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Abstract

The typical training of neural networks using large stepsize gradient descent (GD)
under the logistic loss often involves two distinct phases, where the empirical risk
oscillates in the first phase but decreases monotonically in the second phase. We
investigate this phenomenon in two-layer networks that satisfy a near-homogeneity
condition. We show that the second phase begins once the empirical risk falls
below a certain threshold, dependent on the stepsize. Additionally, we show that the
normalized margin grows nearly monotonically in the second phase, demonstrating
an implicit bias of GD in training non-homogeneous predictors. If the dataset is
linearly separable and the derivative of the activation function is bounded away
from zero, we show that the average empirical risk decreases, implying that the
first phase must stop in finite steps. Finally, we demonstrate that by choosing a
suitably large stepsize, GD that undergoes this phase transition is more efficient
than GD that monotonically decreases the risk. Our analysis applies to networks of
any width, beyond the well-known neural tangent kernel and mean-field regimes.

1 Introduction

Neural networks are mostly optimized by gradient descent (GD) or its variants. Understanding the
behavior of GD is one of the key challenges in deep learning theory. However, there is a nonnegligible
discrepancy between the GD setups in theory and in practice. In theory, GD is mostly analyzed with
relatively small stepsizes such that its dynamics are close to the continuous gradient flow dynamics,
although a few exceptions will be discussed later. However, in practice, GD is often used with
a relatively large stepsize, with behaviors significantly deviating from that of small stepsize GD
or gradient flow. Specifically, notice that small stepsize GD (hence also gradient flow) induces
monotonically decreasing empirical risk, but in practice, good optimization and generalization
performance is usually achieved when the stepsize is large and the empirical risk oscillates [see Wu
and Ma, 2018, Cohen et al., 2020, for example]. Therefore, it is unclear which of the theoretical
insights drawn from analyzing small stepsize GD apply to large stepsize GD used practically.

The behavior of small stepsize GD is relatively well understood. For instance, classical optimization
theory suggests that GD minimizes convex and L-smooth functions if the stepsize η̃ is well below
2/L, with a convergence rate of O(1/(η̃t)), where t is the number of steps [Nesterov, 2018]. More
recently, Soudry et al. [2018], Ji and Telgarsky [2018] show an implicit bias of small stepsize GD
in logistic regression with separable data, where the direction of the GD iterates converges to the
max-margin direction. Subsequent works extend their implicit bias theory from linear model to
homogenous networks [Lyu and Li, 2020, Chizat and Bach, 2020, Ji and Telgarsky, 2020]. These
theoretical results all assume the stepsize of GD is small (and even infinitesimal) such that the
empirical risk decreases monotonically and, therefore cannot be directly applied to large stepsize GD
used in practice.
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(a) Empirical risk (b) Normalized margin (c) Test accuracy

Figure 1: The behavior of (GD) for optimizing a non-homogenous four-layer MLP with GELU
activation function on a subset of CIFAR-10 dataset. We randomly sample 6, 000 data with la-
bels “airplane” and “automobile” from CIFAR-10 dataset. The normalized margin is defined as
mini∈[n] yif(wt;xi)/∥wt∥4, which is close to (3). The blue curves correspond to GD with a large
stepsize η̃ = 0.2, where the empirical risk oscillates in the first phase but decreases monotonically in
the second phase. The orange curves correspond to GD with a small stepsize η̃ = 0.005, where the
empirical risk decreases monotonically. Furthermore, Figure 1(b) suggests the normalized margins of
both two curves increase and converge in the stable phases. Finally, Figure 1(c) suggests that large
stepsize achieves a better test accuracy, consistent with larger-scale learning experiment [Hoffer et al.,
2017, Goyal et al., 2017]. More details can be found in Section 5.

More recently, large stepsize GD that induces oscillatory risk has been analyzed in simplified setups
[see Ahn et al., 2023, Zhu et al., 2022, Kreisler et al., 2023, Chen and Bruna, 2023, Wang et al.,
2022a, Wu et al., 2023, 2024, for an incomplete list of references]. In particular, in logistic regression
with linearly separable data, Wu et al. [2023] showed that the implicit bias of GD (that maximizes
the margin) holds not only for small stepsizes [Soudry et al., 2018, Ji and Telgarsky, 2018] but also
for an arbitrarily large stepsize. In the same problem, Wu et al. [2024] further showed that large
stepsize GD that undergoes risk oscillation can achieve an Õ(1/t2) empirical risk, whereas small
stepsize GD that monotonically decreases the empirical risk must suffer from a Ω(1/t) empirical risk.
Nonetheless, these theories of large stepsize GD are limited to relatively simple setups such as linear
models. The theory of large stepsize GD for nonlinear networks is underdeveloped.

This work fills the gap by providing an analysis of large stepsize GD for nonlinear networks. In the
following, we set up our problem formally and summarize our contributions.

Setup. Consider a binary classification dataset (xi, yi)ni=1, where xi ∈ Rd is a feature vector and
yi ∈ {±1} is a binary label. For simplicity, we assume ∥xi∥ ≤ 1 for all i throughout the paper. For a
predictor f , the empirical risk under logistic loss is defined as

L(w) :=
1

n

n∑
i=1

ℓ(yif(w;xi)), ℓ(t) := log(1 + e−t). (1)

Here, the predictor f(w; ·) : Rd 7→ R is parameterized by trainable parameters w and is assumed
to be continuously differentiable with respect to w. The predictor is initialized from w0 and then
trained by gradient descent (GD) with a constant stepsize η̃ > 0, that is,

wt+1 := wt − η̃∇L(wt), t ≥ 0. (GD)

We are interested in a nonlinear predictor f and a large stepsize η̃. A notable example in our theory is
two-layer networks with Lipschitz, smooth, and nearly homogenous activations (see (2)). Note that
minimizing L(w) is a non-convex problem in general.

Observation. Empirically, large stepsize GD often undergoes a phase transition, where the empirical
risk defined in (1) oscillates in the first phase but decreases monotonically in the second phase (see
empirical evidence in Appendix A in [Cohen et al., 2020] and a formal proof in [Wu et al., 2024]
for linear predictors). This is illustrated in Figure 1. We follow Wu et al. [2024] and call the two
phases the edge of stability (EoS) phase [name coined by Cohen et al., 2020] and the stable phase,
respectively.

2
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Contributions. We prove the following results for large stepsize GD for training nonlinear predic-
tors under logistic loss.

1. For Lipschitz and smooth predictor f trained by GD with stepsize η̃, we show that as long as the
empirical risk is below a threshold depending on η̃, GD monotonically decreases the empirical
risk (see Theorem 2.2). This result extends the stable phase result in Wu et al. [2024] from linear
predictors to nonlinear predictors, demonstrating the generality of the existence of a stable phase.

2. Assuming that GD enters the stable phase, if in addition the preditor has a bounded ho-
mogenous error (see Assumption 1C), we show that the normalized margin induced by GD,
mini yif(wt;xi)/∥wt∥, nearly monotonically increases (see Theorem 2.2). To the best of our
knowledge, this is the first characterization of implicit bias of GD for non-homogenous predictors.
In particular, our theory covers two-layer networks with commonly used activations functions
(which are often non-homogenous) that cannot be covered by existing results [Lyu and Li, 2020,
Ji and Telgarsky, 2020, Chizat and Bach, 2020].

