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Figure 1: Diffusion-based processes. (a) Probabilistic diffusion process [1], where q(·) is noise
sampling and pθ(·) is denoising. (b) Diffusion process in the 2D coordinate space [2, 3, 4]. (c) A
purely visual diffusion-based data prediction approach reconstructs the subsequent video frame. (d)
Our proposed data interpolation approach DINTR interpolates between two consecutive video frames,
indexed by timestamp t, allowing a seamless temporal transition for visual content understanding,
temporal modeling, and instance extracting for the object tracking task across various indications (e).

Abstract

Object tracking is a fundamental task in computer vision, requiring the localization
of objects of interest across video frames. Diffusion models have shown remarkable
capabilities in visual generation, making them well-suited for addressing several
requirements of the tracking problem. This work proposes a novel diffusion-based
methodology to formulate the tracking task. Firstly, their conditional process
allows for injecting indications of the target object into the generation process.
Secondly, diffusion mechanics can be developed to inherently model temporal
correspondences, enabling the reconstruction of actual frames in video. However,
existing diffusion models rely on extensive and unnecessary mapping to a Gaussian
noise domain, which can be replaced by a more efficient and stable interpolation
process. Our proposed interpolation mechanism draws inspiration from classic
image-processing techniques, offering a more interpretable, stable, and faster ap-
proach tailored specifically for the object tracking task. By leveraging the strengths
of diffusion models while circumventing their limitations, our Diffusion-based
INterpolation TrackeR (DINTR) presents a promising new paradigm and achieves
a superior multiplicity on seven benchmarks across five indicator representations.
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1 Introduction

Object tracking is a long-standing computer vision task with widespread applications in video analysis
and instance-based understanding. Over the past decades, numerous tracking paradigms have been
explored, including tracking-by-regression [5], -detection [6], -segmentation [7] and two more recent
tracking-by-attention [8, 9], -unification [10] paradigms. Recently, generative modeling has achieved
great success, offering several promising new perspectives in instance recognition. These include
denoising sampling bounding boxes to final prediction [2, 3, 4], or sampling future trajectories [11].
Although these studies explore the generative process in instance-based understanding tasks, they
perform solely on coordinate refinement rather than performing on the visual domain, as in Fig. 1b.

In this work, we propose a novel tracking framework solely based on visual iterative latent variables
of diffusion models [12, 13], thereby introducing the novel and true Tracking-by-Diffusion paradigm.
This paradigm demonstrates versatile applications across various indications, comprising points,
bounding boxes, segments, and textual prompts, facilitated by the conditional mechanism (Eqn. (3)).

Moreover, our proposed Diffusion-based INterpolation TrackeR (DINTR) inherently models the
temporal correspondences via the diffusion mechanics, i.e., the denoising process. Specifically, by
formulating the process to operate temporal modeling online and auto-regressively (i.e. next-frame
reconstruction, as in Eqn. (4)), DINTR enables the capability for instance-based video understanding
tasks, specifically the object tracking. However, existing diffusion mechanics rely on an extensive and
unnecessary mapping to a Gaussian noise domain, which we argue can be replaced by a more efficient
interpolation process (Subsection 4.3). Our proposed interpolation operator draws inspiration from
the image processing field, offering a more direct, seamless, and stable approach. By leveraging the
diffusion mechanics while circumventing their limitations, our DINTR achieves superior multiplicity
on seven benchmarks across five types of indication, as elaborated in Section 5. Note that our
Interpolation process does not aim to generate high-fidelity unseen frames [14, 15, 16, 17]. Instead,
its objective is to seamlessly transfer internal states between frames for visual semantic understanding.

Contributions. Overall, (i) this paper reformulates the Tracking-by-Diffusion paradigm to operate on
visual domain (ii) which demonstrates broader tracking applications than existing paradigms. (iii) We
reformulate the diffusion mechanics to achieve two goals, including (a) temporal modeling and (b)
iterative interpolation as a 2× faster process. (iv) Our proposed DINTR achieves superior multiplicity
and State-of-the-Art (SOTA) performances on seven tracking benchmarks of five representations. (v)
Following sections including Appendices A elaborate on its formulations, properties, and evaluations.

2 Related Work

2.1 Object Tracking Paradigms

Tracking-by-Regression methods refine future object positions directly based on visual features.
Previous approaches [31, 45] rely on the regression branch of object features in nearby regions.
CenterTrack [5] represents objects via center points and temporal offsets. It lacks explicit object
identity, requiring the appearance [31], motion model [46], and graph matching [47] components.

Tracking-by-Detection methods form object trajectories by linking detections over consecutive
frames, treating the task as an optimization problem. Graph-based methods formulate the tracking
problem as a bipartite matching or maximum flow [48]. These methods utilize a variety of techniques,
such as link prediction [49], trainable graph neural networks [47, 34], edge lifting [50], weighted
graph labeling [51], multi-cuts [52, 53], general-purpose solvers [54], motion information [55],
learned models [56], association graphs [57], and distance-based [58, 59, 60]. Additionally, Ap-
pearance-based methods leverage robust image recognition frameworks to track objects. These
techniques depend on similarity measures derived from 3D appearance and pose [61], affinity esti-
mation [62], detection candidate selection [62], learned re-identification features [63, 64], or twin
neural networks [65]. On the other hand, Motion modeling is leveraged for camera motion [66],
observation-centric manner [67], trajectory forecasting [11], the social force model [68, 69, 70, 71],
based on constant velocity assumptions [72, 73], or location estimation [74, 68, 75] directly from
trajectory sequences. Additionally, data-driven motion [76] need to project 3D into 2D motions [77].

Tracking-by-Segmentation leverages detailed pixel information and addresses the challenges of
unclear backgrounds and crowded scenes. Methods include cost volumes [7], point cloud representa-
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Table 1: Comparison of paradigms, mechanisms of SOTA tracking methods. Indication Types
defines the representation to indicate targets with their corresponding datasets: TAP-Vid [18],
PoseTrack [19, 20], MOT [21, 22, 23], VOS [24], VIS [25], MOTS [26], KITTI [27], LaSOT [28],
GroOT [29]. Methods in color gradient support both types of single- and multi-target benchmarks.

Method Paradigm Mechanism∗ Indication Types
Point Pose Box Segment Text

TAPIR [30]

Regression

Iter. Refinement TAP-Vid ✗ ✗ ✗ ✗
Tracktor++ [31] Regression Head ✗ ✗ MOT ✗ ✗
CenterTrack [5] Offset Prediction ✗ ✗ MOT ✗ ✗
GTI [32] Rgn-Tpl Integ. ✗ ✗ LaSOT ✗ LaSOT
DeepSORT [33]

Detection

Cascade Assoc. ✗ ✗ MOT ✗ ✗
GSDT [34] Relation Graph ✗ ✗ MOT ✗ ✗
JDE [35] Multi-Task ✗ ✗ MOT ✗ ✗
ByteTrack [36] Two-stage Assoc. ✗ ✗ MOT ✗ ✗

TrackR-CNN [37]

Segmentation

3D Convolution ✗ ✗ ✗ MOTS ✗
MOTSNet [26] Mask-Pooling ✗ ✗ ✗ MOTS ✗
CAMOT [38] Hypothesis Select ✗ ✗ ✗ KITTI ✗
PointTrack [39] Seg. as Points ✗ ✗ ✗ MOTS/KITTI ✗

MixFormerV2 [40]

Attention

Mixed Attention ✗ ✗ LaSOT ✗ ✗
TransVLT [41] X-Modal Fusion ✗ ✗ LaSOT ✗ LaSOT
MeMOTR [42] Memory Aug. ✗ ✗ MOT ✗ ✗
MENDER [29] Tensor Decomp. ✗ ✗ MOT ✗ GroOT
SiamMask [43]

Unification

Variant Head ✗ ✗ LaSOT VOS ✗
TraDeS [7] Cost Volume ✗ ✗ MOT VIS/MOTS ✗
UNICORN [10] Unified Embed. ✗ ✗ LaSOT/MOT VOS/MOTS ✗
UniTrack [44] Primitive Level ✗ PoseTrack LaSOT/MOT VOS/MOTS ✗

DiffusionTrack [3]
Diffusion

Denoised Coord. ✗ ✗ MOT ✗ ✗
DiffMOT [4] Motion Predictor ✗ ✗ MOT ✗ ✗
DINTR (Ours) Visual Interpolat. TAP-Vid PoseTrack LaSOT/MOT VOS/MOTS LaSOT/GroOT

∗ Iter.: Iterative. Rgn-Tpl Integ.: Region-Template Integration. Assoc.: Association. X: Cross. Decomp.:
Decomposition. Embed.: Embedding. Coord.: 2D Coordinate. Motion: 2D Motion. Interpolat.: Interpolation.

tions [39], mask pooling layers [26], and mask-based [38] with 3D convolutions [37]. However, its
reliance on segmented multiple object tracking data often necessitates bounding box initialization.

