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Abstract

Graph Transformers excel in long-range dependency modeling, but generally
require quadratic memory complexity in the number of nodes in an input graph,
and hence have trouble scaling to large graphs. Sparse attention variants such as
Exphormer can help, but may require high-degree augmentations to the input graph
for good performance, and do not attempt to sparsify an already-dense input graph.
As the learned attention mechanisms tend to use few of these edges, such high-
degree connections may be unnecessary. We show (empirically and with theoretical
backing) that attention scores on graphs are usually quite consistent across network
widths, and use this observation to propose a two-stage procedure, which we call
Spexphormer: first, train a narrow network on the full augmented graph. Next, use
only the active connections to train a wider network on a much sparser graph. We
establish theoretical conditions when a narrow network’s attention scores can match
those of a wide network, and show that Spexphormer achieves good performance
with drastically reduced memory requirements on various graph datasets. Code can
be found at https://github.com/hamed1375/Sp_Exphormer.

1 Introduction

The predominant story of the last half-decade of machine learning has been the runaway success
of Transformer models (Vaswani et al., 2017), across domains from natural language processing
(Vaswani et al., 2017; Devlin et al., 2018; Zaheer et al., 2020) to computer vision (Dosovitskiy et al.,
2020) and, more recently, geometric deep learning (Dwivedi and Bresson, 2020; Kreuzer et al., 2021;
Ying et al., 2021; Rampášek et al., 2022; Shirzad et al., 2023; Müller et al., 2023). Conventional
(“full”) Transformers, however, have a time and memory complexity ofO(nd2+n2d), where n is the
number of entities (nodes, in the case of graphs), and d is the width of the network. Many attempts
have been made to make Transformers more efficient (see Tay et al. (2020) for a survey on efficient
transformers for sequence modeling). One major line of work involves sparsifying the attention
mechanism, constraining attention from all O(n2) pairs to some smaller set of connections. For
instance, for sequential data, BigBird (Zaheer et al., 2020) constructs a sparse attention mechanism
by combining sliding windows, Erdős-Rényi auxiliary graphs, and universal connectors. On the other
hand, for graph data, Exphormer (Shirzad et al., 2023) constructs a sparse interaction graph consisting
of edges from the input graph, an overlay expander graph, and universal connections. We refer to
such a network as a sparse attention network.

Exphormer reduces each layer’s complexity from O(nd2 + n2d) to O((m+ n)d2), where n is the
number of nodes, m is the number of interaction edges in the sparse attention mechanism, and d is

∗Work done in part while at Google.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

71277 https://doi.org/10.52202/079017-2277

https://github.com/hamed1375/Sp_Exphormer


the hidden dimension or width. Even so, training is still very memory-intensive for medium to large
scale graphs. Also, for densely-connected input graphs with Θ(n2) edges, there is no asymptotic
improvement in complexity, as Exphormer uses all of the Θ(n2) edges of the original input graph.
Our goal is to scale efficient graph Transformers, such as Exphormer, to even larger graphs.

One general approach for scaling models to larger graphs is based on batching techniques. Prominent
approaches include egocentric subgraphs and random node subsets (Wu et al., 2022, 2023, 2024).
Egocentric subgraphs choose a node and include all of its k-hop neighbors; the expander graphs used
in Exphormer, however, are exactly defined so that the size of these subgraphs grows exponentially
in the number of layers – prohibitively expensive for larger graphs. A similar issue arises with
universally-connected nodes, whose representation depends on all other nodes. For uniformly-
random subset batching, as the number b of batches into which the graph is divided grows, each edge
has chance 1

b to appear in a given step. Thus, b cannot be very large without dropping important edges.
A similar problem can happen in random neighbor sampling methods such as GraphSAGE (Hamilton
et al., 2017). Although this model works well on message-passing neural networks (MPNNs) which
only use the graph edges, using it for expander-augmented graphs will select only a small ratio of the
expander edges, thereby breaking the universality properties provided by the expander graph.

Expander graphs enable global information propagation, and when created with Hamiltonian cycles
and self-loops, produce a model that can provably approximate a full Transformer (Shirzad et al.,
2023, Theorem E.3). Yet not all of these edges turn out to be important in practice: we expect
some neighboring nodes in the updated graph to have more of an effect on a given node than others.
Thus, removing low-impact neighbors can improve the scalability of the model. The challenge is to
identify low-impact edges without needing to train the (too-expensive) full model. Figure 1 illustrates
advantages of this batching approach other; this is also discussed further in Appendix E.

One approach is to train a smaller network to identify which edges are significant. It is not obvious a
priori that attention scores learned from the smaller network will estimate those in the larger network,
but we present an experimental study verifying that attention scores are surprisingly consistent as
the network size reduces. We also give theoretical indications that narrow networks are capable of
expressing the same attention scores as wider networks of the same architecture.

Our approach. We first train a small-width network in order to estimate pairwise attention score
patterns, which we then use to sparsify the graph and train a larger network. We first train the graphs
without edge attributes. This reduces the complexity of Exphormer to O(md + nd2) and then by
training a much smaller width ds ≪ d network, reduces the time and memory complexity by at
least a factor of d/ds. We also introduce two additions to the model to improve this consistency.
Training this initial network can still be memory-intensive, but as the small width implies the matrix
multiplications are small, it is practical to train this initial model on a CPU nodes with sufficient
RAM (typically orders of magnitude larger than available GPU memory), without needing to use
distributed computation. Once this initial model is trained, the attention scores can be used in creating
a sparse graph, over which we train the second network. These initial attention scores can be used as
edge features for the second network.

As mentioned previously, we use the attention scores obtained from the trained low-width network
to sparsify the graph. By selecting a fixed number c of edges per attention layer for each node, we
reduce the complexity of each layer to O(nd2 + ndc). This sparsification alleviates the effect of
a large number of edges, and allows for initial training with a larger degree expander graph, since
most of the expander edges will be filtered for the final network. This sparsification differs from
conventional graph sparsification algorithms (for MPNNs) in three ways. First, we use expander
edges, self-loops, and graph edges and sparsify the combination of these patterns together. Second,
this sparsification is layer-wise, which means that in a multi-layer network the attention pattern will
vary from layer to layer. Finally, our sampling uses a smaller network trained on the same task,
identifying important neighbors based on the task, instead of approaches independent of the task such
as sampling based on PageRank or a neighbor’s node degree.

Another advantage of this approach is that the fixed number of neighbors for each node enables regular
matrix calculations instead of the edge-wise calculations used by Kreuzer et al. (2021); Shirzad et al.
(2023), greatly improving the speed of the model. After this reduction, batching can be done based on
the edges over different layers, enabling Transformers to be effectively batched while still effectively
approximating the main Transformer model, enabling modeling long-range dependencies. In batching
large graphs, sampling without replacement from attention edges with varying weights can be very
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(c)

Figure 1: Figure (a) shows a very simple synthetic graph where each node has a binary classification task of
determining whether there exists a node of the opposite color in the same connected component. This task
requires learning long-range dependencies. Figure (b) shows a natural clustering of the graph. This clustering
would mean no node can do its task if models are trained only on the clusters. Figure (c) shows a neighbor
sampling starting from the green node, where random sampling fails to select the important edge that bridges the
two different colored nodes. Figure (d) shows a random subset sampling strategy that the task is solvable if and
if only the two sides of the bridge between the two colors get selected. Now if we keep increasing the size of
both sides of the bridge, while keeping just one edge between two colors, the probability of selecting the bridge
in any batch goes to zero, and thus the training will fail in this scenario. (e) shows attention scores between the
nodes if trained with an attention-based network. Dashed lines have near zero attention scores, and thicker lines
indicate a larger attention score. Knowing these attention scores will mean each node with just one directional
edge can do the task perfectly. The attention edges are shown in (f). In case two nodes are equally informative
selecting either of them leads to the correct result.

slow. This is especially true if the attention scores are highly concentrated on a small number of
neighbors for most of the nodes. Sequential sampling of neighbors can be very slow, while parallel
sampling can lead to many conflicts in this scenario. We use reservoir sampling, enabling parallel
sampling with an easy, efficient GPU implementation, improving the sampling process significantly.

We only use the Transformer part of the Exphormer model, not the dual MPNN+Transformer
architecture used by Shirzad et al. (2023); Rampášek et al. (2022). Unlike the Exphormer approach,
we do not assume that the expander graph is of degree O(1); we can see this as interpolating between
MPNNs and full Transformers, where smaller degree expander graphs mostly rely on the graph edges
and are more similar to MPNNs, while higher degree expander graphs can resemble full attention, in
the most extreme case of degree n− 1 exactly recovering a full Transformer.

To summarize, the contributions of this paper are as follows: 1.) We experimentally and theoretically
analyze the similarity of attention scores for networks of different widths, and propose two small
architectural changes to improve this similarity. 2.) We propose layer-wise sparsification, by sampling
according to the learned attention scores, and do theoretical analysis on the sparsification guarantees
of the attention pattern. 3.) Our two-phase training process allows us to scale Transformers to larger
datasets as it has significantly smaller memory consumption, while maintaining competitive accuracy.

