate
forecast ensembles via IC perturbations similar to NWP. However, the dynamical core in NeuralGCM
is more computationally expensive than forward-passing a neural network and can limit the method’s
performance with an imperfect circulation model.

6 Conclusion and Future Work

This work proposes Stormer, a simple yet effective deep learning model for weather forecasting.
We demonstrate that a standard vision architecture can achieve competitive results with a carefully
designed training recipe. Our novel approach, randomized iterative forecasting, trains the model to
forecast at different time intervals, enabling it to produce and combine multiple forecasts for each
target lead time for better accuracy. Experiments show Stormer’s competitive accuracy in short-range
forecasts and exceptional performance beyond 7 days, all with significantly less data and computing
resources. Future research could explore using multiple forecasts to quantify uncertainty, randomizing
other model components like input variables to increase variability and accuracy, and evaluating
Stormer on higher-resolution data and larger model sizes due to its favorable scaling properties.

7 Acknowledgments

AG acknowledges support from Google, Cisco, and Meta. SM is supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research, through the SciDAC-RAPIDS2
institute under Contract DE-AC02-06CH11357. RM and VK are supported under a Laboratory
Directed Research and Development (LDRD) Program at Argonne National Laboratory, through
U.S. Department of Energy (DOE) contract DE-AC02-06CH11357. TA is supported by the Global
Change Fellowship in the Environmental Science Division at Argonne National Laboratory (grant
no. LDRD 2023-0236). RM acknowledges support from DOE-FOA-2493: "Data intensive scientific
machine learning". An award for computer time was provided by the U.S. Department of Energy’s
(DOE) Innovative and Novel Computational Impact on Theory and Experiment (INCITE) Program
and Argonne Leadership Computing Facility Director’s discretionary award. This research used
resources from the Argonne Leadership Computing Facility, a U.S. DOE Office of Science user
facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. DOE
under Contract No. DE-AC02-06CH11357.

10

68749https://doi.org/10.52202/079017-2196

References
[1] Marcin Andrychowicz, Lasse Espeholt, Di Li, Samier Merchant, Alex Merose, Fred Zyda,

Shreya Agrawal, and Nal Kalchbrenner. Deep learning for day forecasts from sparse observa-
tions. arXiv preprint arXiv:2306.06079, 2023.

[2] Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather
prediction. Nature, 525(7567):47–55, 2015.

[3] Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3D neural networks. Nature, 619(7970):533–
538, 2023.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[5] Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming
Ma, Tianning Zhang, Rui Su, et al. Fengwu: Pushing the skillful global medium-range weather
forecast beyond 10 days lead. arXiv preprint arXiv:2304.02948, 2023.

[6] Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li.
Fuxi: a cascade machine learning forecasting system for 15-day global weather forecast. npj
Climate and Atmospheric Science, 6(1):190, 2023. doi: 10.1038/s41612-023-00512-1. URL
https://doi.org/10.1038/s41612-023-00512-1.

[7] Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. FuXi:
A cascade machine learning forecasting system for 15-day global weather forecast. arXiv
preprint arXiv:2306.12873, 2023.

[8] Mariana CA Clare, Omar Jamil, and Cyril J Morcrette. Combining distribution-based neural net-
works to predict weather forecast probabilities. Quarterly Journal of the Royal Meteorological
Society, 147(741):4337–4357, 2021.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[11] P. D. Dueben and P. Bauer. Challenges and design choices for global weather and climate
models based on machine learning. Geoscientific Model Development, 11(10):3999–4009,
2018. doi: 10.5194/gmd-11-3999-2018. URL https://gmd.copernicus.org/articles/
11/3999/2018/.

[12] Lasse Espeholt, Shreya Agrawal, Casper Sønderby, Manoj Kumar, Jonathan Heek, Carla
Bromberg, Cenk Gazen, Rob Carver, Marcin Andrychowicz, Jason Hickey, et al. Deep learning
for twelve hour precipitation forecasts. Nature communications, 13(1):1–10, 2022.

[13] William A Falcon. PyTorch lightning. GitHub, 3, 2019.