Tracking-by-Attention applies the attention mechanism [78] to link detections with tracks at the
feature level, represented as tokens. TrackFormer [8] approaches tracking as a unified prediction task
using attention, during initiation. MOTR [9] and MOTRv2 [79] advance this concept by integrating
motion and appearance models, aiding in managing object entrances/exits and temporal relations.
Furthermore, object token representations can be enhanced via memory techniques, such as memory
augmentation [42] and memory buffer [80, 81]. Recently, MENDER [29] presents another stride, a
transformer architecture with tensor decomposition to facilitate object tracking through descriptions.

Tracking-by-Unification aims to develop unified frameworks that can handle multiple tasks simul-
taneously. Pioneering works in this area include TraDeS [7] and SiamMask [43], which combine
object tracking (SOT/MOT) and video segmentation (VOS/VIS). UniTrack [44] employs separate
task-specific heads, enabling both object propagation and association across frames. Furthermore,
UNICORN [10] investigates learning robust representations by consolidating from diverse datasets.

2.2 Diffusion Model in Semantic Understanding

Generative models have recently been found to be capable of performing understanding tasks.

Visual Representation and Correspondence. Hedlin et al. [82] establishes semantic visual corre-
spondences by optimizing text embeddings to focus on specific regions. Diffusion Autoencoders [83]
form a diffusion-based autoencoder encapsulating high-level semantic information. Similarly, Zhang
et al. [84] combine features from Stable Diffusion (SD) and DINOv2 [85] models, effectively merging
the high-quality spatial information and capitalizing on both strengths. Diffusion Hyperfeatures [86]
uses feature aggregation and transforms intermediate feature maps from the diffusion process into a
single, coherent descriptor map. Concurrently, DIFT [87] simulates the forward diffusion process,
adding noise to input images and extracting features within the U-Net. Asyrp [88] employs the
asymmetric reverse process to explore and manipulate a semantic latent space, upholding the original
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performance, integrity, and consistency. Furthermore, DRL [89] introduces an infinite-dimensional
latent code that offers discretionary control over the granularity of detail.

Generative Perspectives in Object Tracking. A straightforward application of generative models
in object tracking is to augment and enrich training data [90, 91, 92]. For trajectory refinement,
QuoVadis [11] uses the social generative adversarial network (GAN) [93] to sample future trajectories
to account for the uncertainty in future positions. DiffusionTrack [3] and DiffMOT [4] utilize the
diffusion process in the bounding box decoder. Specifically, they pad prior 2D coordinate bounding
boxes with noise, then transform them into tracking results via a denoising decoder.

2.3 Discussion

This subsection discusses the key aspects of our proposed paradigm and method, including the mech-
anism comparison of our DINTR against alternative diffusion approaches [2, 3, 4], and the properties
that enable Tracking-by-Diffusion on visual domain to stand out from the existing paradigms.

Conditioning Mechanism. As illustrated in Fig. 1b, tracking methods performing diffusion on the
2D coordinate space [3, 4] utilize generative models to model 2D object motion or refine coordinate
predictions. However, they fail to leverage the conditioning mechanism [13] of Latent Diffusion
Models, which are principally capable of modeling unified conditional distributions. As a result,
these diffusion-based approaches have a specified indicator representation limited to the bounding
box, that cannot be expanded to other advanced indications, such as point, pose, segment, and text.

In contrast, we formulate the object tracking task as two visual processes, including one for diffusion-
based Reconstruction, as illustrated in Fig. 1c, and another 2× faster approach that is Interpolation,
as shown in Fig. 1d. These two approaches demonstrate their superior versatility due to the controlled
injection pθ(z|τ) implemented by the attention mechanism [78] (Eqn. (3)) during iterative diffusion.

Unification. Current methods under tracking-by-unification face challenges due to the separation
of task-specific heads. This issue arises because single-object and multi-object tracking tasks are
trained on distinct branches [7, 44] or stages [35], with results produced through a manually designed
decoder for each task. The architectural discrepancies limit the full utilization of network capacity.

In contrast, Tracking-by-Diffusion operating on the visual domain addresses the limitations of
unification. Our method seamlessly handles diverse tracking objectives, including (a) point and pose
regression, (b) bounding box and segmentation prediction, and (c) referring initialization, while
remaining (d) data- and process-unified through an iterative process. This is possible because our
approach operates on the base core domain, allowing it to understand contexts and extract predictions.

Application Coverage presented in Table 1 validates the unification advantages of our approach.
As highlighted, our proposed model DINTR supports unified tracking across seven benchmarks of
eight settings comprising five distinct categories of indication. It can handle both single-target and
multiple-target benchmarks, setting a new standard in terms of multiplicity, flexibility, and novelty.

3 Problem Formulation

Given two images It and It+1 from a video sequence V , and an indicator representation Lt (e.g.,
point, structured points set for pose, bounding box, segment, or text) for an object in It, our goal is to
find the respective region Lt+1 in It+1. The relationship between Lt and Lt+1 can encode semantic
correspondences [87, 86, 94] (i.e., different objects with similar semantic meanings), geometric
correspondence [95, 96, 97] (i.e., the same object viewed from different viewpoints) or temporal
correspondence [98, 99, 100] (i.e., the location of a deforming object over a video sequence).

We define the object-tracking task as temporal correspondence, aiming to establish matches between
regions representing the same real-world object as it moves, potentially deforming or occluding
across the video sequence over time. Let us denote a feature encoder E(·) that takes as input the
frame It and returns the feature representation zt. Along with the region Lt for the initial indication,
the online and auto-regressive objective for the tracking task can be written as follows:

 \label {temporal_objective} \small \keyword {L_{t+1}} = \mathrm {arg}\min _{\keyword {L}} dist\big (\mathcal {E}(\mathbf {I}_t) [L_t], \mathcal {E}(\mathbf {I}_{t+1})[\keyword {L}]\big ),  







 (1)

where dist(·, ·) is a semantic distance that can be cosine [33] or distributional softmax [101]. A
special case is to give Lt as textual input and return Lt+1 as a bounding box for the referring object
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tracking [29, 102] task. In addition, the pose is treated as multiple-point tracking. The output Lt+1 is
then mapped to a point, box, or segment. We explore how diffusion models can learn these temporal
dynamics end-to-end to output consistent object representations frame-to-frame in the next section.

4 Methodology

This section first presents the notations and background. Then, we present the deterministic frame
reconstruction task for video modeling. Finally, our proposed framework DINTR is introduced.

4.1 Notations and Background

Latent Diffusion Models (LDMs) [1, 13, 103] are introduced to denoise the latent space of an
autoencoder. First, the encoder E(·) compresses a RGB image It into an initial latent space zt0 =
E(It), which can be reconstructed to a new image D(zt0). Let us denote two operators Q and Pεθ
are corresponding to the sampling noise process q(ztk|ztk−1) and the denoising process pε(ztk−1|ztk),
where Pεθ is parameterized by an U-Net εθ [104] as a noise prediction model via the objective:

  \label {eq:diffusion} \small \min _\theta \mathbb {E}_{\mathbf {z}^t_0, \keywordone {\epsilon \sim \mathcal {N}(0, 1)}, \keywordtwo {k \sim \mathcal {U}(1, T)}}\Big [\big \|\keywordone {\epsilon } - \mathcal {P}_{\varepsilon _\theta }\big (\mathcal {Q}(\mathbf {z}^t_0, \keywordtwo {k}), \keywordtwo {k}, \tau \big )\big \|_2^2\Big ], \qquad \text {where } \tau = \mathcal {T}_\theta (L_t). 


 




  






     (2)

Localization. All types of localization Lt, e.g., point, pose (i.e. set of structured points), bounding
box, segment, and especially text, are unified as guided indicators. Tθ(·) is the respective extractor,
such as the Gaussian kernel for point, pooling layer for bounding box and segment, or word embedding
model for text. ztk is a noisy sample of zt0 at step k ∈ [1, . . . , T ], and T = 50 is the maximum step.