2 Related Work

Graph Transformer Architectures. Attention mechanisms were proposed in early (message-
passing) Graph Neural Network (GNN) architectures such as Graph Attention Networks
(GAT) (Veličković et al., 2018), where they guide node aggregation among neighbors, without
using positional encodings. GraphBert (Zhang et al., 2020) finds node encodings based on the
underlying graph structure. Subsequent work has proposed full-fledged graph Transformer models
that generalize sequence Transformers (Dwivedi and Bresson, 2020) and are not limited to message
passing between nodes of the input graph; these include Spectral Attention Networks (SAN) (Kreuzer
et al., 2021), Graphormer (Ying et al., 2021), GraphiT (Mialon et al., 2021), etc. GraphGPS (Ram-
pášek et al., 2022) combines attention mechanisms with message passing, allowing the best of both
worlds.
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Efficient Graph Transformers. Several recent works have proposed various scalable graph trans-
former architectures. NAGphormer (Chen et al., 2022a) and Gophormer (Zhao et al., 2021) use a
sampling-based approach. On the other hand, Difformer (Wu et al., 2023) proposes a continuous time
diffusion-based transformer model. Exphormer (Shirzad et al., 2023) proposes a sparse graph that
combines the input graph with edges of an expander graph as well as virtual nodes. They show that
their model works better than applying other sparse Transformer methods developed for sequences.
Another work, NodeFormer (Wu et al., 2022), which is inspired by Performer (Choromanski et al.,
2021), uses the Gumbel-Softmax operator as a kernel to efficiently propagate information among all
pairs of nodes. SGFormer (Wu et al., 2024) shows that just using a one layer transformer network
can sometimes improve the results of GCN-based networks and the low memory footprint can help
scale to large networks. Perhaps most conceptually similar to our work is Skeinformer (Chen et al.,
2022b), which uses sketching techniques to accelerate self-attention.

Sampling and batching techniques. Some sampling-based methods have been used to alleviate the
problem of “neighborhood explosion.” For instance, sampling was used in GraphSAGE (Hamilton
et al., 2017), which used a fixed-size sample from a neighborhood in the node aggregation step.
GraphSAINT (Zeng et al., 2020) scales GCNs to large graphs by sampling the training graph to
create minibatches.

Other. Expander graphs were used in convolutional networks by Prabhu et al. (2018).

3 Preliminaries and Notation

Exphormer. EXPHORMER is an expander-based sparse attention mechanism for graph transformers
that uses O(|V |+ |E|) computation, where G = (V,E) is the underlying input graph. Exphormer
creates an interaction graph H that consists of three main components: edges from the input graph,
an overlaid expander graph, and virtual nodes (which are connected to all the original nodes).

For the expander graph component, Exphormer uses a constant-degree random expander graph,
with O(n) edges. Expander graphs have several useful theoretical properties related to spectral
approximation and random walk mixing, which allow the propagation of information between pairs
of nodes that are distant in the input graph G without explicitly connecting all pairs of nodes. The
expander edges introduce many alternative short paths between the nodes and avoid the information
bottleneck that can be caused by the virtual nodes.

Our model. We use H to denote the attention pattern, and NH(i) the neighbors of node i under that
pattern. Let X = (x1,x2, . . . ,xn) ∈ Rd×n be the matrix of d-dimensional embeddings for all of the
n nodes. Our primary “driver” is then h-head attention: using ⊙ for element-wise multiplication,

ATTNH(X):,i = xi +

h∑
j=1

Vj
i · σ

((
Ej ⊙Kj

)T
Qj

i +Bj
)
,

where Vj
i = Wj

V XNH(i), K = Wj
KXNH(i), and Qj

i = Wj
Qxi, are linear mappings of the node

features for the neighbors XNH(i), and Ej = Wj
EENH(i) and Bj = Wj

BENH(i) are linear maps of
the edge features E , which is a dE × |NH(i)| matrix of features for the edges coming in to node i.
Exphormer uses learnable edge features for each type of added edge, and original edge features for
the graph’s edges. If the graph does not have any original edge features, it uses a learnable edge
feature across all graph edges. Edge features help the model distinguish the type of attention edges.
Here, σ is an activation function. In both Exphormer and our work the activation function is ReLU.

In the absence of edge features, which is the case for most of the transductive datasets, including the
datasets that have been used in this paper, Ee for any attention edge e can have one of three possible
representations, and so Ej can be computed more simply by first mapping these three types of edge
features with Wj

E for head j, and then replacing the mapped values for each edge type. This simple
change reduces the complexity of the Exphormer from O(md2 + nd2) to O(md+ nd2).

Compared to prior work, we introduce Bj as a simpler route for the model to adjust the importance
of different edge types. Considering Exphormer as an interpolation between MPNNs and full
Transformers, the Bj model has an easier path to allow for attention scores to be close to zero for
all non-graph attention edges, without restricting the performance of the attention mechanism on
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graph edges. Consequently, it can function roughly as an MPNN (similar to GAT) by zeroing out the
non-local attention paths. We use dE = d, and have each layer output features of the same width as
its input, so that each of the Wj

· parameter matrices except for Wj
B are d× d, and Wj

B is d× 1.

As a simple illustration that Ej is insufficient to allow near-zero attention scores, thus highlighting the
importance of Bj , note that if the columns of K and Q are distributed independently and uniformly
on a unit ball (e.g., under a random initialization), there is no vector Ej which is identical for all
edges of an expander graph that can make the attention scores for all the expander edges near-zero.

Our network compared to Exphormer. We use Exphormer as the base model because it provides
us the flexibility to adjust the sparsity of the attention graph and to interpolate between MPNNs and
full Transformers. Exphormer can model many long-range dependencies that are not modeled by
MPNNs and are very expensive to model in a full Transformer. For example, one cannot train a full
Transformer model in the memory of a conventional GPU device for a dataset such as Physics, which
has a graph on just 34K nodes. In our instantiation of Exphormer, we add self-loops for every node
and use d/2 random Hamiltonian cycles to construct our expander graph as described in (Shirzad
et al., 2023, Appendix C.2). We do not add virtual nodes in our networks (note that the resulting
network is still a universal approximator; Shirzad et al., 2023, Theorem E.3). Although the best
known results for Exphormer combine sparse attention with MPNNs, in this work, we avoid the
MPNN component for scalability reasons. We also make two additional changes, see Section 4.

4 Method

Our method consists of a two-phase training process. The first phase trains a model we call the
Attention Score Estimator Network, whose goal is to estimate the attention scores for a larger network.
This model is not particularly accurate; its only goal is for each node to learn which neighbors are most
important. The learned attention scores for each layer of the first network are then used to construct
sparse interaction graphs for each layer in a second model, which is trained (with hyperparameter
tuning for the best results) and serves as the final predictor.

Attention Score Estimator Network. For this network, we use a width of 4 or 8, with just one
attention head, in our training. We tune the other hyperparameters in order to have a converged
training process with reasonably high accuracy, but we do not spend much time optimizing this
network as it is sufficient to learn the important neighbors for each node, i.e., edges with high
attention scores. This network will be trained with as many layers as the final network we want to
train. Because it is so narrow, it has many fewer parameters and hence much less memory and time
complexity, making it cheaper to train. Moreover, we only need to do this training once per number
of layers we consider, conditioned on the fact that the training converges, even if the final model has
a large number of hyperparameters. Compared to Exphormer, we use a much higher-degree expander
graph: 30 to 200 instead of the 6 used for most transductive graphs by Shirzad et al. (2023). As most
of the considered datasets do not have edge features, we use a learnable embedding for each type of
edge (graph edge, expander edge, or self-loop). We also make two small changes to the architecture
and the training process of this model, discussed below. Section 5 shows experimentally that the
low-width network is a good estimator of the attention scores for a large-width network.

Normalizing V. Having a smaller attention score, αij < αij′ , does not necessarily mean that j’s
contribution to i’s new features is smaller than that of j′: if ∥Vj∥ ≫ ∥Vj′∥, the net contribution of j
could be larger. Although Transformers typically use layer normalization, they do not typically do
so after mapping X to V. We normalize the rows of V to have the same vector sizes for all nodes.
In our experiments, normalizing to size one reduced performance significantly; however, adding a
learnable global scale s, so that Vi becomes sVi

||Vi||2 , maintained performance while making attention
scores more meaningful.

