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Abstract

Various linear complexity models, such as Linear Transformer (LinFormer), State
Space Model (SSM), and Linear RNN (LinRNN), have been proposed to replace
the conventional softmax attention in Transformer structures. However, the optimal
design of these linear models is still an open question. In this work, we attempt to
answer this question by finding the best linear approximation to softmax attention
from a theoretical perspective. We start by unifying existing linear complexity
models as the linear attention form and then identify three conditions for the optimal
linear attention design: i) Dynamic memory ability; ii) Static approximation
ability; iii) Least parameter approximation. We find that none of the current linear
models meet all three conditions, resulting in suboptimal performance. Instead,
we propose Meta Linear Attention (MetaLA) as a solution that satisfies these
conditions. Our experiments on Multi-Query Associative Recall (MQAR) task,
language modeling, image classification, and Long-Range Arena (LRA) benchmark
demonstrate that MetaLA is more effective than the existing linear models. Code:
https://github.com/BICLab/MetaLA

1 Introduction

Transformer with softmax attention [1] benefits from efficient parallel training and exhibits impressive
performance on deep learning applications [2, 3, 4, 5, 6, 7], but it suffers from the quadratic growth of
computation cost to the input length [8]. Linear recurrent models, such as LinFormer [9], SSM [10],
and LinRNN [11], are expected to achieve linear substitution of Transformer. The original intention
of LinFormer is to replace softmax attention, which exploits the kernel approach to decompose
softmax operation; typical work includes TransNormer [12, 13], RetNet [14], GLA [15]. On
the other hand, SSMs, such as S4 [10] and Mamba [16], are models inspired by the classical
state-space approach, which enjoys sub-quadratic training and inference like either a recurrence
or convolution. In contrast, LinRNN is a revival of traditional RNNs, including RWKV-4 [17],
Griffin [18], LRU [19], etc., which solves the training difficulties of traditional RNNs due to nonlinear
dependencies between hidden states. It is natural to think that they are different types of models,
since these LinFormer/SSM/LinRNN models have different origins and forms.

This work breaks this perception and abstracts existing LinFormer/SSM/LinRNN models into a
unified linear attention form, which has the following significance: i) Facilitates understanding
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the key designs of existing linear models. Through the unified form, we demonstrate that the main
difference between LinFormer/SSM/LinRNN is the hidden state size, how to maintain the hidden state,
and how to perform parameter mapping. ii) Links LinFormer/SSM/LinRNN to softmax attention
in terms of functionality. The recurrent inference complexity of softmax attention is O(n), which
can also be regarded as the maintenance of a hidden state with infinite size. Linear models with
O(1) inference complexity are hoping to achieve the same functionality as softmax attention using a
fixed hidden state. Since we have unified LinFormer/SSM/LinRNN into linear attention in the form
of Query, Key, and Value, we can understand and evaluate existing linear models from the view of
“Does the linear attention map have the function of softmax attention map?”.

To answer this question, we define the necessary conditions for achieving “optimal linear approxima-
tion to softmax attention map". First, linear attention needs to satisfy dynamic memory and static
approximation to realize the approximation. The former defines memory ability: linear attention with
limited hidden states should be able to store the most important information and forget unimportant
ones. The latter defines the modeling ability: a linear attention map should be able to approximate
any softmax attention map. According to our theoretical analysis, Query and dynamic decay are
necessary conditions for approximation. Thus, linear models such as TransNormer [13], RetNet [14],
RWKV-4 [17], LRU [19], HGRN [20], H3 [21], S5 [22], cannot achieve approximation of the softmax
attention functions. Second, the Key matrix is not required to achieve approximation, so Mamba [16]
and GLA [15] are not optimal parametric approximations.

We then propose the MetaLA module, which can satisfy the necessary conditions for optimal linear
approximation to softmax attention. MetaLA makes three enhancements: i) Removes the unnecessary
Key matrices; ii) Employs self-augmentation to enhance the token’s attention to itself, which avoids
attention dilution [12]; iii) Exploits short convolutions to enhance local interactions. We then build a
MetaLA Transformer based on MetaLA. Our experiments on associative recall, language modeling,
long sequence modeling, and image classification show the effectiveness of MetaLA. Furthermore,
we conduct ablation studies to validate the effectiveness of each proposed enhancement in MetaLA.
Finally, we discuss two open questions: i) How to further improve linear attention based on the
approximation theory introduced in this work? ii) Does the approximation of linear attention to
softmax attention imply that it has an upper limit on its capacity?

2 Background

For notations in this work, we use bold upper-case letters for matrices (e.g., Q, K), bold lower-case
letters for row vectors (e.g., qt, kt), and italic upper-case for learnable parameter matrices (e.g.,WQ).
We generally use the same alphabet to show the rows of a matrix, e.g., qt is the t-th row of Q.

Softmax Attention first calculates an attention map SoftAttMap (Q,K) through Q (Query), K
(Key), and use the attention map to weight different tokens V (Value) later:

O = SoftAttMap (Q,K)V = softmax

(
QK⊤
√
dk

⊙M

)
V ∈ Rn×dv , (1)

Q,K = XWQ,XWK ∈ Rn×dk ; V = XW V ∈ Rn×dv , (2)

where WQ,WK ∈ Rd×dk ,W V ∈ Rd×dv are learnable matrices, n, d, dk, dv are sequence length,
model dimension, Key/Query and Value dimension, respectively. X ∈ Rn×d refers to the input.
M ∈ Rn×n is a mask matrix in autoregressive tasks to prevent a token from attending to future
tokens. The t-th row of SoftAttMap (Q,K) is a probability distribution that represents the attention
scores between token vt to others. Softmax attention in Eq. (1) enables efficient parallel training, but
suffers from O(n2) time and memory complexity [9]. It uses the recurrent form during inference:

ot =

∑t
s=1 exp(qtk

⊤
s )vs∑t

s=1 exp(qtk⊤
s )

∈ R1×dv , (3)

qt,kt = xtWQ,xtWK ∈ R1×dk ; vt = xtW V ∈ R1×dv . (4)

At each time t, token mix is computed between query qt and all the keys, values before ks,vs(s ≤ t).
This "KV cache" results in O(n) time and memory complexity per token during inference.
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Linear Transformer (LinFormer) is a substitute for softmax attention, which can be expressed as a
linear dot-product of kernel feature maps [9]:

ot =

∑t
s=1 F (qt,ks)vs∑t
s=1 F (qt,ks)

, F (qt,ks) = ϕ(qt)ϕ
⊤(ks), (5)

where qt,kt ∈ R1×dk and vt ∈ R1×dv are query, key and value at position t, which are obtained
in the same manner as softmax attention. F (·) is the kernel function usually constrained to be
non-negative. ϕ(·) is map function applied row-wise to Q and K. By removing the nonlinear
softmax operation, LinFormer enables inference with O(1) time and memory complexity per token.
LinFormer can also be formulated in the following parallel form during training

O =
(
ϕ(Q)ϕ⊤(K)⊙M

)
V ∈ Rn×dv , (6)

which has O(n) time and memory complexity using chunkwise algorithm. Recent advances in
LinFormer mainly focus on training acceleration[12, 13, 23] or improving performance[14].

State-Space Model (SSM) come from continuous-time system which maps a 1D function x(t) ∈ R
to another function y(t) ∈ R via a hidden state h(t) ∈ RN . In SSM, the continuous parameters can
be discretized using a step size ∆ and get discrete parameters A,B,C. The resulting discrete-time
system is used to model sequences x,y ∈ R1×n with elements xt, yt ∈ R via the recurrent form:

ht = Aht−1 +Bxt, yt = Cht, (7)

in autoregressive inference with O(1) time and memory complexity per token. The linear time-
invariant SSM above can be unrolled and computed using the long convolution with kernel K

K := (CB,CAB, · · · ,CA
n−1

B) ∈ R1×n, y = K ∗ x, (8)

where ∗ represents casual convolution operation [24], which enables parallelizable training utilizing
Fast Fourier Transforms, resulting in O(n log n) time and O(n) memory complexity during training.
When handling vector sequences X,Y ∈ Rd×n, SSMs are applied individually on the d channels.
Typical SSMs (S4D[25], DSS[26], H3[21], S5[22]) employ data-independent structured transition
matrix A or special initialization strategies HiPPO[27] to efficiently enhance long-range dependencies.
Mamba [16] advances SSMs by introducing data-dependent parameters and designs a hardware-aware
parallel algorithm, further improving prior O(n log n) into O(n) time complexity during training.

Linear RNNs (LinRNN) Traditional RNNs suffer from slow sequential training, limited capability
in modeling long-term dependencies, and difficulty in scaling. To address these issues, LinRNNs
eliminate the nonlinearity within the recurrence and employ element-wise product instead of matrix
multiplication [11, 28]. Typical LinRNN such as Gated Linear Recurrent Unit (GLRU) [20, 29] is

ft, it, ct = σ(xtW f + bf ), σ(xtW i + bi), ϕ(xtW c + bc) ∈ R1×d, (9)

ht = ft ⊙ ht−1 + it ⊙ ct,∈ R1×d, (10)

where xt,ht denote input and output, ft, it are forget and input gates as in traditional RNNs, ⊙ is
element-wise multiplication. Linear RNNs have O(1) time and memory complexity per token during
inference. Since Eq. (10) removes nonlinearity, it enables parallelized training using parallel scan[11],
with only O(n) time and memory complexity. Recent works have made effort to explore effective
recurrence (LRU [19], RWKV [17]) or gating mechanisms (HGRN [20], Griffin [18]).

