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Abstract

Two-sided matching markets describe a large class of problems wherein participants
from one side of the market must be matched to those from the other side according
to their preferences. In many real-world applications (e.g. content matching
or online labor markets), the knowledge about preferences may not be readily
available and must be learned, i.e., one side of the market (aka agents) may not
know their preferences over the other side (aka arms). Recent research on online
settings has focused primarily on welfare optimization aspects (i.e. minimizing
the overall regret) while paying little attention to the game-theoretic properties
such as the stability of the final matching. In this paper, we exploit the structure
of stable solutions to devise algorithms that improve the likelihood of finding
stable solutions. We initiate the study of the sample complexity of finding a stable
matching, and provide theoretical bounds on the number of samples needed to reach
a stable matching with high probability. Finally, our empirical results demonstrate
intriguing tradeoffs between stability and optimality of the proposed algorithms,
further complementing our theoretical findings.

1 Introduction

Two-sided markets provide a framework for a large class of problems that deal with matching two
disjoint sets (colloquially agents and arms) according to their preferences. These markets have been
extensively studied in the past decades and formed the foundation of matching theory—a prominent
subfield of economics that deals with designing markets without money. They have had profound
impact on numerous practical applications such as school choice [Abdulkadiroğlu et al., 2005a,b],
entry-level labor markets [Roth and Peranson, 1999], and medical residency [Roth, 1984]. The
primary objective is to find a stable matching between the two sets such that no pair prefers each
other to their matched partners.

The advent of digital marketplaces and online systems has given rise to novel applications of two-
sided markets such as matching riders and drivers [Banerjee and Johari, 2019], electric vehicle to
charging stations [Gerding et al., 2013], and matching freelancers (or flexworkers) to job requester in
a gig economy. In contrast to traditional markets that consider preferences to be readily available
(e.g. by direct reporting or elicitation), in these new applications preferences may be uncertain or
unavailable due to limited access or simply eliciting may not be feasible. Thus, a recent line of work
has utilized bandit learning to learn preferences by modeling matching problems as multi-arm bandit
problems where the preferences of agents are unknown while the preferences of arms are known. The
goal is to devise learning algorithms such that a matching based on the learned preferences minimize
the regret for each agent (see, for example, Liu et al. [2020, 2021], Sankararaman et al. [2021], Basu
et al. [2021], Maheshwari et al. [2022], Kong et al. [2022], Zhang et al. [2022], Kong and Li [2023],
Wang et al. [2022]).
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Uniform agent-DA Uniform arm-DA AE arm-DA

Prob. instability O(|ES(m)|γ) (Thm. 2) O(|ES(m)|γ) (Thm. 2) O(|ES(m)| exp
(
−∆2Tmin

8

)
) (Thm. 4)

Sample complexity Õ(NK
∆2 log(α−1)) (Thm. 3) Õ(NK

∆2 log(α−1)) (Thm. 3) Õ( 1
∆2 |ES(m)| log(α−1)) (Thm. 5)

Table 1: Comparison of bounds on probability of unstable matchings and the sample complexity to
find a stable matching. γ = exp

(
−∆2T

8K

)
.

Despite tremendous success in improving the regret bound in this setting, the study of stability of the
final matching has not received sufficient attention. The following stylized example illustrates how
an optimal matching (with zero regret) across all agents may remain unstable.

Example 1. Consider three agents {a1, a2, a3} and three arms {b1, b2, b3}. Let us assume true
preferences are given as strict linear orderings1 as follows:

a1 : b∗1 ≻ b2 ≻ b3

a2 : b∗2 ≻ b1 ≻ b3

a3 : b1 ≻ b2 ≻ b∗3

b1 : a2 ≻ a3 ≻ a∗1

b2 : a1 ≻ a3 ≻ a∗2

b3 : a1 ≻ a2 ≻ a∗3

The underlined matching is the only stable solution in this instance. The matching denoted by ∗

is a regret minimizing matching: agents a1 and a2 have a negative regret (compared to the stable
matching), and a3 has zero regret. However, this matching is not stable because a3 and b1 form a
blocking pair. Thus, a3 would deviate from the matching.

Note that stability is a desirable property that eliminates the incentives for agents to participate in
secondary markets, and is the essential predictor of the long-term reliability of many real-world
matching markets [Roth, 2002]. Though some work (e.g. Liu et al. [2021], Pokharel and Das [2023])
did stability analysis, it is insufficient as we discuss later in Section 3 and Section 4.

Our contributions. We propose bandit-learning algorithms that utilize structural properties of the
Deferred Acceptance algorithm (DA)—a seminal algorithm proposed by Gale and Shapley [1962]
that has played an essential role in designing stable matching markets. Contrary to previous works
[Liu et al., 2020, Kong and Li, 2023], we show that by exploiting an arm-proposing variant of the DA
algorithm, the probability of finding a stable matching improves compared to those used in many
previous work (an agent-proposing variant, such as Liu et al. [2020], Basu et al. [2021], Kong and
Li [2023]). We demonstrate that for a class of profiles (i.e. profiles satisfying α-condition or those
with a masterlist), the arm-proposing DA is more likely to produce a stable matching compared to
the agent-proposing DA for any sampling method (Corollary 1). For the commonly studied uniform
sampling strategy, we show the probability bounds for two variants of DA for general preference
profiles (Theorem 2). We initiate the study of sample complexity in the Probably Approximately
Correct (PAC) framework. We propose a non-uniform sampling strategy which is based on arm-
proposing DA and Action Elimination algorithm (AE) [Even-Dar et al., 2006], and show that it has a
lower sample complexity as compared to uniform sampling (Theorem 3 and Theorem 5). Lastly, we
validate our theoretical findings using empirical simulations (Section 6).

Table 1 shows the main theoretical results for uniform agent-DA algorithm, uniform arm-DA algo-
rithm, and AE arm-DA algorithm. We note that the novel AE arm-DA algorithm achieves smaller
sample complexity for finding a stable matching. Our bounds depend on structure of the stable
solution m, parameterized by the ‘amount’ of justified envy ES(m) (see Definition 4.1).

1.1 Related Works

The two-sided matching problem is one of the most prominent success story of the field of game
theory, and in particular, mechanism design, with a profound practical impact in applications ranging
from organ exchange and labor market to modern markets involving allocation of compute, server,
or content. The framework was formalized by Gale and Shapley [1962]’s seminal work, where

1We consider a general case where preferences are given as cardinal values; note that cardinal preferences
can induce (possibly weak) ordinal linear orders.

2

69044https://doi.org/10.52202/079017-2206



they, along with a long list of subsequent works focused primarily on game-theoretical aspects such
as stability and incentives [Roth and Sotomayor, 1992, Roth, 1986, Dubins and Freedman, 1981].
While the DA algorithm is strategyproof for the proposing side [Gale and Shapley, 1962], no stable
mechanism can guarantee that agents from both sides have incentives to report preferences truthfully
in a dominant strategy Nash equilibrium [Roth, 1982]. A series of works focused on strategic aspects
of stable matchings [Huang, 2006, Teo et al., 2001, Vaish and Garg, 2017, Hosseini et al., 2021].