[14] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi:
10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11

68750 https://doi.org/10.52202/079017-2196

https://doi.org/10.1038/s41612-023-00512-1
https://gmd.copernicus.org/articles/11/3999/2018/
https://gmd.copernicus.org/articles/11/3999/2018/
https://doi.org/10.1038/s41586-020-2649-2

[16] Hans Hersbach, Bill Bell, Paul Berrisford, Gionata Biavati, András Horányi, Joaquín
Muñoz Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Iryna Rozum, Dinand Schepers,
Adrian Simmons, Cornel Soci, Dick Dee, and Jean-Noël Thépaut. ERA5 hourly data on single
levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Dtore
(CDS), 10(10.24381), 2018.

[17] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-
Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, , Adrian Simmons,
Cornel Soci, Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata
Biavati, Jean Bidlot, Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail
Diamantakis, Rossana Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan
Geer, Leo Haimberger, Sean Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah
Keeley, Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay,
Iryna Rozum, Freja Vamborg, Sebastien Villaume, and Jean-Noël Thépaut. The ERA5 global
reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[19] James R. Holton. An Introduction to Dynamic Meteorology. International Geophysics Series.
Elsevier Academic Press, Burlington, MA, 4 edition, 2004. ISBN 9780123540157.

[20] Stephan Hoyer and Joe Hamman. xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software, 5(1):10, April 2017. doi: 10.5334/jors.148.

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4401–4410, 2019.

[22] Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

[23] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[25] Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers,
Milan Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation
models for weather and climate. Nature, 632(8027):1060–1066, 2024.

[26] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir
Mohamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting.
Science, 0(0):eadi2336, 2023. doi: 10.1126/science.adi2336. URL https://www.science.
org/doi/abs/10.1126/science.adi2336.

[27] John M. Lewis. Roots of ensemble forecasting. Monthly Weather Review, 133(7):1865 – 1885,
2005. doi: https://doi.org/10.1175/MWR2949.1. URL https://journals.ametsoc.org/
view/journals/mwre/133/7/mwr2949.1.xml.

[28] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 12009–12019,
2022.

[29] Peter Lynch. The origins of computer weather prediction and climate modeling. Journal of
Computational Physics, 227(7):3431–3444, 2008.

[30] Linus Magnusson and Erland Källén. Factors influencing skill improvements in the ecmwf
forecasting system. Monthly Weather Review, 141(9):3142–3153, 2013.

12

68751https://doi.org/10.52202/079017-2196

https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336
https://journals.ametsoc.org/view/journals/mwre/133/7/mwr2949.1.xml
https://journals.ametsoc.org/view/journals/mwre/133/7/mwr2949.1.xml

[31] N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American Statistical
Association, 44:335, 1949.

[32] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.
ClimaX: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

[33] Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic
weather forecasting with hierarchical graph neural networks. arXiv preprint arXiv:2406.04759,
2024.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems,
32, 2019.

[35] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. FourCastNet: A global data-
driven high-resolution weather model using adaptive Fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

[36] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[37] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM:
Visual reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[38] Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Timo Ewalds, Andrew El-Kadi, Jacklynn
Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. Gencast: Diffusion-
based ensemble forecasting for medium-range weather. arXiv preprint arXiv:2312.15796,
2023.

[39] Stephan Rasp and Nils Thuerey. Data-driven medium-range weather prediction with a resnet
pretrained on climate simulations: A new model for WeatherBench. Journal of Advances in
Modeling Earth Systems, 13(2):e2020MS002405, 2021.

[40] Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and
Nils Thuerey. WeatherBench: a benchmark data set for data-driven weather forecasting. Journal
of Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020.

[41] Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russel,
Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, Matthew Chantry,
Zied Ben Bouallegue, Peter Dueben, Carla Bromberg, Jared Sisk, Luke Barrington, Aaron Bell,
and Fei Sha. WeatherBench 2: A benchmark for the next generation of data-driven global
weather models. arXiv preprint arXiv:2308.15560, 2023.

[42] Sebastian Scher. Toward data-driven weather and climate forecasting: Approximating a simple
general circulation model with deep learning. Geophysical Research Letters, 45(22):12–616,
2018.

[43] Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim
Salimans, Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. Metnet: A neural weather
model for precipitation forecasting. arXiv preprint arXiv:2003.12140, 2020.