3 General Form of LinFormer/SSM/LinRNN Mechanisms

Observing Eq. (3), Eq. (5), Eq. (7), and Eq. (10), we find that their recurrent forms during inference
can all be understood from the view of maintaining hidden states. Softmax attention maintains an
unlimited hidden state (KV cache). By contrast, LinFormer/SSM/LinRNN have limited hidden states:
linear attention with ϕ⊤(kt)vt ∈ Rdk×dv , SSM with ht ∈ RN×d, linear RNNs with ht ∈ R1×d,
where dk > N > 1 in usual. Inspired by this fact, we unify LinFormer/SSM/LinRNN mechanisms
in the form of linear attention, formally containing Query, Key, and Value matrices (see Fig. 1).
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Figure 1: General Form of LinFormer/SSM/LinRNN Mechanisms. The general form equips with
two modes of parallel and recurrent computation which enjoys both training and inference efficiency.

General Recurrent Form of LinFormer/SSM/LinRNN is:

qt = fq(xt, θq),kt = fk(xt, θk), αt = fα(xt, θα) ∈ R1×dk , (11)

vt = fv(xt, θv),gt = fg(xt, θg) ∈ R1×dv , (12)

Sh
t = diag(αh

t )S
h
t−1 + (kh

t )
⊤vh

t ∈ Rd′
k×d′

v , (13)

ot = XNorm(concat[q1
tS

1
t ,q

2
tS

2
t , · · · ,qH

t SH
t ]) ∈ R1×dv , (14)

yt = (ot ⊙ gt)WO ∈ R1×d, (15)

where xt ∈ R1×d is the t-th input. qt,kt,vt, αt,gt,St are query, key, value, decay, output gate,
hidden state respectively. fq/k/α are functions that map xt from R1×d to R1×dk , θq/k/α are the
corresponding parameters to be trained. Similarly, fv/g map xt from R1×d to R1×dv and θv/g
are trainable parameters. In Eq. (13), qt, αt,kt,vt are divided into H partitions (heads), where
d′k/v =

dk/v

H , and h = 1, · · · , H is the index of heads. Each head maintains a hidden state Sh
t . The

diagonal matrix diag(αh
t ) denotes the decay of past state. kh

t represents the acceptance for the input
token vh

t . The hidden states are 2D matrix once d′k ̸= 1. In Eq. (14), to turn back to 1D shape, the qh
t

operation is necessary as a dot-product with Sh
t , then the concat and normalization operations are

followed. XNorm denotes any kinds of normalization. In Eq. (15), a gate machanism is optional for
ot while the dimension should be projected back to d from dv through WO ∈ Rdv×d.

From a functional view, Eq. (13) represents the update process of the hidden state, which contains
historical information on keys and values. Eq. (14) represents query and weighted sum operations to
derive the attention output. Eq. (15) represents gate and projection operations to get the final output.

General Parallel Form of LinFormer/SSM/LinRNN can be written as follow:

O = LinAttMap (Q,K)V =
(((

Q⊙A
)(K

A

)⊤)⊙M
)
V, (16)

(Q/K/V)t,: = (q/k/v)t, At,: =

t∏
j=1

αj , Mi,j =

{
1, i ≤ j.

0, i > j.
(17)

K
A denotes element-wise division, (Q)t,: is the t-th row of Q, and LinAttMap (Q,K) is the attention
map. Each element in the attention map matrix is as follows (heads are omitted for simplicity):

LinAttMap (Q,K)t,s =

qt ·
((∏t

j=s+1 αj

)
⊙ ks

)⊤
, s ≤ t.

0, s > t.
(18)

As shown in Tab. 1, the main differences between various linear models are parameter functions
fq/k/v/α/g and dimension settings dk, dv, H . We give details in appendix A1 on how to derive
LinFormers/SSMs/linRNNs from our unified form, which is termed as “Linear Attention (LinAtt)".

LinFormer/SSM/LinRNN models have different origins, so they have different optimization per-
spectives and various hidden state sizes: i) LinFormer originate from approximation of vanilla
softmax attention. They focus on designing better kernel function ϕ, i.e., to optimize fq, fk; They have

4
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Table 1: From our general form to existing linear models (∗ indicates the bias term is omitted).

Models
LinFormer LinRNN SSM

GLA[15] TrNorm[12] GLRU[20] RWKV-4[17] Mamba[16] S5[22]

fq(xt, θq) xtWQ ϕ(xtWQ) 1 1 xtWC 1
fk(xt, θk) xtWK ϕ(xtWK) σ(xtW i)

∗ exp (xtWK) ∆t(xtW b) 1
fv(xt, θv) xtW V xtW V ϕ(xtW c)

∗ xtW V xt xtB
fα(xt, θα) σ(xtW

1
αW

2
α)

∗ λ exp (jθ) σ(xtW f )
∗ exp (−W ) exp (∆tA) exp (∆A)

fg(xt, θg) σ(xtW r)
∗ xtWU ϕ(xtW g)

∗ σ(xtW r) 1 1

Dimension dk = d/2
dv = d

dk = dv = d dk = dv = d = H
dv = d = H
d′k = N

dv = Nd = H
d′k = 1

relatively large matrix hidden state whose size (dvdk/H) is mainly correlated to model dimension
d. ii) SSM originate from state space equations. So they focus on how to better maintain the hidden
state and optimize fα; They have a matrix hidden state of moderate size (dvN ), which is correlated to
the fixed expansion N . iii) LinRNN originate from removing nonlinearity in the recurrence of vanilla
RNN. So they focus on designing better forget/input/output gates, i.e., to optimize fα, fk, fg; They
have 1D vector hidden state whose size (dv) is relatively small. Despite these differences, they all try
to design better parameter functions fq/k/v/α/g and maintain a limited hidden state St.

4 Optimal Linear Approximation to the Softmax Attention Map

We here discuss the optimal approximation of LinAttMap to SoftAttMap based on its general form.
The function of softmax attention is two-fold: i) Memorizing information, all the current and historical
information can be stored in KV cache; ii) Modeling relationships, softmax attention can calculate
arbitrary attention scores of stored information. Unfortunately, such a powerfully expressive attention
map generated by softmax attention requires infinite hidden states. By contrast, linear attention
expects to exploit limited hidden states to achieve the same functionality as softmax attention.

Some existing linear models, such as Performer[30], RFA[31], etc., optimize the model with the
goal of approximating the value of SoftAttMap. In contrast, this work investigates the functional
approximation of SoftAttMap, which is the basis for value approximation. Specifically, we here
attempt to answer two key questions: i) Can linear attention realize the function of softmax attention?
ii) If it can be achieved, what kind of linear attention approximation is better? To achieve this goal, we
first give the definition of necessary conditions of optimal linear approximation. Then we categorize
the existing linear models based on the conditions of the optimal linear approximation.
Definition 4.1. Necessary Conditions of Optimal Linear Approximation to Softmax Attention
Map. A function f(xt,xs|θ) : R1×d ×R1×d → R, used to compute attention score between any xt

and xs (tokens), with parameters θ, is an optimal linear approximation to softmax attention map if it
satisfies: i) Linear complexity. Attention map can be computed in linear time, i.e., O(n) space and
time complexity during training and O(1) space and time complexity during inference. ii) Dynamic
memory ability. When handling inputs sequentially, f(xt,xs|θ) with limited hidden states should
be able to store the most important information adaptively while forgetting unimportant ones. iii)
Static approximation ability: For an arbitrarily given softmax attention map P with scores pts,
there must exists bounded θ such that f(xt,xs|θ) = pts,∀t, s = 1, · · · , n. iv) Least parameter
approximation: On the premise that the first three conditions are met, use as few parameters as
possible to achieve approximation to softmax attention map.

In definition 4.1, Condition 0 (C0) underlines computational and memory efficiency. Conditions 1
(C1) and 2 (C2) consider memory and modeling ability of linear attention. Due to limited state size d,
linear attention can only memorize the history of most important d tokens without information loss
and precisely model arbitrary attention map of those d tokens. Condition 3 (C3) is our expectation to
seek the least parameters on the premise that previous three conditions are met.

Theoretical Analysis for Optimal Linear Approximation. For the C1 condition, suppose the
information about vt1 , . . . ,vtdk

is successfully stored in St (t1, . . . , tdk
≤ t), we will check whether

the model can substitute unimportant vt1 when the new important input vt+1 arrives.

For the C2 condition, Eq. (18) illustrates the LinAttMap only relate to qt = fq(xt, θq),kt =
fk(xt, θk), αt = fα(xt, θα). Denote decay Λt = diag(αt). Assuming the inputs are good enough
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Table 2: A review of existing linear models. According to definition 4.1, existing linear models
all have some deficiencies: i) Models without dynamic decay Λt have no ability to memorize
dynamically (not satisfying C1); ii) LinRNNs lack the selection ability brought by Q (not satisfying
C2), and the approximation ability is poor owing to the small hidden state; iii) Models with K have
redundant parameters (not satisfying C3), which probably leads to higher learning difficulty.

C0 C1 C2 C3 Models

Softmax Attention % ! ! - Transformer [1],
GPT [2], Llama [3]

Linear
Attention

Three Parameter
Groups

Q,K,Λ ! % % %
RetNet [14], TransNormer [12],

S4D [25], H3 [21], DSS [26]

Q,K,Λt ! ! ! % GLA [15], Mamba [16]

Two Parameter
Groups

Q,K ! % ! %
linear Transformer [9], RFA [31],
Performer [30], cosFormer [32]

K,Λ ! % % % RWKV-4 [17]

K,Λt ! ! % % GLRU [20]

Q,Λ ! % % % -

Q,Λt ! ! ! ! MetaLA (This Work)

One Parameter
Group

Q or K ! % % % -

Λ ! % % % LRU [19], S5 [22]

Λt ! ! % %
HGRN [20], Griffin [18],

T-RNN [33]

and the functions (fq, fk, fα) are expressive enough, we can shift from solving (θq, θk, θα) to solving
(Q,K,Λt). We focus on approximating the attention scores between stored tokens, and the problem
is simplified via: i) setting query dimension dk = 1; ii) considering only a given time t and its
attention distribution pt = [pts, s = 1, . . . , t] ∈ R1×t. Then, C2 is proved by the following equations
holding with bounded parameters, as a foundation conclusion:

f(xt,xs|Q,K,Λt) = qt
( t∏
j=s+1

αj

)
ks = pts,∀s = 1, . . . , t, (19)

s. t. |qs| ≤ Cq, |ks| ≤ Ck, αs ∈ [0, 1],∀s = 1, . . . , t. (20)

For bounded inputs X, bounded parameters (θq, θk, θα) are equivalent to bounded (Q,K,Λt).
Afterwards we will generalize to vector version with dk > 1 and consider distribution of all time
(pt, t = 1, . . . , dk). This is done by viewing qt as a channel selector.