3. Under additional technical assumptions (the dataset is linearly separable and the derivative of
the activation function is bounded away from zero), we show that the initial EoS phase must
stop in O(η̃) steps and GD transits to the stable phase afterwards. Furthermore, by choosing a
suitably large stepsize, GD achieves a Õ(1/t2) empirical risk after t steps. In comparison, GD
that converges monotonically incurs an Ω(1/t) risk. This result indicates an optimization benefit
of using large stepsize and generalizes the results in [Wu et al., 2024] from linear predictors to
neural networks.

2 Stable Phase and Margin Improvement

In this section, we present our results for the stable phase of large stepsize GD in training nonlinear
predictors. Specifically, our results apply to nonlinear predictors that are Lipschitz, smooth, and
nearly homogeneous, as described by the following assumption.
Assumption 1 (Model conditions). Consider a predictor f(w;xi), where xi is one of the feature
vectors in the training set.

A. Lipschitzness. Assume there exists ρ > 0 such that for every w, supi ∥∇wf(w;xi)∥ ≤ ρ.

B. Smoothness. Assume there exists β > 0 such that for all w,v,

∥∇f(w;xi)−∇f(v;xi)∥ ≤ β∥w − v∥, i = 1, . . . , n.

C. Near homogeneity. Assume there exists κ > 0 such that for every w,

|f(w;xi)− ⟨∇wf(w;xi),w⟩| ≤ κ, i = 1, . . . , n.

Assumptions 1A and 1B are commonly used conditions in the optimization literature. Note that
Assumption 1B implies continuous differentiability, thus ruling out networks with ReLU activation
function. The continuous differentiability is only used in our current stable phase analysis. We
conjecture it can be relaxed using subdifferentiability [Lyu and Li, 2020] for allowing ReLU networks.

If κ = 0, then Assumption 1C requires the predictor to be exactly 1-homogenous. Our Assumption 1C
allows the predictor to have a bounded homogenous error. It is clear that linear predictors f(w;x) :=
w⊤x satisfy Assumption 1 with ρ = supi ∥xi∥ ≤ 1, β = 0, and κ = 0. Another notable example is
two-layer networks given by

f(w;x) :=
1

m

m∑
j=1

ajϕ(x
⊤w(j)), w(j) ∈ Rd, j = 1, . . . ,m, (2)

where we assume aj ∈ {±1} are fixed and w ∈ Rmd, the stack of (w(j))mj=1, are the trainable
parameters. We define two-layer networks with the mean-field scaling [Song et al., 2018, Chizat
and Bach, 2020, Chen et al., 2022, Suzuki et al., 2023]. However, our results hold for any width.
The effect of rescaling the model will be discussed in Section 4. The following example shows that
Assumption 1 covers two-layer networks with many commonly used activations ϕ(·). The proof is
provided in Appendix F.1.

3
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Example 2.1 (Two-layer networks). Two-layer networks defined in (2) with the following activation
functions satisfy Assumption 1 with the described constants:

• GELU. ϕ(x) := x
2 erf

(
1 + (x/

√
2)
)

with κ = e−1/2/
√
2π, β = 2/m, and ρ = (

√
2π +

e−1/2)/
√
2πm.

• Softplus. ϕ(x) := log(1 + ex) with κ = log 2, β = 1/m, and ρ = 1/
√
m.

• SiLU. ϕ(x) := x/(1 + e−x) with κ = 1, β = 4/m, and ρ = 2/
√
m.

• Huberized ReLU [Chatterji et al., 2021]. For a fixed h > 0,

ϕ(x) :=


0 x < 0,
x2

2h 0 ≤ x ≤ h,

x− h
2 x > h,

with κ = h/2, β = 1/(hm), and ρ = 1/
√
m.

Margin for nearly homogenous predictors. For a nearly homogenous predictor f(w; ·) (see
Assumption 1C), we define its normalized margin (or margin for simplicity) as

γ̄(w) :=
mini∈[n] yif(w;xi)

∥w∥
. (3)

A large normalized margin γ̄(w) guarantees the prediction of each sample is away from the decision
boundary. The normalized margin (3) is introduced by Lyu and Li [2020] for homogenous predictors.
However, we show that the same notion is also well-defined for non-homogenous predictors that
satisfy Assumption 1C. The next theorem gives sufficient conditions for large stepsize GD to enter the
stable phase in training non-homogenous predictors and characterizes the increase of the normalized
margin. The proof of Theorem 2.2 is deferred to Appendix A.
Theorem 2.2 (Stable phase and margin improvement). Consider (GD) with stepsize η̃ on a predictor
f(w;x) that satisfies Assumptions 1A and 1B. If there exists r ≥ 0 such that

L(wr) ≤
1

η̃(2ρ2 + β)
, (4)

then GD is in the stable phase for t ≥ r, that is, (L(wt))t≥r decreases monotonically. If additionally
the predictor satisfies Assumption 1C and there exists s ≥ 0 such that

L(ws) ≤ min
{ 1

eκ+22n
,

1

η̃(4ρ2 + 2β)

}
, (5)

we have the following for t ≥ s:

• Risk convergence. L(wt) = Θ(1/t).

• Parameter increase. ∥wt+1∥ ≥ ∥wt∥ and ∥wt∥ = Θ(log(t)).

• Margin improvement. There exists a modified margin function γc(w) such that

– γc(wt) is increasing and bounded.
– γc(wt) is a multiplicative approximiator of γ̄(wt), that is, there exists c > 0 such that

γc(wt) ≤ γ̄(wt) ≤
(
1 +

c

log(1/L(wt))

)
γc(wt), t ≥ s.

As a direct consequence, limt→∞ γ̄(wt) = limt→∞ γc(wt).

Theorem 2.2 shows that for an arbitrarily large stepsize η̃, GD must enter the stable phase if
the empirical risk falls below a threshold depending on η̃ given by (4). Furthermore, for nearly
homogenous predictors, Theorem 2.2 shows that under a stronger risk threshold condition (5), the risk
must converge at a Θ(1/t) rate and that the normalized margin nearly monotonically increases. This
demonstrates an implicit bias of GD, even when used with a large stepsize and the trained predictor
is non-homogenous.

4
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Limitations. The stable phase conditions in Theorem 2.2 require GD to enter a sublevel set of the
empirical risk. However, such a sublevel set might be empty. For instance, let f(w;x) be a two-layer
network (2) with sigmoid activation. Notice that the predictor is uniformly bounded, |f(w;x)| ≤ 1,
so we have

L(w) =
1

n

n∑
i=1

log(1 + e−yif(w;xi)) ≥ log(1 + e−1).

On the other hand, we can also verify that Assumption 1C is satisfied by f(w;x) with κ = 1 but no
smaller κ. Therefore (5) cannot be satisfied. In general, the sublevel set given by the right-hand side
of Assumption 1C is non-empty if

there exists a unit vector v such that min
i
yif(λv;xi) → ∞ as λ→ ∞.

The above condition requires the data can be separated arbitrarily well by some predictor within
the hypothesis class. This condition is general and covers (sufficiently large) two-layer networks
(2) with many commonly used activations such as GeLU and SiLU. Moreover, although two-layer
networks with sigmoid activation violate this condition, they can be modified by adding a leakage to
the sigmoid to satisfy the condition. Furthermore, this condition can be satisfied for some nonlinear
problems like XOR (or k-parity problems) since they can be realized by two-layer networks.