The Conditional Process pθ(zt+1
0 |τ), containing cross-attention Attn(ε, τ) to inject the indication

τ to an autoencoder with U-Net blocks εθ(·, ·), is derived after noise sampling ztk = Q(zt0, k):

  \small \mathcal {P}_{\varepsilon _\theta }\big (\mathcal {Q}(\mathbf {z}^t_0, k), k, \tau \big ) = \underbrace {\mathrm {softmax}\Big (\frac {\varepsilon _\theta (\overbrace {\sqrt {\bar {\alpha }_k}\mathbf {z}^t_{0} + \sqrt {1 - \bar {\alpha }_k}\epsilon }^{\mathcal {Q}(\mathbf {z}^t_{0}, k)})\times W_{Q}\times (\tau \times W_{K})^\intercal }{\sqrt {d}}\Big )}_{Attn(\varepsilon , \tau )}\times (\tau \times W_{V}), \label {eq:attn} 


  





 






   




 



   (3)

where WQ,K,V are projection matrices, d is the feature size, and αk is a scheduling parameter.

4.2 Deterministic Next-Frame Reconstruction by Data Prediction Model

The noise prediction model, defined in Eqn. (2), can not generate specific desired pixel content while
denoising the latent feature to the new image. To effectively model and generate exactly the desired
video content, we formulate a next-frame reconstruction task, such that D(Pεθ (z

t
T , T, τ)) ≈ It+1. In

this formulation, the denoised image obtained from the diffusion process should approximate the next
frame in the video sequence. The objective for a data prediction model (Fig. 1c) derives that goal as:

  \label {eq:prediction} \small \min _\theta \mathbb {E}_{\mathbf {z}^{t, \keywordtri {t+1}}_0, \keywordtwo {k \sim \mathcal {U}(1, T)}}\Big [\big \|\keywordtri {\mathbf {z}^{t+1}_k} - \mathcal {P}_{\varepsilon _\theta }\big (\mathcal {Q}(\mathbf {z}^{t}_0, \keywordtwo {k}), \keywordtwo {k}, \tau \big )\big \|_2^2\Big ]. 





 


 


  






 (4)

Algorithm 1 Inplace Reconstruction Finetuning

Input: Network εθ, video sequence V , indication Lt=0

1: Sample (t, t+ 1) ∼ U(0, |V| − 2)
2: τ ← Tθ(Lt)

3: Draw It,t+1 ∈ V and encode zt,t+1
0 = E(It,t+1)

4: Sample k ∼ U(1, T )
5: Optimize minθ

[
∥zt+1

k − Pεθ (Q(zt0, k), k, τ)∥22
]

6: Optimize minθ
[
∥It+1−D(Pεθ (Q(zt0, k), k, τ))∥22

]

In layman’s terms, the objective of the
data prediction model formulates the
task of establishing temporal correspon-
dence between frames by effectively
capturing the pixel-level changes and
reconstructing the real next frame from
the current frame. With the pre-trained
decoder D(·) in place, the key optimiza-
tion target becomes the denoising pro-
cess itself. To achieve this, a combina-
tion of step-wise KL divergences is used to guide the likelihood of current frame latents ztk toward
the desired latent representations for the next frame zt+1

k , as described in Alg. 1 and derived as:

  \small \mathcal {L} = \frac {1}{2}\mathbb {E}_{\mathbf {z}^{t, \keywordtri {t+1}}_0, \keywordtwo {k \sim \mathcal {U}(1, T)}} \big [\|\keywordtri {\mathbf {z}^{t+1}_k} - \mathcal {P}_{\varepsilon _\theta }(\mathcal {Q}(\mathbf {z}^{t}_0, \keywordtwo {k}), \keywordtwo {k}, \tau )\|_2^2\big ] = \keywordtwo {\int _0^1}\frac {d}{d\keywordtwo {\alpha _k}} D_{KL}\big (q(\keywordtri {\mathbf {z}^{t+1}_{k}}|\keywordtri {\mathbf {z}^{t+1}_{k-1}}) \| p_\varepsilon (\mathbf {z}^{t}_{k-1} | \mathbf {z}^{t}_{k})\big )\,d\keywordtwo {\alpha _k}.\label {eq:data_prediction} 






 




    
























(5)
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Algorithm 2 Temporal Interpolation in DINTR

Input: Network ϕθ, latent feature zt0, τ ← Tθ(L0)
1: Initialize ẑt+1

T ← zt0
2: for k ∈ {T, . . . , 0} do
3: ẑt+1

k ← Pϕθ
(ẑt+1

k , k, τ); if k = 0 then break
4: ẑt+1

k−1 ← ẑt+1
k −Q(zt0, k) +Q(zt+1

0 , k − 1)
5: end for
6: return

{
ẑt+1
k | k ∈ {T, . . . , 0}

}
Figure 2: Illustration of the reconstruction and interpolation processes, where the purple dashed arrow
is q(ztT |zt0) and the purple solid arrow is pε(zt+1

0 |ztT ), while the blue arrow illustrates pϕ(zt+1
0 |zt0).

where αk = k
T . This loss function constructed from the extensive step-wise divergences creates

an accumulative path between the visual distributions. Instead, we propose to employ the classic
interpolation operator used in image processing to formulate a new diffusion-based process that
iteratively learns to blend video frames. This interpolation approach ultimately converges towards
the same deterministic mapping toward zt+1

0 but is simpler to derive and more stable. The proposed
process is illustrated in Fig. 2, and interpolation operators are elaborated in the next Subsection 4.3.

4.3 DINTR for Tracking via Diffusion-based Interpolation

Denoising Process as Temporal Interpolation. We relax the controlled Gaussian space projection
of every step. Specifically, we impose a temporal bias by training a data interpolation model ϕθ. The
data interpolation process is denoted as Pϕθ

producing intermediate interpolated features ẑt+1
k , so

that Pϕθ
(zt0, T, τ) = ẑt+1

0 ≈ zt+1
0 . The goal is to obtain pϕ(z

t+1
0 |zt0) by optimizing the objective:

  \label {eq:interpolation} \small \min _\theta \mathbb {E}_{\mathbf {z}^{t, \keywordtri {t+1}}_0}\big [\|\keywordtri {\mathbf {z}^{t + 1}_0} - \mathcal {P}_{\keyword {\phi _\theta }}(\mathbf {z}^{t}_0, T, \tau ) \|_2^2\big ]. 










  

 


 (6)

This data interpolation model ϕθ (Fig. 1d) allows us to derive a straightforward single-step loss as:

  \small \mathcal {L} = D_{KL}\big (\keywordtri {\mathbf {z}^{t+1}_{0}} \; \| \; p_{\keyword {\phi }}(\keywordtri {\mathbf {z}^{t+1}_{0}} | \mathbf {z}^{t}_{0})\big ) = \log \frac {\keywordtri {\mathbf {z}^{t+1}_{0}}}{p_{\keyword {\phi }}(\keywordtri {\mathbf {z}^{t+1}_{0}} | \mathbf {z}^{t}_{0})}. \label {eq:single_step_loss} 



 














 (7)

The simplicity of the loss function comes from the knowledge that we are directly modeling the frame
transition in the latent space, that is, ẑt+1

k ≈ zt+1
k where k ∈ {T, . . . , 1} is not required. Therefore,

we do not use the noise sampling operator Q(·) as in the step-wise reconstruction objective defined
in Eqn. (4). Instead, noise is added in the form of an offset, as described in L4 of Alg. 2. Note that
the same network structure of εθ can be used for ϕθ without changing layers. Additionally, with the
base case ẑt+1

T = zt0, the transition is accumulative within the inductive data interpolation itself:

  \label {eq:inductive_process} &k \in \{T-1, \dots ,1\}, \notag \\ &\Big (\underbrace {\mathcal {P}_{\phi _\theta }\big (\widehat {\mathbf {z}}^{t+1}_{k+1} + (\mathbf {z}^{t+1}_{k} - \mathbf {z}^{t}_{k+1}), k, \tau \big )}_{\keyword {\widehat {\mathbf {z}}^{t+1}_{k}}} \rightarrow \mathcal {P}_{\phi _\theta }\big (\keyword {\widehat {\mathbf {z}}^{t+1}_{k}} \underbrace {+ (\mathbf {z}^{t+1}_{k-1} - \mathbf {z}^{t}_{k})}_{\text {Interpolation operator}}, k - 1, \tau \big )\Big ).        



 

   
 








   


   


 (8)

Table 2: Equivalent formulation of interpolative operators, where zt,t+1
k,k−1 = Q

(
zt,t+1
0 , [k, k − 1]

)
.