[44] David J Stensrud. Parameterization Schemes: Keys to Understanding Numerical Weather
Prediction Models. Cambridge University Press, 2009.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

13

68752 https://doi.org/10.52202/079017-2196

[46] Yogesh Verma, Markus Heinonen, and Vikas Garg. Climode: Climate and weather forecasting
with physics-informed neural odes. In The Twelfth International Conference on Learning
Representations.

[47] NP Wedi, P Bauer, W Denoninck, M Diamantakis, M Hamrud, C Kuhnlein, S Malardel,
K Mogensen, G Mozdzynski, and PK Smolarkiewicz. The modelling infrastructure of the
Integrated Forecasting System: Recent advances and future challenges. European Centre for
Medium-Range Weather Forecasts, 2015.

[48] Jonathan A Weyn, Dale R Durran, and Rich Caruana. Can machines learn to predict weather?
Using deep learning to predict gridded 500-hPa geopotential height from historical weather
data. Journal of Advances in Modeling Earth Systems, 11(8):2680–2693, 2019.

[49] Jonathan A Weyn, Dale R Durran, and Rich Caruana. Improving data-driven global weather
prediction using deep convolutional neural networks on a cubed sphere. Journal of Advances in
Modeling Earth Systems, 12(9):e2020MS002109, 2020.

[50] Ross Wightman. PyTorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

14

68753https://doi.org/10.52202/079017-2196

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

A Borader impacts

Weather and climate modeling is crucial for understanding and tackling climate change. Creating
better models based on deep learning could offer faster and cheaper alternatives to expensive numerical
simulations. These models could improve weather predictions, extreme event forecasts, and climate
projections. They might also help reduce the carbon footprint, better prepare for natural disasters,
and enhance our knowledge of the Earth. However, relying only on deep learning models requires
careful checks and monitoring, especially when predicting new or uncertain scenarios.

B Experiment details

B.1 Stormer architecture

Figure 7 illustrates the architecture of Stormer. The variable tokenization module tokenizes each
variable of the input X0 ∈ RV×H×W separately, resulting in a sequence of V × (H/p) × (W/p)
tokens, where p is the patch size. The variable aggregation module then performs cross-attention over
the variable dimension and outputs a sequence of (H/p)×(W/p) tokens. The interval δt is embedded
and fed to the Stormer backbone together with the tokens. The output of the last Stormer block is
then passed through a linear layer and reshaped to produce the prediction ∆δt. Each Stormer block
employs adaptive layer normalization to condition on additional information from δt. Specifically,
the scale and shift parameters (γ1, β1) and (γ2, β2) are output by an MLP which takes δt embedding
as input. This MLP network additionally outputs α1 and α2 to scale the output of the attention and
fully connected layers, respectively.

Figure 7: Stormer architecture. The initial condition goes through tokenization and aggregation,
before being fed to a stack of N Stormer blocks together with δt. Each Stormer block employs
adaLN for δt conditioning.

In all experiments, the variable tokenization module is a standard patch embedding layer usually used
in ViT, and the aggregation module is a single-layer multi-head cross-attention. The first embedding
of δt is a linear layer, and the adaLN module in each block employs a 2-layer MLP. For the main
comparison with the current methods, we train a Stormer model with a patch size of 2, 1024 hidden
dimensions, and 24 Stormer blocks. For the scaling experiments, we vary the hidden dimensions,
number of blocks, and patch size. For the rest of the ablation studies, we use a patch size of 4, hidden
dimension of 1024, and 24 blocks.

1

68754 https://doi.org/10.52202/079017-2196

B.2 Training and evaluation details

B.2.1 Data normalization

Input normalization We compute the mean and standard deviation for each variable in the input
across all spatial positions and all data points in the training set. This means each variable is associated
with a scalar mean and scalar standard deviation. During training, we standardize each variable by
subtracting it from the associated mean and dividing it by the standard deviation.

Output normalization Unlike the input, the output that the model learns to predict is the difference
between two consecutive steps. Therefore, for each variable, we compute the mean and standard
deviation of the difference between two consecutive steps in the training set. What it means to be
"consecutive" depends on the time interval δt. If δt = 6, we collect all pairs in training data that are
6-hour apart, compute the difference between two data points in each pair, and then compute the
mean and standard deviation of these differences. Since we train Stormer with randomized δt, we
repeat the same process for each value of δt.