For the C3 condition, least parameters mean the fewest parameter groups (Q,K,Λt) when d, dk, dv
are fixed. Due to space constraints, the detailed analysis in this Section is provided in appendix A2.

Conclusions of Optimal Linear Approximation Analysis. i) Linear approximation. The nec-
essary conditions (C1 and C2) for LinAttMap to achieve approximation to SoftAttMap is that its
implementation must include Q and dynamic decay Λt. Both (Q,K,Λt) and (Q,Λt) can achieve
approximation. ii) Least parameter approximation. (Q,Λt) has fewer parameters (i.e., K is not
necessary), if the model dimensions are fixed. iii) Function of dynamic decay. Λt is the key to
achieve dynamic memory. iv) Function of Query. Q can be seen as a channel selector which selects
several channels of Hadamard product of Λt and K to approximate attention map.

In Tab. 2, we review some existing linear models and judge whether they meet the necessary conditions
for optimal approximation. Linear attentions can be classified into three types based on the parameter
groups: i) Using (Q,K,Λt) all together, ii) Exploiting (Q,K), (Q,Λt) or (K,Λt), iii) Employing
only one of Q, K, Λt. Considering decay can be either dynamic or fixed, here we use subscript t to
distinguish, i.e., Λ/Λt denote fixed/dynamic decay. According to definition 4.1, they have different
degrees of deficiencies: i) Models without dynamic decay such as RetNet[14], TransNormer[12],
RFA[31], cannot memorize dynamically; ii) LinRNNs such as RWKV-4[17], HGRN[20], Griffin[18]

6
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Table 3: From general recurrent linear form to our MetaLA.

Models fq(xt, θq) fk(xt, θk) fv(xt, θv) fα(xt, θα) fg(xt, θg) Dimension

MetaLA xtWQ 1− αt xtW V σ(xtW α) ϕ(xtWG + bG) dk = d/2, dv = d

lack the selection ability brought by Q and the approximation ability is poor due to the small hidden
state; iii) Models with K such as Mamba[16], GLA[15] have redundant parameters, which probably
leads to higher learning difficulty. Thus, none of the existing linear models meet all C1/C2/C3
conditions. These analyses also inspire us that ignoring the functional approximation of softmax
attention does not enable the approximation of softmax attention values.

5 MetaLA Transformer

Transformer is stacked by a series of Encoder/Decoder blocks. Generally, each block is composed
of two modules in sequence: token mixer and channel mixer [34, 35]. Softmax attention plays the
role of the token mixer. In this work, we follow the Transformer architecture as a whole but use our
proposed MetaLA module as the token mixer. Due to space constraints, the architecture of MetaLA
Transformer is given in detail in appendix A3. Here we focus on describing the three enhancements
of MetaLA relative to the general linear attention in Sec. 3 (see Fig. 2): i) The Key matrix is not used,
which is based on our theoretical analysis. ii) Self-augmentation and iii) Short convolution are two
other optional techniques to further enhance the modeling ability of our model.

Figure 2: Recurrent form of MetaLA. We
mark all three enhancements in red.

i) The Key matrix is not used. We exploit 1− αt to
replace kt, based on theoretical analysis in Sec. 4
and appendix A2, i.e., dynamic decay Λt is the key
mechanism to achieve dynamic memory and static
approximation, and K is not required. As shown in
Tab. 3, compared with Eq. (13), the main improve-
ment is:
Sh
t = diag(αh

t )S
h
t−1 + (1− αh

t )
Tvt ∈ Rd′

k×d′
v ,

(21)

which can be trained in a parallel form in Eq. (16).
The only difference is that K is replaced by B and
Bt,: = 1−αt. With usage of Λt and Q, MetaLA can
achieve linear approximation to SoftAttMap. Without
usage of K (WK), we can allocate more parameters and utilize full-rank matrix W α to produce
dynamic decay rather than low-rank matrix used by GLA, such that we do not sacrifice expression
capacity of fα and approximation performance of MetaLA.

ii) Self-augmentation can enhance a token’s attention to itself, avoiding attention dilution [12]:

oh
t = qh

t S
h
t + σaug

(
qh
t (w

h
aug ⊙ (1− αh

t ))
Tvt

)
∈ R1×d′

v . (22)

Without changing the hidden state Sh
t in Eq. (21), the proposed self-augmentation (the second term

on the right side of the equation) is only added on the output process, with a learnable parameter
waug ∈ R1×dk . The proposed design has two advantages (more analysis in appendix A3.2): First, it
maintains parallel computing; Second, it augments the information of current token itself and does
not affect future output through inner state.

Figure 3: Accuracy (%) on the synthetic MQAR task.

iii) Short convolution. An addi-
tional short convolution can be in-
serted before entering the MetaLA
layer to enhance local interaction
further, motivated by Mamba [16]
and Griffin [18].

6 Experiments

We conduct a comprehensive eval-
uation of MetaLA to validate its

7
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Table 4: Performance Comparison on SuperGLUE. PS: parameter size (billion). T: tokens (billion).
† means the results reported by [20]. For baselines that need to be compared, if they do not have public
checkpoints, we train and test them under identical conditions with MetaLA. MetaLAa: MetaLA
with tied embedding trained using 100B tokens. MetaLAb: MetaLA trained with 300B tokens.

Models PS T WSC WIC RTE CB MULTIRC BOOLQ COPA AVG

Pythia 0.41 15 36.54 50.00 52.35 39.29 0.31 61.99 62.00 43.21
Mamba 0.37 15 36.54 50.31 52.71 42.86 2.52 58.78 64.00 43.96
GLA 0.36 15 36.54 49.84 53.07 41.07 0.42 53.49 66.00 42.92
MetaLA 0.36 15 36.54 50.00 52.71 42.86 0.31 58.96 67.00 44.05

Pythia† 1.4 300 36.54 50.00 53.07 35.71 0.94 60.73 72.00 44.14
HGRN† 1 100 40.38 50.78 53.43 42.86 3.04 58.69 70.00 45.60
Mamba 1.4 100 39.42 50.94 55.23 26.79 1.15 53.27 73.00 42.83
RetNet‡ 1.3 100 36.54 50.00 52.71 46.43 2.52 60.21 68.00 45.20
GLA‡ 1.3 100 36.54 50.16 53.07 37.50 0.31 61.04 69.00 43.95
MetaLAa 1.3 100 49.04 51.25 55.60 37.50 1.78 55.50 70.00 45.81
MetaLAb 1.4 300 62.50 51.88 49.10 48.21 1.57 56.27 75.00 49.22

Table 5: Performance Comparison on Commonsense Reasoning. ‡ indicates testing using open-
source checkpoints. HS: HellaSwag. WG: WinoGrande. OBQA: OpenbookQA.

Models PS T LOGIQA WSC273 BOOLQ PIQA HS WG ARC-c OBQA AVG

Pythia 0.41 15 21.81 57.51 61.99 63.66 33.15 51.78 22.78 28.60 42.66
Mamba 0.37 15 20.43 56.78 58.78 64.80 33.98 49.80 22.87 29.20 42.08
GLA 0.36 15 23.04 56.78 53.49 63.55 32.00 52.10 22.78 27.40 41.39
MetaLA 0.36 15 22.43 58.24 58.96 63.82 32.18 53.12 23.38 28.00 42.52

Pythia‡ 1.4 300 21.35 72.89 63.12 70.89 51.98 56.99 28.41 33.20 49.85
HGRN‡ 1 100 22.43 58.97 58.75 71.00 48.05 51.14 28.07 31.80 46.28
Mamba 1.4 100 22.73 68.50 53.27 71.44 48.63 53.59 29.01 31.80 47.37
RetNet‡ 1.3 100 22.73 63.74 60.21 69.53 48.39 53.28 26.19 30.80 46.86
GLA‡ 1.3 100 21.81 63.00 61.04 70.08 48.00 51.93 28.33 31.40 46.95
MetaLAa 1.3 100 21.81 65.93 55.50 70.02 47.32 55.01 27.47 33.00 47.01
MetaLAb 1.4 300 21.35 73.63 56.27 72.25 53.58 58.17 30.03 34.60 49.99

capabilities as a foundation model. i) MQAR [36]. Performance on the Multi-Query Associative
Recall (MQAR) task is closely linked to language modeling and can also imply the effectiveness of
our theory in modeling hidden states and retrieving information. ii) Autoregressive language modeling
on the Pile [37] dataset and evaluation on Common-Sense Reasoning and SuperGLUE [38] zero-shot
benchmarks are conducted. iii) LRA [39]. We execute experiments on the Long Range Arena (LRA)
benchmark [39] to investigate MetaLA’s ability in long sequence modeling. iv) ImageNet [40].
Generalization ability in visual tasks. Due to space constraints, we put some additional experiments
in appendix A5, including: v) Scalability. We extend MetaLA to a 3B parameter scale and a 300B
data scale for preliminary validation. vi) Retrieval and long context abilities. We evaluated MetaLA’s
retrieval performance on the MAD tasks [41], and its effectiveness in handling long contexts on the
Needle in a Haystack task [42]. vii) Training efficiency. We provide comparative results on training
throughput and GPU memory usage across various models. Detailed experimental setup and further
discussion are given in appendix A4.