Stable matchings under uncertain linear or pairwise preferences were studied by Aziz et al. [2020,
2022]. When preferences are unknown, the problem of learning preferences can be modeled as a
multi-agent multi-arm bandit problem. Recent work has shown a variety of learning approaches using
Explore-Then-Commit (ETC), Thompson sampling [Kong et al., 2022], in centralized [Liu et al.,
2020, Pokharel and Das, 2023] or decentralized [Sankararaman et al., 2021, Kong and Li, 2023]
matching markets. Subsequent works focused on domains with restricted preferences (as we also
study in this paper) wherein a unique stable matching exists under true preferences [Sankararaman
et al., 2021, Basu et al., 2021, Maheshwari et al., 2022, Wang and Li, 2024] or those that generalize
to many-to-one markets [Wang et al., 2022, Kong and Li, 2024, Li et al., 2024]. An extensive related
work with details on upper bounds is provided in Appendix A.

2 Preliminary

Let [k] = {1, 2, . . . , k}, and ζ(β) =
∑∞

n=1
1
nβ denotes the Riemann Zeta function, and 2 > ζ(β) > 1

if β ≥ 2.
Problem setup. An instance of a two-sided matching market is specified by a set of N agents,
N = {a1, a2, . . . , aN} on one side, and a set of K arms, K = {b1, b2, . . . , bK}, on the other
side. The preference of an agent ai, denoted by ≻ai

, is a strict total ordering over the arms. Each
agent ai is additionally endowed with a utility µi,j over arm bj . Thus, we say an agent ai prefers
arm bj to bk, i.e. bj ≻ai bk, if and only if µi,j > µi,k.2 We use µ to indicate the utility profile
of all agents, where µ = (µi,j)i∈[N ],j∈[K]. The preferences of arms are denoted by a strict total
ordering over the agents, i.e. an arm bi has preference ≻bi . The minimum preference gap is defined
as ∆ = mini∈[N ] minj,k∈[K],j ̸=k |µi,j − µi,k|. It captures the difficulty of a learning problem in
matching markets, i.e., the mechanism needs more samples to estimate the preference profile if ∆ is
small.
Stable matching. A matching is a mapping m : N ∪ K → N ∪ K ∪ {∅} such that m(ai) ∈ K
for all i ∈ [N ], and m(bj) ∈ N ∪ {∅} for all j ∈ [K], m(ai) = bj if and only if m(bj) = ai.
Additionally, m(bj) = ∅ if bj is not matched. Sometimes we abuse the notation and use ai to denote
i if agent is clear from context, and similarly use bj to denote j if arm is clear from context. Given a
matching m, an agent-arm pair (ai, bj) is called a blocking pair if they prefer each other than their
assigned partners, i.e., bj ≻ai

m(ai) and ai ≻bj m(bj). Note that for any arm bj , getting matched is
always better than being not matched, i.e., ai ≻bj ∅. A matching is stable if there is no blocking pair.

The Deferred Acceptance (DA) algorithm [Gale and Shapley, 1962] finds a stable matching in two
sided market as follows: the participants from the proposing side make proposals to the other side
according to their preferences. The other side tentatively accepts the most favorable proposals and
rejects the rest. The process continues until everyone from the proposing side either holds an accepted
proposal (i.e., matched to the one who has accepted its proposal), or has already proposed to everyone
on its preference list (i.e., remains unmatched). We consider two variants of the DA algorithm, namely,
agent-proposing and arm-proposing. The matching computed by the DA algorithm is optimal for
the proposing side [Gale and Shapley, 1962], i.e. proposing side receives their best match among all
stable matchings. It is simultaneously pessimal for the receiving side [McVitie and Wilson, 1971]. We
denote the agent-optimal (arm-pessimal) stable matching by m and the agent-pessimal (arm-optimal)
stable matching by m.
Rewards and preferences. Agents receive stochastic rewards by pulling arms. If an agent ai
pulls an arm bj , she gets a stochastic reward drawn from a 1-subgaussian distribution3 with mean

2We assume preferences do not contain ties for simplicity as in previous works [Liu et al., 2020, Kong and
Li, 2023]. When preferences are ordinal and contain ties, stable solutions may not exist in their strong sense
(see, e.g. Irving [1994], Manlove [2002]).

3A random variable X is d-subgaussian if its tail probability satisfies P (|X| > t) ≤ 2 exp(− t2

2d2
) for all

t ≥ 0.

3
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value µi,j . We denote the sample average of agent ai over arm bj as µ̂i,j . The agent-optimal stable
regret is defined as the difference between the expected reward from the agent’s most preferred
stable match and the expected reward from the arm that the agent is matched to. Formally, we have
Ri(m) = µi,m(ai) − µi,m(ai) for agent ai and matching m. Similarly, the arm-optimal stable regret
as Ri(m) = µi,m(ai) − µi,m(ai).

Preference profiles. Restriction on preferences has been heavily studied by previous papers (see
Sankararaman et al. [2021], Basu et al. [2021], Maheshwari et al. [2022]) as they capture natural
structures where, for example, riders all rank drivers according to a common masterlist, but drivers
may have different preferences according to, e.g., distance to riders. If the true preference profiles are
known and there exists a unique stable matching, then the agent-proposing DA algorithm and the
arm-proposing DA algorithm lead to the same matching, namely m = m. A natural property of the
preference profile that leads to unique stable matching is called uniqueness consistency where not
only there exists a unique stable matching, but also any subset of the preference profile that contains
the stable partner of each agent/arm in the subset, there exists a unique stable matching. Karpov
[2019] provided a necessary and sufficient condition (α-condition) to characterize preference profiles
that satisfy uniqueness consistency. A preference profile satisfies the α-condition if and only if there
is a stable matching m and an order of agents and arms such that ∀i∈ [N ],∀j > i,m(ai) ≻ai

bj ,
and a possibly different order of agents and arms such that ∀j∈ [K],∀i > j,m(bj) ≻bj ai.

3 Unique Stable Matching: Agents vs. Arms

To warm up, we start by analyzing instances of a matching market where a unique stable solution
exists. As we discussed in the preliminaries, these markets are common and can be characterized by a
property called uniqueness consistency. We show that for any sampling algorithm, the arm-proposing
DA algorithm is more likely to generate a stable matching compared to the agent-proposing DA
algorithm. All missing proofs and additional results are relegated to the full version Hosseini et al.
[2024].

Theorem 1. Assume that the true preferences satisfy uniqueness consistency condition. For any
estimated utility µ̂, if the agent-proposing DA algorithm produces a stable matching, then the
arm-proposing DA algorithm produces a stable matching.

Theorem 1 states that when preferences satisfy the uniqueness consistency condition, for any estimated
utility, the stability of agent-proposing DA matching implies the stability of arm-proposing DA
matching. For any fixed sampling algorithm, each estimation occurs with some probability, so we
immediately have the following corollary.

Corollary 1. For any sampling algorithm, the arm-proposing DA algorithm has a higher probability
of being stable than the agent-proposing DA algorithm if the true preferences satisfy uniqueness
consistency condition.

The following example further shows that the arm-proposing DA could generate a stable matching
even if the estimation is incorrect, while the agent-proposing DA generates an unstable matching. In
Section 6, we provide empirical evaluations on stability and regret of variants of the DA algorithm.