(a) linear blending (b) learning from zt+1
0 (c) learning from zt0 (d) learning offset

ẑt+1
k−1 = αk−1 z

t
0 + ẑt+1

k−1 = zt+1
0 + ẑt+1

k−1 = zt0 + ẑt+1
k−1 = ẑt+1

k +

(1− αk−1) z
t+1
0

αk−1

αk
(ẑt+1

k − zt+1
0 ) 1−αk−1

1−αk
(ẑt+1

k − zt0) (αk − αk−1)(z
t+1
k−1 − ztk)

stable unstable, when αk → 0 unstable, when αk → 1 stable

deterministic nondeterm., missing zt nondeterm., missing zt+1 deterministic

nonaccumulative accumulative, Eqn. (C.19) accumulative, Eqn. (C.21) accumulative, Eqn. (8)
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Interpolation Operator is selected based on the theoretical properties between the equivalent
variants [105], presented in Table 2 and derived in Section C. In this table, we define αk = k

T , then
the selected operator (2d), which adds noise in offset form Q(zt+1

0 , k − 1)−Q(zt0, k), is derived as:

  \widehat {\mathbf {z}}^{t+1}_{k-1} = & \hspace {0.4em}\widehat {\mathbf {z}}^{t+1}_{k} + (\alpha _{k} - \alpha _{k-1})\ (\mathbf {z}^{t+1}_{k-1} - \mathbf {z}^{t}_{k}) = \widehat {\mathbf {z}}^{t+1}_{k} + \frac {k - (k -1)}{T}\ (\mathbf {z}^{t+1}_{k-1} - \mathbf {z}^{t}_{k}), \label {eq:scheduling} \\ \propto & \hspace {0.4em}\widehat {\mathbf {z}}^{t+1}_{k} + (\mathbf {z}^{t+1}_{k-1} - \mathbf {z}^{t}_{k}) = \widehat {\mathbf {z}}^{t+1}_{k} - \mathcal {Q}(\mathbf {z}^{t}_0, k) + \mathcal {Q}(\mathbf {z}^{t+1}_0, k-1), \qquad \text { as in L\ref {line:offset} of Alg.~\ref {alg:interpolation}}.
 

    

   


   




  


 

   
  

           (10)

Intuitively, the proposed interpolation process to generate the next frame takes the current frame as
the starting point of the noisy sample. The internal states and intermediate features of the diffusion
model transition from the current frame, resulting in a more stable prediction for video modeling.

Algorithm 3 Correspondence Extraction

Input: Internal Attn’s while processing Pϕθ

1: for k ∈ [0, T × 0.8] do
2: AS,X +=

∑N
l=1

[
Attn[l,k](ε, ε), Attn[l,k](ε, τ)

]
3: end for ▷ requires accumulativeness in Table 2
4: ĀS,X ← 1

N×T×0.8

∑T×0.8
k=0 AS,X

5: Ā∗ ← ĀS ◦ ĀX

6: Lt+1 ← map(Ā∗) ▷ as described in Eqn. (12)
7: return Lt+1

Correspondence Extraction via Inter-
nal States. From Eqn. (3), we demon-
strate that the object of interest can be
injected via the indication. From the ob-
jectives in Eqn. (4) and Eqn. (6), we show
that the next frame It+1 can be recon-
structed or interpolated from the current
frame It. Subsequently, internal accumu-
lative and stable states, such as the atten-
tion map Attn(·, ·), which exhibit spatial
correlations, can be used to identify the
target locations and can be effortlessly extracted. To get into that, the self- and cross-attention maps
(ĀS , ĀX ) over N layers and T time steps are averaged and performed element-wise multiplication:

  \small \begin {aligned} \bar {\mathcal {A}}_{S} = \frac {1}{N \times T} \sum _{l=1}^{N} \sum _{k=0}^{T} Attn_{[l,k]}(\varepsilon , \varepsilon ), \qquad \bar {\mathcal {A}}_{X} = \frac {1}{N \times T} \sum _{l=1}^{N} \sum _{k=0}^{T} Attn_{[l,k]}(\varepsilon , \tau ), \\ \bar {\mathcal {A}}^* = \bar {\mathcal {A}}_S \circ \bar {\mathcal {A}}_X, \qquad \bar {\mathcal {A}}^* \in [0, 1]^{H \times W}, \qquad \text {where $(H \times W)$ is the size of }\mathbf {I}_{t + 1}.\label {eq:exponentiation} \end {aligned} 


 







  


 









                  

(11)

Self-attention captures correlations among latent features, propagating the cross-attention to precise
locations. Finally, as in Fig. 1e, different mappings produce desired prediction types:

  \label {eq:extraction} \small \begin {aligned} L_{t + 1} = \mathrm {map}(\bar {\mathcal {A}}^*) = \begin {cases} \arg \max (\bar {\mathcal {A}}^*), & \text {if point} \\ \bar {\mathcal {A}}^* > 0, & \text {if segment} \\ (\min _i\beta , \min _j\beta , \max _i\beta , \max _j\beta ), \quad \beta = \big \{(i, j) \; | \; \bar {\mathcal {A}}^*_{i, j} > 0\big \}, & \text {if box} \end {cases} \end {aligned}    


  
   
     


  

 

 

(12)

In summary, the entire diffusion-based tracking process involves the following steps. First, the
indication of the object of interest at time t is injected as a condition by pθ(z

t
0|τ), derived via

Eqn. (3). Next, the video modeling process operates through the deterministic next-frame interpolation
pϕ(z

t+1
0 |zt0), as described in Subsection 4.3. Finally, the extraction of the object of interest in the next

frame is performed via a so-called “reversed conditional process” p−1
θ (zt+1

0 |τ), outlined in Alg. 3.

5 Experimental Results

5.1 Benchmarks and Metrics

TAP-Vid [18] formalizes the problem of long-term physical Point Tracking. It contains 31,951
points tracked on 1,219 real videos. Three evaluation metrics are Occlusion Accuracy (OA), < δxavg
averaging position accuracy, and Jaccard @ δ quantifying occlusion and position accuracies.

PoseTrack21 [20] is similar to MOT17 [22]. In addition to estimating Bounding Box for each person,
the body Pose needs to be estimated. Both keypoint-based and standard MOTA [106], IDF1 [107],
and HOTA [108] evaluate the tracking performance for every keypoint visibility and subject identity.

DAVIS [24] and MOTS [26] are included to quantify the Segmentation Tracking performance. For
the single-target dataset, evaluation metrics are Jaccard index J , contour accuracy F and an overall
J&F score [24]. For the multiple-target dataset, MOTSA and MOTSP [26] are equivalent to MOTA
and MOTP, where the association metric measures the mask IoU instead of the bounding box IoU.
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Finally, LaSOT [28] and GroOT [29] evaluate the Referring Tracking performance. The Precision
and Success metrics are measured on LaSOT, while GroOT follows the evaluation protocol of MOT.

5.2 Implementation Details

We fine-tune the Latent Diffusion Models [13] inplace, follow [109, 110]. However, different from
offline fixed batch retraining, our fine-tuning is performed online and auto-regressively between
consecutive frames when a new frame is received. Our development builds on LDM [13] for settings
with textual prompts and ADM [111] for localization settings, initialized by their publicly available
pre-trained weights. The model is then fine-tuned using our proposed strategy for 500 steps with a
learning rate of 3× 10−5. The model is trained on 4 NVIDIA Tesla A100 GPUs with a batch size of
1, comprising a pair of frames. We average the attention ĀS and ĀX in the interval k ∈ [0, T × 0.8]
of the DDIM steps with the total timestep T = 50. For the first frame initialization, we employ
YOLOX [112] as the detector, HRNet [113] as the pose estimator, and Mask2Former [114] as the
segmentation model. We maintained a linear noise scheduler across all experiments, as it is the
default in all available implementations and directly dependent on the number of diffusion steps,
which is analyzed in the next subsection. Details for handling multiple objects are in Section D.

5.3 Ablation Study

Table 3: The timestep bound T affects reconstruction quality.

T (steps) 50 100 150 200 250

MSE ↓ 20.5 15.4 10.3 5.2 0.04
J&F ↑ 75.4 75.8 76.0 76.3 76.5

Reconstruction time (s) ↓ 6.2 12.7 17.5 23.6 28.7
Interpolation time (s) ↓ 3.2 5.7 8.5 10.6 14.7

Diffusion Steps. We systematically
varied the number of diffusion steps
(50, 100, 150, 200, 250) and analyzed
their impact on performance and ef-
ficiency. Results show that we can
reconstruct an image close to the ori-
gin with a timestep bound T = 250 in
the reconstruction process of DINTR.

Alternative Approaches to the proposed DINTR modeling are discusses in this subsection. To
substantiate the discussions, we include all ablation studies in Table 4, comparing against our base
setting. These alternative settings are different interpolation operators as theoretically analyzed in
Table 2, and different temporal modeling, including the Reconstruction process as visualized in
Fig. 1c. Results demonstrate that our offset learning approach, which uses two anchor latents to
deterministically guide the start and destination points, yields the best performance. This approach
provides superior control over the interpolation process, resulting in more accurate and visually
coherent output. For point tracking on TAP-Vid, DINTR achieves the highest scores, with AJ values
ranging from 57.8 to 85.5 across different datasets. In pose tracking on PoseTrack, DINTR scores
82.5 mAP, significantly higher than other methods. For bounding box tracking on LaSOT, DINTR
achieves the highest 0.74 precision and 0.70 success rate with text versus 0.60 precision and 0.58
success rate without text. In segment tracking on VOS, DINTR scores 75.7 for J&F , 72.7 for J ,
and 78.6 for F , consistently outperforming other methods.