Variable Temperature One of the side goals is to have sharper attention scores, guiding the
nodes to get their information from as few nodes as possible. Using temperature in the attention
mechanism can do this, where logits will be divided by a temperature factor τ before being fed into a
softmax. Normal attention corresponds to τ = 1; smaller τ means sharper attention scores. However,
setting the temperature to a small value from the beginning will make the random initialization more
significant, and increase the randomness in the training process. Instead, we start with τ = 1.0
and gradually anneal it to 0.05 by the end of the training. We set an initial phase for λ epochs
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Figure 2: Steps of our method. (a) The attention mechanism for the attention score estimator network combines
graph edges with an expander graph and self-loops. The expander graphs are constructed by combining a small
number of Hamiltonian cycles – here two, in red and in purple – then confirming the spectral gap is large enough.
(b) Self-attention layers in the estimator network use this sparse attention mechanism; its self-attention layers
normalize V. (c, d) Attention scores are extracted from this network for each layer, and used to sample, in (e), a
sparse directed graph, which becomes the attention graph for the final network (f). This network, with a much
larger feature dimension, does not normalize V.

where we use τ = 1; this lets the model learn which neighbors are more important for each node
slowly. We multiply τ with a factor γ after each epoch, obtaining a temperature in epoch t > λ of
max(γt−λ, 0.05). We use λ = 5 and γ = 0.99 or 0.95 depending on how fast the learning converges.

Sparser Attention Pattern. The memory and time complexity of Exphormer is linearly dependent on
the number of edges. Also, with a small number of layers, the expander degree should be high enough
to ensure a large enough receptive field for each node in order to learn the long-range dependencies.
Not all these edges are equally important, and many of them will have a near-zero effect on the
final embedding of each node. Reducing the number of edges can alleviate memory consumption.
Additionally, a sparser pattern lets us use batching techniques for the larger graphs. In this work,
we analyze how effectively the sparser model can work and up to what factor we can sparsify. For
each layer, e.g., ℓ, we select a degℓ as a fixed degree for each node and sample without replacement
according to the attention score estimator network’s attention scores in each epoch of training or
evaluation. Having the same degree for each node’s attention pattern also means that attention can be
calculated using (much-more-optimized) standard matrix multiplications, rather than the propagation
techniques used in Exphormer and SAN (Kreuzer et al., 2021).

To sparsify the graph, in each epoch, we sample a new set of edges according to the learned attention
scores from the smaller network. The reason why we do this rather than a simpler strategy such as
selecting top-scored edges is that in many cases, several nodes can have very similar node features. If
we assume nodes u1, u2, . . . , up from the neighbors of node v have almost the same features, and
if the attention scores for these nodes are α1, α2, . . . , αp, any linear combination of

∑p
i=1 αi = α

will lead to the same representation for node v. If features are exactly the same, α will be divided
between these nodes, and even if α is large, each node’s attention score from v can be small. By
sampling, we have a total α chance of selecting any of the nodes u1:p. In each epoch, we re-sample a
new set of edges for each node from its original neighborhood.

Faster Sampling Using Reservoir Sampling. Sampling without replacement using default li-
brary calls is very slow, especially if few neighbors dominate the attention scores. We instead
use reservoir sampling (Efraimidis and Spirakis, 2006), which is GPU-friendly and parallelizable.
For reservoir sampling of k neighbors from the neighborhood of node i, with attention scores
a = (a1, a2, · · · , a|NH(i)|), we first do a uniform random sampling of u = (u1, u2, · · · , u|NH(i)|),
where the ui are i.i.d. samples from Uniform(0, 1). Then we calculate 1

a log(u) with element-wise
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multiplication, and select the indices with the top k values from this list. Selecting k-th rank from
n values and pivoting has a worst-case O(n) time algorithm, which is much faster than the O(nk)
worst case time for trial-and-error. Pseudocode is given in Algorithm 1. The GPU-friendly version of
this can be implemented by sampling for nodes in parallel, but requires forming a regular matrix for
the attention scores, which can be done by extending each attention score vector by the maximum
degree, or selecting a value k′ ≫ k and first sampling k′ and selecting the top k′ attention scores
from each node, making sure that the sum of the rest of the neighbor’s attention scores are very
near to zero. Then by forming a rectangular attention matrix, uniform sampling and element-wise
multiplications are much faster on GPU, and sampling from the entire batch is much more efficient.

Algorithm 1 Reservoir Sampling from a Node’s Neighborhood

Input: Attention scores a = a
(ℓ)
i,NH(i), number of neighbors to sample: degℓ

Output: List of degℓ neighbors of node i

1: function RESERVOIRSAMPLE(a,degℓ)
2: u ∼ Uniform(0, 1)|NH(i)|

3: return argtopdegℓ
( 1a log(u))

4: end function

Batching. Each batch starts with a random subset of “target” nodes B. These are the nodes whose
last-layer representations we will update in this optimization step. To calculate these representations,
we need keys and values based on the previous layer’s representations for the relevant neighbors of
each target node (again, sampling neighbors from the graph augmented by an expander graph). To
approximate this, we sample degL neighbors for each target node. Then we have a set of at most
|B|(degL +1) nodes whose representations we need to calculate in layer L−1; we repeat this process,
so that in layer ℓ we need to compute representations for up toQ(ℓ) ≤ min(|B|

∏L
i=ℓ+1(degi +1), n)

query nodes, with |Q(ℓ)|degℓ attention edges. Pseudocode is given in Algorithm 2.

When the number of layers L and degree degℓ are not too large, this batching can be substantially
more efficient than processing the entire graph. Moreover, compared to other batching techniques,
our approach selects neighbors according to their task importance. Except for optimization dynamics
in the training process corresponding to minibatch versus full-batch training, training with batches
is identical to training with the entire sparsified graph; if we choose a large degℓ equal to the
maximum degree of the augmented graph, this is exactly equivalent to SGD on the full graph, without
introducing any biases in the training procedure. This is in stark contrast to previous approaches, as
illustrated in Figure 1. Unlike these prior approaches, which typically use the full graph at inference
time, we can run inference with batch size as small as one (trading off memory for computation).

Algorithm 2 Neighborhood Sampling for a Batch of Nodes

Input: Attention scores in each layer: a =
{
a
(ℓ)
i,j | ∀i ∈ V, j ∈ NH(i), , 1 ≤ ℓ ≤ L

}
, number of

neighbors to sample in each layer: deg = {deg1, · · · ,degL}, and a batch of nodes B ⊆ V
Output: Q(ℓ),K(ℓ),V(ℓ), query, key, and value nodes in each layer

1: function SAMPLENEIGHBORHOOD(B,a,deg)
2: V(L+1) ← B
3: for ℓ← L to 1 do
4: Q(ℓ) ← V(ℓ+1)

5: for i← i ∈ Q(ℓ) do
6: K(ℓ)

i ← RESERVOIRSAMPLE(ai,NH(i),degℓ)
7: end for
8: K(ℓ) ←

⋃
i∈Qℓ K(ℓ)

i

9: V(ℓ) ← Q(ℓ)
⋃
K(ℓ)

10: end for
11: return

{(
V(ℓ),Q(ℓ),K(ℓ)

)
| 1 ≤ ℓ ≤ L

}
12: end function
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Fixed Node Degree Layers. Sparse matrix operations are not yet nearly as efficient as dense
operations on GPU devices. Exphormer and SAN use a gather operation, which is memory-efficient
but not time-efficient on a GPU (Zaheer et al., 2020). By normalizing the degree, instead of having
|Q(ℓ)|degℓ separate dot products between the query and key vectors, we can reshape the key vectors
to be of size |Q(ℓ)| × degℓ×d and the query is of shape |Q(ℓ)| × d. Now the dot product of query
and key mappings can be done using |Q(ℓ)|, degℓ×d by d× 1 matrix multiplications. This same size
matrix multiplication can be done using highly optimized batch matrix multiplication operations in
e.g. PyTorch and Tensorflow (Paszke et al., 2019; Abadi et al., 2015).

Theoretical Underpinnings. We first study the approximability of a network with a smaller hidden
dimension or width. Formally, suppose that the width of a wide network is D. Then there exists a
network with narrow dimensions for WQ and WK , of dimension O( logn

ε2 )×D instead of D ×D,
whose attention scores agree with those of the wide network up to O(ε) error (Theorem D.4). This
reduction helps with the most intensive part of the calculation; others are linear with respect to the
number of nodes n. While this is not the model we use in practice, Shirzad et al. (2024, Section 4)
explore some scenarios common in graph Transformers that allow for the existence of “fully” narrow
networks with accurate attention scores. They support these claims with experiments that show
compressibility for some datasets we use. This is an existence claim; we will justify experimentally
that in practice, training a narrow network does approximate attention scores well.

We then study the sampling procedure of our sparsification method. Under certain assumptions,
we show that sampling roughly O(n log n/ε2) entries of the attention matrix A (corresponding to
sampling this many edges in the graph) suffices to form a matrix B with ∥A − B∥2 ≤ ε∥A∥2, if
we can access the entries of A (Theorem D.5). We cannot actually access the matrix A, but we do
have attention scores A′ from a narrow network. We show that if the entries of A are not seriously
under-estimated by A′, the same bound on the number of samples still holds (Proposition D.7).

5 Experimental Results
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Figure 3: Energy distance between the attention scores of various networks to a network of width 64. “Uniform”
refers to the baseline placing uniform scores on each neighbor, while “random” refers to the baseline with
uniformly distributed logits. The remaining bars refer to networks trained on the appropriately labeled width.