Example 2 (The stability of arm vs. agent proposing DA when estimation is wrong.). Con-
sider two agents {a1, a2} and two arms {b1, b2}. Assume the true preferences are as follows:

a1 : b∗1 ≻ b2

a2 : b1 ≻ b∗2

b1 : a∗1 ≻ a2

b2 : a∗2 ≻ a1

The matching denoted by ∗ is the only stable solution in this instance. Assume that after sampling
data, agent a1 has a wrong estimation: b2 ≻ b1 and agent a2 has the correct estimation. Under the
wrong estimation, arm-proposing DA algorithm returns the matching ∗ while agent-proposing DA
algorithm returns the underlined matching, which is unstable with respect to true preferences. Note
that algorithms that rely on agent-proposing DA (e.g. Liu et al. [2021], Kong and Li [2023]) may
similarly fail to find a stable matching as they do not exploit the known arms preferences effectively.

4
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Algorithm 1: Uniform sampling algorithm
Input :Parameter β, sample budget T.

1 for t = 1, 2, . . . , T do
2 for i = 1, 2, . . . , N do
3 Agent ai pulls mi(t) = bj , where j = (t+ i− 1) mod K + 1;
4 Agent ai observes a return Xi(t) and updates µ̂i,j ;
5 Compute UCBi,j and LCBi,j using β;

6 if ∃ a permutation σi for all i ∈ [N ] such that LCBi,σi(k) > UCBi,σi(k+1), ∀k ∈ [K − 1] then
7 Break;

8 return {µ̂i,j | i ∈ [N ], j ∈ [K]}.

4 Uniform Sampling DA Algorithms

In this section, we compare the stability performance for two types of DA combined with uniform
sampling algorithm when the preferences could be arbitrary. Compared with Section 3, we note that
the theory in this section does not constrain preferences. We provide probability bounds for finding
an unstable matching in Section 4.1 and analyze sample complexity for reaching a stable matching in
Section 4.2.

Uniform sampling is a technique in bandit literature [Garivier et al., 2016] (usually termed as
exploration-then-commit algorithm, ETC). Kong and Li [2023] utilized UCB to construct a confidence
interval (CI) for each agent-arm pair, where each agent samples arms uniformly. The exploration
phase stops when every agent’s CIs for each pair of arms have no overlap, i.e. agents are confident
that arms are ordered by the estimation correctly. Then, in the commit phase agents form a matching
through agent-proposing DA, and keep pulling the same arms.

Agents construct CIs based on the collected data by utilizing the upper confidence bound (UCB) and
lower confidence bound (LCB). Given a parameter β, if arm bj is sampled t times by agent ai, we
define the UCB and LCB as follows:

UCBi,j = µ̂i,j(t) +
√
2β log(Kt)/t, LCBi,j = µ̂i,j(t)−

√
2β log(Kt)/t, (1)

where µ̂i,j(t) is the average of the collected samples.

Uniform sampling algorithm (Algorithm 1) Agents explore the arms uniformly. Suppose that
agent ai has disjoint confidence intervals over all arms, i.e., there exists a permutation σi :=
(σi(1), σi(2), . . . , σi(K)) over arms such that LCBi,σi(k) > UCBi,σi(k+1) for each k ∈ [K − 1].
Then, agent ai can reasonably infer the accuracy of the estimated preference profile. The parameter β
is used to control the confidence length, where a larger β implies that the agent needs more samples
to differentiate the utility for a pair of arms.

After the sampling stage, agents can consider to form a matching either through agent-proposing
DA or arm-proposing DA, as is discussed in Section 3. For simplicity, we refer uniform sampling (
Algorithm 1) with agent-proposing DA as uniform agent-DA algorithm, and uniform sampling with
arm-proposing DA as uniform arm-DA algorithm.

4.1 Probability Bounds for Stability

We provide theoretical analysis on probability bounds for stability for the uniform agent-DA algorithm
and the uniform arm-DA algorithm. We show probability bounds of learning a stable matching using
the properties of stable solutions and the structure of the profile. We first define the following notions
of local and global envy-sets.
Definition 4.1. The local envy-set for agent ai for a matching m is defined as

ESi(m) =

{
∅ if {bj : ai ≻bj m(bj)} is empty
{bj : ai ≻bj m(bj)}

⋃
{m(ai)} otherwise.

The global envy-set of a matching m is defined as the union of local envy-sets over all agents:

ES(m) =
⋃

i∈[N ]

{(ai, bj) : bj ∈ ESi(m))}.

5
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By the definition of stability, a matching m is stable if and only if the global envy-set is justified,
i.e., agents truly prefer their current matched arm to the arms in the envy-set ES(m). Formally,
µi,m(ai) ≥ µi,j , for all (ai, bj) ∈ ES(m) if and only if m is a stable matching. This observation is
key in establishing theoretical results.

The following lemma provides a condition for finding a stable matching using the envy-set of the
estimated matching. The detailed proof of all the results can be found in the full version Hosseini
et al. [2024].
Lemma 1. Assume µ̂ is the sample average, and matching m̂ is stable with respect to µ̂. Define a

‘good’ event for agent ai and arm bj as Fi,j = {|µi,j − µ̂i,j | ≤ ∆/2}, and define the intersection
of the good events over envy-set as F(ES(m̂)) = ∩(ai,bj)∈ES(m̂)Fi,j . Then if the event F(ES(m̂))
occurs, matching m̂ is guaranteed to be stable (with respect to µ).

Now we prove the following bounds for two types of uniform sampling algorithms. The probability
bound depends on the size of the envy-set.
Theorem 2. By uniform sampling (Algorithm 1), each agent samples each arm T/K times, and m̂1

and m̂2 are matchings generated by agent-proposing DA and arm-proposing DA, respectively. Then,

(i) P (m̂1 is unstable) = O(|ES(m)| exp(−∆2T
8K )),

(ii) P (m̂2 is unstable) = O(|ES(m)| exp(−∆2T
8K )),

where m is the agent-pessimal stable matching and m is the agent-optimal stable matching.

Proof sketch. Since m̂1 and m̂2 are produced by DA based on µ̂, both matchings are stable with
respect to µ̂. By Lemma 1, both matchings are guaranteed to be stable with respect to µ conditioned
on F(ES(m̂1)) (or F(ES(m̂2))). Thus, it follows

P (m̂1 is unstable) ≤ 1− P (F(ES(m̂1)))

= E[∪(ai,bj)∈ES(m̂1)P (|µi,j − µ̂i,j | ≥ ∆/2)] [definition of F ]

≤ E[
∑

(ai,bj)∈ES(m̂1)

P (|µi,j − µ̂i,j | ≥ ∆/2)] [union bound]

≤ 2E[|ES(m̂1)|] exp(−
∆2T

8K
) [

√
K

T
-subgaussian with 0 mean].

To complete the proof for m̂1, we demonstrate an upper bound of E[|ES(m̂1)|]. We show that
|E[|ES(m̂1)|]−|ES(m)|| ≤ N2K3exp(−∆2T

4K ). The difference is negligible when T is sufficiently
large. Thus the first statement follows. The complete proof is deferred to Appendix C.

In the next lemma, we show the relation between the size of the envy-sets for the agent-optimal and
agent-pessimal matchings. Then, combining Theorem 2 and Lemma 2, we prove the next corollary.
Lemma 2. Given any instance of a matching problem, we have the following relationship between
the size of the two envy sets: |ES(m)| ≤ |ES(m)|.

Proof. Agent-pessimal stable matching m is the arm-optimal stable matching, and agent-optimal
stable matching m is the arm-pessimal stable matching, so we have that m(bj) ≻bj m(bj) or m(bj) =
m(bj) for each arm bj . From the definition of the envy-set, we have |ES(m)| ≤ |ES(m)|.