B.2.2 Three-phase training

As mentioned in Section 3, we train Stormer in three phases with the following objective:

L(θ) = E

 1

KVHW

K∑
k=1

V∑
v=1

H∑
i=1

W∑
j=1

w(v)L(i)(“∆vij
kδt −∆vij

kδt)
2

 , (4)

where the number of rollout steps K is equal to 1, 4, and 8 in phase 1, 2, and 3, respectively. For
phases 2 and 3, we finetune the best checkpoint from the preceding phase.

B.2.3 Pressure weights

For pressure-level variables, we assign weights proportionally to the pressure level of each variable.
For 4 surface variables, we assign w = 1 for T2m and w = 0.1 for the remaining variables U10,
V10, and MSLP. The surface weights were proposed by GraphCast [26] and we did not perform any
additional hyperparameter tuning.

B.2.4 Optimization

For the 1st phase, we train the model for 100 epochs. We optimize the model using AdamW [24]
with learning rate of 5e − 4, parameters (β11 = 0.9, β2 = 0.95) and weight decay of 1e − 5. We
used a linear warmup schedule for 10 epochs, followed by a cosine schedule for 90 epochs.

For the 2nd and 3rd phases, we train the model for 20 epochs with a learning rate of 5e − 6 and
5e− 7, respectively. We used a linear warmup schedule for 5 epochs, followed by a cosine schedule
for 15 epochs. Other hyperparameters remain the same.

We perform early stopping for all phases, where the criterion is the validation loss aggregated across
all variables at lead times of 1 day, 3 days, and 5 days for phases 1, 2, and 3, respectively. We save
the best checkpoint for each phase using the same criterion.

B.2.5 Software and hardware stack

We use PyTorch [34], Pytorch Lightning [13], timm [50], numpy [14] and xarray [20] for data
processing and model training. We trained Stormer on 128 40GB A100 devices. We leverage
mixed-precision training, Fully Sharded Data Parallel, and gradient checkpointing to reduce memory.

B.3 Evaluation protocol

As different models are trained on different resolutions of data, we follow the practice in WB2 to
regrid the forecasts of all models to the same resolution of 1.40625◦ (128 × 256 grid points). We
then calculate evaluation metrics on this shared resolution. Similarly to WB2, we evaluate forecasts
with initial conditions at 00/12UTC for all days in 2020.

2

68755https://doi.org/10.52202/079017-2196

2 4 6 8 10 12 14
0.5

1.0

1.5

2.0

2.5

3.0

3.5
T2m (K)

2 4 6 8 10 12 14

1

2

3

4

5
U10m (m/s)

2 4 6 8 10 12 14

1

2

3

4

5

V10m (m/s)

2 4 6 8 10 12 14

200

400

600

800

RM
SE

MSLP (Pa)

2 4 6 8 10 12 14
0

200

400

600

800

1000
Z500 (m2/s2)

2 4 6 8 10 12 14

1

2

3

4

T850 (K)

2 4 6 8 10 12 14
0.50

0.75

1.00

1.25

1.50

1.75

2.00
Q700 (g/kg)

2 4 6 8 10 12 14
Lead time (days)

1

2

3

4

5

6

7
U850 (m/s)

2 4 6 8 10 12 14
1

2

3

4

5

6

7
V850 (m/s)

Climatology Pangu-Weather GraphCast Stormer IFS HRES IFS ENS (mean)

Figure 8: Global forecast verification results of Stormer and the baselines from 1- to 14-day lead
times. We show the latitude-weighted RMSE for select variables. Stormer is on par or outperforms
each of the benchmark models for the shown variables. During the later portion of the forecasts,
Stormer significantly outperforms the current methods.

2 4 6 8 10 12 14

0.4

0.6

0.8

1.0
T2m (K)

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0
U10m (m/s)

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0
V10m (m/s)

2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1.0

AC
C

MSLP (Pa)

2 4 6 8 10 12 14
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Z500 (m2/s2)

2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1.0
T850 (K)

2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

Q700 (g/kg)

2 4 6 8 10 12 14
Lead time (days)

0.2

0.4

0.6

0.8

1.0
U850 (m/s)

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0
V850 (m/s)

Pangu-Weather GraphCast Stormer IFS HRES IFS ENS (mean)

Figure 9: Global forecast verification results of Stormer and the baselines from 1- to 14-day lead
times. We show the latitude-weighted ACC for select variables. Stormer is on par or outperforms
each of the benchmark models for the shown variables. During the later portion of the forecasts,
Stormer significantly outperforms the current methods.