Associative Recall. The synthetic MQAR task [36] is exploited to evaluate MetaLA’s memory ability.
In the task, given multiple queries, the model must recall the corresponding key-value pairs before.
We follow default settings in [36] to generate datasets. Fig. 3 shows that MetaLA outperforms other
linear models, which have three parameter groups (Mamba [16], GLA [15], Based [43]) or fixed
decay (RWKV-4 [17]), well supporting our theoretical analysis and module design. The attention
baseline achieves optimal results (> 99.0) under both conditions. The additional experiments in
appendix A5 show that MetaLA outperforms Mamba on more challenging settings.

Language Modeling. We train two scales of MetaLA: 360M/1.4B on the Pile dataset. For baselines
of 360M MetaLA, we train them from scratch aligned with our configurations. For the 1.3B MetaLA,
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Table 7: Performances Comparison on the Long Range Arena. We cite baselines from HGRN [20].

Method LitsOps Text Retrieval Image Pathfinder Path-X AVG.

Transformer [1] 38.37 61.95 80.69 40.57 65.26 - 47.81
S4 [10] 59.60 86.82 90.90 88.65 94.20 96.35 86.09

DSS-softmax [26] 60.60 84.80 87.80 85.70 84.60 87.80 81.88
TNN [46] 61.04 87.90 90.97 88.24 93.00 96.10 86.21
S5 [22] 62.15 89.31 91.40 88.00 95.33 98.56 87.46

Mega [47] 63.14 90.43 91.25 90.44 96.01 97.98 88.21
SGConv [48] 61.45 89.20 91.11 87.97 95.46 97.83 87.17

LRU [19] 60.20 89.40 89.90 89.00 95.10 94.20 86.30
HGRN [20] 59.95 88.14 94.23 88.69 92.92 97.50 86.91
Mamba [16] 38.02 82.98 72.14 69.82 69.26 67.32 66.59

MetaLA(ours) 59.34 89.27 91.28 91.88 91.66 96.57 86.67

Table 8: Ablation studies. Ablation study results on the 360M model trained for 15B tokens.
We compared the model variants on zero-shot experiments of the Comparison on Commonsense
Reasoning benchmark. HS: HellaSwag. WG: WinoGrande. OBQA: OpenbookQA.

Models LOGIQA WSC273 BOOLQ PIQA HS WG ARC-c OBQA AVG

MetaLA 22.43 58.24 58.96 63.82 32.18 53.12 23.38 28.00 42.52
MetaLA w/o selfaug 21.81 58.61 57.52 64.47 32.56 49.41 23.89 29.00 42.16
MetaLA w/o conv 22.58 51.65 49.36 52.07 25.82 51.22 26.54 28.80 38.51
MetaLA w/ key 21.20 57.88 49.11 63.00 32.99 50.99 23.63 27.60 40.80

we compare it with publicly available models [14, 15, 16, 20, 44]. We implement all the pre-train
experiments with GPT-Neox [45]. The zero-shot evaluation results on SuperGLUE and Commensense
Reasoning benchmarks are reported in Tab. 4 and Tab. 5. Specifically, compared to the LinRNN
model HGRN [20], MetaLA expands hidden state dimensions and uses Query matrix; Compared to
LinFormer model RetNet [14] with fixed decay, MetaLA uses dynamic decay; Compared to SSMs
like Mamba [16] and LinFormer with dynamic decay GLA [15], MetaLA omits the Key matrix in
computation. Results indicate that MetaLA has better performance than these linear models and the
Transformer-based Pythia [44]. See appendix A5 for more task results.

Table 6: Results on ImageNet-1k.

Model Acc PS (M) Acc PS (M)

Deit 72.20 5.7 79.90 22.0
HGRN 74.40 6.1 80.09 23.7
GLA 72.47 6.1 79.23 23.5
Mamba 73.39 6.1 79.60 23.7
MetaLA 75.33 6.1 80.14 23.7

Long Sequence Modeling. LRA is used to evaluate the
model’s ability in long sequence modeling. We compare
MetaLA with Transformer, linear foundation models, and
models specifically designed for long sequence modeling.
Tab. 7 shows that MetaLA achieves comparable results
with SOTA linear models, demonstrating that our model
effectively preserves the ability to model long sequences.

Image Classification. We compare MetaLA with
Deit [49] (Transformer), HGRN [20] (LinRNN),
GLA [15] (LinFormer) and Mamba [16] (SSM) on ImageNet. As shown in Tab. 6, MetaLA performs
better than other typical linear models at both scales of 6M and 23M.

Ablation Studies. We conduct ablation studies on the 360M model trained with 15B tokens and
compare the results in zero-shot experiments. First, restoring the Key matrix in linear attention does
not improve performance while increasing parameters, supporting our theoretical result that K is
not necessary for approximation, and its functional role can be replaced by dynamic decay. Second,
the ablations of self-augmentation and short convolution demonstrate the effectiveness of our model
design, i.e., enhance tokens’ own attention and local interactions.

7 Conclusion and Discussion

Conclusion. We unify LinFormer/SSM/LinRNN models into the form of linear attention with Query,
Key, Vaule matrices, and then analyze whether they can achieve the optimal approximation to the
softmax attention function. Theoretical analysis shows that the existing LinFormer/SSM/LinRNN
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cannot achieve optimal approximation. Consequently, we propose the MetaLA architecture, which
can achieve functional approximation of softmax attention with least parameters. The performance
on various types of tasks verifies the effectiveness of MetaLA.

Discussion and Limitation. Here, we discuss two key questions about approximation perspectives. i)
How does an optimal approximation to softmax attention inspire linear attention design? In this work,
we mainly remove the Key matrix, use dynamic decay, and enhance local interactions and the token’s
own attention. This is clearly not the end of linear attention optimization. This work focuses on
functional approximation, previous studies about the value approximation [30, 31, 50] can be further
investigated on the basis of our functional approximation theory as well as MetaLA architecture.
Additional optimization may include improving the recall ability of limited hidden states or designing
better parameter functions. ii) Does approximation to the softmax attention imply that linear attention
has an upper capacity limit? Taken literally, approximation seems to imply that linear attention cannot
exceed softmax attention. However, we found better results for linear attention than softmax attention
in some experimental results, such as zero-shot and LRA. Similar findings were also reported in
previous work [13, 15, 16]. We argue that this issue deserves further exploration. For the time being,
evaluation metrics that do not adequately reflect the model’s capabilities, insufficient training [51],
and linear attention that does have advantages in certain abilities [15] are all possibilities.
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A1 Related Work

We overview several architectures of three types of linear models, i.e., LinFormer, SSM, and linRNN,
and show how they can be specialized from the general form in Sec. 3.

A1.1 LinFormer

LinFormer abandons the softmax form of vanilla attention, instead leveraging the dot product between
Keys and Values to achieve linear complexity [9]. Advances in LinFormer mainly focus on designing
better kernel function [30, 32, 52, 53, 54, 55, 50] such as the spiking neurons in a spiking neural
network[56, 57, 58, 59] can be understood as efficient kernel functions[60, 61], exploring architectural
optimization [13, 14, 62], introducing gating mechanism [15, 31, 63, 64], etc. We show the general
form of several LinFormer architectures in Tab. A1. For the general form of LinFormers, dk = dv = d
is the most common choice.

• Vanilla LinFormer [9]: Vanilla linear Transformers lack explicit decay. Instead, They choose
to maintain two hidden states containing a denominator to normalize attention scores. As for
their general form, qt/kt = fq/k(xt, θq/k) = ϕ(xtWQ/K) where θq/k = WQ/K and ϕ is the
nonlinearity. vt = xtW V . There is no decay or output gate, i.e., gt = 1 and αt = 1.

• RetNet [14]: Different from vanilla LinFormer, RetNet uses positional encoding exp (jnθ) and
fixed decay λ to control the hidden state. For its general form, qt/kt/vt = fq/k/v(xt, θq/k/v) =
xtWQ/K/V where θq/k/v = WQ/K/V . αt = λ exp (jθ) is the fixed decay vector, where j is
imaginary unit. Furthermore, yt = [ot ⊙ SiLU(xtWG)]WO where θg = WG.

• TransNormer [12]: TransNormer also uses positional encoding exp (jnθ) and fixed decay λ
to control the hidden state. For its general form, qt/kt = fq/k(xt, θq/k) = ϕ(xtWQ/K) where
θq/k = WQ/K and ϕ is the nonlinearity. vt = xtW V , and αt = λ exp (jθ) is the fixed decay
vector, where j is imaginary unit. The normalization layer chosen by the paper is SRMSNorm.
Furthermore, yt = [ot ⊙ (xtWU )]WO where θg = WU .

• GLA [15]: GLA considers a data-dependent gating mechanism for LinFormer. For its gen-
eral form, qt/kt/vt = fq/k/v(xt, θq/k/v) = xtWQ/K/V where θq/k/v = WQ/K/V . αt =

sigmoid(xtW
1
αW

2
α + bα)

1/τ is a dynamic decay, where W 1
α and W 2

α are low-rank matrices.
Furthermore, yt = [ot ⊙ SiLU(xtW r + br)]WO where θg = [W r, br].

Table A1: From general form to LinFormers.

Models Vanilla
LinFormer[9] RetNet[14] TransNormer[12] GLA[15]

fq(xt, θq) ϕ(xtWQ) xtWQ ϕ(xtWQ) xtWQ

fk(xt, θk) ϕ(xtWK) xtWK ϕ(xtWK) xtWK

fv(xt, θv) xtW V xtW V xtW V xtW V

fα(xt, θα) 1 λ exp (jθ) λ exp (jθ) σ(xtW
1
αW

2
α + bα)

fg(xt, θg) 1 σ(xtWG) xtWU σ(xtW r + br)

Dimension dk = dv = d
dk = d/2
dv = d

A1.2 SSM

SSM represents an alternative linear architecture to Transformer, based on the state space equa-
tions [24, 65]. Typical SSMs [25, 26, 66, 67, 68, 69] employ structured transition matrix and
special initialization strategies such as HiPPO [27] to efficiently enhance long-range dependencies.
Mamba [16] advances SSMs by introducing selection mechanism, i.e. input-dependent parame-
ters [70] and designs a hardware-aware parallel algorithm. We show the general form of several SSM
architectures in Table A2. All of them are SISO (Single-Input, Single-Output) except S5 [22]. We
omit original S4 [10] model because it focuses on Diagonal Plus Low-Rank (DPLR) transition matrix
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A rather than fully diagonal one, which is difficult to implement due to computational inefficiency.
For most SSMs, dv = H , which means each channel uses independent parameters (qh

t , α
h
t ,k

h
t ).