Corollary 2. The uniform arm-DA algorithm has a smaller probability bound of being unstable than
the uniform agent-DA algorithm.

Remark 1. Liu et al. [2020] showed the probability bound of exp(−∆2T
2K ) for finding an invalid

ranking by the ETC algorithm, where a valid ranking is defined as the estimated ranking such that the
estimated pairwise comparison is correct for a subset of agent-arm pairs. However, their result did
not relate the probability bound with the structure of the instance, whereas the bound in Theorem 2
crucially uses the envy set to improve the probability of finding a stable solution. Liu et al. [2021]
provided an upper bound on the sum of the probabilities of being unstable for the Conflict-Avoiding
UCB algorithm (CA-UCB). Under CA-UCB algorithm, O(log2(T )) out of T matchings are unstable
in expectation.

6
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Algorithm 2: Arm elimination algorithm
Input :agent a, arms b1, b2, sample sizes n1, n2, and sample mean µ̂1, µ̂2.

1 Calculate LCB1, LCB2, UCB1, UCB2;
2 winner ← empty;
3 while max(LCB1, LCB2) < min(UCB1, UCB2) do
4 index← which.min(n1, n2);
5 Agent a pulls bindex;
6 Agent a observes a return and updates µ̂index, nindex;
7 Update all UCB and LCB;

8 winner ← index of maximum (µ̂1, µ̂2);
9 return winner.

4.2 Sample Complexity

We turn to analyze the sample complexity to learn a stable matching under the probably approximately
correct (PAC) framework. In particular we ask: given a probability budget α, how many samples
T are needed to find a stable matching? Formally, an algorithm has sample complexity T with
probability budget α if with probability at least 1− α, the algorithm guarantees that it would find a
stable matching with the total number of samples over all agent-arm pairs upper bounded by T .
Theorem 3. [Sample complexity for uniform sampling algorithm] With probability at least 1− α,
both the uniform agent-DA and the uniform arm-DA algorithms find a stable matching with the same
sample complexity Õ(NK

∆2 log(α−1))4.

Note that uniform agent-DA algorithm finds the stable matching m, and uniform arm-DA algorithm
finds the stable matching m. Uniform sampling (Algorithm 1) suffers from sub-optimal sample
complexity for finding stable matchings since agents sample each arm uniformly. Thus, in the next
section we devise an exploration algorithm that exploits the structure of stable matchings by utilizing
arms’ known preferences.

5 An Arm Elimination DA Algorithm

The proposed algorithm (Algorithm 3) combines the arm-proposing DA and Action Elimination
(AE) algorithm [Audibert and Bubeck, 2010, Even-Dar et al., 2006, Jamieson and Nowak, 2014].
The AE algorithm eliminates an arm (i.e. no longer sampling the arm) when confidence bound
indicates that the arm is sub-optimal (i.e. the upper confidence bound is smaller than another arm’s
lower confidence bound), and outputs the best arm when there is only one arm that hasn’t been
eliminated. Note that Algorithm 3 differs from the vanilla arm-proposing DA in Line 8, when an
agent has been proposed by two arms. Agents utilize the arm elimination algorithm (see Algorithm
2) until the agent eliminates the sub-optimal arm. Note that at every round, each agent chooses an
arm with fewer samples thus far (see Line 4 in Algorithm 2). One significant observation is that if
Algorithm 2 outputs winners correctly whenever an agent is proposed, Algorithm 3 terminates with
the arm-optimal matching m.

5.1 Probability Bounds for Stability

We compute the probability bound for learning an unstable matching for Algorithm 3. Contrary to
uniform sampling, here we compute the bound on given sample size.
Theorem 4. By Algorithm 3, assume that agent ai samples arm bj for Ti,j and m̂ is returned by the
algorithm. We define Tmin = min(ai,bj)∈ES(m̂) Ti,j as the minimum sample size for agent-arm pairs.
Then, we have

P (m̂ is unstable) ≤ O(|ES(m)| exp(−∆2Tmin

8
)).

Remark 2. Theorem 4 provides stability bound for Algorithm 3 that depends on Ti,j , which is
unknown apriori. If the total sample budget is NT and we set Ti,j = NT

|ES(m)| , the stability bound

4Õ denotes the upper bound that omits terms logarithmic in the input.

7
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Algorithm 3: AE arm-DA algorithm
Input :arms’ preference lists, sample budget T .

1 m← empty matching;
2 while ∃ an unmatched arm b who has not proposed to every agent and sample number ≤ T do
3 a← highest-ranked agent to whom b has not yet proposed;
4 if a is unmatched then
5 Add (a, b) to S;
6 else
7 b′ ← arm currently matched to a;
8 a finds the preferred arm from {b, b′} using arm elimination, Algorithm 2;
9 if a prefers b to b′ then

10 Replace (a, b′) in m with (a, b);
11 Mark b′ as unmatched;

12 Arbitrarily match remaining agents and arms if m is incomplete;
13 return m

becomes O(|ES(m)|exp(− ∆2NT
8|ES(m)| )), which is smaller than uniform arm-DA’s stability bound

O(|ES(m)|exp(−∆2T
8K )), as stated in Theorem 2. Even though the upper bound could be larger

than that of Algorithm 1, simulated experiments show that AE arm-DA significantly improves stability
guarantees compared to the uniform sampling variants (Algorithm 1).

5.2 Sample Complexity

We compute the sample complexity to learn a stable matching for Algorithm 3. Note that agents only
sample pairs in the envy-set, while in Algorithm 1 agents explore all arms uniformly. The following
analysis shows that Algorithm 3 has smaller sample complexity compared to Algorithm 1.

Theorem 5. [Sample complexity for AE arm-DA algorithm] With probability at least 1− α, Algo-
rithm 3 terminates and returns a stable matching, m, with sample complexity of

Õ(
ES(m)

∆2
log(α−1)).

Proof sketch. We begin by defining a good event |µ̂i,j(t)− µi,j | ≤
√
2β log(Kt)/t only for agent-

arm pairs in the envy-set |ES(m)|. Conditioned on such events for all time, we demonstrate that the
algorithm terminates with true preferences on the envy-set ES(m), and thus, the algorithm executes
the arm-proposing DA when agents have known preferences and produces m.

Then we show the upper bound of sample complexity for each agent-arm pair: T = O( β
∆2 log(

βK
∆2 )).

We prove it by induction on the number of proposals. The base case is when arms bj and bj′ propose
to agent ai for the first time. Then, we show the number of samples for each pair is bounded by T .
In the inductive step, say bj is the winner in the last round and has sampled ti,j ≤ T times, and bj′
proposes to ai in this round. Then if ai samples bj for T − ti,j more times and ai samples bj′ for T
times, by the same computation as the base case, we have that the number of samples for each pair is
bounded by T . Since Algorithm 3 only samples the agent-arm pairs in the envy set ES(m), we get
that the total sample complexity is |ES(m)|T = O(β(|ES(m)|)

∆2 log(βK∆2 )). By setting the probability
budget α = 4|ES(m)|

Kβ , we have that with probability at least 1− α, the AE arm-DA algorithm has
sample complexity Õ( |ES(m)|

∆2 log(α−1)). The complete proof appears in Appendix D.

It is worth noting that a large β implies a small α, which implies that the algorithm needs more
samples to guarantee finding a stable matching. We show bounds on the envy-sets in the next lemma.