In the next section, we will provide sufficient conditions such that large stepsize GD will enter the
stable phases characterized by (4) or (5).

Comparisons to existing works. Our Theorem 2.2 makes several important extensions compared
to existing results [Wu et al., 2024, Lyu and Li, 2020, Chizat and Bach, 2020, Ji and Telgarsky, 2020].
First, Theorem 2.2 suggests that the stable phase happens for general nonlinear predictors such as
two-layer networks, while the work by Wu et al. [2024] only studied the stable phase for linear
predictors. Second, the margin improvement is only known for small (and even infinitesimal) stepsize
GD and homogenous predictors [Lyu and Li, 2020, Chizat and Bach, 2020, Ji and Telgarsky, 2020],
while we extend this to non-homogenous networks. To the best of our knowledge, Theorem 2.2 is the
first implicit bias result covering large stepsize GD and non-homogenous predictors.

From a technical perspective, our proof uses techniques introduced by Lyu and Li [2020] for analyzing
homogenous predictors. Our main innovation is the construction of new auxiliary margin functions
that can deal with errors caused by large stepsize and non-homogeneity. More details are discussed
in Appendix A.3.

3 Edge of Stability Phase

Our stable phase results in Theorem 2.2 require the risk to be below a certain threshold (see (4)
and (5)). In this section, we show that the risk can indeed be below the required threshold, even when
GD is used with large stepsize. Recall that minimizing the empirical risk with a nonlinear predictor is
non-convex, therefore solving it by GD is hard in general. We make additional technical assumptions
to conquer the challenges caused by non-convexity. We conjecture that these technical assumptions
are not necessary and can be relaxed.

We focus on two-layer networks (2). We make the following assumptions on the activation function.

Assumption 2 (Activation function conditions). In the two-layer network (2), let the activation
function ϕ : R → R be continuously differentiable. Moreover,

A. Derivative condition. Assume there exists 0 < α < 1 such that α ≤ |ϕ′(z)| ≤ 1.

B. Smoothness. Assume there exists β̃ > 0 such that for all x, y ∈ R, |ϕ′(x)− ϕ′(y)| ≤ β̃|x− y|.

C. Near homogeneity. Assume there exists κ > 0 such that for every z ∈ R, |ϕ(z)− ϕ′(z)z| ≤ κ.

Recall that supi ∥xi∥ ≤ 1. One can then check by direct computation that, under Assumption 2,
two-layer networks (2) satisfy Assumption 1 with ρ = 1/

√
m, β = β̃/m, and κ = κ.

Assumptions 2B and 2C cover many commonly used activation functions. In Assumption 2A, we
assume |ϕ′(z)| ≤ 1. This is just for the simplicity of presentation and our results can be easily

5
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generalized to allow |ϕ′(z)| ≤ C for a constant C > 0. The other condition in Assumption 2A,
|ϕ′(z)| ≥ α, however, is non-trivial. This condition is widely used in literature [see Brutzkus et al.,
2018, Frei et al., 2021, and references thereafter] to facilitate GD analysis. Technically, this condition
guarantees that each neuron in the two-layer network (2) will always receive a non-trivial gradient in
the GD update; otherwise, neurons may be frozen during the GD update. Furthermore, commonly
used activation functions can be combined with an identity map to satisfy Assumption 2A. This is
formalized in the following example. The proof is provided in Appendix F.2.
Example 3.1 (Leaky activation functions). Fix 0.5 ≤ c < 1.

• Let ϕ be GELU, Softplus, or SilU in Example 2.1, then its modification ϕ̃(x) := cx+(1−c)/4·ϕ(x)
satisfies Assumption 2 with κ = 1, α = 0.25, and β̃ = 1. In particular, the modification of softplus
can be viewed as a smoothed leaky ReLU.

• Let ϕ be the Huberized ReLU in Example 2.1, then its modification ϕ̃(x) := cx+ (1− c)/4 · ϕ(x)
satisfies Assumption 2 with κ = h/2, α = 0.5, and β̃ = 1/4h.

• The “leaky” tanh, ϕ̃(x) := cx + (1 − c) tanh(x), and the “leaky” sigmoid, ϕ̃(x) := cx +

c/(1 + e−x), both satisfy Assumption 2 with κ = 1, α = 0.5 and β̃ = 1.

For the technical difficulty of non-convex optimization, we also need to assume a linearly separable
dataset to conduct our EoS phase analysis.
Assumption 3 (Linear separability). Assume there is a margin γ > 0 and a unit vector w∗ such that
yix

⊤
i w∗ ≥ γ for every i = 1, . . . , n.

Assumption 3 serves as a sufficient condition for two-layer neural networks, regardless of width, to
reach the initial bound of the stable phase under large stepsizes. We remark that our stable phase
results do not need this assumption.

The following theorem shows that when GD is used with large stepsizes, the average risk must
decrease even though the risk may oscillate locally.
Theorem 3.2 (The EoS phase for two-layer networks). Under Assumption 3, consider (GD) on
two-layer networks (2) that satisfy Assumptions 2A and 2C. Denote the stepsize by η̃ := mη, where
m is the network width and η can be arbitrarily large. Then for every t > 0, we have

1

t

t−1∑
k=0

L(wk) ≤
1 + 8 log2(γ2ηt)/α2 + 8κ2/α2 + η2

γ2ηt
+

∥w0∥2

mηt
= O

(
log2(ηt) + η2

ηt

)
.

Theorem 3.2 suggests that the average risk of training two-layer networks decreases even when GD
is used with large stepsize. Consequently, the risk thresholds (4) and (5) for GD to enter the stable
phase must be satisfied after a finite number of steps. This will be discussed in depth in the next
section.

Compared to Theorem 1 in [Wu et al., 2024], Theorem 3.2 extends their EoS phase bound from linear
predictors to two-layer networks.

4 Phase Transition and Fast Optimization

For two-layer networks trained by large stepsize GD, Theorem 3.2 shows that the average risk must
decrease over time. Combining this with Theorem 2.2, GD must enter the stable phase in finite steps,
and the loss must converge while the normalized margin must improve.

However, a direct application of Theorem 3.2 only leads to a suboptimal bound on the phase transition
time. Motivated by Wu et al. [2024], we establish the following sharp bound on the phase transition
time by tracking the gradient potential (see Lemma C.3). The proof is deferred to Appendix C.
Theorem 4.1 (Phase transition and stable phase for two-layer networks). Under Assumption 3,
consider (GD) on two-layer networks (2) that satisfy Assumption 2. Clearly, the two-layer networks
also satisfy Assumption 1 with ρ = 1/

√
m, β = β̃/m, and κ = κ. Denote the stepsize by η̃ := mη,

where m is the network width and η > 0 can be arbitrarily large.

6
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• Phase transition time. There exists s ≤ τ such that (5) in Theorem 2.2 holds, where

τ :=
128(1 + 4κ)

α2
max

{
c1η, c2n, e,

c2η + c1n

η
log

c2η + c1n

η
,
(c2η + c1n)

η
· ∥w0∥√

m

}
,

where c1 := 4eκ+2 and c2 := (8 + 4β̃). Therefore (GD) is in the stable phase from s onwards.