Table 4: Ablation studies of different temporal modeling alternatives (the second sub-block) and
interpolation operators (the third sub-block) on point tracking (A), pose tracking (B), bounding box

tracking with and without text (C), and segment tracking (D).

A. TAP-Vid Kinetics Kubric DAVIS RGB-Stacking
AJ < δxavg AJ < δxavg AJ < δxavg AJ < δxavg

DINTR 57.8 72.5 85.5 90.5 62.3 74.6 65.2 77.5
(1c) Recon. 53.6 64.3 80.5 86.4 62.0 66.9 62.3 71.0

(2a) Linear 27.6 34.8 54.6 60.1 48.1 51.6 55.6 66.3
(2b) zt+1

0 34.1 43.3 64.9 63.9 51.6 54.8 59.7 60.3
(2c) zt0 33.4 41.8 63.3 62.0 51.4 53.9 58.6 59.6

B. PoseTrack mAP MOTA IDF1 HOTA
DINTR 82.5 64.9 71.5 55.5
(1c) Recon. 77.8 55.8 65.5 50.5

(2a) Linear 59.7 39.2 43.6 34.7
(2b) zt+1

0 69.1 43.6 55.1 40.7
(2c) zt0 68.5 43.0 53.1 39.4

C. LaSOT Precision Success Precision Success

DINTR 0.74 0.70 0.60 0.58
(1c) Recon. 0.66 0.64 0.52 0.50

(2a) Linear 0.46 0.43 0.42 0.40
(2b) zt+1

0 0.52 0.49 0.46 0.45
(2c) zt0 0.51 0.48 0.44 0.44

D. VOS J&F J F
DINTR 75.7 72.7 78.6
(1c) Recon. 73.9 71.8 76.1

(2a) Linear 43.8 46.1 41.5
(2b) zt+1

0 51.1 51.3 50.9
(2c) zt0 50.5 51.0 49.9

8

69540https://doi.org/10.52202/079017-2221



Table 5: Point tracking performance against several methods on TAP-Vid [18].

TAP-Vid Kinetics [115] Kubric [116] DAVIS [24] RGB-Stacking [117]
AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

COTR [118] 19.0 38.8 57.4 40.1 60.7 78.5 35.4 51.3 80.2 6.8 13.5 79.1
Kubric-VFS-Like [116] 40.5 59.0 80.0 51.9 69.8 84.6 33.1 48.5 79.4 57.9 72.6 91.9
RAFT [119] 34.5 52.5 79.7 41.2 58.2 86.4 30.0 46.3 79.6 44.0 58.6 90.4
PIPs [120] 35.1 54.8 77.1 59.1 74.8 88.6 42.0 59.4 82.1 37.3 51.0 91.6
TAP-Net [18] 46.6 60.9 85.0 65.4 77.7 93.0 38.4 53.1 82.3 59.9 72.8 90.4
TAPIR [30] 57.1 70.0 87.6 84.3 91.8 95.8 59.8 72.3 87.6 66.2 77.4 93.3
DINTR 57.8 72.5 89.4 85.5 90.5 95.2 62.3 74.6 88.9 65.2 77.5 91.6

The reconstruction-based method (1c) generally ranks second in performance across tasks. The
decrease in performance for reconstruction is expected, as it does not transfer forward the final
prediction to the next step. Instead, it reconstructs everything from raw noise at each step, as
visualized in Fig. D.5. Although visual content can be well reconstructed, the lack of seamlessly
transferred information between frames results in lower performance and reduced temporal coherence.

The performance difference between (2b) and (2c), which use a single anchor at either the starting
latent point (zt0) or destination latent point (zt+1

0 ) respectively, is minimal. However, we observed
slightly higher effectiveness when controlling the destination point (2b) compared to the starting
point (2b), suggesting that end-point guidance has a marginally stronger impact on overall inter-
polation quality. Linear blending (2a) consistently shows the lowest performance. Derivations of
alternative operators blending (2a), learning from zt+1

0 (2b), learning from zt0 (2c), and learning
offset (2d) are theoretically proved to be equivalent as elaborated in Section C.

5.4 Comparisons to the State-of-the-Arts

Point Tracking. As presented in Table 5, our DINTR point model demonstrates competitive
performance compared to prior works due to its thorough capture of local pixels and high-quality
reconstruction of global context via the diffusion process. This results in the best performance on
DAVIS and Kinetics datasets (88.9 and 89.4 OA). TAPIR [30] extracts features around the estimations
rather than the global context. PIPs [120] and Tap-Net [18] lose flexibility by dividing the video into
fixed segments. RAFT [119] cannot easily detect occlusions and makes accumulated errors due to
per-frame tracking. COTR [118] struggles with moving objects as it operates on rigid scenes.

Pose Tracking. Table 6 compares our DINTR against other pose-tracking methods. Classic tracking
methods, such as CorrTrack [121] and Tracktor++ [31], form appearance features with limited
descriptiveness on keypoint representation. We also include DiffPose [122], another diffusion-
based performer on the specific keypoint estimation task. The primary metric in this setting is the
average precision computed for each joint and then averaged over all joints to obtain the final mAP.
DiffPose [122] employs a similar diffusion-based generative process but operates on a different
heatmap domain, achieving a similar performance on the pixel domain of our interpolation process.

Bounding Box Tracking. Table 7 shows the performance of single object tracking using bounding
boxes or textual initialization. Similarly, Table 8 presents the performance of MOT using bounding
boxes (left), against DiffussionTrack [3] and DiffMOT [4] or textual initialization (right), against
MENDER [29] and MDETR+TrackFormer [129, 8]. Unlike DiffussionTrack [3] and DiffMOT [4],
which are limited to specific initialization types, our approach allows flexible indicative injection
from any type, improving unification capability, and achieving comparable performance. Moreover,

Table 6: Pose tracking performance against
several methods on PoseTrack21 [20].

PoseTrack21 mAP MOTA IDF1 HOTA
CorrTrack [121] 72.3 63.0 66.5 51.1
Tracktor++ [31] w/ poses 71.4 63.3 69.3 52.2
CorrTrack [121] w/ ReID 72.7 63.8 66.5 52.7
Tracktor++ [31] w/ corr. 73.6 61.6 69.3 54.1

DCPose [123] 80.5 ✗ ✗ ✗
FAMI-Pose [124] 81.2 ✗ ✗ ✗
DiffPose [122] 83.0 ✗ ✗ ✗

DINTR 82.5 64.9 71.5 55.5

Table 7: Single object tracking without (left) and
with (right) textual prompt input.

LaSOT Precision Success Precision Success

SiamRPN++ [125] 0.50 0.45 ✗ ✗
GlobalTrack [126] 0.53 0.52 ✗ ✗
OCEAN [127] 0.57 0.56 ✗ ✗
UNICORN [10] 0.74 0.68 ✗ ✗

GTI [32] ✗ ✗ 0.47 0.47
AdaSwitcher [128] ✗ ✗ 0.55 0.51

DINTR 0.74 0.70 0.60 0.58
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Table 8: Multiple object tracking without (left) and with (right) textual prompt input.
MOT17 MOTA IDF1 HOTA MT ML IDs

MOTR [9] 73.4 68.6 57.8 42.9% 19.1% 2439
TransMOT [130] 76.7 75.1 61.7 51.0% 16.4% 2346
UNICORN [10] 77.2 75.5 61.7 58.7% 11.2% 5379
DiffusionTrack [3] 77.9 73.8 60.8 – – –
DiffMOT [4] 79.8 79.3 64.5 – – –

DINTR 78.0 77.6 63.5 54.2% 14.6% 4878

GroOT MOTA IDF1 HOTA AssA DetA

MDETR+TFm 62.6 64.7 51.5 50.9 52.2
MENDER [29] 65.5 63.4 53.2 52.9 53.7

DINTR 68.9 68.5 57.5 56.9 58.2
(1c) Reconstruct. 63.0 58.6 48.4 48.0 49.1
(2b) zt+1

0 58.7 58.2 46.9 45.2 48.9

capturing global contexts via diffusion mechanics helps our model outperform MENDER and
TrackFormer relying solely on spatial contexts formulated via transformer-based learnable queries.