Attention Score Estimation. To show how well the smaller network estimates the attention scores
for a larger network, we conduct experiments on two smaller datasets, where we can reasonably train
the full network at higher width for many runs to be able to have an estimation on the distribution
of the attention scores. To this end, we use Actor (Lim et al., 2021) and Photo (Shchur et al., 2018)
datasets. We train the network for hidden dimensions, h varying from 4 to 64 for both datasets. For
each h we train the network 100 times. We consider the distribution of attention scores for each
node and estimate the energy distance (Székely and Rizzo, 2013; an instance of the maximum mean
discrepancy, Sejdinovic et al., 2013) for that node across each pair of h sizes.

We ran this experiment both when learning with just graph edges, and when adding expander and
self-loop edges. It might be that the model, just by examining the category of the edges, may give
a lower score to one type, making distributions seem more similar despite not identifying a small
number of important neighbors as we want. However, in the presence of only one type of edge, the
model can still consistently estimate which nodes should have a higher attention score.

We compare attention scores from our model with the uniform distribution on the neighbors (each
neighbor of node i has score 1

di
), and to a distribution with logits uniform over [−8, 8]. The choice of
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8 here is because in the network we clip the logits with an absolute value higher than 8. Figure 3 shows
that even width-4 networks provide far superior estimates of attention scores than these baselines.

Table 1: Comparison of our model with other GNNs on five homophilic and three heterophilic datasets. The
reported metric is ROC-AUC (×100) for the Minesweeper and Tolokers datasets and accuracy for all others.
The average edge ratio is the degree of the nodes in Spexphormer over the average degree of the nodes in the
initial attention pattern.

Model Computer Photo CS Physics ogbn-arxiv

GCN 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 96.18 ± 0.07 71.74 ± 0.29
GRAPHSAGE 91.20 ± 0.29 94.59 ± 0.14 93.91 ± 0.13 96.49 ± 0.06 71.49 ±0.27
GAT 90.78 ± 0.13 93.87 ± 0.11 93.61 ± 0.14 96.17 ± 0.08 72.01 ±0.20
GRAPHSAINT 90.22 ± 0.15 91.72 ± 0.13 94.41 ± 0.09 96.43 ± 0.05 68.50 ± 0.23
NODEFORMER 86.98 ± 0.62 93.46 ± 0.35 95.64 ± 0.22 96.45 ± 0.28 59.90 ± 0.42
GRAPHGPS 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.12 97.12 ± 0.19 70.92 ± 0.04
GOAT 90.96 ± 0.90 92.96 ± 1.48 94.21 ± 0.38 96.24 ± 0.24 72.41 ± 40

EXPHORMER+GCN 91.59 ± 0.31 95.27 ± 0.42 95.77 ± 0.15 97.16 ± 0.13 72.44 ± 0.28
EXPHORMER 91.16 ± 0.26 95.36 ± 0.17 95.19 ± 0.26 96.40 ± 0.20 71.27 ± 0.27

SPEXPHORMER 91.09 ± 0.08 95.33 ± 0.49 95.00 ± 0.15 96.70 ± 0.05 70.82 ± 0.24

Avg. Edge Percent 7.6% 8.2% 12.8% 11.3% 13.7%

Model Actor Minesweeper Tolokers

GLOGNN 36.4 ± 1.6 51.08 ± 1.23 73.39 ± 1.17
GCN 33.23±1.16 89.75 ± 0.52 83.64 ± 0.67
GRAPHGPS 37.1 ± 1.5 90.63 ± 0.67 83.71 ± 0.48
NAGPHORMER - 84.19 ± 0.66 78.32 ± 0.95
NODEFORMER 36.9 ± 1.0 86.71 ± 0.88 78.10 ± 1.03
GOAT - 81.09 ± 1.02 83.11 ± 1.04
DIFFORMER 36.5 ± 0.7 90.89 ± 0.58 83.57 ± 0.68

EXPHORMER+GAT 38.68 ± 0.38 90.74 ± 0.53 83.77 ± 0.78
EXPHORMER 39.01 ± 0.69 92.26 ± 0.56 83.53 ± 0.28

SPEXPHORMER 38.59 ± 0.81 90.71 ± 0.17 83.34 ± 0.31

Avg. Edge Percent 5.8% 17.8% 8.9%
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Figure 4: Memory usage comparison: Attention Score
Estimator network and Spexphormer vs. Exphormer
with expander degrees 6 and 30. Exphormer with de-
gree 30 for the ogbn-arxiv dataset could not fit into the
memory of a 40GB GPU device, and thus the number
is a lower bound here.

Model ogbn-proteins Amazon2M Pokec

MLP 72.04 ± 0.48 63.46 ± 0.10 60.15 ± 0.03
GCN 72.51 ± 0.35 83.90 ± 0.10 62.31 ± 1.13
SGC 70.31 ± 0.23 81.21 ± 0.12 52.03 ± 0.84
GCN-NSAMPLER 73.51 ± 1.31 83.84 ± 0.42 63.75 ± 0.77
GAT-NSAMPLER 74.63 ± 1.24 85.17 ± 0.32 62.32 ± 0.65
SIGN 71.24 ± 0.46 80.98 ± 0.31 68.01 ± 0.25
NODEFORMER 77.45 ± 1.15 87.85 ± 0.24 70.32 ± 0.45
SGFORMER 79.53 ± 0.38 89.09 ± 0.10 73.76 ± 0.24
SPEXPHORMER 80.65 ± 0.07 90.40 ± 0.03 74.73 ±0.04

Memory Information for SPEXPHORMER
Memory (MB) 2232 3262 2128
Batch Size 256 1000 500
Hidden Dimension 64 128 64
Number of layers 2 2 2
Number of Parameters 79,224 300,209 83,781

Table 2: Comparative results on large graph datasets,
with ROC-AUC(×100) reported for the ogbn-proteins
dataset and accuracy for all others. GPU memory usage,
batch sizes, hidden dimensions used to obtain these
numbers, and the total number of parameters have been
added at the bottom of the table.

Model Quality. We conduct experiments on eight medium-sized graphs, including five homophilic
datasets: CS, Physics, Photo, Computer (Shchur et al., 2018) and ogbn-arxiv (Hu et al., 2021); and
three heterophilic datasets: Minesweeper, Tolokers (Platonov et al., 2023), and Actor (Lim et al.,
2021). For the CS, Physics, Photo, and Computer datasets, we use a random train/validation/test
split of 60%/20%/20%. For ogbn-arxiv we follow the standard data split provided by the original
source. For the Actor dataset, we use a 50%/25%/25% split following Wu et al. (2022). For the
Minesweeper and Tolokers datasets, we use the standard split from Platonov et al. (2023). Results for
these experiments are provided in Table 1.

In these medium-sized datasets, we are able to train the full Exphormer model. Our goal is to
determine the extent of performance reduction when using two memory-efficient networks to estimate
the original network. Results show that the two memory-efficient networks can efficiently estimate
the original network, enabling us to scale the EXPHORMER to larger graph datasets. We compare
the maximum required memory of the attention score estimator and final networks with that of the
corresponding EXPHORMER model in Figure 4.

We then experiment on large graph datasets (ogbn-proteins, Amazon2M (Hu et al., 2021) and Pokec
(Takac and Zabovsky, 2012)). The results provided in Table 2, demonstrate superior performance of
our model despite limited memory constraints. We follow the standard data split for the ogbn-proteins
dataset and follow Wu et al. (2024) for the dataset split on the Amazon2M and Pokec datasets, with
10%/10%/80% and 50%/25%/25% train/validation/test ratios. We emphasize that this split differs
from the original dataset split used by many other works, making those numbers incomparable.

In all our experiments, we train the smaller network once, and then for the second network, we
always use the same initial network’s learned attention scores. Attention scores are collected from
the network training step with the highest validation accuracy.
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Table 3: Ablation studies on two homophilic and two heterophilic datasets. Metrics: accuracy for Photo and
Computer, ROC-AUC (×100) for Tolokers and Minesweeper. For the initial network, we report the result for the
network used for training the Spexphormer and thus, there is no confidence interval for them.