• Explicit risk bound in the stable phase. We have (L(wt))t≥s monotonically decreases and

L(wt) ≤
2

α2γ2η(t− s)
, t ≥ s.

Theorems 2.2, 3.2 and 4.1 together characterize the behaviors of large stepsize GD in training two-
layer networks. Specifically, large stepsize GD may induce an oscillatory risk in the beginning; but
the averaged empirical risk must decrease (Theorem 3.2). After the empirical risk falls below a certain
stepsize-dependent threshold, GD enters the stable phase, where the risk decreases monotonically
(Theorem 4.1). Finally, the normalized margin (3) induced by GD increases nearly monotonically as
GD stays in the stable phase (Theorem 2.2).

Our intuition behind the phase transition phenomenon is as follows. The initial EoS phase occurs
when gGD oscillates within a steep valley, transitioning to a stable phase once it navigates into a
flatter valley. We believe this insight generalizes to broader nonlinear models. Moreover, our theory
of large step sizes aligns with the celebrated flat minima intuition [Keskar et al., 2016].

Fast optimization. Our bounds for two-layer networks are comparable to those for linear predictors
shown by Wu et al. [2024]. Specifically, when used with a larger stepsize, GD achieves a faster
optimization in the stable phase but stays longer in the EoS phase. Choosing a suitably large stepsize
that balances the steps in EoS and stable phases, we obtain an accelerated empirical risk in the
following corollary. The proof is included in Appendix C.2.
Corollary 4.2 (Acceleration of large stepsize). Under the same setup as in Theorem 4.1, consider
(GD) with a given budget of T steps such that

T ≥ 256(1 + 4κ)

α2γ2
max

{
c1n, 4c

2
2,

2c2∥w0∥√
m

}
,

where c1 := 4eκ+2 and c2 := (8 + 4β̃) are as in Theorem 4.1. Then for stepsize η̃ := ηm, where

η :=
α2γ2

256(1 + 4κ)c2
T,

we have τ ≤ T/2 and

L(wT ) ≤
2048(1 + 4κ)c2

α4γ4
· 1

T 2
= O

(
1

T 2

)
.

Theorem 4.1 and Corollary 4.2 extend Theorem 1 and Corollary 2 in Wu et al. [2024] from linear
predictors to two-layer networks. Another notable difference is that we obtain a sharper stable phase
bound (and thus a better acceleration bound) compared to theirs, where we remove a logarithmic
factor through a more careful analysis.

Corollary 4.2 suggests an accelerated risk bound of O(1/T 2) by choosing a large stepsize that
balances EosS and stable phases. We also show the following lower bound, showing that such accel-
eration is impossible if (GD) does not enter the EoS phase. The proof is included in Appendix C.3.
Theorem 4.3 (Lower bound in the classical regime). Consider (GD) with initialization w0 = 0 and
stepsize η̃ > 0 for a two-layer network (2) satisfying Assumption 2. Suppose the training set is given
by

x1 = (γ,
√
1− γ2), x2 = (γ,−

√
1− γ2/2), y1 = y2 = 1, 0 < γ < 0.1.

It is clear that (xi, yi)i=1,2 satisfy Assumption 3. If (L (wt))t≥0 is non-increasing, then

L (wt) ≥ c0/t, t ≥ 1

where c0 > 0 is a function of (α, ϕ,x1,x2, γ, κ, β) but is independent of t and η̃.

7
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Effect of model rescaling. We conclude this section by discussing the impact of rescaling the
model. Specifically, we replace the two-layer network in the mean-field scaling (2) by the following

f(w;x) := b · 1

m

m∑
j=1

ajϕ(x
⊤w(j)),

and evaluate the impact of the scaling factor b on our results. By choosing the optimal stepsize that
balances the EoS and stable phases as in Corollary 4.2, we optimize the risk bound obtained by GD
with a fixed budget of T steps and get the following bound. Detailed derivations are deferred to
Appendix D.

L(wT ) =

{
O(1/T 2) if b ≥ 1,

O(b−3/T 2) if b < 1.

This suggests that as long as b ≥ 1, we get the same acceleration effect. In particular, the mean-field
scaling b = 1 [Song et al., 2018, Chizat and Bach, 2020] and the neural tangent kernel (NTK) scaling
b =

√
m [Du et al., 2018, Jacot et al., 2018] give the same acceleration effect. An NTK analysis of

large stepsize is included in [Wu et al., 2024] and their conclusion is consistent with ours. Finally, we
remark that our analysis holds for any width m and uses techniques different from the mean-field or
NTK methods. However, our acceleration analysis only allows linearly separable datasets.

5 Experiments

We conduct three sets of experiments to validate our theoretical insights. In the first set, we use a
subset of the CIFAR-10 dataset [Krizhevsky et al., 2009], which includes 6,000 randomly selected
samples from the “airplane” and “automobile” classes. Our model is a multilayer perceptron (MLP)
with four trainable layers and GELU activation functions, with a hidden dimension of 200 for each
hidden layer. The MLP is trained using gradient descent with random initialization, as described in
(GD). The results are shown in Figures 1(a) to 1(c).

In the second set of experiments, we consider an XOR dataset consisting of four samples:

x1 = (−1,−1), y1 = 1; x2 = (1, 1), y2 = 1; x3 = (1,−1), y3 = −1; x4 = (−1, 1), y4 = −1.

The above XOR dataset is not linearly separable. We test (GD) with different stepsizes on a two-layer
network (2) with the leaky softplus activation (see Example 3.1 with c = 0.5). The network width is
m = 20. The initialization is random. The results are presented in Figures 2(a) to 2(c).

In the third set of experiments, we consider the same task as in the first set of experiments, but we test
(GD) with different stepsizes on a two-layer network (2) with the softplus activation. The network
width is m = 40. The initialization is random. The results are presented in Figures 2(d) to 2(f).

Margin improvement. Figures 1(b), 2(c) and 2(f) show that the normalized margin nearly mono-
tonically increases once gradient descent (GD) enters the stable phase, regardless of step size. This
observation aligns with our theoretical findings in Theorem 2.2.

Fast optimization. From Figures 1(a), 2(a) and 2(d), we observe that after GD enters the stable
phase, a larger stepsize consistently leads to a smaller empirical risk compared to the smaller stepsizes,
which is consistent with our Theorem 4.1 and Corollary 4.2. Besides, Figures 2(b) and 2(e) suggest
that, asymptotically, GD converges at a rate of O(1/(η̃t)) = O(1/(ηt)) (The width of networks is
fixed), which verifies the sharpness of our stable phase bound in Theorem 4.1.

Margin of individual neurons. It is important to note that while the normalized margin behaves as
expected, the margin for individual neurons may not increase and can remain negative, even when
the dataset is linearly separable. A detailed example illustrating this is provided in Appendix E.

6 Related Works

In this section, we discuss related papers.
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(a) Empirical risk, XOR. (b) Asymptotic rate, XOR. (c) Normalized margin, XOR.

(d) Empirical risk, CIFAR-10. (e) Asymptotic rate, CIFAR-10. (f) Normalized margin, CIFAR-10.

Figure 2: Behavior of (GD) for two-layer networks (2) with leaky softplus activation function (see
Example 3.1 with c = 0.5). We consider an XOR dataset and a subset of CIFAR-10 dataset. In both
cases, we observe that (1) GD with a large stepsize achieves a faster optimization compared to GD
with a small stepsize, (2) the asymptotic convergence rate of the empirical risk is O(1/(η̃t)), and (3)
in the stable phase, the normalized margin (nearly) monotonically increases. These observations are
consistent with our theoretical understanding of large stepsize GD. More details about the experiments
are explained in Section 5.