Lemma 3. Considering any true preference µ, we have the following bounds for envy-set:

(i) Size of the envy-set for m: (max{N,K} −N)N ≤ |ES(m)| ≤ NK.

(ii) Size of the envy-set for m: (max{N,K} −N)N ≤ |ES(m)| ≤ NK −N + 1.

8

69050https://doi.org/10.52202/079017-2206



0 100 200 300 400 500

Samples
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

St
ab

ili
ty

uniform agent-DA
uniform arm-DA
AE arm-DA
CA-UCB

0 100 200 300 400 500

Samples
0

1

2

3

4

5

6

7

8

Av
er

ag
e 

Re
gr

et
s

uniform agent-DA
uniform arm-DA
AE arm-DA
CA-UCB

0 100 200 300 400 500

Samples
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ax

 R
eg

re
ts

uniform agent-DA
uniform arm-DA
AE arm-DA
CA-UCB

Figure 1: 95% confidence interval of stability and regret for 200 randomized general preference
profiles.

Remark 3. By comparing Theorem 5 to Theorem 3, the sample complexity ratio between the AE
arm-DA (Algorithm 3) and uniform arm selection (Algorithm 1) is |ES(m)|

NK , which further shows
that fewer arms from the envy-set ES(m) need to be sampled. Lemma 3 states the best-case and
worse-case ratios as max{N,K}−N

K and 1− N−1
NK < 1. Thus, Algorithm 3 strictly improves the sample

complexity of finding a stable matching.

Remark 4. One can illustrate the magnitude of |ES(m)| through the lens of arm-proposing DA
algorithm. Observe that |ES(m)| is the number of proposals made by arms and rejections made
by agents in the arm-proposing DA algorithm. In a highly competitive environment for arms, e.g.
when there are much more arms than agents so that many arms are not matched, the magnitude of
|ES(m)| is large. In a less competitive environment, e.g. when arms put different agents as their top
choices, |ES(m)| has much smaller magnitude.

6 Experimental Results

In this section, we experimentally validate our theoretical results. For this, we consider N = K = 20
and randomly generate preferences. In particular, we follow a similar experiment setting in Liu
et al. [2021]: for each i, the true utilities {µi,1, µi,2, . . . , µi,20} are randomized permutations of
the sequence {1, 2, . . . , 20} so that the minimum preference gap is fixed (∆ = 1) and algorithm
performance exhibits relatively low variability. Arms’ preferences are generated the same way. We
conduct 200 independent simulations, with each simulation featuring a randomized true preference
profile. We compare average stability, i.e., the proportion of stable matchings over 200 experiments,
average regrets, and maximum regrets over agents between four algorithms: uniform agent-DA5,
uniform arm-DA, AE arm-DA, and CA-UCB [Liu et al., 2021].

In terms of stability, our experiments show that the AE arm-DA algorithm significantly enhances the
likelihood of achieving stability compared to both types of uniform sampling algorithm and CA-UCB
algorithm (Figure 1). On the other hand, the regret gap between uniform agent-DA and other two
arm-proposing types of algorithms illustrates the utility difference of agent-optimal matching m
and arm-optimal matching m. We note that when preferences are restricted to have unique stable
matching, AE arm-DA algorithm’s regret converges faster to 0, compared to uniform algorithms, while
still keeping faster stability convergence (Figure 2). Additional experiments with other preference
domains (e.g. masterlist) in provided in Appendix E.

At the first glance, Figure 1 (the center and the right plots) seems to suggest that the the uniform
arm-DA is outperforming the AE arm-DA algorithm. However, note that the regret here is with
respect to the agent-optimal solution (i.e. R); and thus, the AE arm-DA algorithm by design is not
optimized to reach that solution. Upon further investigation, however, we see that when comparing
the two algorithms using the agent-pessimal regret (R) then the AE arm-DA converges with fewer
samples both in terms of average and maximum regrets, as illustrated in Figure 3.

7 Conclusion and Future Work

The game-theoretical properties such as stability in two-sided matching problems are critical indicators
of success and sustenance of matching markets; without stability agents may ‘scramble’ to participate

5The uniform agent-DA algorithm is ETGS algorithm in Kong and Li [2023] with minor differences.
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Figure 2: 95% confidence interval of stability and regrets for 200 randomized SPC preference profiles.
Please see the definition of SPC in Appendix E. An SPC preference profile has a unique stable
matching.
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Figure 3: 95% confidence interval of agent-pessimal stable regrets for 200 randomized general
preference profiles.

in secondary markets even when all preferences are known [Kojima et al., 2013]. We demonstrated
key techniques in learning preferences that rely on the structure of stable solutions. In particular,
exploiting the ‘known’ preferences of arms in the arm-proposing variant of DA and eliminating arms
early on, provably reduces the sample complexity of finding stable matchings while experimentally
having little impact on optimality (measured by regret). Findings of this paper can have substantial
impact in designing new labor markets, school admissions, or healthcare where decisions must be
made as preferences are revealed [Rastegari et al., 2014].

We conclude by discussing some limitations and open questions. First, extending this framework to
settings with incomplete preferences, ties, or those that go beyond subgaussian utility assumptions are
interesting directions for future research. We opted to avoid these nuances, for example ties, as such
variations often introduce computational complexity with known preferences. In addition, given that
the number of stable solutions could raise exponentially [Knuth, 1976], designing learning algorithms
that could converge to stable solutions while satisfying some fairness notions (e.g. egalitarian or
regret-minimizing) is an intriguing future direction.
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Appendix

A Related work (Extended)

Stable matching markets. The two-sided matching market problem has been used to analyze many
markets, such as the residency assignment problem [Gale and Shapley, 1962, Roth and Sotomayor,
1992]. The deferred-acceptance (DA) algorithm is an elegant procedure that guarantees a stable
solution and can be computed in polynomial time [Gale and Shapley, 1962]. The DA algorithm is
strategy proof for proposers Roth [1982], i.e., no single proposer can be matched to a better partner
by misrepresenting the preference. However, proposers can form a coalition to misrepresent their
preferences and some proposers are better off Huang [2006], Dubins and Freedman [1981]. Research
on stable matching with uncertain preferences [Aziz et al., 2020, 2022] investigated to find a stable
matching with the highest probability when both sides are unsure about their preferences.

Bandit learning in matching markets. Liu et al. [2020] formalized the centralized and decentral-
ized bandit learning problem in matching markets. In this problem, one side of participants (agents)
have unknown preferences over the other side (arms), while arms have known preferences over
agents. They introduced a centralized uniform sampling algorithm that achieves O(K log(T )

∆2 ) agent-
optimal stable regret for each agent, considering the time horizon T and the minimum preference
gap ∆. For decentralized matching markets, Sankararaman et al. [2021] showed that there exists an
instance such that the regret for agent ai is lower bounded as Ω(max{ (i−1) log(T )

∆2 , K log(T )
∆ }). Some

research [Sankararaman et al., 2021, Basu et al., 2021, Maheshwari et al., 2022] focused on special
preference profiles where a unique stable matching exists. Recently, Kong and Li [2023], Zhang et al.
[2022] both unveiled decentralized algorithms to achieve a near-optimal regret bound O(KlogT

∆2 ),
embodying the exploration-exploitation trade-off central to reinforcement learning and multi-armed
bandit problems.