Model/Dataset Computer Photo Minesweeper Tolokers

Initial Network 85.23 91.70 85.67 80.16

Spexphormer-uniform 86.65 ± 0.46 94.21 ± 0.22 84.15 ± 0.22 82.56 ± 0.17
Spexphormer-max 89.31 ± 0.31 95.07 ± 0.20 87.92 ± 0.26 80.85 ± 0.23
Spexphormer w.o. temp 89.05 ± 0.35 95.30 ± 0.16 90.02 ± 0.02 83.34 ± 0.13
Spexphormer w.o. layer norm 89.70 ± 0.25 94.91 ± 0.18 89.65 ± 0.10 84.06 ± 0.10

Spexphormer 91.09 ± 0.08 95.33 ± 0.49 90.71 ± 0.17 83.34 ± 0.13

We use a subset of the following models in each of our tables as baselines, depending on the type of
the dataset and scalability level of the models, GCN (Kipf and Welling, 2016), GraphSAGE (Hamilton
et al., 2017), GAT (Veličković et al., 2018), GraphSAINT (Zeng et al., 2020), Nodeformer (Wu et al.,
2022), Difformer (Wu et al., 2023), SGFormer (Wu et al., 2024), GraphGPS (Rampášek et al., 2022),
GOAT (Kong et al., 2023), GloGNN (Li et al., 2022), SGC (Wu et al., 2019), NAGphormer (Chen
et al., 2022a), Exphormer (Shirzad et al., 2023), SIGN (Frasca et al., 2020). We borrow most of the
baseline numbers in the tables from Wu et al. (2024); Deng et al. (2024).

Ablation Studies. We benchmark the effect of different parts of the model in Table 3. Spexphormer-
uniform, rather than sampling based on the estimated attention scores, samples uniformly from the
augmented graph; this is always worse than sampling, but the gap is larger for some datasets than
others. Spexphormer-max takes the edges with the highest attention scores, rather than sampling; this
again performs somewhat worse across datasets. Spexphormer w.o. temp uses a constant temperature
of 1 in the initial attention score estimator network; Spexphormer w.o. layer norm removes our added
layer normalization. these changes are smaller, and in one case layer normalization makes the results
worse. Across the four datasets, however, it seems that both temperature and layer norm help yield
more informative and sparser attention scores.

6 Conclusion & Limitations

We analyzed the alignment of the attention scores among models trained with different widths. We
found that usually the smaller network’s attention score distributions align with the larger network’s.
We also theoretically analyzed the compressibility of the larger Graph Transformer models. Based on
these observations, we used a sampling algorithm to sparsify the graph on each layer and sampled a
smaller number of edges per layer. As a result of these two steps, the model’s memory consumption
reduces significantly, while achieving a competitive accuracy. This strategy also lets us use novel
batching techniques that were not feasible with expander graphs of a large degree. Having a regular
degree enables using dense matrix multiplication, which is far more efficient with current GPU and
TPU devices.

While our method successfully scales to datasets with over two million nodes, it relies on large CPU
memory for the attention score estimation for these datasets. For extremely large datasets, this is
still infeasible without highly distributed computation. Estimated attention scores can be shared and
used for training various networks based on attention scores, however, so this only needs to only
be computed once per dataset and depth. An area for potential future work is to combine sampling
with simultaneous attention score estimation in a dynamic way, scaling this estimation to very large
graphs.
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A Notation Table

Table 4: A summary of the notation used in this paper. The hat notation always refers to a compressed network
equivalent of a vector or matrix from the reference network.

Notation Definition
n The number of nodes in the graph
m The number of attention edges in total, including graph and expander edges
d Hidden dimension of a narrow network
D Hidden dimension of the original large graph
L The total number of layers in the network
ℓ Arbitrary layer index
V Value mapping of the vectors in the attention mechanism
Q Query mapping of the vectors in the attention mechanism
K Key mapping of the vectors in the attention mechanism
W

(ℓ)
· Weight matrix of mapping such as key, query, value, edge features, or bias in layer ℓ

Ŵ
(ℓ)
· Low dimensional network’s weight matrix for a mapping in layer ℓ

M· A linear mapping matrix (usually from the higher dimension to the smaller)
ReLU Rectified Linear Unit
H(ℓ) Output of layer ℓ− 1 from the reference network
H̄(ℓ) A low-rank estimation of H(ℓ)

Ĥ(ℓ) Output of layer ℓ− 1 from a compressed network
h
(ℓ)
i column i of matrix H(ℓ)

a
(ℓ)
ij The Attention score between nodes i and j in layer ℓ

â
(ℓ)
ij The attention score between nodes i and j in layer ℓ from a smaller network

B Dataset Descriptions

Below, we provide descriptions of the datasets on which we conduct experiments. A summarized
statistics of these datasets have been provided in Table 5.

Amazon datasets Amazon Computers and Amazon Photo are Amazon co-purchase graphs. Nodes
represent products purchased. An edge connects a pairs of products purchased together. Node features
are bag-of-words encoded reviews of the products. Class labels are the product category.

Amazon2M Amazon2M dataset is a graph from the co-purchasing network. Each node represents
an item. Edges between items represents products purchased together. The node features are generated
from the product description. The node labels are from the top-level categories the product belongs
to.

Actor dataset The actor dataset is created by the actor-only subgraph of a larger graph of actor,
director, writer, and film co-occuring on a Wikipedia page, limited to English-language films. Each
node corresponds to an actor. Edges denote co-occurence on a Wikipedia page. Node features are
based on the terms in the actor’s page. The prediction task is categorizing into one of five categories
(Pei et al., 2020).

Coauthor datasets The datasets, CS and Physics are co-authorship graphs from Microsoft Aca-
demic Graph. The nodes represent the authors and an edge connects two authors who share a paper.
The node features are the keywords in the papers. The class represents the active area of study for the
author.

ogbn-arxiv (Hu et al., 2021) The ogbn-arxiv dataset is from OGBN datasets. The nodes represents
the papers and edges represent the citations between the papers. Nodes are 128-dimensional feature
vector that is an average of the embeddings of words in the title and abstract. The prediction task is to
identify the category of the 40 subject areas.
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ogbn-proteins dataset The ogbn-proteins dataset is an undirected graph with edge weights and
types based on species. The nodes represent proteins from eight different species. Edges indicate
various biologically meaningful associations between the proteins (e.g., co-expression, homology
etc.). The edges are eight-dimensional, with each dimension having a value from [0,1] indicates the
confidence score. The prediction task is a multi-label binary classification among 112 labels — to
predict the presence of protein functions. The performance measurement is the average of ROC-AUC
scores across the 112 tasks.

Minesweeper The dataset is a graph representation of the 100x100 grid from the Minesweeper
game. A node represents a cell and the edges connect a node to its eight neighboring cells. 20% of
the nodes are marked as mines. The features of the nodes are the one-hot encoding of the mines
among the neighbors. For 50% of the nodes the features are unknown and indicated by a separate
binary feature.

Tolokers Tolokers is a graph representation of the workers in a crowd-sourcing platform, called
Toloka. Each node represents a worker. Two nodes are connected if the workers have worked on
the same task. Node features are based on the worker’s task performance statistics and other profile
information. The task is to predict which nodes have been banned for a project.

Pokec Pokec is a large-scale social network dataset. Nodes represents users of the network. Nodes
features include profile data like geographical region, age etc. The task is to predict the gender of
users based on the graph.

Table 5: Dataset statistics. The reported number of edges is the number of directed edges, which will be twice
the number of actual edges for the undirected graphs.

Dataset Nodes Edges Average Degree Node Features Classes Metric
Amazon Photo 7,487 238,162 31.13 745 8 Accuracy
Coauthor Physics 34,493 495,924 14.38 8,415 5 Accuracy
Amazon Computer 13,381 491,722 35.76 767 10 Accuracy
Coauthor CS 18,333 163,788 8.93 6,805 15 Accuracy
ogbn-arxiv 169,343 2,332,486 13.77 128 40 Accuracy

Actor 7,600 33,391 4.39 932 5 Accuracy
Minesweeper 10,000 78,804 7.88 7 2 AUC
Tolokers 11,758 1,038,000 88.28 10 10 AUC

Pokec 1,632,803 30,622,564 18.75 65 2 AUC
ogbn-proteins 132,534 79,122,504 597.00 8 112 AUC
Amazon2M 2,449,029 123,718,280 50.52 100 47 AUC

C Experiment Details

C.1 Time-Memory Trade-off

One advantage of our method is that the time and memory can be traded without sacrificing the
accuracy of the method. Figure 5 shows this trade-off on two datasets ogbn-proteins and arxiv.

C.2 Hyperparameters

In our networks, we use a higher expander degree than what was used in the EXPHORMER paper.
Since many of these edges will get a small attention score, a higher attention score increases the
receptive field of the nodes, letting the final network be able to sample from wider options and have
better access to long-range dependencies. We also noticed, the attention scores in the first layer are
usually more flat than the other layers and so we usually sample more edges from the first attention
layer. For the comparisons both on the results and the memory we have given the same expander
degree to the Exphormer and the ogbn-arxiv dataset could barely fit into a 40GB GPU memory device
with higher expander degree. For the attention score estimator network, we do not use dropout, and
we only use one attention head in these networks. The number of layers is always equal between
both networks.
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Figure 5: The memory, run-time trade-off for ogbn-proteins and ogbn-arxiv datasets. It is worth mentioning that
the experiments with different batch sizes yield similar results for test accuracy/AUC. Memory and time can be
traded in our approach.