Small stepsize and implicit bias. For logistic regression on linearly separable data, Soudry et al.
[2018], Ji and Telgarsky [2018] showed that the direction of small stepsize GD converges to the
max-margin solution. Their results were later extended by Gunasekar et al. [2017, 2018], Nacson
et al. [2019c,a,b], Ji et al. [2021], Lyu and Li [2020], Ji and Telgarsky [2020], Chizat and Bach [2020],
Chatterji et al. [2021], Kunin et al. [2022] to other algorithms and non-linear models. However,
in all of their analysis, the stepsize of GD needs to be small such that the empirical risk decreases
monotonically. In contrast, our focus is GD with a large stepsize that induces non-monotonic risk.

Two papers [Nacson et al., 2019a, Kunin et al., 2022] studied margin maximization theory for a
special form of non-homogenous models. Specifically, when viewed in terms of different subsets of
the trainable parameters, the model is homogeneous, although the order of homogeneity may vary.
Compared to their setting, our non-homogenous models only require a bounded homogenous error
(see Assumption 1C). Therefore, our theory can cover two-layer networks (2) with non-homogeneous
activations such as GELU and SiLU that cannot be covered by [Nacson et al., 2019a, Kunin et al.,
2022].

Large stepsize and EoS. In practice, large stepsizes are often preferred when using GD to train
neural networks to achieve effective optimization and generalization performance [see Wu and Ma,
2018, Cohen et al., 2020, Barrett and Dherin, 2020, and references therein]. In such scenarios, the
empirical risk often oscillates in the beginning. This phenomenon is named edge of stability (EoS) by
Cohen et al. [2020]. The theory of EoS is mainly studied in relatively simplified cases such as one-
or two-dimensional functions [Zhu et al., 2022, Chen and Bruna, 2023, Ahn et al., 2022, Kreisler
et al., 2023, Wang et al., 2023], linear model [Wu et al., 2023, 2024], matrix factorization [Wang
et al., 2022a, Chen and Bruna, 2023], scale-invariant networks [Lyu et al., 2022], linear networks
under MSE loss [Ren et al., 2024, Andriushchenko et al., 2023], for an incomplete list of references.
Compared to them, we focus on a more practical setup of training two-layer non-linear networks
with large stepsize GD. There are some general theories of EoS subject to subtle assumptions [for
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example, Kong and Tao, 2020, Ahn et al., 2022, Ma et al., 2022, Damian et al., 2022, Wang et al.,
2022b, Lu et al., 2023], which are not directly comparable to ours.

In what follows, we make a detailed discussion about papers that directly motivate our work [Lyu
and Li, 2020, Ji and Telgarsky, 2020, Chatterji et al., 2021, Wu et al., 2024].

Comparison with Lyu and Li [2020], Ji and Telgarsky [2020]. Both results in [Lyu and Li, 2020,
Ji and Telgarsky, 2020] focused on L-homogenous networks. Specifically, Lyu and Li [2020] showed
that a modified version of normalized margin (see (3)) induced by GD with small stepsize (such
that the risk decreases monotonically) increases, with limiting points of {wt/∥wt∥}∞t=1 converging
to KKT points of a margin-maximization problem. Under additional o-minimal conditions, Ji and
Telgarsky [2020] showed that gradient flow converges in direction. Our work is different from theirs
in two aspects. First, we allow GD with a large stepsize that may cause risk oscillation. Second, our
theory covers non-homogenous predictors, which include two-layer networks with many commonly
used activation functions beyond the scope of [Lyu and Li, 2020, Ji and Telgarsky, 2020]. Compared
to Lyu and Li [2020], Ji and Telgarsky [2020], we only show the improvement of the margin, and
our theory is limited to nearly 1-homogenous predictors (Assumption 2C). It remains open to show
directional convergence and to extend our near 1-homogenity condition to a “near L-homogeneity”
condition for a general L.

Comparison with Chatterji et al. [2021]. The work by Chatterji et al. [2021] studies the conver-
gence of GD in training deep networks under logistic loss. Their results are related to ours as we both
consider networks with nearly homogeneous activations and we both have a stable phase analysis (al-
though this is not explicitly mentioned in their paper). However, our results are significantly different
from theirs. Specifically, in our notation, they require the homogenous error κ (see Assumption 2C)
to be smaller than O(log(1/L(ws))/∥ws∥) ≈ O(γ̄(ws)), where s is the time for GD to enter the
stable phase. Note that the margin when GD enters the stable phase could be arbitrarily small. In
comparison, we only require the homogenous error to be bounded by a constant. As a consequence,
we can handle many commonly used activation functions (see Example 2.1) while they can only
handle the Huberized ReLU with a small h in Example 2.1. Moreover, they require the stepsize η̃ to
be smaller than O(κ/∥ws∥8) , thus they only allow very small stepsize. In contrast, we allow η̃ to be
arbitrarily large.

Comparison with Wu et al. [2023, 2024]. The works by Wu et al. [2023, 2024] directly motivate
our paper. In particular, for logistic regression on linearly separable data, Wu et al. [2023] showed
margin maximization of GD with large stepsize and Wu et al. [2024] showed fast optimization of
GD with large stepsize. Our work can be viewed as an extension of [Wu et al., 2023, 2024] from
linear predictors to non-linear predictors such as two-layer networks. Besides, our results for margin
improvement and convergence within the stable phase (Theorem 2.2) hold for the general dataset,
while their results strongly rely on the linear separability of the dataset.

7 Conclusion

We provide a theory of large stepsize gradient descent (GD) for training non-homogeneous predictors
such as two-layer networks using the logistic loss function. Our analysis explains the empirical
observations: large stepsize GD often reveals two distinct phases in the training process, where the
empirical risk oscillates in the beginning but decreases monotonically subsequently. We show that
the phase transition happens because the average empirical risk decreases despite the risk oscillation.
In addition, we show that large stepsize GD improves the normalized margin in the long run, which
extends the existing implicit bias theory for homogenous predictors to non-homogenous predictors.
Finally, we show that large stepsize GD, by entering the initial oscillatory phase, achieves acceleration
when minimizing the empirical risk.
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A Stable Phase Analysis

In this section, we will prove results for a general smooth predictor f(w;x) under the logistic loss in
the stable phase. Before the proof, we introduce some notations here.

Notation. We use the following notation to simplify the presentation.

• qi(t) := yif(wt;xi), qmin(t) := mini∈[n] qi(t).

• Lt := L(wt), ρt := ∥wt∥2.

Then, we have the following expression:

L(wt) =
1

n

n∑
i=1

ℓ(qi(t)).

Here, we give a summary of this section. The proofs are organized into 5 parts.

• In Appendix A.1, we characterize the decrease of loss Lt.
• In Appendix A.2, we characterize the change of the parameter norm ρt.
• In Appendix A.3, we show the convergence of the normalized margin γ̄(wt).
• In Appendix A.4, we characterize the sharp rates of loss Lt and parameter norm ρt.
• In Appendix A.5, we give the proof of Theorem 2.2.