• DSS [26]: DSS is the first research to show the effectiveness of diagonal structured SSM with fixed
parameters, which means all parameters are constant through time. For the general form of DSS,
dv = d = H, dk

H = N , where N is an expansion. Q,K,Λ are independent of xt and are determined
by learnable parameters [A,B,C,∆], using ZOH method to discretize. Furthermore, xt = vt,
gt = 1 and WO = I, where I denotes the identity matrix.

• S4D [25]: S4D is also a diagonal structured SSM with fixed parameters. It theoretically explain
and expand the effectiveness of DSS and focus on parameterization and initialization of diagonal
SSM. It can be discretized using ZOH or Bilinear method, resulting different fk/α compared with
DSS. Similarly, xt = vt, gt = 1 and WO = I.

• H3 [21]: H3 combines S4D with LinFormer and adds some architectural optimization such as local
convolution and output gates. The core layer of H3 is S4D, and thus it shares the same general form
with S4D.

• S5 [22]: S5 uses MIMO (Multi-Input, Multi-Output) SSM with fixed parameters. For its general
form, dv = Nd = H, dk

H = 1, where N is an expansion much smaller than that of SISO models. αt =

exp (∆A) is the fixed decay and vt = fv(xt, θv) = xtB where B = (∆A)−1(exp (∆A)−I) ·∆B,
i.e., it chooses ZOH method. Similar to previous SSM models, all the parameters are independent of
xt and are determined by learnable parameters [A,B,C,∆]. Furthermore, qt = kt = gt = 1 and
WO = C.

• Mamba [16]: Mamba advances SSMs with selection, which means all parameters are time-varying
and input-dependent. For the general form of Mamba, dv = d = H, dk

H = N . qt = Ct = xtWC .
Similarly, kt = Bt = xtWB∆t. The decay term can be written as αt = exp(∆tA). xt = vt,
gt = 1 and WO = I. Furthermore, ∆t = softplus(xtW lora + b∆).

Table A2: From general form to SSMs.

Models DSS[26], S4D[25], H3[21]
(ZOH)

S4D[25], H3[21]
(Bilinear) Mamba[16] S5[22]

fq(xt, θq) C C xtWC 1
fk(xt, θk) (∆A)−1(exp (∆A)− I)∆B (I− ∆

2 A)−1∆B ∆t(xtWB) 1
fv(xt, θv) xt xt xt xtB
fα(xt, θα) exp (∆A) (I− ∆

2 A)−1(I+ ∆
2 A) exp (∆tA) exp (∆A)

fg(xt, θg) 1 1 1 1

Dimension dv = d = H
dk/H = N

dv = Nd = H
dk/H = 1

A1.3 LinRNN

LinRNN is a variant of the vanilla Recurrent Neural Network (RNN) model [71, 72, 73] that
eliminates the nonlinearity within the recurrence and employs element-wise product instead of matrix
multiplication [11, 28, 74, 75]. Recent works have made efforts to explore more effective recurrence
[17, 19, 76, 77] and design more advanced gating mechanisms [18, 20, 33]. We show the general
form of several LinRNN architectures in Tab. A3. LinRNNs generally implement dk = dv = H = d
except LRU [19], which means each channel uses independent parameters (qh

t , α
h
t ,k

h
t ). They

maintain a smaller unexpanded hidden state, which is a 1D vector and can be seen as a special case
with head dimension size d′k = 1.

• RWKV-4 [17]: RWKV-4 is a linear RNN model which includes fixed decay and output gates.
Moreover, RWKV-4 treats the present token differently and uses token shift operation (we omit
for clear illustration). For its general form, kt = exp (xtWK) where θk = WK . vt = xtW V

while qt = 1. αt = exp (−W ) is fixed decay with the learnable parameter θα = W . Furthermore,
yt = [ot ⊙ sigmoid(xtW r)]WO where θg = W r.
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• GLRU [20]: Gated linear recurrent unit (GLRU) mentioned in HGRN is a linear RNN model
including input/forget/output gates. For the general form of GLRU, αt/kt = fα/k(xt, θα/k) =
σ(xtW α/K + bα/K) where θα/k = [W α/K , bα/K ] and σ is the sigmoid function. vt =
SiLU(xtW V + bV ) while qt = 1. Furthermore, yt = [ot ⊙ SiLU(xtW g + bg)]WO where
θg = [W g, bg].

• Griffin [18]: Griffin is an RNN model with gated linear recurrence. Moreover, it ties dynamic
decay and Key as we do. For the general form of Griffin, αt = fα(xt, θα) = Ac·σ(xtW a+ba)

where θα = [A,W a, ba]. Then kt =
√
1− α2

t to replace Key’s role. vt = σ(xtW x + bx) ⊙ xt

which contains an input gate additionally. qt = 1 and yt = [ot ⊙GeLU(xtW g + bg)]WO where
θg = [W g, bg].

• LRU [19]: LRU is a linear and diagonal RNN model with fixed decay, inspired by deep SSMs’
success. For its general form, dv = Nd = H, dk

H = 1, where N is a small expansion. αt = A is
the fixed decay and vt = fv(xt, θv) = xtB where θv = B. Furthermore, qt = kt = gt = 1 and
WO = C.

Table A3: From general form to LinRNN.

Models RWKV-4[17] GLRU[20] Griffin[18] LRU[19]

fq(xt, θq) 1 1 1 1

fk(xt, θk) exp (xtWK) σ(xtW i + bi)
√

1− α2
t 1

fv(xt, θv) xtW V ϕ(xtW c + bc) σ(xtW x + bx)⊙ xt xtB

fα(xt, θα) exp (−W ) σ(xtW f + bf ) Ac·σ(xtW a+ba) A
fg(xt, θg) σ(xtW r) ϕ(xtW g + bg) σ(xtW g + bg) 1

Dimension dk = dv = d = H
dv = Nd = H
dk/H = 1

A1.4 Approximation to Softmax Attention

Approximation to softmax attention includes two parts: value and functional approximation. Some
previous works of LinFormer [31, 30, 53, 78] were devoted to designing better kernel map ϕ to
approximate the value of SoftAttMap via randomized features, i.e., ϕ(qt)ϕ

⊤(ks) ≈ exp(qtk
⊤
s ).

Recent work [50] further introduces attention weight distillation loss to minimize the cross-entropy
loss between the computed linear attention weights and those that would have been computed via
softmax attention, in order to achieve strict value approximation. Most of them follow typical
designs in [9] and use only Q and K. However, in this work, we find that only considering
value approximation is insufficient. Different from previous studies, we investigate functional
approximation of SoftAttMap. Through theoretical analysis, we show that these works cannot achieve
the functionality of softmax attention due to lack of dynamic decay Λt. Therefore, their purpose of
achieving value approximation cannot be achieved as well. It is worth noting that this is not a denial
of the significance of previous works about value approximation. We can also get inspiration from
them. Functional approximation is the basis and prerequisite for value approximation.

A2 Analysis of Optimal Linear Approximation Conditions

In this section, we show that existing linear models are not optimal linear approximation to softmax
attention map, according to definition 4.1, and prove that linear models with only Query and dynamic
decay can satisfy the optimal linear approximation conditions. In definition 4.1, C0 underlines
computational and memory efficiency. C1 and C2 consider memory and modeling ability of linear
attention. C3 is our expectation to seek the least parameters on the premise that previous three
conditions are met. We first discuss the requirements to satisfy each conditions, based on the general
form of linear attention in Sec. 3. All the linear models own linear complexity and satisfy C0, so we
analyze C1, C2 and C3 in appendix A2.1,appendix A2.2 and appendix A2.3, respectively. Then we
synthesize all the discussions and present the conclusions in appendix A2.4.

18

71051https://doi.org/10.52202/079017-2270



For notation we use Q,K,V,Λt to denote Query, Key, Value and Decay matrices respectively.
Considering decay can be either dynamic or fixed, here we use subscript t to distinguish, i.e., Λ/Λt

denote fixed/dynamic decay. Corresponding qt,kt,vt, α/αt are query, key, value and fixed/dynamic
decay of each timestep.

A2.1 Analysis of Dynamic Memory Ability (C1)

Proposition A2.1. Only models with dynamic decay can satisfy C1 (Dynamic memory ability). Let
St ∈ Rdk×dv be hidden state of general linear attention (see Sec. 3). At a time t, the information
about vt1 , . . . ,vtdk

is successfully stored in St (t1, . . . , tdk
≤ t), which means (St)i,: = vti . When

the new important input vt+1 arrives, only models with dynamic decay can substitute historical
unimportant vt1 by vt+1 successfully, i.e., obtain (St+1)1,: = vt+1.