Segment Tracking. Finally, Table 9 presents our segment tracking performance against unified
methods [44, 10], single-target methods [43, 131], and multiple-target methods [37, 7, 8, 132]. Our
DINTR achieves the best sMOTSA of 67.4, an accurate object tracking and segmentation. Unified
methods perform the task separately, either using different branches [44] or stages [10]. It leads to a
discrepancy in networks. Our DINTR that is both data- and process-unified avoids this shortcoming.

6 Conclusion

In conclusion, we have introduced a Tracking-by-Diffusion paradigm that reformulates the tracking
framework based solely on visual iterative diffusion models. Unlike the existing denoising process,
our DINTR offers a more seamless and faster approach to model temporal correspondences. This
work has paved the way for efficient unified instance temporal modeling, especially object tracking.

Limitations. There is still a minor gap in performance to methods that incorporate motion models,
e.g., DiffMOT [4] with 2D coordinate diffusion, as illustrated in Fig. 1b. However, our novel visual
generative approach allows us to handle multiple representations in a unified manner rather than waste
5× efforts on designing specialized models. As our approach introduces innovations from feature
representation perspective, comparisons with advancements stemming from heuristic optimizations,
such as ByteTrack [36], are not head-to-head as these are narrowly tailored increments for a specific
type rather than paradigm shifts. However, exploring integrations between core representation and
advancements offers promising performance. Specifically, final predictions are extracted by the
so-called “reversed conditional process” p−1

θ (zt+1
0 |τ) rather than sophisticated operations [133, 134].

Finally, time and resource consumption limit the practicality of Reconstruction. However, offline
trackers continue to play a vital role in scenarios that demand comprehensive multimodality analysis.

Future Work & Broader Impacts. DINTR is a stepping stone towards more advanced and real-time
visual Tracking-by-Diffusion in the future, especially to develop a new tracking approach that can
manipulate visual contents [135] via the diffusion process or a foundation object tracking model.
Specific future directions include formulating diffusion-based tracking approaches for open vocabu-
lary [136], geometric constraints [11], camera motion [66, 137, 95], temporal displacement [5], object
state [138], motion modeling [139, 6, 4], or new object representation [61] and management [140].
The proposed video modeling approach can be exploited for unauthorized surveillance and monitoring,
or manipulating instance-based video content that could be used to spread misinformation.
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Biosciences Institute (ABI) grants. We also acknowledge Trong-Thuan Nguyen for invaluable
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Table 9: Segment tracking performance on DAVIS [24] and MOTS [26].

VOS J&F J F
SiamMask [43] 56.4 54.3 58.5
Siam R-CNN [131] 70.6 66.1 75.0

UniTrack [44] – 58.4 –
UNICORN [10] 69.2 65.2 73.2

DINTR 75.4 72.5 78.4

MOTS sMOTSA IDF1 MT ML IDSw

Track R-CNN [37] 40.6 42.4 38.7% 21.6% 567
TraDeS [7] 50.8 58.7 49.4% 18.3% 492
TrackFormer [8] 54.9 63.6 – – 278
PointTrackV2 [132] 62.3 42.9 56.7% 12.5% 541
UNICORN [10] 65.3 65.9 64.9% 10.1% 398

DINTR 67.4 66.4 66.5% 8.5% 484
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Appendices
A Glossary

Table A.10: Notations used throughout the paper.

It Current processing frame (image), It ∈ RH×W×3

It+1 Next frame (image) in the processing video

Lt
Indicator representation in the current processing frame It (e.g. point,
bounding box, segment, or text)

Lt+1
Location in the current processing frame It (e.g. point, bounding box, or
segment)

E(I) Visual encoder E extracting visual features

E(It)[Lt] Pooled visual features of the current frame at the indicated location

D(z0) Visual decoder decoding latent feature to image

θ Network parameters

ϵ A noise variable, ϵ ∼ N (0, 1)

τ Indicator representation

εθ(zk) Denoising autoencoders, i.e., U-Net blocks

ϕθ(zk) Interpolation network, having the same structure as εθ
∥ · ∥22 L2 norm

z0, . . . , zk, . . . , zT Latent variables of the noise sampling process

ẑ0, . . . , ẑk, . . . , ẑT Latent variables of the reconstructive interpolation process

αk The scheduling parameter

Q(·) Noise sampling process

Pεθ (·) Reconstruction/Denoising process, configured by εθ

Pϕθ
(·) Interpolation process, configured by ϕθ

Tθ(·) Indication feature extractor

EεθL(·) Expectation of a loss function L(·) with respect to ϵθ

DKL(P∥Q) Kullback-Leibler divergence of P and Q

q(ztk|ztk−1) Conditional probability of ztk given ztk−1

pε(z
t
k−1|ztk) Conditional probability of denoising ztk−1 given ztk, configured by ε

pϕ(ẑ
t
k−1|ẑtk) Conditional probability of interpolating ẑtk−1 given ẑtk, configured by ϕ(

Pϕθ
(·)→ Pϕθ

(·)
)

Induction process

ĀS Average self-attention maps among visual features in U-Net

ĀX Average cross-attention maps among visual features in U-Net

Ā∗ Element-wise product of self- and cross-attention
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Figure B.3: The conditional LDMs utilizes U-Net [104] blocks. First, a clean image Ik is converted to
a noisy latent zk via the noise sampling process Q(·) (top branch). Then, well-structured regions are
reconstructed from that extremely noisy input via the denoising/reconstruction process Pεθ (·) (bottom
branch). Additionally, conditions can be added as indicators of the regions of interest. While the
figure style is adapted from LDMs [13], we made a distinct change reflecting the injected sampling
process, following Prompt-to-Prompt [141].

B Overall Framework

Salient Representation. The ability of the diffuser to, first, convert a clean image to a noisy latent,
having no recognizable pattern from its origin, and then, reconstruct well-structured regions from
extremely noisy input, indicates that the diffuser produces powerful semantic contexts [142, 143].

Figure B.4: Our proposed autoregressive framework constructed via the diffusion mechanics for
temporal modeling. The current frame is input to the encoder E(It) to produce an initial latent z0.
The sampling process Q(·) adds noises into the latent in a sequence of T steps. Next, reconstruction
process Pεθ (·) is manipulated through KL divergence optimization w.r.t. zt+1

k−1. This shapes the
reconstructed image Ît to be more similar to the future frame It+1. Finally, the location of the targets
can be extracted by spatial correspondences, exhibited by the attention maps ĀS and ĀX .
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In other words, the diffuser can embed semantic alignments, producing coherent predictions between
two templates. To leverage this capability, we first consider the generated image Ît in the diffusion
process. Identifying correspondences on the pixel domain can be achieved if:

 \label {correspondences} dist\Big (\mathcal {E}(\mathbf {I}_t), \mathcal {E}(\widehat {\mathbf {I}}_{t})\Big ) = 0 \text { is \textit {optimal} from Eqn.~\eqref {eq:diffusion}, then } dist\Big (\mathcal {E}(\mathbf {I}_t)[L_t], \mathcal {E}(\widehat {\mathbf {I}}_{t})[L_t]\Big ) = 0. 

         





  (B.13)

We extract the latent features zk of their intermediate U-Net blocks at a specific time step k during
both processes. This is then utilized to establish injected correspondences between the input image
Ik and the generated image Îk.

Injected Condition. By incorporating conditional indicators into the Inversion process, we can guide
the model to focus on a particular object of interest. This conditional input, represented as points,
poses (i.e., structured set of points), segments, bounding boxes, or even textual prompts, acts as an
indicator to inject the region of interest into the clean latent, which we want the model to recognize
in the reconstructed latent.

These two remarks support the visual diffusion process in capturing and semantically manipulating
features for representing and distinguishing objects, as illustrated in Fig. B.3. Additionally, Fig. B.4
presents the autoregressive process that injects and extracts internal states to identify the target regions
holding the correspondence temporally.

C Derivations of Equivalent Interpolative Operators

This section derives the variant formulations introduced in Subsection 4.3.