A.1 Decrease of the Loss

In this section, we will show that the loss Lt decreases monotonically in the stable phase. To begin
with, we introduce the following definition which is another characterization of β-smoothness.
Definition 1 (Linearization error). Given a continuously differentiable function f : Rd → R and two
points w,v ∈ Rd, the linearization error of f(v) with respect to w is:

ξ[f ](w,v) := f(v)− f(w)−∇f(w)⊤(v −w).

For a β-smooth function, standard convex optimization theory gives the following linearization error
bound.
Fact A.1 (Linearization error of β-smooth function). For a β-smooth function f : Rd → R, we have

ξ[f ](w,v) := f(v)− f(w)−∇f(w)⊤(v −w) ≤ β

2
∥v −w∥22, for every w and v.

We first show a stable phase bound for general smooth and Lipschitz predictors. The following is an
extension of Lemma 10 in [Wu et al., 2024]. Since we do not require f to be twice differentiable,
extra efforts are needed.
Lemma A.2 (Self-boundedness of logistic loss). For the logistic loss ℓ(z) := log(1 + exp(−z)), we
have

0 ≤ ℓ(z)− ℓ(x)− ℓ′(x)(z − x) ≤ 2ℓ(x)(z − x)2

for |z − x| < 1.

Proof of Lemma A.2. See the proof of Proposition 5 in [Wu et al., 2024]. The lower bound is by the
convexity of ℓ(·).

The next lemma controls the decrease of the risk Lt.
Lemma A.3 (Decrease of Lt). Suppose Assumptions 1A and 1B hold. If L(wt) ≤ 1

η̃ρ2 , then we have

−η̃(1 + βη̃L(wt))∥∇L(wt)∥2 ≤ L(wt+1)− L(wt) ≤ −η̃(1− (2ρ2 + β)η̃L(wt))∥∇L(wt)∥2.

Particularly, this indicates that if L(wt) ≤ 1
η̃(2ρ2+β) , then L(wt+1) ≤ L(wt).
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Proof of Lemma A.3. By Assumptions 1A and 1B, we have ∥∇f∥2 ≤ ρ and f(w;x) is β-smooth as
a function of w. Therefore, for every i ∈ [n] we have
|qi(t+ 1)− qi(t)| = |yi(f (wt+1;xi)− f (wt;xi))|

=
∣∣∣∇f (wt + θ (wt+1 −wt) ;xi)

⊤
(wt+1 −wt)

∣∣∣ by intermediate value theorem

≤ ρ ∥wt+1 −wt∥
≤ ρη̃∥∇Lt∥ since wt+1 = wt − η̃∇Lt
≤ ρ2η̃Lt ≤ 1. since ∥∇Lt∥ ≤ Ltρ

Then by Lemma A.2, we have
ℓ(qi(t+ 1)) ≤ ℓ(qi(t)) + ℓ′(qi(t))(qi(t+ 1)− qi(t)) + 2ℓ(qi(t))(qi(t+ 1)− qi(t))

2

≤ ℓ(qi(t)) + ℓ′(qi(t))⟨yi∇f(wt;xi),wt+1 −wt⟩+ |ℓ′(qi(t))| · |ξ[f ](wt,wt+1)|
+ 2ℓ(qi(t))(qi(t+ 1)− qi(t))

2

since qi(t+ 1)− qi(t) = ⟨yi∇f(wt;xi),wt+1 −wt⟩+ yiξ[f ](wt,wt+1)

≤ ℓ(qi(t)) + ℓ′(qi(t))⟨yi∇f(wt;xi),wt+1 −wt⟩+ ℓ(qi(t))(β + 2ρ2)∥wt+1 −wt∥2.
by Fact A.1 and the previous inequality

Taking an average over all data points, we have
Lt+1 ≤ Lt − η̃∥∇Lt∥2 + (2ρ2 + β)η̃2Lt∥∇Lt∥2,

which is equivalent to
Lt+1 − Lt ≤ −η̃(1− (2ρ2 + β)η̃Lt)∥∇Lt∥2.

We complete the proof of the right hand side inequality. The left hand side inequality can be proved
similarly. In detail, we can show that:
ℓ(qi(t+ 1)) ≥ ℓ(qi(t)) + ℓ′(qi(t))(qi(t+ 1)− qi(t)

≥ ℓ(qi(t)) + ℓ′(qi(t))⟨yi∇f(wt;xi),wt+1 −wt⟩ − |ℓ′(qi(t))| · |ξ[f ](wt,wt+1)|.
Taking the average over all data points, we have

Lt+1 ≥ Lt − η̃(1 + βη̃Lt)∥∇Lt∥2.
Now we have completed the proof.

A.2 Increase of the Parameter Norm

In this section, we demonstrate that the parameter norm, ρt, increases monotonically during the
stable phase. We introduce a crucial quantity, vt, defined as the inner product of the gradient and the
negative weight vector:

vt := ⟨∇L(wt),−wt⟩.
This quantity, vt, plays a key role in controlling the increase of the parameter norm. Notably, vt
appears as the cross term in the expression ∥wt+1∥2 = ∥wt − η̃∇L(wt)∥2. By managing vt, we can
effectively characterize the increase in the parameter norm.

Recall that our loss function is ℓ(x) := log(1 + e−x). Inspired by Lyu and Li [2020], we define the
following two auxiliary functions for the logistic loss:

ψ(x) := − log(ℓ(x)) = − log log(1 + e−x), x ∈ R,

ι(x) := ψ−1(x) = − log(ee
−x

− 1), x ∈ R.
(6)

One important remark is that if we change the loss to the exponential loss, both ψ and ι will be the
identity function. Since the logistic loss and the exponential loss have similar tails, our ψ(x) and ι(x)
are close to the identity function, i.e.,

ψ(x) ≈ ι(x) ≈ x, for x large enough.
Then, we have an exponential-loss-like decomposition of Lt:

Lt =
1

n

n∑
i=1

ℓ(qi(t)) =
1

n

n∑
i=1

e−ψ(qi(t)). (7)

These two functions ψ, ι will help us to analyze the lower bound of vt. First, we list some properties
of ψ and ι here.
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Lemma A.4 (Auxiliary functions of ℓ). The following claims hold for ℓ, ψ, and ι.

• ℓ(x) = e−ψ(x).

• ℓ is monotonically decreasing, while ψ and ι are monotonically increasing.

• ψ′(ι(x)) = 1
ι′(x) ;

• ψ′(x)x is increasing for x ∈ (0,+∞).

Proof of Lemma A.4. The first two properties are straightforward. For the third property, we apply
chain rule on ψ(ι(x)) = x to get

ψ′(ι(x))ι′(x) = 1.

For the fourth property, notice that

ψ′(x)x =
x

(1 + ex) log(1 + e−x)
.

The denominator is positive and decreasing since

d

dx

[
(1 + ex) log(1 + e−x)

]
= ex log(1 + e−x)− 1 ≤ exe−x − 1 = 0.

Combining this with the fact that x is positive and increasing, we have the desired result.

Besides, we have the following property of ι. This is the key lemma to handle the homogeneous error.
Actually, this lemma is another way to show ι(x) is close to the identity function.
Lemma A.5 (Property of ι). For every x ∈ R, we have

ι(x)

ι′(x)
≥ x+ log log 2.

Proof of Lemma A.5. Recall that

ι(x) = − log(ee
−x

− 1), ι′(x) =
ee

−x

e−x

ee−x − 1
.