Proof. Without loss of generality, suppose t = dk and ti = i(i = 1, . . . , dk), where dk is Key
dimension. That is, the information about v1, . . . ,vdk

is successfully stored, which means the i-th
row of Sdk

, (Sdk
)i,: = vi. Suppose v1 is unimportant information need to be substituted. Now the

new and important input vdk+1 arrives, models with general form Eq. (13) update Sdk
as follows

(heads are omitted for simplicity):

Sdk+1 = diag(αdk+1)Sdk
+ (kdk+1)

Tvdk+1. (A1)

We will check whether the model can obtain (Sdk+1)1,: = vdk+1, with fixed/dynamic decay or
without decay. In the following discussion we let kdk+1 = 1.

i) Models with fixed decay, which means αdk+1 = α ∈ (0, 1). The model can update and obtain
(Sdk+1)1,: = αv1 + vdk+1. This means the model with fixed decay can only store most recent
several tokens rather than store most important tokens without information loss, i.e., it has ability to
forget but no ability to forget and memorize dynamically.

ii) Models without decay, which means αdk+1 = 1. This case results in (Sdk+1)1,: = v1 + vdk+1,
which means they have no mechanism to erase old information. So such linear models have no
ability to forget and memorize dynamically, and what they can only do is information blending. Thus
the attention at time t is distracted by all the information before, making it hard to focus on and
approximate most important ones. After normalization, the attention distribution will have a relative
high entropy along time dimension, which is often referred as attention dilution problem.

iii) Models with dynamic decay, which means αdk+1 ∈ [0, 1]. The model can easily erase and
substitute information. Setting αdk+1 = [0, 1, · · · , 1] can obtain (Sdk+1)1,: = vdk+1. So such linear
models have ability to memorize and forget dynamically, making historical unimportant information
have few effect on new one.

A2.2 Analysis of Static Approximation Ability (C2)

Eq. (18) illustrates the LinAttMap only relate to qt = fq(xt, θq),kt = fk(xt, θk) and αt =
fα(xt, θα). Assuming the inputs are good enough and the functions (fq, fk, fα) are expressive
enough, we can shift from solving (θq, θk, θα) to solving (Q,K,Λt). Based on definition 4.1, we
focus on approximating the attention scores between stored tokens xt1 , . . . ,xtdk

.

Proposition A2.2. Only models with parameters (Q,K,Λt), (Q,K) or (Q,Λt) can satisfy C2
(Static approximation ability). For an arbitrarily given softmax attention map P with scores pts,
only above models can ensure Eq. (A2) and Eq. (A3) hold with bounded parameters.

f(xt,xs|Q,K,Λt) = qt ·
(( t∏

j=s+1

αj

)
⊙ ks

)⊤
= pts,∀s ≤ t = t1, · · · , tdk

, (A2)

s. t. ||qt|| ≤ Cq,||kt|| ≤ Ck, ||αt|| ∈ [0, 1],∀t = t1, · · · , tdk
, (A3)

where Cq, Ck are constant and || · || denotes vector norm. In our general form in Sec. 3,
f(xt,xs|Q,K,Λt) = LinAttMap (Q,K)t,s (see Eq. (18)). For bounded inputs X, bounded
parameters (θq, θk, θα) are equivalent to bounded (Q,K,Λt).
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Proof. Without loss of generality, suppose t = dk and ti = i(i = 1, . . . , dk), where dk is Key
dimension. That is, we need to prove following equations hold (heads are omitted for simplicity):

f(xt,xs|Q,K,Λt) = qt ·
(( t∏

j=s+1

αj

)
⊙ ks

)⊤
= pts,∀s ≤ t = 1, · · · , dk, (A4)

s. t. ||qt|| ≤ Cq,||kt|| ≤ Ck, ||αt|| ∈ [0, 1],∀t = 1, · · · , dk, (A5)

Simple case. We first simplify the problem via i) setting dimension size of Q, i.e. dk = 1 and
ii) considering only a given time t (1 ≤ t ≤ dk) and its autoregressive attention distribution
pt = [pts, s = 1, . . . , t] ∈ R1×t. We need to prove the following equations hold with bounded
parameters, as a foundation conclusion:

f(xt,xs|Q,K,Λt) = qt
( t∏
j=s+1

αj

)
ks = pts,∀s = 1, . . . , t, (A6)

s. t. |qs| ≤ Cq, |ks| ≤ Ck, αs ∈ [0, 1],∀s = 1, . . . , t. (A7)

We discuss models with fixed/dynamic decay or without decay. For cases with dynamic decay, we
further consider using dynamic decay to replace key. Query’s role is discussed later.

i) Models with fixed decay α result in unbounded parameters. We can solve Eq. (A6) and derive:

|ks| =
pts

αt−s|qt|
≥ pts

Cq
· 1

αt−s
,∀s = 1, . . . , t. (A8)

Because α ∈ (0, 1), the last term 1
αt−s is unbounded, which leads to unbounded ks. Hence Eq. (A7)

can not be satisfied. The result is intuitive because the fixed exponential decay makes it hard for a
token to attend to distant information, leading to an excessively focused attention map rather than an
arbitrary attention map. This conclusion about fixed decay is general and is unrelated to the usage of
Q or K.

ii) Models without decay (α = 1) can satisfy Eq. (A6). We can solve Eq. (A6) and derive:

ks =
pts
qt

,∀s = 1, . . . , t. (A9)

At any time s, fix an appropriate |qt| ≤ Cq , and we can obtain bounded solutions for all ks.

iii) Models with both dynamic decay αt and key kt can satisfy Eq. (A6), but have parameter-
redundancy. We can solve Eq. (A6) starting from time t to time 1:

kt =
ptt
qt

, (A10)

kt−1αt =
pt t−1

qt
, (A11)

· · · , (A12)

kt−kαt−k+1 · (αt−k+2 · · ·αt) =
pt t−k

qt
, (A13)

· · · , (A14)

k1α2 · (α3, · · · , αt) =
pt1
qt

. (A15)

At any time t − k, parameters αt−k+2, · · · , αt have already been determined. It is equivalent to
use two free parameters kt−k, αt−k+1 to concurrently approximate just one variable pt t−k

qt
, which is

redundant. Dynamic decay and key actually have similar function, i.e., to balance historical memory
and new input. Fix a |qt| ≤ Cq , we can obtain many possible bounded solutions of all ks and αs.

iv) Models with dynamic decay αt and without key kt can satisfy Eq. (A6). Inspired by the parameter-
redundancy in iii), we further consider a linear model with only query and dynamic decay, i.e., using
dynamic decay 1− αt to replace kt’s role to approximate softmax attention map. We further assume
qt = 1, which is bounded, and define St =

∑t
s=1 pts, which satisfies St ∈ [0, 1] and St ≥ St−1.
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Solve Eq. (A6) starting from time t to time 1:

αt = 1− ptt = St−1, (A16)

αt−1 = 1− pt t−1

αt
=

St−2

St−1
, (A17)

· · · , (A18)

αt−k = 1− pt t−k

αt−k+1 · · ·αt
=

St−k−1

St−k
, (A19)

· · · , (A20)

α1 = 1− pt1
α2 · · ·αt

=
S0

S1
. (A21)

At any time t− k, we can derive a closed-form and bounded solution αt−k = St−k−1

St−k
∈ [0, 1].

General case. Aiming to solve Eq. (A4) and Eq. (A5), we generalize to vector version with dk > 1
and consider distribution of all time pt, t = 1, . . . , dk. In an extreme case, let one dimension of
q relate to one time, which means qt = [0, · · · , qt, · · · , 0]. Through the analysis above for one
dimension (Eq. (A6) and Eq. (A7)), we can ensure:

qt ·
(( t∏

j=s+1

αj

)
⊙ ks

)⊤
= qt

( t∏
j=s+1

αj

)
ks = pts,∀s = 1, . . . , t. (A22)

Actually, we can further relax the condition and view qt as a selector, which selects several channels
of Hadamard product of αj and ks, and uses these channels to approximate its attention distribution.
One-hot assumption of qt is an extremely hard selector. This means models without Q can not
approximate softmax attention map, because without selection they can only fit one token’s attention
distribution theoretically.

In summary, through analysis of simple case i) to iv), models with fixed decay Λ cannot ensure
bounded parameters. Through analysis of general case, Q is necessary. So we can conclude that:
only models with parameters (Q,K,Λt), (Q,K) or (Q,Λt) can satisfy C2. (For models with only
Q, without decay and kt = 1 for all t, a token’s attentions to other tokens are all the same, which
means such models can only approximate one special attention map.)

A2.3 Analysis of Least Parameter Approximation (C3)

When model dimension d, dk, dv are fixed, parameter counts of θq, θk, θα are fixed too. Thus fewest
parameters means fewest parameter groups. Linear attentions with general form can be classified into
three types based on the parameter groups: i) using (Q,K,Λ/Λt) all together, ii) exploiting (Q,K),
(Q,Λ/Λt) or (K,Λ/Λt), iii) employing only one of Q, K, Λ/Λt.

Proposition A2.3. Only models with Query and dynamic decay (Q,Λt) can satisfy C3 (Least
parameter approximation). Models with (Q,Λt) can meet C0, C1, C2 simultaneously with fewest
parameters.

Proof. i) C0: all the linear models with general form (Sec. 3) own linear complexity and satisfy C0.

ii) C1: according to proposition A2.1, only models with dynamic decay Λt have dynamic memory
ability.

iii) C2: according to proposition A2.2, only models with parameters (Q,K,Λt), (Q,K) or (Q,Λt)
have static approximation ability.

So we claim that only models using (Q,K,Λt) or (Q,Λt) can meet C0, C1 and C2 simultaneously.
And (Q,Λt) with two parameter groups is least parameter approximation. That is, dynamic decay
can replace Key’s function to balance historical information and new input when approximation is
performed.
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A2.4 Conclusions of Optimal Linear Approximation Analysis

In this section, we summarize our conclusions of theoretical analysis. It is worth noting that our
theory studies functions of LinAttMap, but not whether these functions will be successfully learned.

i) Linear approximation. The necessary conditions (C1 and C2) for LinAttMap to achieve approxi-
mation to SoftAttMap is that its implementation must include at least two parameter groups: Query
Q and dynamic decay Λt. Both (Q,K,Λt) and (Q,Λt) can achieve approximation.

ii) Least parameter approximation. LinAttMap utilizing (Q,Λt) can achieve linear approximation to
SoftAttMap with theoretically fewest parameters.

iii) Function of Query. Q can be seen as a channel selector, which selects several channels of
Hadamard product of αt and kt, and uses these channels to approximate attention map. Thus it is
indispensable for approximation and its dimension size (also the model memory size) is the guarantee
of approximation ability.

iv) Function of dynamic decay. Dynamic decay Λt is the key to achieve dynamic memory and precise
approximation, and can substitute the role of K when approximation is performed.