Other works focused on different variants of the bandit matching market problem. Das and Kamenica
[2005], Zhang and Fang [2024] studied the bandit problem in matching markets, where both sides
of participants have unknown preferences. Wang et al. [2022], Kong and Li [2024] generalized the
one-to-one setting to many-to-one matching markets under the bandit framework. Kong and Li [2024]
proposed an ODA algorithm that utilized a similar idea of arm-proposing DA variant compared
to the AE arm-DA algorithm in this paper, however, the ODA algorithm achieved O(NK

∆2 log(T ))
regret bound in the one-to-one setting, which is O(N) worse than the state-of-the-art algorithms in
one-to-one matching (e.g. Kong and Li [2023], Zhang et al. [2022]). The performance of the ODA
algorithm is hindered by unnecessary agent pulls. [Jagadeesan et al., 2021] studied stability of bandit
problem in matching markets with monetary transfer. [Min et al., 2022] studied Markov matching
markets by considering unknown transition functions.

B Omitted proofs from Section 3

Theorem 1. Assume that the true preferences satisfy uniqueness consistency condition. For any
estimated utility µ̂, if the agent-proposing DA algorithm produces a stable matching, then the
arm-proposing DA algorithm produces a stable matching.

Proof. We denote the matching generated based on the estimated utility µ̂ by the agent-proposing
DA and arm-proposing DA as m̂1 and m̂2, respectively. By the definition of uniqueness consistency
there is only one stable matching, denote it by m∗. Since m̂1 is assumed to be stable, m̂1 = m∗, we
show that the arm-proposing DA algorithm also returns the same matching, i.e., m̂2 = m∗.

By using the Rural-Hospital theorem [Roth, 1986] on the estimated preferences µ̂, we have that the
same subset of agents and arms are matched in both m̂1 and m̂2, so we can reduce the case to N = K
by only considering the subset of matched agents and arms.

Since the true preferences satisfy uniqueness consistency, then it must satisfy the α-condition. Using
the definition of α-condition, we have an ordering of agents and arms such that

ai ≻bi aj ,∀j > i, (2)

where ai = m̂1(bi).
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Suppose for contradiction that m̂2 ̸= m∗. Then there must exist some k > l, such that m̂2(bl) = ak.
However, since both m̂1 and m̂2 are stable with respect to µ̂ and m̂2 is arm optimal, the partner of
arm bl in m̂2 is at least as good as its partner in m̂1. Thus,

ak = m̂2(bl) ≻bl m̂1(bl) = al,

which is a contradiction to equation (2). Thus, we prove that m̂2 is also stable (with respect to true
utility).

C Omitted proofs from Section 4

The following lemmas are useful to prove the stability bounds.

Lemma 4 (Property of independent subgaussian, Lemma 5.4 in Lattimore and Szepesvári [2020]).
Suppose that X is d-subgaussian and X1 and X2 are independent and d1 and d2 subgaussian,
respectively, then we have the following property:
(1) V ar[X] ≤ d2.
(2) cX is |c|d-subgaussian for all c ∈ R.
(3) X1 +X2 is

√
d21 + d22-subgaussian.

By the property of independent subgaussian random variables, we have the following lemma that
bounds the probability of ranking two arms wrongly.

Lemma 5. Sample h1 data {X1, X2, . . . , Xh1
} i.i.d. from 1-subgaussian with mean µ1, and h2

data {Y1, Y2, . . . , Yh2
} i.i.d. from 1-subgaussian with mean µ2, where µ1 < µ2. Two datasets are

independent. Define µ̂1 and µ̂2 as the sample mean for two datasets. Then we have

P (µ̂2 < µ̂1) ≤ exp(− (µ2 − µ1)
2

2( 1
h1

+ 1
h2
)
).

Proof. By Lemma 4, µ̂2 − µ̂1 is
√

1
h1

+ 1
h2

-subgaussian with mean µ2 − µ1. Thus by the definition
of subgaussian

P (µ̂2 < µ̂1) = P ((µ̂2 − µ̂1)− (µ2 − µ1) < −(µ2 − µ1)) ≤ exp(− (µ2 − µ1)
2

2( 1
h1

+ 1
h2
)
),

and the proof is complete.

Lemma 1. Assume µ̂ is the sample average, and matching m̂ is stable with respect to µ̂. Define a
‘good’ event for agent ai and arm bj as Fi,j = {|µi,j − µ̂i,j | ≤ ∆/2}, and define the intersection
of the good events over envy-set as F(ES(m̂)) = ∩(ai,bj)∈ES(m̂)Fi,j . Then if the event F(ES(m̂))
occurs, matching m̂ is guaranteed to be stable (with respect to µ).

Proof. We show that no agent-arm pair forms a blocking pair in m̂. We prove it by contradiction.

Assume that there exists an agent ai and an arm bj in the local envy-set ESi(m̂) that blocks m̂, which
means µi,m̂(ai) < µi,j , and more concretely, µi,j − µi,m̂(ai) ≥ ∆. From stability of m̂ with respect
to the preference µ̂ we have that µ̂i,m̂(ai) > µ̂i,j , otherwise, (ai, bj) blocks m̂ according to µ̂. Thus,
under the event F(ES(m̂)), it holds that

µ̂i,j ≥ µi,j −
∆

2
≥ µi,m̂(ai) +

∆

2
≥ µ̂i,m̂(ai),

which is a contradiction. Therefore, m̂ is stable with respect to µ.

Theorem 2. By uniform sampling (Algorithm 1), each agent samples each arm T/K times, and m̂1

and m̂2 are matchings generated by agent-proposing DA and arm-proposing DA, respectively. Then,

(i) P (m̂1 is unstable) = O(|ES(m)| exp(−∆2T
8K )),

(ii) P (m̂2 is unstable) = O(|ES(m)| exp(−∆2T
8K )),
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where m is the agent-pessimal stable matching and m is the agent-optimal stable matching.

Proof. Since m̂1 and m̂2 are produced by DA based on µ̂, both matchings are stable with respect
to µ̂. By Lemma 1, both matchings are guaranteed to be stable with respect to µ conditioned on
F(ES(m̂1)) (or F(ES(m̂2))). Thus, it follows

P (m̂1 is unstable) ≤ 1− P (F(ES(m̂1)))

= E[∪(ai,bj)∈ES(m̂1)P (|µi,j − µ̂i,j | ≥ ∆/2)]

≤ E[
∑

(ai,bj)∈ES(m̂1)

P (|µi,j − µ̂i,j | ≥ ∆/2)]

≤ 2E[|ES(m̂1)|] exp(−
∆2T

8K
),

where the second line follows from the definition of the event F , the third line is by union bound, and

the last line follows from Lemma 4 that µi,j − µ̂i,j is
√

K
T -subgaussian with 0 mean.

To complete the proof for m̂1, we demonstrate an upper bound of E[|ES(m̂1)|]. Then we have that

|E[|ES(m̂1)|]− |ES(m)|| ≤ NK · P (m̂1 ̸= m)

≤ NK · P (∃i, j, j′ such that µi,j > µi,j′ , µ̂i,j < µ̂i,j′)

≤ N2K3P (µi,j > µi,j′ , µ̂i,j < µ̂i,j′)

≤ N2K3exp(−∆2T

4K
),

where the second line comes from the fact that if m̂1 ̸= m, then there exists an agent ai and two arms
bj and bj′ that are learned incorrectly since a correct estimated profile produces m by agent-proposing
DA. The last inequality follows from Lemma 5 since (µi,j − µi,j′) ≥ ∆ and number of samples is
T/K.