3

68756 https://doi.org/10.52202/079017-2196

C Additional results

C.1 Complete comparison with SoTA models

Figure 8 compares Stormer with both deep learning and numerical methods. We take IFS and IFS
ENS from WB2 which is only available until day 10. Similar to its deep learning counterparts,
Stormer achieves lower RMSE compared to the IFS model for most variables, except for near-surface
temperature (T2m) at initial lead times, and only performs slightly worse than IFS ENS. To the best
of our knowledge, Stormer is the first model trained on 1.40625◦ data to surpass IFS.

Additionally, we compare Stormer and the baselines on latitude-weighted ACC, another common
verification metric for weather forecast models. ACC represents the Pearson correlation coefficient
between forecast anomalies relative to climatology and ground truth anomalies relative to climatology.
ACC ranges from −1 to 1, where 1 indicates perfect correlation, and −1 indicates perfect anti-
correlation. We refer to WB2 [41] for the formulation of ACC. Figure 9 shows that similarly to
RMSE, Stormer achieves competitive performance from 1 to 5 days, and outperforms the baselines
by a large margin beyond 6 days.

C.2 Impact of multi-step fine-tuning

We verify the importance of multi-step fine-tuning by comparing Stormer after the 1st phase (K = 1)
and after the 3rd phase (K = 8). Figure 10 shows that multi-step fine-tuning significantly improves
performance at long lead times.

2 4 6 8 10
0.5

1.0

1.5

2.0

T2m (K)

2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0
U10m (m/s)

2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0
V10m (m/s)

2 4 6 8 10

100

200

300

400

500

600

RM
SE

MSLP (Pa)

2 4 6 8 10

100

200

300

400

500

600

700
Z500 (m2/s2)

2 4 6 8 10
0.5

1.0

1.5

2.0

2.5

3.0

T850 (K)

2 4 6 8 10

0.6

0.8

1.0

1.2

1.4

1.6
Q700 (g/kg)

2 4 6 8 10
Lead time (days)

1

2

3

4

5

U850 (m/s)

2 4 6 8 10
1

2

3

4

5

V850 (m/s)

K = 1 K = 8

Figure 10: Performance of Stormer without (K = 1) and with (K = 8) multi-step fine-tuning.

C.3 Non-ensemble performance of Stormer

Even though our inference strategy can be considered ensemble forecasting, we note that it is much
cheaper and more efficient than common techniques such as training multiple networks, dropout,
or IC perturbations, as we only have to train a single neural network and do not need extensive

4

68757https://doi.org/10.52202/079017-2196

Figure 11: Non-ensemble version Stormer vs the baselines.

hyperparameter tuning. However, to provide more insights into the performance of Stormer, we
additionally compare the non-ensemble version of Stormer with the baselines. Specifically, we
performed the Pangu-style inference, where we only used the 24-hour interval forecasts to roll out
into the future, instead of combining different intervals. Figure 11 shows that non-ensemble Stormer
outperforms Pangu and performs competitively with Graphcast.

C.4 Probabilistic forecasting with IC perturbations

Since Stormer can produce forecast ensembles after training, we can consider it a probabilistic
forecast system. However, our preliminary results suggested that different forecasts from Stormer are
underdispersive and should not be used for uncertainty estimation. To make Stormer a probabilistic
forecast system, we need to introduce more randomization to the forecasts via IC perturbations. To
do this, for each combination of intervals during the Best m in n inference, we added 4 different
noises sampled from a Gaussian distribution, resulting in a total of 128 ensemble members.

Figure 12 shows that IC perturbations improve the probabilistic metric significantly, but may hurt the
deterministic performance at short lead times. Moreover, it is difficult to find an optimal noise level
for the spread-skill ratio across different variables and lead times. We can further improve this by
using a better noise distribution or variable-dependent and lead-time-dependent noise scheduling,
which we defer to future works.

C.5 Comparison of different inference strategies

Our two inference strategies, Homogeneous and Best m in n, provide a tradeoff between efficiency
and forecast accuracy. Figure 13 compares the performance of these two strategies across different
variables at different lead times. The results show that Homogeneous performs competitively with
Best m in n, while being much more efficient, requiring only 3 forward passes compared to n.