C.1 Interpolated Samples

In the field of image processing, an interpolated data point is defined as a weighted combination of
known data points through a blending operation controlled by a weighted parameter αk:

  \widehat {\mathbf {z}}^{t+1}_{k} &= \alpha _{k} \, \mathbf {z}^{t}_{0} + (1-\alpha _{k}) \, \mathbf {z}^{t+1}_{0}. \label {blending_base}
  


   


  (C.14)

We can thus rewrite its known samples zt+1
0 and zt0 in the following way:

  \mathbf {z}^{t+1}_{0} = \frac {\widehat {\mathbf {z}}^{t+1}_{k}}{1-\alpha _{k}} - \frac {\alpha _{k} \, \mathbf {z}^{t}_{0}}{1-\alpha _{k}}, \label {eq:appc_x0} 






 





 (C.15)

  \mathbf {z}^{t}_{0} = \frac {\widehat {\mathbf {z}}^{t+1}_{k}}{\alpha _{k}} - \frac {(1-\alpha _{k}) \, \mathbf {z}^{t+1}_{0}}{\alpha _{k}}. \label {eq:appc_x1} 




  





 (C.16)

C.2 Linear Blending (2a)

In the vanilla version of the algorithm, a blended sample of parameter αk is obtained by blending
zt+1
0 and zt0, as similar as Eqn. (C.14):

  \widehat {\mathbf {z}}^{t+1}_{k-1} &= \alpha _{k-1} \, \mathbf {z}^{t}_{0} + (1-\alpha _{k-1}) \, \mathbf {z}^{t+1}_{0}.\label {eq:appc_x_alpha_prime}
  


   


  (C.17)

To train our interpolation approach using this operator, because the accumulativeness property
does not hold, then the step-wise loss as defined in Eqn. (5) has to be employed. As a result, this
is equivalent to the reconstruction approach Reconstruct. described in Eqn. (4) and reported in
Subsection 5.3.
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C.3 Learning from zt+1
0 (2b)

By expanding zt0 from Eqn. (C.17) using Eqn. (C.16), we obtain:

  \widehat {\mathbf {z}}^{t+1}_{k-1} &= (1-\alpha _{k-1}) \, \mathbf {z}^{t+1}_{0} + \alpha _{k-1} \, \mathbf {z}^{t}_{0}, \nonumber \\ &= (1-\alpha _{k-1}) \, \mathbf {z}^{t+1}_{0} + \alpha _{k-1} \, \left (\frac {\widehat {\mathbf {z}}^{t+1}_{k}}{\alpha _k} - \frac {(1-\alpha _k) \, \mathbf {z}^{t+1}_{0}}{\alpha _k}\right ), \nonumber \\ &= \left (1- \alpha _{k-1} - \frac {\alpha _{k-1} \,(1-\alpha _k)}{\alpha _k}\right ) \, \mathbf {z}^{t+1}_{0} + \frac {\alpha _{k-1}}{\alpha _k} \, \widehat {\mathbf {z}}^{t+1}_{k} ,\nonumber \\ &= \left (\frac {\alpha _k - \alpha _k\, \alpha _{k-1} - \alpha _{k-1} \,(1-\alpha _k)}{\alpha _k}\right ) \, \mathbf {z}^{t+1}_{0} + \frac {\alpha _{k-1}}{\alpha _k} \, \widehat {\mathbf {z}}^{t+1}_{k} ,\nonumber \\ &= \left (1- \frac {\alpha _{k-1}}{\alpha _k}\right ) \, \mathbf {z}^{t+1}_{0} + \frac {\alpha _{k-1}}{\alpha _k} \, \widehat {\mathbf {z}}^{t+1}_{k} ,\nonumber \\ &= \mathbf {z}^{t+1}_{0} + \frac {\alpha _{k-1}}{\alpha _k} \left (\widehat {\mathbf {z}}^{t+1}_{k} - \mathbf {z}^{t+1}_{0} \right ).
   


  




  

 





  












 

 
















      






































 




 (C.18)

Inductive Process. With the base case ẑt+1
T = zt0, the transition is accumulative within the inductive

data interpolation:

  \label {eq:inductive_process_2b} &k \in \{T-1, \dots ,1\}, \notag \\ &\Big (\underbrace {\mathcal {P}_{\phi _\theta }\big (\mathbf {z}^{t+1}_{0} + \frac {\alpha _{k}}{\alpha _{k+1}} (\widehat {\mathbf {z}}^{t+1}_{k+1} - \mathbf {z}^{t+1}_{0} ), k, \tau \big )}_{\keyword {\widehat {\mathbf {z}}^{t+1}_{k}}} \rightarrow \mathcal {P}_{\phi _\theta }\big (\mathbf {z}^{t+1}_{0} + \frac {\alpha _{k-1}}{\alpha _k}(\keyword {\widehat {\mathbf {z}}^{t+1}_{k}} - \mathbf {z}^{t+1}_{0}), k - 1, \tau \big )\Big ).        











 
  


 














 
    




(C.19)

C.4 Learning from zt0 (2c)

By expanding zt+1
0 from Eqn. (C.17) using Eqn. (C.15), we obtain:

  \widehat {\mathbf {z}}^{t+1}_{k-1} &= (1-\alpha _{k-1}) \, \mathbf {z}^{t+1}_{0} + \alpha _{k-1} \, \mathbf {z}^{t}_{0}, \nonumber \\ &= (1-\alpha _{k-1}) \,\left (\frac {\widehat {\mathbf {z}}^{t+1}_{k}}{1-\alpha _k} - \frac {\alpha _k \, \mathbf {z}^{t}_{0}}{1-\alpha _k}\right ) + \alpha _{k-1} \, \mathbf {z}^{t}_{0}, \nonumber \\ &= \left ( \alpha _{k-1} - \frac {(1-\alpha _{k-1}) \, \alpha _k}{1-\alpha _k}\right ) \, \mathbf {z}^{t}_{0} + \frac {1-\alpha _{k-1}}{1-\alpha _k} \, \widehat {\mathbf {z}}^{t+1}_{k} , \nonumber \\ &= \left (\frac {\alpha _{k-1}\, (1- \alpha _k) - (1-\alpha _{k-1}) \, \alpha _k}{1-\alpha _k}\right ) \, \mathbf {z}^{t}_{0} + \frac {1-\alpha _{k-1}}{1-\alpha _k} \, \widehat {\mathbf {z}}^{t+1}_{k} , \nonumber \\ &= \left (\frac {1-\alpha _k - (1-\alpha _{k-1})}{1-\alpha _k}\right ) \, \mathbf {z}^{t}_{0} + \frac {1-\alpha _{k-1}}{1-\alpha _k} \, \widehat {\mathbf {z}}^{t+1}_{k} , \nonumber \\ &= \left ( 1 - \frac {1-\alpha _{k-1}}{1-\alpha _k}\right ) \, \mathbf {z}^{t}_{0} + \frac {1-\alpha _{k-1}}{1-\alpha _k} \, \widehat {\mathbf {z}}^{t+1}_{k} , \nonumber \\ &= \mathbf {z}^{t}_{0} + \frac {1-\alpha _{k-1}}{1-\alpha _k} \, \left (\widehat {\mathbf {z}}^{t+1}_{k} - \mathbf {z}^{t}_{0}\right ).
   


  




 





 







 

























   















   















 












 





 


 (C.20)

Inductive Process. With the base case ẑt+1
T = zt0, the transition is accumulative within the inductive

data interpolation:

  \label {eq:inductive_process_2c} &k \in \{T-1, \dots ,1\}, \notag \\ &\Big (\underbrace {\mathcal {P}_{\phi _\theta }\big (\mathbf {z}^{t}_{0} + \frac {1-\alpha _{k}}{1-\alpha _{k+1}} \, (\widehat {\mathbf {z}}^{t+1}_{k+1} - \mathbf {z}^{t}_{0}), k, \tau \big )}_{\keyword {\widehat {\mathbf {z}}^{t+1}_{k}}} \rightarrow \mathcal {P}_{\phi _\theta }\big (\mathbf {z}^{t}_{0} + \frac {1-\alpha _{k-1}}{1-\alpha _k} \, (\keyword {\widehat {\mathbf {z}}^{t+1}_{k}} - \mathbf {z}^{t}_{0}), k - 1, \tau \big )\Big ).        










   


 












     




(C.21)
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Due to the absence of the deterministic property and the target term zt+1
0 , the loss in Eqn. (7) becomes

the sole objective guiding the learning process toward the target. Consequently, we prefer to perform
the interpolation operator (2b) in Subsection 5.3, which is theoretically equivalent to this operator.

C.5 Learning Offset (2d)

By rewriting αk−1 = αk−1 + αk − αk in the definition of ẑt+1
k−1, we obtain:

  \widehat {\mathbf {z}}^{t+1}_{k-1} &= (1-\alpha _{k-1}) \, \mathbf {z}^{t+1}_{0} + \alpha _{k-1} \, \mathbf {z}^{t}_{0}, \nonumber \\ &= (1-\alpha _{k-1} + \alpha _k-\alpha _k) \, \mathbf {z}^{t+1}_{0} + \left (\alpha _{k-1}+\alpha _k-\alpha _k\right ) \, \mathbf {z}^{t}_{0}, \nonumber \\ &= (1-\alpha _k) \, \mathbf {z}^{t+1}_{0} + \alpha _k \, \mathbf {z}^{t}_{0} + \left (\alpha _{k-1}-\alpha _k\right ) \, \left (\mathbf {z}^{t}_{0} - \mathbf {z}^{t+1}_{0}\right ).
   