A3 MetaLA Architecture

We here introduce Meta Linear Attention (MetaLA), a linear approximation with least parameters
to softmax attention map. We design three enhancements of MetaLA relative to the general linear
attention in Sec. 3: i) The Key matrix is not used, which is based on our theoretical analysis. ii)
Self-augmentation and iii) Short convolution are two other optional techniques to further enhance
approximation ability of our model. appendix A3.1 explicates enhancement i) and design of basic
MetaLA layer. appendix A3.2 introduces enhancements ii) and iii), and design of overall MetaLA
architecture.

A3.1 MetaLA Layer

In MetaLA layer, we exploit 1 − αt to replace kt based on theoretical analysis in appendix A2,
i.e., LinAttMap utilizing (Q,Λt) is the linear approximation with least parameter redundancy to
SoftAttMap and K is redundant.

General Recurrent Form. Using marks in Eq. (11)-Eq. (15), the improvement lies in Eq. (A25):

qt = xtWQ, αt = σ(xtW α) ∈ R1×dk , (A23)

vt = xtW V ,gt = ϕ(xtWG + bG) ∈ R1×dv , (A24)

Sh
t = diag(αh

t )S
h
t−1 + (1− αh

t )
Tvt ∈ Rd′

k×d′
v , (A25)

ot = XNorm(concat[q1
tS

1
t ,q

2
tS

2
t , · · · ,qH

t SH
t ]) ∈ R1×dv , (A26)

yt = (gt ⊙ ot)WO ∈ R1×d, (A27)

where xt ∈ R1×d denotes the current input. WQ,W α ∈ Rd×dk , W V ,WG ∈ Rd×dv and
WO ∈ Rdv×d are learnable parameters. d′k/v =

dk/v

H and h = 1, · · · , H is the index of heads.
Here dk represents Query/Decay dimension. LayerNorm is chosen as the normalization operation.
Furthermore, we choose σ = Sigmoid(·)1/τ following [15], where τ = 16 is used to control the
value of dynamic decay and ϕ = SiLU.

As for parameter allocation, we simply set dv = d and dk = d
2 , similar to GLA [15]. Thus, the

whole number of parameters used by a MetaLA layer is 4d2, the same as the softmax attention
layer and smaller than other popular attention-like subquadratic models such as RetNet [14] (8d2)
and GLA [15] (4d2 + 24d), etc. Without usage of K, we can allocate more parameters and utilize
full-rank matrix W α to produce dynamic decay rather than low-rank matrix used by GLA, such that
do not sacrifice expression capacity of fα and approximation performance of MetaLA.
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General Parallel Form. The recurrent form of MetaLA can be written in a parallel mode as follows:

O =
(((

Q⊙A
)(B

A

)⊤)⊙M
)
V, (A28)

(Q/K/V)t,: = (q/k/v)t, At,: =

t∏
j=1

αj , Bt,: = 1− αt, Mi,j =

{
1, i ≤ j.

0, i > j.
(A29)

B
A in Eq. (A28) denotes element-wise division and (Q)t,: means the t-th row of matrix Q. In practical
implementation, we utilize chunkwise form proposed in [15] for hardware-efficient training.

Attention map. Here the attention map is
(((

Q⊙A
)(

B
A

)⊤)⊙M
)

. The element in the attention
map matrix is as follows (heads are omitted for simplicity):

LinAttMapt,s =

{
qt ·

((∏t
j=s+1 αj

)
⊙ (1− αs)

⊤
)
, s ≤ t.

0, s > t.
(A30)

A3.2 MetaLA Transformer

Improved MetaLA. After deriving the basic MetaLA layer shown above, we consider further
optimization when designing complete MetaLA block. One observation is that in most cases, setting
αt = 0 and completely discarding historical information is catastrophic. Actually, in real-world
scenario, the learned dynamic decay αt always closes to 1 because of many tasks’ strong need to
capture long-term dependencies. Hence we propose a technique called self-augmentation to enlarge
a token’s attention to itself while do not disrupt the model’s state constitution, in order to better avert
attention dilution. Moreover, an additional short convolution can be inserted before entering MetaLA
layer to further enhance local interaction, motivated by Mamba [16] and Griffin [18]. Combining
these two techniques, the improved MetaLA is shown as follows, the main improvements lie in
Eq. (A31) and Eq. (A35):

xt = Conv1d(xt) ∈ R1×d, (A31)

qt = xtWQ, αt = σ(xtW α) ∈ R1×dk , (A32)

vt = xtW V ,gt = ϕ(xtWG) ∈ R1×dv , (A33)

Sh
t = diag(αh

t )S
h
t−1 + (1− αh

t )
Tvt ∈ Rd′

k×d′
v , (A34)

oh
t = qh

t S
h
t + σaug

(
qh
t (w

h
aug ⊙ (1− αh

t ))
Tvt

)
∈ R1×d′

v , (A35)

ot = XNorm(concat[o1
t ,o

2
t , · · · ,oH

t ]) ∈ R1×dv , (A36)

yt = (gt ⊙ ot)WO ∈ R1×d. (A37)

As for self-augmentation, without changing the composition of hidden state Sh
t , it is only added on

the output process through a learnable parameter waug ∈ R1×dk , which is then divided into heads
like other parameters do. σaug(·) is a nonlinearity to control the magnitude of augmentation term and
avoid covering with the original attention. We choose Sigmoid(·) in this paper.

The proposed design has two advantages: First, it maintains parallel computing as shown in Eq. (A38);
Second, it only enhances current token’s own attention and does not change the attention of future
tokens to the current token (pts, s < t), because we only change oh

t while maintaining Sh
t unchanged

like that in original MetaLA layer Eq. (A25). Thus the separation of output and memory is realized.

O =
(((

Q⊙A
)(B

A

)⊤)⊙M
)
V + diag

(
sum

(
(Q⊙B⊙W),dim = 1

))
V, (A38)

where Wt,: = waug and sum(Q,dim = 1) means calculate sum for each row of matrix Q. Other
marks are defined same as Eq. (A29).

MetaLA block. Regard each layer as a function mapping the input X ∈ Rn×d to the output
Y ∈ Rn×d where:

X =


x1

x2

...
xn

 ,Y =


y1

y2

...
yn

 , (A39)
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Figure A1: MetaLA Transformer. Stack-
ing N MetaLA blocks, each block is com-
posed of two modules in sequence: token
mixer and channel mixer.

following Transformer structure, now the Token Mix
mechanism Eq. (A31)-Eq. (A37) can be integrated as
follows:

Y = TokenMix(X), (A40)
and the Channel Mix part (GLU [3]) can be written as
follows:

Y = (Swish(XW 1)⊙XW 2)W 3, (A41)

which can be integrated as:

Xl+ 1
2 = TokenMixl(XNorml(Xl)) +Xl, (A42)

Xl+1 = ChannelMixl(XNorml+ 1
2 (Xl+ 1

2 )), (A43)

where Xl and Xl+1 ∈ Rn×d refer to the input and
output of block l in MetaLA. We choose XNorm =
LayerNorm. Stacking several MetaLA blocks above,
we can derive complete MetaLA Transformer as a Lin-
ear Foundation Model, as shown in Fig. A1.

A4 Experimental Details

Table A4: Hyper-parameters of MetaLA on LRA. d is the dimension of model. d1 is the dimension
of dq and dk, d2 is the hidden dimension in GLU. num-warmup and max-step are used for cosine
warmup.

Task Depth d d1 d2 dropout lr bs wd num-warmup max-step

Listops 6 32 16 64 0.0 0.0005 128 0.01 5000 50000
Text 4 128 64 256 0.1 0.004 64 0.0 10000 50000

Retrieval 2 256 128 512 0.1 0.0008 128 0.0001 312 50000
Image 6 512 256 512 0.0 0.003 128 0.0 30000 50000

Pathfinder 6 128 64 128 0.0 0.002 256 0.0 50000 500000
Path-X 6 32 16 32 0.0 0.00075 256 0.0 15000 500000

Associative Recall (AR). Following [36], we train two layer models with a Transformer backbone
that interleaves token mixer and channel mixer. Learning rates are swept by np. logspace(−4,−2, 4)
for sequence length 256 and additional np. logspace(−5,−3, 4) for length 512, and maximum test
accuracy is reported. For GLA [15] and MetaLA, we set H = 2 and dk = dv = d. The kernel size of
short convolution of MetaLA is 2.

Language Modeling. For 360M/1.4B model, we train it from scrach with a total of 15B/300B
tokens on 16/32 A100 GPUs at a learning rate of 3e-4/2e-4 with batch size 0.5M/2M. Both models
maintain a length of 2048 and are trained using fp16. The training setup of baselines [15, 16, 44]
of 360M MetaLA are aligned with MetaLA configurations. For the 1.3B MetaLA, we compare it
with publicly available models [14, 15, 16, 20, 44]. To maintain a fair comparison between linear
models, we trained Mamba from scratch using the same settings with MetaLA on 100B tokens. For
GLA and Retnet, we adopted the open-source checkpoints in FLA [79]. For HGRN and Pythia, we
used the official open-source checkpoints. We implement all the pretrain experiments with GPT-
Neox [45]. We evaluate our models on SuperGLUE benchmark [38] and Common-Sense Reasoning
benchmark including LAMBADA [80], LogiQA [81], Winograd Schema Challenge (WSC273) [82],
BoolQ [83], PiQA [84], HellaSwag [85], WinoGrande [86], ARC-easy (ARC-e), ARC-challenge
(ARC-c) [87], OpenBookQA [88]. We report perplexity (ppl) and accuracy (acc) on LAMBADA,
accuracy normalized by length on HellaSwag, ARC-challenge and OpenbookQA, and acc on the
other subtasks. For SuperGLUE benchmark, we report F1 score on CB, Exact-Match (EM) score
on MultiRC, and accuracy on the other subtasks, following the original work. The LM evaluation
harness [89] is used to implement all evaluations.