5

68758 https://doi.org/10.52202/079017-2196

Figure 12: Probabilistic performance of Stormer with different levels of IC perturbations.

2 4 6 8 10
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
T2m (K)

2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

3.5

U10m (m/s)

2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

3.5

V10m (m/s)

2 4 6 8 10

100

200

300

400

500

600

RM
SE

MSLP (Pa)

2 4 6 8 10

100

200

300

400

500

600

700
Z500 (m2/s2)

2 4 6 8 10
0.5

1.0

1.5

2.0

2.5

3.0
T850 (K)

2 4 6 8 10

0.6

0.8

1.0

1.2

1.4

Q700 (g/kg)

2 4 6 8 10
Lead time (days)

1

2

3

4

5

U850 (m/s)

2 4 6 8 10
1

2

3

4

5

V850 (m/s)

Homogeneous Best m in n

Figure 13: Comparsion of Homogeneous vs Best m in n inference strategies.

6

68759https://doi.org/10.52202/079017-2196

C.6 Qualitative results

We visualize forecasts produced by Stormer at lead times from 1 days to 14 days for 9 key variables.
All forecasts are initialized at 0UTC January 26th 2020. Each figure illustrates one lead time, where
each row is for each variable. The first column shows the initial condition, the second column shows
the ground truth at that lead time, the third column shows the forecast, and the last column shows the
bias, which is the difference between the forecast and the ground truth.

T2
m

IC (Jan 26th 2020) Ground truth 1-day Forecast Error (Forecast - Truth)

U1
0m

V1
0m

M
SL

P
Z5

00
Q7

00
T8

50
U8

50
V8

50

220

240

260

280

300

220

240

260

280

300

220

240

260

280

300

20

10

0

10

20

K

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

950

975

1000

1025

1050

950

975

1000

1025

1050

950

975

1000

1025

1050

20

10

0

10

20

hP
a

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

2000

1000

0

1000

2000

m
2 /s

2

0

5

10

15

0

5

10

15

0

5

10

15

4
2

0
2
4

g/
kg

240

260

280

300

240

260

280

300

240

260

280

300

20

10

0

10

20

K
20
10

0
10
20

20
10

0
10
20

20
10

0
10
20

20

10

0

10

20

m
/s

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

20

10

0

10

20
m

/s

Figure 14: 1-day lead time

7

68760 https://doi.org/10.52202/079017-2196

T2
m

IC (Jan 26th 2020) Ground truth 3-day Forecast Error (Forecast - Truth)

U1
0m

V1
0m

M
SL

P
Z5

00
Q7

00
T8

50
U8

50
V8

50

220

240

260

280

300

220

240

260

280

300

220

240

260

280

300

20

10

0

10

20

K

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

950

975

1000

1025

1050

950

975

1000

1025

1050

950

975

1000

1025

1050

20

10

0

10

20

hP
a

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

2000

1000

0

1000

2000

m
2 /s

2

0

5

10

15

0

5

10

15

0

5

10

15

4
2

0
2
4

g/
kg

240

260

280

300

240

260

280

300

240

260

280

300

20

10

0

10

20

K

20
10

0
10
20

20
10

0
10
20

20
10

0
10
20

20

10

0

10

20
m

/s

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

20

10

0

10

20

m
/s

Figure 15: 3-day lead time

8

68761https://doi.org/10.52202/079017-2196

T2
m

IC (Jan 26th 2020) Ground truth 5-day Forecast Error (Forecast - Truth)

U1
0m

V1
0m

M
SL

P
Z5

00
Q7

00
T8

50
U8

50
V8

50

220

240

260

280

300

220

240

260

280

300

220

240

260

280

300

20

10

0

10

20

K

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

950

975

1000

1025

1050

950

975

1000

1025

1050

950

975

1000

1025

1050

20

10

0

10

20

hP
a

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

2000

1000

0

1000

2000

m
2 /s

2

0

5

10

15

0

5

10

15

0

5

10

15

4
2

0
2
4

g/
kg

240

260

280

300

240

260

280

300

240

260

280

300

20

10

0

10

20

K

20
10

0
10
20

20
10

0
10
20

20
10

0
10
20

20

10

0

10

20
m

/s

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

20

10

0

10

20

m
/s

Figure 16: 5-day lead time

9

68762 https://doi.org/10.52202/079017-2196

T2
m

IC (Jan 26th 2020) Ground truth 7-day Forecast Error (Forecast - Truth)