  




      

      




  

  


   


 




 (C.22)

Replace (1− αk) z
t+1
0 + αk z

t
0 by ẑt+1

k from Eqn. (C.14), we obtain:

  \widehat {\mathbf {z}}^{t+1}_{k-1} &= \widehat {\mathbf {z}}^{t+1}_{k} + \left (\alpha _{k-1}-\alpha _k\right ) \, \left (\mathbf {z}^{t}_{0} - \mathbf {z}^{t+1}_{0}\right ), \nonumber \\ &= \widehat {\mathbf {z}}^{t+1}_{k} + \left (\alpha _k - \alpha _{k-1}\right ) \, \left (\mathbf {z}^{t+1}_{0} - \mathbf {z}^{t}_{0}\right ), \nonumber \\ &= \widehat {\mathbf {z}}^{t+1}_{k} + \frac {k - (k-1)}{T} \, \left (\mathbf {z}^{t+1}_{0} - \mathbf {z}^{t}_{0}\right ).
 

   

 







   



 







   





 


 (C.23)

By multiplying the step
(
zt+1
0 − zt0

)
by a larger factor (e.g., T ), the scaled step maintain their

magnitude and not to become too small when propagated through many layers. Then we obtain:

  \widehat {\mathbf {z}}^{t+1}_{k-1} &\propto \widehat {\mathbf {z}}^{t+1}_{k} + \left (\mathbf {z}^{t+1}_{0} - \mathbf {z}^{t}_{0}\right ), \quad \text {signified}\\ &\propto \widehat {\mathbf {z}}^{t+1}_{k} + \left (\mathbf {z}^{t+1}_{k-1} - \mathbf {z}^{t}_{k}\right ), \label {eq:propto} \\ &= \widehat {\mathbf {z}}^{t+1}_{k} + \Big (\mathcal {Q}\left (\mathbf {z}^{t+1}_{0}, k-1\right ) - \mathcal {Q}\left (\mathbf {z}^{t}_{0}, k\right )\Big ), \quad \text {as in L\ref {line:offset} of Alg.~\ref {alg:interpolation}}.
 




 


 






 











   








       (C.26)

Inductive Process. With the base case ẑt+1
T = zt0, the transition is accumulative within the inductive

data interpolation:

  \label {eq:inductive_process_2d} &k \in \{T-1, \dots ,1\}, \notag \\ &\Big (\underbrace {\mathcal {P}_{\phi _\theta }\big (\widehat {\mathbf {z}}^{t+1}_{k+1} + (\mathbf {z}^{t+1}_{k} - \mathbf {z}^{t}_{k+1}), k, \tau \big )}_{\keyword {\widehat {\mathbf {z}}^{t+1}_{k}}} \rightarrow \mathcal {P}_{\phi _\theta }\big (\keyword {\widehat {\mathbf {z}}^{t+1}_{k}} + (\mathbf {z}^{t+1}_{k-1} - \mathbf {z}^{t}_{k}), k - 1, \tau \big )\Big ).        



 

   
 






 

     


 (C.27)

D Technical Details

Multiple-Target Handling. Our method processes multiple object tracking by first concatenating all
target representations into a joint input tensor during both the Inversion and Reconstruction passes
through the diffusion model. Specifically, given M targets, indexed by i, each with a indicator
representation Li

t, we form the concatenated input:

  \mathcal {T} = \Big [\mathcal {T}_\theta (L^0_t) \| \dots \| \mathcal {T}_\theta (L^i_t) \| \dots \| \mathcal {T}_\theta (L^{M-1}_t)\Big ]. 



    
   



 (D.28)

where [ · ∥ · ] is the concatenation operation.

This allows encoding interactions and contexts across all targets simultaneously while passing
through the same encoder, decoder modules, and processes. After processing the concatenated output
Pϕθ

(zt0, T, T ), we split it back into the individual target attention outputs using their original index
order:

  \bar {\mathcal {A}}_{X} = \Big [\bar {\mathcal {A}}^0_{X} \| \dots \| \bar {\mathcal {A}}^i_{X} \| \dots \| \bar {\mathcal {A}}^{M-1}_{X}\Big ], \quad \bar {\mathcal {A}}_{X} \in [0, 1]^{M \times H \times W}. 


    

    



      (D.29)

So each Āi
X contains the refined cross-attention for target i after joint diffusion with the full set of

targets. This approach allows the model to enable target-specific decoding. The indices linking inputs
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to corresponding outputs are crucial for maintaining identity and predictions during the sequence of
processing steps.

Textual Prompt Handling. This setting differs from the other four indicator types, where L0 comes
from a dedicated object detector. Instead, we leverage the unique capability of diffusion models to
generate from text prompts [109, 110]. Specifically, we initialize L0 using a textual description as
the conditioning input. From this textual L0, our process generates an initial set of bounding box
proposals as L1. These box proposals then propagate through the subsequent iterative processes to
refine into the next L2, . . . , L|V|−2 tracking outputs.

Pseudo-code for One-shot Training. Alg. D.4 and Alg. D.5 are the pseudo-code for our fine-tuning
and operating algorithms in the proposed approach within the Tracking-by-Diffusion paradigm,
respectively. The pseudo-code provides an overview of the steps involved in our inplace fine-tuning.

Algorithm D.4 The one-shot fine-tuning pipeline of Reconstruction process

Input: It, It+1, T ← [τθ(L
0
t )∥ . . . ∥τθ(LM−1

t )], T ← 50
1: z0 ← E(It)
2: x0 ← E(It+1)
3: zT ← Q(z0, T ) % injected Inversion
4: LELBO ← KL

(
Q(xT−1, T )∥P(zT , T, T )

)
% ℓT

5: for k ∈ {T, . . . , 2} do
6: LELBO += KL

(
Q(xk−2, k)∥P(ẑk, k, T )

)
% ℓk−1

7: end for
8: LELBO −= logP(ẑ1) % ℓ0
9: Take gradient descent step on LELBO

Algorithm D.5 The tracker operation

Input: Video V, set of tracklets T← {L0
0, . . . , L

M−1
0 }, β = 4, T ← 50

1: for t ∈ {0, . . . , |V| − 2} do
2: Draw (It, It+1) ∈ V

3: T ← [τθ(L
0
t )∥ . . . ∥τθ(LM−1

t )] % T not change if Li
t is textual prompt

4: finetuning(It, It+1, T ) % via Alg. D.4
5: ẑT ← P(zT , T, T )
6: for k ∈ {T, . . . , 1} do
7: if k ∈ [1, T × 0.8] then
8: AS +=

∑N
l=1 Attnl,k(ϵθ, ϵθ)

9: AX +=
∑N

l=1 Attnl,k(ϵθ, τθ)
10: end if
11: ẑk ← P(ẑk+1, k, T )
12: end for
13: ĀS ← 1

N×T

∑T
k=1AS

14: ĀX ← 1
N×T

∑T
k=1AX

15: Ā∗ ← (ĀS)
β ◦ ĀX

16: [L0
t+1∥ . . . ∥LM−1

t+1 ]← mapping(Ā∗) % via Eqn. (12)
17: T← {L0

t+1, . . . , L
M−1
t+1 }

18: end for

Process Visualization. Fig. D.5 and Fig. D.6 are visualizing the two proposed diffusion-based
processes that are utilized in our tracker framework.
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Figure D.5: The visualization depicts the diffusion-based Reconstruction process on the DAVIS bench-
mark [24]. Unlike the interpolation process in Fig. D.6, where internal states are efficiently transferred
between frames, the reconstruction process samples visual contents from extreme noise (middle
column), and attention maps cannot be transferred. Although visual content can be reconstructed,
the lack of seamlessly transferred information between frames results in lower performance and
reduced temporal coherence as in Tables 5, 6, 7, 8, and 9.
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Figure D.6: Visualization of the diffusion-based Interpolation process on the DAVIS benchmark [24].
Different from the reconstruction process in Fig. D.5, where each frame is processed independently,
visual contents (top), internal states, and attention maps (bottom) are efficiently transferred from the
previous frame to the next frame. This seamless transfer of information between frames results in
more consistent and stable tracking, as the model can leverage temporal coherence.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Contributions in Section 1. Assumptions in diffusion models are clearly
stated, including the conditional mechanism, and diffusion mechanics (i.e., the denoising
process).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include pure theoretical results, but the equivalences or
derivations of formulas are included.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please find the Subsection 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The techniques presented in this work are the intellectual property of [Affilia-
tion], and the organization intends to seek patent coverage for the disclosed process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Subsection 4.3 and Subsection 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Subsection 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Future Work & Broader Impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers that produced the code package or dataset are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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