Note that the difference is negligible when T is sufficiently large compared with N and K. The same
computation applies to m̂2 and m. Thus the second statement follows.

A useful technical lemma for bounding the number of samples agents need to find a stable matching
is as follows.
Lemma 6. For variables K ∈ N and d > 0, min{t ∈ N : log(Kt)/t ≤ d} = Θ( 1d log(

K
d )).

Proof. Define Tmin := min{t ∈ N : log(Kt)/t ≤ d} and Tmax := max{t ∈ N : log(Kt)/t ≥ d}.
We observe that Tmin ≤ Tmax + 1 and thus, we compute the upper bound of Tmin through Tmax. By
the definition of Tmax, we have

Tmax ≤ 1

d
log(KTmax) ≤

1

d
log(

K

d
log(KTmax)). (3)

Again by the definition of Tmax and the fact that x ≥ log2(x) for any x > 0, we have

Tmax

K
d2 ≤ log2(KTmax)

KTmax
≤ 1. (4)

Equation (3) and Equation (4) give

Tmax ≤ 1

d
log(

2K

d
log(

K

d
)) =

1

d
log(

2K

d
) +

1

d
log(log(

K

d
)) ≤ 2

d
log(

2K

d
).

On the other hand, we compute the lower bound of Tmin by the definition of Tmin:

Tmin ≥ 1

d
log(KTmin) ≥

1

d
log(

K

d
log(KTmin)).

Since Tmin is a positive integer, we have that

Tmin ≥ 1

d
log(

K

d
log(K)) ≥ 1

d
log(

K

d
)

when K > 2. Thus the proof is complete.
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Theorem 3. [Sample complexity for uniform sampling algorithm] With probability at least 1− α,
both the uniform agent-DA and the uniform arm-DA algorithms find a stable matching with the same
sample complexity Õ(NK

∆2 log(α−1))6.

Proof. We first show that Algorithm 1 finds the stable matching m with a high probability. Then
we analyze the total number of samples. If agent ai samples arm bj for t times, by Lemma 4
and the definition of subgaussian, with probability at least 1 − 2

(Kt)β
such that |µ̂i,j(t) − µi,j | ≤√

2β log(Kt)/t, where µ̂i,j(t) is the sample average of agent ai over arm bj when ai samples bj for
t times. Taking a union bound for all i, j, t gives that with probability at least 1− 2N

Kβ−1 ζ(β),

|µ̂i,j(t)− µi,j | ≤
√
2β log(Kt)/t, ∀t ∈ N,∀i ∈ [N ],∀j ∈ [K]. (5)

Conditioned on this, we first show that Algorithm 1 terminates with true preference profiles. Assume
that the mechanism stops with sample size T for each agent-arm pair. For any i and j ̸= k, if
µ̂i,j > µ̂i,k, we have a stopping condition

µ̂i,j − µ̂i,k ≥ 2
√
2β log(KT )/T , (6)

since by Equation (1) and line 6 of Algorithm 1

LCBi,j = µ̂i,j −
√
2β log(KT )/T ≥ µ̂i,k +

√
2β log(KT )/T = UCBi,k.

Then by Equation (5)
µi,j ≥ LCBi,j ≥ UCBi,k ≥ µi,k.

Hence, uniform agent-DA algorithm produces the stable matching m.

Then we compute the sample complexity. By Equation (5)

µ̂i,j − µ̂i,k ≥ −2
√
2β log(KT )/T + µi,j − µi,k. (7)

Therefore if we set
T = min{t ∈ N :

√
2β log(Kt)/t ≤ ∆/4},

we have that

µ̂i,j − µ̂i,k ≥ −2
√

2β log(KT )/T + µi,j − µi,k

≥ −2
√

2β log(KT )/T +∆

≥ 2
√
2β log(KT )/T .

and thus the stopping condition 6 is satisfied. By Lemma 6 we have T = min{t ∈ N :√
2β log(Kt)/t ≤ ∆/4} = O( β

∆2 log(
βK
∆2 )). Note that T is the sample complexity for each

agent-arm pair. Thus, the total number of samples are bounded by NKT = O(βNK
∆2 log(βK∆2 )).

By setting a probability budget α = 4N
Kβ−1 , we have that with probability at least 1− α, the uniform

sampling algorithm terminates with sample complexity O(βNK
∆2 log(βK∆2 )), where β = 1+ log(4Nα−1)

log(K) .

Therefore, the sample complexity for uniform agent-DA algorithm is Õ(NK
∆2 log(α−1)).

For uniform arm-DA, the only difference is that it produces a matching by arm-proposing DA
algorithm. Therefore, uniform arm-DA finds the stable matching m with the same sample complexity.

D Omitted proofs from Section 5

Theorem 4. By Algorithm 3, assume that agent ai samples arm bj for Ti,j and m̂ is returned by the
algorithm. We define Tmin = min(ai,bj)∈ES(m̂) Ti,j as the minimum sample size for agent-arm pairs.
Then, we have

P (m̂ is unstable) ≤ O(|ES(m)| exp(−∆2Tmin

8
)).

6Õ denotes the upper bound that omits terms logarithmic in the input.
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Proof. When the sampling phase of Algorithm 3 ends, there is no unmatched agent and the matching
m̂ is the same matching proposed by arm-proposing DA according to estimated utility µ̂. Thus, m̂ is
stable with respect to µ̂. By Lemma 1, we know that m̂ is stable under the event F(ES(m̂)). Then

P (m̂ is unstable) ≤ 1− P (F(ES(m̂)))

= E[∪(ai,bj)∈ES(m̂)P (|µi,j − µ̂i,j | ≥ ∆/2)]

≤ E[
∑

(ai,bj)∈ES(m̂)

P (|µi,j − µ̂i,j | ≥ ∆/2)]

≤ 2E[
∑

(ai,bj)∈ES(m̂)

exp(−∆2Ti,j

8
)]

≤ 2E[|ES(m̂)| exp(−∆2Tmin

8
)].

The third line comes from union bound, and the fourth line comes from Lemma 4 and that µi,j − µ̂i,j

is
√

1
Ti,j

-subgaussian. Observe that correct estimated profile on ES(m̂) outputs m by Algorithm 3
since the algorithm follows arm-DA algorithm. Then we have the computation

P (m̂ ̸= m) ≤ P (∃(ai, bj) ∈ ES(m̂), (ai, bj′) ∈ ES(m̂), and µi,j > µi,j′ , µ̂i,j < µ̂i,j′)

≤
∑

(ai,bj),(ai,bj′ )∈ES(m̂)

P (µi,j > µi,j′ , µ̂i,j < µ̂i,j′)

≤
∑

(ai,bj),(ai,bj′ )∈ES(m̂)

exp(− ∆2

2( 1
Ti,j

+ 1
Ti,j′

)
)

≤ NK2exp(−∆2Tmin

4
),

where the third line follows from Lemma 5. Therefore, we have that m̂ converges to m and so the
probability of not being m is negligible when Tmin is sufficiently large. Thus, we complete the
proof.

Theorem 5. [Sample complexity for AE arm-DA algorithm] With probability at least 1− α, Algo-
rithm 3 terminates and returns a stable matching, m, with sample complexity of

Õ(
ES(m)

∆2
log(α−1)).