U1
0m

V1
0m

M
SL

P
Z5

00
Q7

00
T8

50
U8

50
V8

50

220

240

260

280

300

220

240

260

280

300

220

240

260

280

300

20

10

0

10

20

K

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

950

975

1000

1025

1050

950

975

1000

1025

1050

950

975

1000

1025

1050

20

10

0

10

20

hP
a

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

2000

1000

0

1000

2000

m
2 /s

2

0

5

10

15

0

5

10

15

0

5

10

15

4
2

0
2
4

g/
kg

240

260

280

300

240

260

280

300

240

260

280

300

20

10

0

10

20

K

20
10

0
10
20

20
10

0
10
20

20
10

0
10
20

20

10

0

10

20
m

/s

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

20

10

0

10

20

m
/s

Figure 17: 7-day lead time

10

68763https://doi.org/10.52202/079017-2196

T2
m

IC (Jan 26th 2020) Ground truth 10-day Forecast Error (Forecast - Truth)

U1
0m

V1
0m

M
SL

P
Z5

00
Q7

00
T8

50
U8

50
V8

50

220

240

260

280

300

220

240

260

280

300

220

240

260

280

300

20

10

0

10

20

K

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

950

975

1000

1025

1050

950

975

1000

1025

1050

950

975

1000

1025

1050

20

10

0

10

20

hP
a

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

2000

1000

0

1000

2000

m
2 /s

2

0

5

10

15

0

5

10

15

0

5

10

15

4
2

0
2
4

g/
kg

240

260

280

300

240

260

280

300

240

260

280

300

20

10

0

10

20

K

20
10

0
10
20

20
10

0
10
20

20
10

0
10
20

20

10

0

10

20
m

/s

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

20

10

0

10

20

m
/s

Figure 18: 10-day lead time

11

68764 https://doi.org/10.52202/079017-2196

T2
m

IC (Jan 26th 2020) Ground truth 14-day Forecast Error (Forecast - Truth)

U1
0m

V1
0m

M
SL

P
Z5

00
Q7

00
T8

50
U8

50
V8

50

220

240

260

280

300

220

240

260

280

300

220

240

260

280

300

20

10

0

10

20

K

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

20

10

0

10

20

m
/s

950

975

1000

1025

1050

950

975

1000

1025

1050

950

975

1000

1025

1050

20

10

0

10

20

hP
a

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

47500
50000
52500
55000
57500
60000

2000

1000

0

1000

2000

m
2 /s

2

0

5

10

15

0

5

10

15

0

5

10

15

4
2

0
2
4

g/
kg

240

260

280

300

240

260

280

300

240

260

280

300

20

10

0

10

20

K

20
10

0
10
20

20
10

0
10
20

20
10

0
10
20

20

10

0

10

20
m

/s

40

20

0

20

40

40

20

0

20

40

40

20

0

20

40

20

10

0

10

20

m
/s

Figure 19: 14-day lead time

12

68765https://doi.org/10.52202/079017-2196

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper introduces Stormer, a scalable and skillful method for medium-
range weather forecasting. Both the abstract and introduction reflect this contribution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Stormer currently operates on 1.40625◦ data which is lower-resolution than
other leading methods. We mention this limitation in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

68766 https://doi.org/10.52202/079017-2196

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide architectural, training, and evaluation details in Section 3, 4, and
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

68767https://doi.org/10.52202/079017-2196

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code, data, and checkpoints will be released publicly upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide architectural, training, and evaluation details in Section 3, 4, and
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: No, reporting error bars is too computationally expensive and is not standard
in data-driven weather forecasting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

68768 https://doi.org/10.52202/079017-2196

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the compute resources for training Stormer in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of the paper in Section A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

68769https://doi.org/10.52202/079017-2196

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used and cited Weatherbench 2, an open-source benchmark for data-driven
weather forecasting.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

68770 https://doi.org/10.52202/079017-2196

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

68771https://doi.org/10.52202/079017-2196