We use AdamW optimization algorithm in all our networks and use a cosine learning rate scheduler
with it. We use weight decay of 1e−3 in all networks. We use layer norm in attention score estimator
networks to keep attention scores more meaningful, but use a batch norm for better results in the final
SPEXPHORMER model. Other key hyperparameters can be found in Tables 6,7, and 8.

Table 6: Hyperparameters used for training the networks for homophilous datasets.

Hyperparameter OGBN-Arxiv Computer Photo CS Physics
Attention Score Estimator

L 3 4 4 4 4
ds 8 4 4 4 4
Num Epochs 200 200 200 200 200
Learning Rate 0.01 0.1 0.001 0.002 0.001

Final Spexphormer Network
dl 96 80 56 64 64
degℓ [6, 6, 6] [5, 5, 5, 5] [5, 5, 5, 5] [5, 5, 5, 5] [5, 5, 5, 5]
Number of Heads 2 2 2 2 2
Learning Rate 0.01 0.001 0.01 0.002 0.001
Num Epochs 600 150 100 120 80
Dropout 0.3 0.5 0.5 0.4 0.4

Table 7: Hyperparameters used for training the networks for heterophilic datasets.

Hyperparameter Actor Minesweeper Tolokers
Attention Score Estimator

L 3 4 4
ds 4 4 4
Num Epochs 100 100 200
Learning rate 0.01 0.01 0.01

Final Spexphormer Network
dl 32 32 32
degℓ [2, 2, 2] [12,5,5,5] [12, 10, 10, 10]
Number of Heads 4 4 4
Learning Rate 0.01 0.01 0.01
Num Epochs 100 80 200
Dropout 0.5 0.2 0.25
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Table 8: Hyperparameters used for training the networks for the large graphs datasets.

Hyperparameter ogbn-proteins Amazon2M Pokec
Attention Score Estimator

L 2 2 2
ds 8 8 8
expander degree 200 30 30
Num Epochs 150 150 150
Learning rate 0.01 0.01 0.01

Final Spexphormer Network
dl 64 128 64
degℓ [50, 30] [10,10] [20, 20]
Number of Heads 1 1 1
Learning Rate 0.005 0.001 0.01
Num Epochs 200 200 300
Dropout 0.1 0.2 0.2
Batch size 256 1000 500
GPU Memory 2232MB 3262MB 2128MB

C.3 Hardware

For all trainings of the medium-sized graph datasets and the final network training of the large-sized
graphs, we used GPUs of type A100 with 40GB memory, and V100, both 32GB and 16GB versions.
While these are powerful GPUs, we have always monitored the GPU memory usage for computational
efficiency, ensuring that no more than 8GB is used for whole graph training and no more than 4GB of
GPU memory is used with batching. Training with even less memory is feasible with smaller batch
sizes.

For calculating the attention scores on the large graph datasets, we have used CPU devices Intel
Xeon E5-2680 v4, with 500GB of memory. Except for the Amazon2M dataset, for the other datasets
200GB of memory would be sufficient.

D Theory

In this section, we theoretically analyze the compressibility of the Graph Transformer architecture
and also sparsification guarantees using the attention score estimator network.

For simplification, we use the following formulation of a single head Transformer network:

h
(ℓ+1/2)
i =

degi∑
j=1

a
(l)
ij V

(ℓ)
j ,

h
(ℓ+1)
i = W

(ℓ)
2

(
σ
(
W

(ℓ)
1

(
h
(ℓ+1/2)
i

)))
,

a
(l)
ij =

exp
(
K

(ℓ)
j ·Q

(ℓ)
i

)
∑

u∈NH(i) exp
(
K

(ℓ)
u ·Q(ℓ)

i

) ,
where, V(ℓ) = W

(ℓ)
V h(ℓ), Q(ℓ) = W

(ℓ)
Q h(ℓ), K(ℓ) = W

(ℓ)
K h(ℓ), and σ can be any 1-Lipchitz

activation function, such as ReLU, which has been used in practice in our networks. We re-
move the normalization parts from the architecture but assume that in all steps for all vectors,
∥Xi∥2, ∥h(ℓ+1/2)

i ∥2, ∥h(ℓ)
i ∥2 ≤

√
α, and all linear mapping W· matrices’ operator norm is bounded

by a constant β. The first assumption is realistic because of the layer-norm applied between the layers
in real-world architectures. The second assumption is also justified as the operator norms are near 2
in the initialization of the network by the default PyTorch initialization and during the optimization
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we expect the operator norm to not increase drastically from the initialization. Also, we assume
h(0) = X , which is the input features. For a simpler notation, we will use D for a hypothetical large
network hidden dimension in this analysis, and d is the hidden dimension of the narrow network. For
simplicity, in our analysis, we assume X ∈ Rn×D. In case each node has less than D features, we
can concatenate them with zeros.

D.1 On the Compressibility of the Graph Transformer

Our approach uses a narrow network to estimate the attention scores. We want to show if we have a
large network with good accuracy for a task on a graph, we can have a less complex network that
can work on the same input graph and the error of this network is bounded by O(ε) from the large
network.

The most memory/time-intensive part of a Transformer architecture is its attention score calculation
part. The rest of the sections are node/token-wise and linear with respect to the number of nodes. The
attention score estimation part of a full-Transformer layer requires O(n2d) operations and O(md)
operators are required for a sparse Transformer with m attention edges. In the main Exphormer
network, this would also be more intensive as the edge features mappings requireO(md2) operations,
but since we replace edge feature mappings with edge embeddings by their type, this part in case
we do not have other edge features is O(md), but m still can be ω(n), and it will be the most
computationally-intensive part.

Assume we have a large network with L layers, where L is O(1), and hidden dimension D, we will
show that there is a similar network with L layers where the attention score calculation matrices
WQ,WK ∈ RD×d, and all other matrices are of the same size and d is O(CL logn

ϵ2 ), where C is a
constant based on α and β. For this proof we use the distributional Johnson-Lindenstrauss transform
lemma (Johnson, 1984):
Lemma D.1 (Johnson-Lindenstrauss Transform Lemma (JLT)). Assume 0 < ϵ, δ < 1

2 and any
positive integer D, if d = O( log(1/δ)ϵ2 ), there exist a distribution over matrices M ∈ Rd×D that for
any x ∈ RD and ∥x∥ = 1:

Pr(∥Mx∥ − 1 > ϵ) < δ

The following corollary is an immediate conclusion from the JLT.

Corollary D.2. Assume 0 < ϵ, δ < 1
2 and any positive integer D, if d = O( log(1/δ)ε2 ), there exist a

distribution over matrices M ∈ Rd×D that for any x, y ∈ RD:

Pr((1− ε)∥x− y∥ < ∥Mx−My∥ < (1 + ε)∥x− y∥) < δ

This can derived by replacing x from JLT with x−y
∥x−y∥ .

From this, we can derive another corollary about the dot product of the vectors in low-dimensional
space.
Corollary D.3 (JLT-dot product). Assume 0 < ϵ, δ < 1

2 and any positive integer D, if d =

O( log(1/δ)ε2 ), there exist a distribution over matrices M ∈ Rd×D that for any x, y ∈ RD, and
∥x∥, ∥y∥ ≤

√
α:

Pr((1− εα)xTy < xTMTMy < (1 + εα)xTy) < δ

For the proof see (Kakade and Shakhnarovich, 2009, Corollary 2.1). As a result of this corollary, if
we have m pairs of vectors (xi, yi), and for each i ∥xi∥2, ∥yi∥2 ≤

√
α of

√
α, and d = O( log(m)

ε2 ),
there exists an M such that for all these pairs |xT

i M
TMyi − xT

i yi| < εα. The proof can be done
using a union bound over the error from Corollary D.3. Also, in our case where m is the number of
edges, we know that m ≤ n2, thus we can also say d = O( log(n)ε2 ).
Theorem D.4. Assume we have a Transformer network T with arbitrary large hidden dimension
D, L = O(1) layers, and in this network, in all layers, we have ∥h·∥2 ≤

√
α, and ∥W·∥op ≤ β.
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There exists a Transformer T̂ , that for any layer WQ and WK are in Rd×D for a d = O( logn
ε2 ),

with a sufficiently small ε, and for all i ∈ [n], ∥T (X)i − T̂ (X)i∥2 = O(ε). And furthermore, for

any attention score
a
(ℓ)
ij

â
(ℓ)
ij

= 1 +O(ε).

Proof. In the proof we use hat notation, □̂, for the vectors and matrices from T̂ , for example, ĥ(ℓ) are
the outputs of layer ℓ, and Ŵ· are the weight matrices for this network. In all layers for both networks
WV ,W1, and W2, are of the same size, so we set ŴV = WV , Ŵ1 = W1, and Ŵ2 = W2.

For the proof, we want to find ε(0), · · · , ε(L) in a way that for any v in layer ℓ, |h(ℓ)
v −ĥ(ℓ)

v | < ε(ℓ). We
will find these bounds inductively, starting from the first layer. We have ε(0) = 0, as both networks
have the same input, and we want to bound ε(ℓ+1) based on ε(ℓ).