Proof. The proof has similar structure to the proof of Theorem 3; however, the proof is different
because Algorithm 3 only sample the pairs in the envy set ES(m) while Algorithm 1 samples all
arms uniformly.

We first show that with a high probability, the algorithm terminates with m. If agent ai samples
arm bj for t times, by Lemma 4 and the definition of subgaussian, we have that |µ̂i,j(t) − µi,j | ≤√
2β log(Kt)/t with probability at least 1− 2

(Kt)β
, here µi,j(t) is the sample average of agent ai

over arm bj when ai samples bj for t times. Taking a union bound over all t and all pairs ai, bj in the
envy set ES(m), we have that

|µ̂i,j(t)− µi,j | ≤
√

2β log(Kt)/t, ∀t ≥ 1,∀(ai, bj) ∈ ES(m) (8)

with probability at least 1− 2|ES(m)|
Kβ ζ(β). Conditioned on Equation (8), we have that Algorithm 3

terminates with correct estimated profile on pairs of the envy-set ES(m) as the same logic in the first
part of the proof in Theorem 3. Thus, since Algorithm 3 follows arm-proposing DA algorithm, the
algorithm outputs m.

Next, we claim that for every agent-arm pair in the envy-set ES(m), the sample complexity is
T = min{t ∈ N :

√
2β log(Kt)/t ≤ ∆/4} = O( β

∆2 log(
βK
∆2 )). We prove this for each agent-arm

pair by induction on the number of iterations of while loop of Algorithm 3. We will show that in each
invocation of Algorithm 2, the number of samples for any agent-arm pair in the envy-set ES(m) is at
most T . Thus, since the while loop in Algorithm 3 checks whether the sample number is bounded by
T , we get the desired bound.
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Base case. Let arms bj and bj′ are the first to propose to agent ai. Let Ti,j and Ti,j′ be the number
of samples for agent ai over arm bj and bj′ by Algorithm 2. Without loss of generality, we assume
that µi,j > µi,j′ . Since both arms have not been sampled before, by Algorithm 2 the stopping
condition Equation (6) is satisfied when Ti,j = Ti,j′ = T since

µ̂i,j − µ̂i,j′ ≥ −2
√

2β log(KT )/T + µi,j − µi,j′

≥ −2
√

2β log(KT )/T +∆

≥ 2
√
2β log(KT )/T ,

where the first line comes from Equation (8), and the third line comes from the definition of T .

Inductive steps. By induction hypothesis, in Algorithm 3, agent ai has already sampled bj for
ti,j ≤ T times. Let bj be the winner in the last round and bj′ proposes to ai in this round. In Line 4
of Algorithm 2, agent ai samples ti,j times of arm bj′ before sampling bj . Then if ai samples bj for
T − ti,j more times and ai samples bj′ T times, by the same computation as the base case, we have
that the stopping condition Equation (6) is satisfied when Ti,j = Ti,j′ = T . Thus, we show that the
number of samples for any agent-arm pair is bounded by T .

Since Algorithm 3 only samples the agent-arm pairs in the envy set ES(m), we get that the total
sample complexity is |ES(m)|T = O(β(|ES(m)|)

∆2 log(βK∆2 )).

By setting the probability budget α = 4|ES(m)|
Kβ , we have that with probability at least 1 − α, the

AE arm-DA algorithm has sample complexity complexity of the order β|ES(m)|
∆2 log(βK∆2 ), where

β = log(4|ES(m)|α−1)
log(K) . Therefore, it is of the order Õ( |ES(m)|

∆2 log(α−1)).

Lemma 3. Considering any true preference µ, we have the following bounds for envy-set:

(i) Size of the envy-set for m: (max{N,K} −N)N ≤ |ES(m)| ≤ NK.

(ii) Size of the envy-set for m: (max{N,K} −N)N ≤ |ES(m)| ≤ NK −N + 1.

Proof. First we consider the best case and N ≥ K. Suppose that for any i ∈ [K], agent ai prefers
arm bi the most; also for any j ∈ [K], arm bj prefers agent aj the most. Under this preference profile,
we immediately have m = m = {(a1, b1), (a2, b2), . . . , (aK , bK)} and, since all arms match their
first choice, we have |ES(m)| = |ES(m)| = 0. if K > N , we construct the preference profile
similarly for the first N agents and N arms, then the remaining K −N arms are not matched, and so
|ES(m)| = |ES(m)| = (K −N)N .

Now consider the worst case for m. We keep agents’ preferences the same as stated above;
however, agent aj is the worst agent according to bj for each j ∈ [min{N,K}]. Then m =
{(a1, b1), (a2, b2), . . . , (amin{N,K}, bmin{N,K})}. Thus, for each j ∈ [K], arm bj is in the envy-set
ESi(m) of agent ai for all i ∈ [N ]. Then, envy-set ES(m) contains all agent-arm pairs and so in
the worst case |ES(m)| = NK.

Lastly, we show the worst case for m. We claim that for all matched arms, at most one arm can get
matched to the worst choice. In their seminal work, Gale and Shapley [1962] observed that when one
arm gets matched to the worst agent, it proposes to all other agents and get rejected by them. This
observation implies all other agents are tentatively matched and thus no agent is available. Therefore,
we have that the worst case is |ES(m)| = NK −N + 1.

E Omitted details from Section 6

We define the sequence preference condition (SPC) that we use for our experiments. A preference
profile satisfies SPC if and only if there is an order of agents and arms such that ∀i ∈ [N ],∀j >
i, µi,i > µi,j , and ∀i ∈ [K],∀j > i, ai >bi aj . If each participant of one side (agents or arms) has
the same preference (also known as a masterlist ) over the other, the preference profile satisfies SPC.
Clearly, a preference profile that is SPC satisfies α-condition.

Figure 4 shows the stability and regrets for all four algorithms under the constraint of the agent
masterlist preference profiles. When agents share identical utilities for each arm, the average rewards
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Figure 4: 95% confidence interval of stability and regrets for 200 randomized agent masterlist
preference profiles.

remain the same regardless of the matching. Consequently, the average regrets (showed in the middle
figure) are always zero.

We also explain why the uniform arm-DA algorithm surpasses the AE arm-DA algorithm in terms of
R, but underperforms compared to the AE-arm DA algorithm in terms of R under general preference
profiles. Note that the uniform arm-DA algorithm samples arms uniformly, and thus it may end up
matching agents to arms that are between the agent-optimal stable match and the agent-pessimal
stable match. Thus, when compared with the agent-pessimal regret, it may seem better. However,
in comparison, agents are incrementally matched to increasingly preferable arms throughout the
procedure of Algorithm 3, and therefore agents are matched to arms that are no better than agent-
pessimal stable match as shown in Figure 1 and Figure 3.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims in the abstract and introduction match the theoretical analysis in
Section 3, Section 4, and Section 5, and the simulated experiments in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned several limitations and future work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide detailed proofs in appendix. Assumptions are clearly stated in the
statement of theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly state the experimental details in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]
Justification: We provide codes in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the experimental setting in Section 6. Additional details are
provided in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show error bars for figures in Section 6 and Appendix E. The error bars are
calculated as average ± 1.96 ∗ standard error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments use bandit domain and algorithms can be run on a typical personal
computer. Minimal compute resources are required to reproduce experiments in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we follow the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we discussed the societal impacts of our work in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We don’t use any existing codes or data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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