Long Range Arena. We evaluate the long sequence modeling capability of our model on LRA task.
We use the adamW optimizer and cosine warmup scheduler. We set the head size be 4 for group
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normalization. In Retrieval, Image, Pathfinder and Path-X we use a bid-model. The hyperparameters
for all tasks can be found in Table A4

Image Classification. We evaluate our models on ImageNet [40]. The input size of ImageNet is 224
× 224. Following Deit [49], the batch size is set to 2048 during 300 training epochs with a cosine-
decay learning rate whose peak value is 2.4× 10−3. We choose AdamW (β1 = 0.9, β2 = 0.98) with
0.05 weight decay as the optimizer. Note that we do not use cutmix or mixup during the training.

Table A5: Performance Comparison on Additional subtasks for Common-Sense Reasoning. PS:
parameter size (billion). T: tokens (billion). † means the results reported by [20]. ‡ indicates testing
using open-source checkpoints. For baselines that need to be compared, if they do not have public
checkpoints, we train and test them under identical conditions with MetaLA. LAMB: Lambada. HS:
HellaSwag. WG: WinoGrande. OBQA: OpenbookQA. MetaLAa: MetaLA with tied embedding
trained using 100B tokens. MetaLAb: MetaLA trained with 300B tokens. "AVG" refers to the average
result on subtasks other than LAMBADA.

Models PS T LAMB ppl LAMB acc LOGIQA WSC273

Pythia‡ 1.4 300 10.94 49.78 21.35 72.89
HGRN‡ 1 100 21.81 36.39 22.43 58.97
Mamba 1.4 100 14.02 44.44 22.73 68.50
RetNet‡ 1.3 100 22.65 36.79 22.73 63.74
GLA‡ 1.3 100 20.05 39.92 21.81 63.00
MetaLAa 1.3 100 12.84 45.99 21.81 65.93
MetaLAb 1.4 300 10.06 50.42 21.35 73.63

Models PS T BOOLQ PIQA HS WG ARC-e ARC-c OBQA AVG

Pythia‡ 1.4 300 63.12 70.89 51.98 56.99 60.56 28.41 33.20 51.04
HGRN‡ 1 100 58.75 71.00 48.05 51.14 55.51 28.07 31.80 47.30
Mamba 1.4 100 53.27 71.44 48.63 53.59 58.59 29.01 31.80 48.62
RetNet‡ 1.3 100 60.21 69.53 48.39 53.28 54.17 26.19 30.80 47.67
GLA‡ 1.3 100 61.04 70.08 48.00 51.93 54.88 28.33 31.40 47.83
MetaLAa 1.3 100 55.50 70.02 47.32 55.01 56.90 27.47 33.00 48.11
MetaLAb 1.4 300 56.27 72.25 53.58 58.17 61.49 30.03 34.60 51.26

Table A6: Results on MAD tasks. All architectures are tested according to the MAD protocol.

Models Compression Fuzzy recall In-context recall Memorization Noisy recall Selective Copy Avg

Multihead Hyena 47.79 18.01 97.46 89.48 98.74 90.81 73.72
GLA 37.70 12.45 91.58 57.05 92.58 88.63 63.33
Mamba 43.95 9.60 87.92 89.45 90.91 81.79 67.27
MetaLA 45.55 15.18 99.87 85.83 99.73 97.71 73.98

A5 Additional Experiments

Additional subtasks for Common-Sense Reasoning. We extend more subtasks of Commonsense
Reasoning for 1B4 MetaLA. Additional experimental results are shown in Tab. A5.

Table A7: Results on MQAR with sequence
length 512 and retrieval key-value pairs 80.

Models Model dimension Acc

Transformer 64 >99.0
Mamba 64 0.0
MetaLA 64 28.5

Transformer 128 >99.0
Mamba 128 0.0
MetaLA 128 90.4

More challenging settings for MQAR. We
evaluate some models with sequence length 512
and with more retrieval key-value pairs (80, de-
fault is 64). The attention baseline benefits from
global modeling capabilities, achieving optimal
results. The results in Tab. A7 show that Met-
aLA outperforms Mamba (does not converge
under the same training conditions), and there is
still a significant gap compared to transformers.

Results on the synthetic MAD task. we eval-
uate several models on MAD [41], a collection of six synthetic tasks predictive of scaling laws,
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Figure A2: Training efficiency evaluations. The throughput and memory usage on a single A800
GPU of Transformer and various linear models. Transformer++ is implemented using FlashAttention
[90] and SwiGLU.

including recall, memorization, and compression. As shown in Tab. A6, MetaLA achieves the best
results across various linear complexity models.

Results on the Needle in a Haystack (NIAH) task. We also present experimental results on the
NIAH task following [42], which is designed to evaluate the in-context retrieval capabilities of
LLMs. Retrieval ability in long texts is a significant challenge for linear models, as all current linear
models lack good solutions to this problem. Nonetheless, Tab. A8 shows that MetaLA has achieved
satisfactory results in comparisons among linear models. Compared to Transformer models, this
performance is still insufficient. This is precisely the issue we hope to address next, following the
unification of linear model forms.

The scalability with respect to model size and training tokens. For preliminary validation, we
further evaluate our model ranging in size from 380M to 3B, trained with up to 300B tokens, on the
CommonSense Reasoning benchmark. The strong results in Tab. A9 demonstrate the potential of our
model when scaling up the parameter scale and training dataset.

Training efficiency evaluations. The comparative results on training throughput and GPU memory
usage across various 1.3B-sized models are shown in Fig. A2. The report indicates that: (1) Our model
demonstrates good linearity, maintaining processing speed and memory efficiency with increasing
sequence length, unlike the Transformer, which experiences a sharp drop in token processing speed
as sequence length increases. (2) Our model matches the computational efficiency of linear models
like GLA [2] in both latency and memory, and is significantly faster than Mamba [5], which also has
linear complexity.

Table A8: Results on the Needle in a Haystack (NIAH) task. We introduce accuracy metrics across
four context scales and three model scales. The middle columns display accuracies below the 4K and
8K thresholds. The rightmost columns detail both the average accuracy and the weighted average
accuracy. All models are trained with sequence length 8K.

Models PS Acc@2K Acc@4K Acc@8K Acc@16K Acc<=4K Acc<=8K Avg Weighted Avg

LLaMA2 0.4 100.0 97.1 97.8 0.0 99.3 99.5 56.4 52.3
HGRN2 0.4 8.6 6.3 1.3 0.0 17.0 9.3 4.9 4.8
MetaLA 0.4 25.7 2.9 11.1 4.4 11.3 8.7 8.5 9.0

LLaMA2 1.0 100.0 71.4 73.3 0.0 92.5 90.9 47.8 44.1
HGRN2 1.0 17.1 5.7 2.9 3.5 18.3 13.4 9.7 10.0
MetaLA 1.0 7.9 8.3 13.7 17.8 14.3 14.9 12.0 12.6

LLaMA2 3.0 97.1 100.0 82.9 0.6 95.4 93.9 48.8 45.1
HGRN2 3.0 58.4 11.4 2.9 7.3 46.4 28.9 18.0 17.9
MetaLA 3.0 48.3 7.0 4.1 18.4 34.8 22.2 19.1 19.5
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Table A9: Scalability tests of MetaLA on the CommonSense Reasoning benchmark. PS: parame-
ter size (billion). T: tokens (billion). “AVG” refers to the average result of all subtasks.

Models PS T BOOLQ PIQA HS WG ARC-E ARC-C OBQA Avg

LLaMA2 0.41 300 54.04 67.19 38.75 52.17 49.24 23.72 30.00 45.02
Cosformer2 0.38 300 57.40 66.27 36.65 50.59 51.81 23.72 29.00 45.06
MetaLA 0.38 300 60.09 67.79 38.51 50.99 52.19 25.60 30.00 46.45

LLaMA2 1 300 56.42 69.97 47.04 52.72 57.07 28.16 32.60 49.14
Cosformer2 1 300 44.28 70.73 45.55 50.51 55.22 27.30 31.00 46.37
MetaLA 1 300 59.05 69.37 46.43 54.38 57.41 26.96 33.00 49.52

LLaMA2 3 300 61.31 73.18 57.88 59.59 63.93 31.40 34.00 54.47
Cosformer2 3 300 50.92 74.27 57.38 57.30 63.22 31.40 35.20 52.81
MetaLA 3 300 62.84 74.16 59.25 58.80 64.52 33.28 35.80 55.52
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract, we summarized the theory we proposed, our solution MetaLA,
and the results obtained from our experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec. 7, we discussed potential concerns about the approximation of softmax
attention and the reasons that may cause these concerns.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In Sec. 4 and appendix A2, we provided the definitions and detailed proofs of
our theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Sec. 6, we showcased our experimental setup and the results, and in
appendix A4, we further elaborated on the details of all experimental setups.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We have not open-sourced the code, but we have clearly outlined the details of
our experiments in Sec. 6 and appendix A4 to ensure the reproducibility of the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We presented the detailed settings for training and test in Sec. 6 and ap-
pendix A4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not conduct experiments that required reporting significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Sec. 6 and appendix A4, we provided details about the computer resources
used for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper complies with the NeurIPS ethical
guidelines in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is foundational research and not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: Impact Statements. This paper presents work whose goal is to advance the
field of Language Modeling. There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data, code, and models used in this paper have all been properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In Sec. 5, we provided details of the model we proposed.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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