We have Q(ℓ) = W
(ℓ)
Q H(ℓ), K(ℓ) = W

(ℓ)
K H(ℓ) and assume Q̄(ℓ) = W

(ℓ)
Q Ĥ(ℓ), K̄(ℓ) = W

(ℓ)
K Ĥ(ℓ).

Because of the operator norm of matrices WQ and WK , for each i we have ∥q(ℓ)i − q̄
(ℓ)
i ∥ ≤ ε(ℓ)β and

∥k(ℓ)i − k̄
(ℓ)
i ∥ ≤ ε(ℓ)β. Also, we have ∥q(ℓ)i ∥, ∥k

(ℓ)
i ∥ ≤ β

√
α, thus ∥q̄(ℓ)i ∥, ∥k̄

(ℓ)
i ∥ ≤ β(ε(ℓ) +

√
α).

Now, for each pair of i and j, we have:

|q(ℓ)i · k
(ℓ)
j − q̄

(ℓ)
i · k̄

(ℓ)
j | = |q

(ℓ)
i · k

(ℓ)
j − q̄

(ℓ)
i · k

(ℓ)
j + q̄

(ℓ)
i · k

(ℓ)
j − q̄

(ℓ)
i · k̄

(ℓ)
j |

≤ |q(ℓ)i · k
(ℓ)
j − q̄

(ℓ)
i · k

(ℓ)
j |+ |q̄

(ℓ)
i · k

(ℓ)
j − q̄

(ℓ)
i · k̄

(ℓ)
j |

= |(q(ℓ)i − q̄
(ℓ)
i ) · k(ℓ)j |+ |q̄

(ℓ)
i · (k

(ℓ)
j − k̄

(ℓ)
j )|

≤ ∥q(ℓ)i − q̄
(ℓ)
i ∥∥k

(ℓ)
j ∥+ ∥q̄

(ℓ)
i ∥∥k

(ℓ)
j − k̄

(ℓ)
j ∥

≤
√
αβε(ℓ) + (

√
α+ βε(ℓ))βε(ℓ)

= 2
√
αβε(ℓ) + (βε(ℓ))2

On the other hand, according to the D.3, for a 0 < ε < 1/2 and d = O( log(n)ε2 ) there exists
a matrix MQK ∈ Rd×D, such that if we define Q̂(ℓ) = MQKQ̄(ℓ) and K̂(ℓ) = MQKK̄(ℓ),
|q̄(ℓ)i · k̄

(ℓ)
j − q̂

(ℓ)
i · k̂

(ℓ)
j | < β2(α + (ε(ℓ))2 + 2

√
αε(ℓ))ε for all (i, j) pairs in the attention pattern.

Note that we can define Ŵ
(ℓ)
Q = M

(ℓ)
QKW

(ℓ)
Q , and Ŵ

(ℓ)
K = M

(ℓ)
QKW

(ℓ)
K , both in Rd×D, as weights

for the narrow attention score estimator network. With a triangle inequality we have

|q(ℓ)i · k
(ℓ)
i − q̂

(ℓ)
i · k̂

(ℓ)
i | < β2(α+ (ε(ℓ))2 + 2

√
αε(ℓ))ε+ 2

√
αβε(ℓ) + (βε(ℓ))2.

By setting ε(ℓ) ≤ 1, we have

|q(ℓ)i · k
(ℓ)
i − q̂

(ℓ)
i · k̂

(ℓ)
i | < β2(α+ 1 + 2

√
α)ε+ β(2

√
α+ β)ε(ℓ).

Let us define εa = β2(α+ 1 + 2
√
α)ε+ β(2

√
α+ β)ε(ℓ), we have:

â
(ℓ)
ij =

exp(q̂
(ℓ)
i · k̂

(ℓ)
j )∑

u∈NH(i) exp(q̂
(ℓ)
i · k̂

(ℓ)
u )
≤

exp(q
(ℓ)
i · k

(ℓ)
j + εa)∑

u∈NH(i) exp(q
(ℓ)
i · k

(ℓ)
j − εa)

≤ a
(ℓ)
ij exp(2εa)

â
(ℓ)
ij =

exp(q̂
(ℓ)
i · k̂

(ℓ)
j )∑

u∈NH(i) exp(q̂
(ℓ)
i · k̂

(ℓ)
u )
≥

exp(q
(ℓ)
i · k

(ℓ)
j − εa)∑

u∈NH(i) exp(q
(ℓ)
i · k

(ℓ)
u + εa)

≥ a
(ℓ)
ij exp(−2εa)

Now we bound ∥h(ℓ+1/2)
i − ĥ

(ℓ+1/2)
i ∥:
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∥h(ℓ+1/2)
i − ĥ

(ℓ+1/2)
i ∥ = ∥

∑
j∈Nei(i)

a
(ℓ)
ij v

(ℓ)
j − âij v̂

(ℓ+1/2)
j ∥

= ∥
∑

j∈Nei(i)

a
(ℓ)
ij v

(ℓ)
j − â

(ℓ)
ij v

(ℓ)
j + â

(ℓ)
ij v

(ℓ)
j − âij v̂

(ℓ)
j ∥

= ∥
∑

j∈Nei(i)

(a
(ℓ)
ij − â

(ℓ)
ij )v

(ℓ)
j + â

(ℓ)
ij (v

(ℓ)
j − v̂

(ℓ)
j )∥

= ∥(v(ℓ)j − v̂
(ℓ)
j ) + v

(ℓ)
j

∑
j∈Nei(i)

(a
(ℓ)
ij − â

(ℓ)
ij )∥

≤ ∥v(ℓ)j − v̂
(ℓ)
j ∥+ ∥v

(ℓ)
j ∥

∑
|a(ℓ)ij − â

(ℓ)
ij |

≤ ε(ℓ)β +
√
α
∑

max(1− exp(−2εa), exp(2εa)− 1)a
(ℓ)
ij

≤ ε(ℓ)β +
√
α(exp(2εa)− 1),

and since 1 + x < exp(x) < 1 + 2x for 0 < x < 1, if we have εa < 1, we have

∥h(ℓ+1/2)
i − ĥ

(ℓ+1/2)
i ∥ ≤ βε(ℓ) + 4

√
αεa (1)

For the feed-forward network part, we know that this network is β2-Lipschitz because W
(ℓ)
1 and

W
(ℓ)
2 have maximum operator norm β and σ is a 1-Lipschitz activation function. Thus we have

∥h(ℓ+1)
i − ĥ

(ℓ+1)
i ∥ ≤ β2(βε(ℓ) +4

√
αεa) = (β3 +8βα+4β2

√
α)ε(ℓ) +4β2(α

√
α+2α+

√
α)ε.

Both β3 +8βα+4β2
√
α and 4β2(α

√
α+2α+

√
α) are constants, and if we define them as c1 and

c2, we have

ε(ℓ+1) ≤ c1ε
(ℓ) + c2ε

Given ε(0) = 0, as both networks get the same input, we have

ε(L) ≤ c1ε
(L−1) + c2ε

≤ c1(c1ε
(L−2) + c2ε) + c2ε

· · ·
≤ c2ε(c

L−1
1 + · · ·+ c1)

=
c1(c

L
2 − 1)

c2 − 1
ε

While the error increases exponentially with the number of layers, when we have L = O(1), then the
error is bounded by a constant factor of chosen ε. Now, we know that ∥T (X)i − T̂ (X)i∥2 ≤ ε(L) =
O(ε).

While from the theorem it seems that the error is increasing exponentially by the layers, in practice
the maximum number of layers used in this work is four with most large graph experiments using
just two layers. Thus the constant factor will not be as large as it might look. Also, in real-world
graphs usually, the columns of X are not quite n distinct vectors and many vectors would be equal or
very similar to each other if we have κ unique vectors in the first layer the complexity for the d can
be reduced to O( log κ

ε2 ). In the homophily graphs the representations h(ℓ) tend to converge to each
other and thus again the number of unique vectors will be reduced letting us have smaller d, but these
assumptions are not considered in the proof as we keep it general.

Although we have proved the existence of the T̂ , this does not mean that training with a gradient-
based algorithm will necessarily lead to the introduced weights, but this gives at least the guarantee
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that such a network exists. However, on the other hand, it is also possible that the training process
finds a set of weights that work better than the weights constructed in this proof.

Theorem D.4 by narrowing the attention score calculation part reduced the complexity fromO(mD+
nD2) to O(md+ nD2), and for dense graphs or in scenarios we add denser expander graphs, where
m≫ n, already the introduced network has a much lower complexity. However, our narrow network
uses narrow hidden dimensions in all steps and has complexity O(md + nd2). Proving the same
guarantee along the whole network is not easy, if not impossible, without any further assumptions on
X and the large network.