Let y = e−x. We have

ι(x)

ι′(x)
=

− log(ee
−x − 1)(ee

−x − 1)

ee−xe−x
=

− log(ey − 1)(ey − 1)

eyy
.

Define s(y) := ι(x)
ι′(x) − x− log log 2. Then,

s(y) =
− log(ey − 1)(ey − 1)

eyy
+ log(y)− log log 2,

s′(y) = log(ey − 1) · e
y − y − 1

eyy2︸ ︷︷ ︸
>0

.

Note that the sign of s′ is determined by log(ey − 1). For 0 < ey ≤ 2, s′(y) ≤ 0 and s(y) is
decreasing; for ey ≥ 2, s(y) is increasing. Therefore,

min
y∈(0,∞)

s(y) = s(log 2) = 0.

Since x = − log y, we have the desired result.

Another important property of ι is that it can provide a lower bound for qmin(t).
Lemma A.6 (ι bound qmin). For every t ≥ 0, we have

qmin(t) ≥ ι
(
− log(Lt)− log n

)
.
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Proof of Lemma A.6. We use (7) to get

1

n
ℓ(qmin(t)) ≤ Lt ⇒

1

n
e−ψ(qmin(t)) ≤ Lt

⇒ ψ(qmin(t)) ≥ − log n− logLt

⇒ qmin(t) ≥ ι
(
− log(Lt)− log n

)
. by Lemma A.4

Then, we complete the proof.

Now, we are ready to give a lower bound of vt. The following lemma is an extension of Corollary
E.6 in Lyu and Li [2020], where they dealt with a homogeneous model and the exponential loss; we
extend this to a non-homogeneous model. The key ingredient is Lemma A.5.
Lemma A.7 (A lower bound of vt). Suppose Assumption 1C holds. Consider vt := ⟨∇L(wt),−wt⟩.
If Lt ≤ 1

2neκ , then
vt ≥ −Lt log(2neκLt) ≥ 0.

Proof of Lemma A.7. By definition, we have

vt := ⟨∇L(wt),−wt⟩

= − 1

n

n∑
i=1

ℓ′(yif(wt;xi))yi⟨∇f(wt;xi),wt⟩

= − 1

n

n∑
i=1

ℓ′(yif(wt;xi))yif(wt;xi)−
1

n

n∑
i=1

ℓ′(yif(wt;xi))
(
yi⟨∇f(wt;xi),wt⟩ − yif(wt;xi)

)
≥ − 1

n

n∑
i=1

ℓ′(yif(wt;xi))yif(wt;xi)− κLt

since |ℓ′(x)| ≤ ℓ(x) and |⟨∇f(wt;xi),wt⟩ − f(wt;xi)| ≤ κ by Assumption 1C

=
1

n

n∑
i=1

e−ψ(qi(t))ψ′(qi(t))qi(t)− κLt. since ℓ(·) = exp(−ψ(·))

Applying Lemma A.6 and Lemma A.4, we have

qi(t) ≥ qmin(t) ≥ ι
(
− log(nLt)

)
:= − log(enLt − 1) ≥ − log(e

1
2 − 1) ≥ 0.

Then we can apply Lemma A.4 to get

ψ′(qi(t))qi(t) ≥ ψ′
(
ι
(
− log(nLt)

))
ι
(
− log(nLt)

)
=

ι
(
− log(nLt)

)
ι′
(
− log(nLt)

) .
Invoking Lemma A.5, we have

ι
(
− log(nLt)

)
ι′
(
− log(nLt)

) ≥ − log(nLt) + log log 2 ≥ − log(nLt) + log log e
1
2 = − log(2nLt).

Putting the above two inequalities together, we have

ψ′(qi(t))qi(t) ≥ − log(2nLt), for every i = 1, . . . , n.

Plugging this back to the bound of vt, we get

vt ≥ − 1

n

n∑
i=1

e−ψ(qi(t)) log(2nLt)− κLt

= −Lt log(2nLt)− κLt
= −Lt log(2neκLt) ≥ 0.

This completes the proof.

Right now, we get a lower bound for vt, which is the cross term in the expression of ∥wt+1∥2. The
next lemma controls the increase of the parameter norm ρt using vt and Lt.
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Lemma A.8 (The increase of ρt). Suppose Assumptions 1A and 1C hold. If Lt ≤
min

{
1

2neκ ,
1

η̃(4ρ2+2β)

}
, then

0 ≤ 2η̃vt ≤ ρ2t+1 − ρ2t ≤ 2η̃vt ·
(
1− 1

2 log(2neκLt)

)
.

Proof of Lemma A.8. By definition, we have

ρ2t+1 − ρ2t = 2η̃⟨∇Lt,−wt⟩+ η̃2∥∇Lt∥2

= 2η̃vt + η̃2∥∇Lt∥2 ≥ 2η̃vt ≥ 0,

where the last inequality is by Lemma A.7. Besides,

ρ2t+1 − ρ2t = 2η̃vt

(
1 +

η̃∥∇Lt∥2

2vt

)
≤ 2η̃vt

(
1 +

η̃L2
tρ

2

2vt

)
by ℓ′ ≤ ℓ, Assumption 1A, and Lemma A.7

≤ 2η̃vt

(
1 +

Lt
2vt

)
by Lt ≤

1

η̃(4ρ2 + 2β)

≤ 2η̃vt

(
1− 1

2 log(2neκLt)

)
. by Lemma A.7

This completes the proof.

A.3 Convergence of the Margin

In this section, we show that the normalized margin of a general predictor converges in the stable
phase. Recall that we define the (normalized) margin as

γ̄(w) :=
mini∈[n] yif(w;xi)

∥w∥2
.

However, this normalized margin is not a smooth function of w. Instead, we consider a smoothed
margin γa as an easy-to-analyze approximator of the normalized margin [Lyu and Li, 2020]

γa(w) :=
− logL(wt)

∥w∥2
. (8)

We see that γa is a good approximator of γ̄. We can then use γa to analyze the convergence of
the normalized margin since they share the same limit (if it exists). While γa is relatively easy to
analyze for gradient flow [Lyu and Li, 2020], analyzing that for GD with a large (but fixed) stepsize
is hard. To mitigate this issue, we construct another two margins that work well with large stepsize
GD following the ideas of Lyu and Li [2020].

Under Assumption 1, we define an auxiliary margin as

γb(w) :=
− log(2neκL(w))

∥w∥
, (9)

and a modified margin as

γc(w) :=
eΦ(L(w))

∥w∥
, where Φ(x) := log(− log(2neκx)) +

1 + (4ρ2 + 2β)η̃

log(2neκx)
. (10)

These two margins provide a second-order correction when viewing large stepsize GD as a first-order
approximation of gradient flow. In the following discussion, we will show that γ̄(w) ≈ γa(w) ≈
γb(w) ≈ γc(w). At last, we will use the convergence of γc(wt) to prove γ̄(wt) converges.

The following lemma shows that γ̄(w) ≈ γa(w).
Lemma A.9 (Smoothed margin). For the smooth margin γa(wt) defined in (8) and the normalized
margin γ̄(wt) defined in (3), we have
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• When Lt ≤ 1
2n , we have

qmin(t) ≤ − logLt ≤ log(2n) + qmin(t),

and

γ̄(wt) ≤ γa(wt) ≤ γ̄(wt) +
log(2n)

ρt
.