D.2 Analysis of the Sampling Process

After training a network with a smaller width d, we sample the edges from the original graph and use
them in the second-phase training with a large hidden width D. In this section, we shall analyze our
sampling process. Formally, we model our process as follows. Suppose that A is the attention score
matrix with hidden width D, then we sample and rescale s entries of A to form a sparse matrix B
where the goal is the matrix B can approximate A well, i.e., ∥A−B∥2 ≤ ε∥A∥2. However, recall
that we can not access the entries of A precisely. Instead, we consider another attention score matrix
A′, which corresponds to hidden width d.

The first question is how many samples we indeed need to form the matrix B that approximates A
well? To answer this, we have the following lemma for the attention score matrix A.
Theorem D.5. Suppose that an n× n matrix A satisfies the following condition.

1. For each i, we have ∥A(i)∥1 = 1

2. maxj∥A(j)∥1 = K

3. Each column A(j) is ℓ-sparse

Then, consider the sampling procedure that samples s ≥ s0 = O(nK log n/(ε2∥A∥22)) =
O(nℓ log n/(ε2K)) entries of A with replacement

1. For each sample Bt, the probability that Bt samples entry Aij is pij = 1
n ·

|Aij |
∥A(i)∥1

= 1
n |Aij |

(with a rescale factor 1/pij , i.e., Bt[i, j] = Aij/pij), and each Bt only sample one entry of
A.

2. Form the matrix B = (B1 +B2 + · · ·+Bs)/s

Then, we have that with probability at least 9/10,

∥A−B∥2 ≤ ε∥A∥2.

To prove this lemma, we need the following Matrix Bersiten inequality.
Lemma D.6 (Matrix Bersiten inequality). Consider a finite sequence Xi of i.i.d. random m × n,
where E[Xi] = 0 and ∥Xi∥2 ≤ R. Let σ2 = max{∥E[XiX

T
i ]∥2, ∥E[XT

i Xi]∥2}. For some fixed
s ≥ 1, Let = (X1 +X2 + · · ·+Xs)/s, then we have that

Pr[∥X∥2 ≥ ε] ≤ (m+ n) · exp
(

sε2

−σ2 +Rε/3

)
Proof. We follow a similar proof strategy in Achlioptas et al. (2013). At a high level, the work
of Achlioptas et al. (2013) considers the matrix Bernstein inequality where we have the tail bound

Pr[∥A−B∥2 ≥ ε] ≤ 2n · exp
(

sε2

σ2 +Rσ/3

)
is dependent on the following two quantities

σ2 = max{∥E[(A−B1)(A−B1)
T ]∥, ∥E[(A−B1)

T (A−B1)]∥}

R = max∥A−B1∥ over all possible realizations of B1 .

21

71297 https://doi.org/10.52202/079017-2277



Where B1 is the matrix that only samples one entry and the final output B = (B1+B2+ · · ·+Bs)/s.
Then, instead we consider the following quantity,

σ̃2 = max

max
i

∑
j

A2
ij/pij ,max

j

∑
i

A2
ij/pij


R̃ = max

ij
|Aij |/pij .

It is shown in Lemma A.2 of Achlioptas et al. (2013) we have that |σ/σ̃ − 1| ≤ ∥A∥2
2∑

i ∥A(i)∥2
1

and

|R/R̃− 1| ≤ ∥A∥2

∥A∥1
and from the condition of the matrix A we have both of the upper bounds are at

most 1. Hence, we only need to consider σ̃ and R̃. Back to our case, we have that pij = 1
n ·

|Aij |
∥A(1)∥1

=
1
n · |Aij |, from this and the assumption of A we have

σ̃2 = n ·max

max
i

∑
j

|Aij |,max
j

∑
i

|Aij |

 ≤ n ·K

R̃ = max
ij
|Aij |/pij = n .

Hence, to make δ ≤ 0.1, we only need to set ε′ = ε∥A∥2 in the Matrix Bernstein inequality and
then we have s ≥ O(nK log n/(ε2∥A∥22)). Finally, note that if ∥A(j)∥1 = K, then we have ∥A∥2 ≥
∥Aej∥2 = ∥A(j)∥2 ≥ K/

√
ℓ, which means that nK log n/(ε2∥A∥22) ≤ nℓ log n/(ε2K).

However, as mentioned, we can not access the value of the entries of A but the entries of A′ (which
corresponds to the trained network with a small hidden width d). We next show that even in the case
where we sample the entries of A from A′, we can still get the same order of the bound if the entries
of A are not under-estimated seriously in A′.
Proposition D.7. Suppose that the matrices A and A′ satisfy the condition in Theorem D.5 and for
every i, j we have

|A′
ij | ≥

1

α
|Aij |

for some sufficiently large constant α. Then consider the same sampling procedure in Theorem D.5
but sampling the entries of A from the value of A′. Then, the guarantee in Theorem D.5 still holds.

Proof. We only need to note that from the assumption, the actual sampling probability p′ij ≥ 1
α · pij

in Theorem D.5, hence it will increase the σ̃2 and R̃ by at most α times, which means that we can
increase s by an α factor to make the error probability at most 0.1.

E Discussion

Graph datasets arise from various domains, meaning that they might have differing inductive biases.
More expressive methods may not necessarily yield better results on all datasets (Franks et al., 2024).
Depending on the architecture and the task, more complex models can even lead to poorer results.
Here, we discuss possible scenarios in which our model can be a good fit as well as the shortcomings
of other classes of models that are overcome by our model.

Graph Structure The relevance of the structure of the graph to the task can vary. For the simple
synthetic task introduced in 1, the structure of the graph does not matter. So Transformers without
inductive biases of the graphs are expressive enough to solve this problem; however message-passing
networks will be restricted to the graph edges and rely on enough number of layers and may be
challenged by oversquashing and oversmoothing problems. On the other hand, if the structure of the
graph matters, such as counting the number of neighbor nodes with the same color for each node, the
structure and the edges will be an important part. Transformers without expressive enough encodings
to identify the graph edges will fail in this task. On the other hand, MPNNs even with one layer can
easily solve this problem. Our approach enables solving problems in either case, by having both
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expander graphs for universal information propagation and the actual graph edges for inductive bias,
allowing the model to decide the subset of edges that suit the task better — only graph edges, only
expander edges or a combination of both.

Short-range Vs. Long-range Dependencies If the neighboring nodes tend to be from the same
class, i.e., high homophily, MPNNs and methods such as NAGphormer (Chen et al., 2022a), which
summarize the neighborhood have good inductive biases; whereas Transformers without proper
identification for the neighborhoods may not be as fit for this task. Heterophily may not necessarily
mean long-range dependencies, label of each node may just depend on the neighbor nodes, but
still label of the neighbor nodes may be different most of the time. For example, for finding the
grammatical function of the words in a sentence from a very long text, neighboring words are usually
enough for this identification, and nearby words would be from different classes. On the other hand,
some tasks may require long-range dependencies — identifying if there are other people in a social
network with similar interests or the synthetic task introduced in 1 are some examples. Local models
such as MPNNs would require deeper networks for modeling long-range dependencies that makes
them prone to common problems such as oversquashing and oversmoothing (Topping et al., 2021;
Di Giovanni et al., 2023b,a; Rusch et al., 2023). Our approach can be reduced to MPNN by giving
lower attention scores to the expander edges, for learning on the tasks with short-range dependencies
only. And also lets the long-range dependency modeling using expander edges. While models
designed specifically for some of these tasks may have the advantage of reduced complexity. But our
approach lets learning without concern about the nature of the problem or having domain knowledge
for the task or graph.

Subsampling Graphs Many approaches break the graph into sections or subsample nodes or
neighbors for training. This approach has shown promising results in many works such as (Zeng
et al., 2020; Hamilton et al., 2017; Liu et al., 2021). However, there are many cases in which these
approaches are not expressive enough. Clustering the nodes or batching and subsampling based
on the neighborhood will not have the required inductive biases to solve the tasks with long-range
dependencies. Approaches such as neighbor sampling or connected-subgraph sampling not only
inherit the limits of the MPNN networks, but may even miss short-range dependencies. For example,
Example (c) in 1 by merely random selection of the neighbors or subgraphs without considering
the task. Random subset of node selection that has been used in several promising papers such as
Wu et al. (2022, 2023, 2024) gives a chance for nodes from the same label to appear in the same
batch, but the batch-size should increase with the graph size accordingly. Very small ratio of batch
size to graph size would mean many edges or possible pair of nodes will never be appear in any
batch and depending on the task this can limit the power of these models. Also, these models are
usually not memory efficient, as graph size grows, they can not keep the batches small, and the
required memory grows accordingly. On the other hand, our approach (1) makes smarter selection
of neighbors based on the small network’s attention scores; (2) our sampling allows making k-hop
neighborhood subgraphs from the extended graph connectivity, and (3) allows the training by trading
off memory and time, without critical harm to the model’s expressive power. Unline the GraphSAGE
and SGFormer, which use the full graph for the inference time our model uses the same sampling and
batching techniques, letting efficient inference beside the efficient training.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: No specific societal impacts as opposed to other graph neural network models
are expected.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model does not fit in high-risk or misusable models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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