• Assume Assumption 1C holds. If Lt → 0, then |γa(wt)− γ̄(wt)| → 0.

Proof of Lemma A.9. To prove the first claim, notice that

Lt ≤
1

2n
=⇒ ℓ(qmin(t)) = log(1 + exp(−qmin(t))) ≤ nLt ≤

1

2
.

Therefore we have
e−qmin(t) ≤ e

1
2 − 1 ≤ 1.

Using x
2 ≤ log(1 + x) ≤ x for 0 ≤ x ≤ 1, we get

1

2
e−qmin(t) ≤ ℓ(qmin(t)) = log(1 + e−qmin(t)) ≤ e−qmin(t).

Then we can bound Lt by

1

2n
e−qmin(t) ≤ 1

n
ℓ(qmin(t)) ≤ Lt ≤ ℓ(qmin(t)) ≤ e−qmin(t),

which is equivalent to
qmin(t) ≤ − logLt ≤ log(2n) + qmin(t).

Dividing both sides by ρt proves the second claim:

γ̄(wt) :=
qmin(t)

ρt
≤ γa(wt) :=

− logLt
ρt

≤ γ̄(wt) +
log(2n)

ρt
=

log(2n) + qmin(t)

ρt
.

For the last claim, we only need to show that ρt → ∞. This is because if Lt → 0, we have for
any i ∈ [n], yif(wt;xi) → ∞. Using yif(wt;xi) ≤ Cr,κ∥wt∥ + Cr from Lemma G.2, we have
ρt = ∥wt∥2 → ∞.

The following lemma shows that γc(w) ≈ γ̄(w).

Lemma A.10 (Modified and auxiliary margins). Suppose that Assumption 1 holds. For the modified
margin γc(wt) defined in (10) and the auxiliary margin γb(wt) defined in (9), we have

• If Lt ≤ 1
2neκ+2 , there exists a constant c such that

γc(wt) ≤ γb(wt) ≤ γ̄(wt) ≤
(
1 +

c

log(1/L(wt))

)
γc(wt).

Proof of Lemma A.10. To prove the first two inequalities, notice that

eΦ(Lt) = − log(2neκLt) · exp
(
1 + (4ρ2 + 2β)η̃

log(2neκLt)

)
using (10)

≤ − log(2neκLt). since Lt ≤
1

2neκ
, exp

(
1 + (4ρ2 + 2β)η̃

log(2neκLt)

)
≤ 1, and log(2neκLt) > 0

≤ − log(Lt)− log(2n)

≤ qmin(t). By argument 1 in Lemma A.9

Using the above, (8) to (10), we have

γc(wt) :=
eΦ(L(wt))

∥wt∥
≤ − log(2neκLt)

∥wt∥
=: γb(wt) ≤

qmin(t)

∥wt∥
=: γ̄(wt).
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Then, we will prove the remaining inequality. First, we have
γ̄(wt)

γc(wt)
=

γ̄(wt)

γb(wt)
· γ

b(wt)

γc(wt)

=
qmin(t)

− log(2neκLt)
· exp

(
1 + (4ρ2 + 2β)η̃

− log(2neκLt)

)
By the definitions of γ̄, γb, γc

≤ − log(Lt)

− log(2neκLt)
· exp

(
1 + (4ρ2 + 2β)η̃

− log(2neκLt)

)
Since qmin(t) ≤ log(−Lt) by Lemma A.9

=

(
1 +

log(2neκ)

− log(2neκLt)

)
· exp

(
1 + (4ρ2 + 2β)η̃

− log(2neκLt)

)
.

To simplify the notation, we let c1 := 1 + (4ρ2 + 2β)η̃ and c2 = log(2neκ). Since Lt ≤ 1
2neκ+2 ⇒

− log(2neκLt) ≥ 2 > 1, we have
1 + (4ρ2 + 2β)η̃

− log(2neκLt)
=

c1
− log(2neκLt)

≤ c1.

Besides, given x < c, we have ex ≤ 1 + ecx. Therefore,

exp

(
1 + (4ρ2 + 2β)η̃

− log(2neκLt)

)
= exp

(
c1

− log(2neκLt)

)
≤ 1 +

c1 exp(c1)

− log(2neκLt)
.

Plugging this into the bound for γ̄(wt)/γ
c(wt), we get

γ̄(wt)

γc(wt)
=

(
1 +

c2
− log(2neκLt)

)
· exp

(
c1

− log(2neκLt)

)
≤
(
1 +

c2
− log(2neκLt)

)
·
(
1 +

exp(c1)c1
− log(2neκLt)

)
≤ 1 +

c2 + exp(c1)c1 + c2c1 exp(c1)

− log(2neκLt)
Since − log(2neκLt) ≥ 1

= 1 +
c2 + exp(c1)c1 + c2c1 exp(c1)

− logLt − c2
.

Note that − logLt − c2 ≥ 2 > 1. Because x
x−c2 is decreasing when x ≥ c2 + 1, we have

− logLt
− logLt − c2

≤ c2 + 1 =⇒ 1

− logLt − c2
≤ c2 + 1

− logLt
.

Plug this inequality into the previous bound for γ̄(wt)/γ
c(wt) and we get

γ̄(wt)

γc(wt)
≤ 1 +

(c2 + exp(c1)c1 + c2c1 exp(c1))(c2 + 1)

− logLt
.

Let c := (c2 + exp(c1)c1 + c2c1 exp(c1))(c2 + 1). We complete the proof.

The next lemma shows the convexity of Φ defined in (10). The convexity will help us analyze the
change of γc(wt) in the gradient descent dynamics. Specifically, we are going to use the property
that

Φ(x)− Φ(y) ≥ Φ′(y)(x− y), for all x, y.
Lemma A.11 (Convexity of Φ). The function Φ(x) defined in (10) is convex for 0 < x < 1

2ne2+κ .

Proof of Lemma A.11. Check that

Φ′(x) =
1− 1

log(2neκx) (1 + (4ρ2 + 2β)η̃)

x log(2neκx)
,

and that

Φ′′(x) =
(1 + (4ρ2 + 2β)η̃) · (2 + log(2neκx))− log2(2neκx)− log(2neκx)

x2 log3(2neκx)
.

Note that when x ≤ 1
2ne2+κ , we have log(2neκx) ≤ −2, which implies

2 + log(2neκx) ≤ 0, log(2neκx) < 0, and − log2(2neκx)− log(2neκx) < 0.

Plugging these into the previous equality, we have Φ′′(x) ≥ 0 when 0 < x < 1
2ne2+κ .
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Before we dive into the proof of the monotonic increasing γc(wt), we show that γc is bounded first.
The convergence of γc is a direct consequence of the monotonic increasing and the boundedness of
γc.

Lemma A.12 (An upper bound on γc, γb, γa and γc). When Lt ≤
{

1
2neκ ,

1
η̃(4ρ2+2β)

}
for t ≥ s,

there exists B0 such that

γc(wt) ≤ γb(wt) ≤ γa(wt) ≤ γ̄(wt) +
log 2n

ρs
≤ B0.

Proof. Apply lemma A.8, we have ∥wt∥ ≥ ρt ≥ ρs. Then we can apply lemma G.2 and there exists
a constant Cρs,κ such that for all i,

|yif(wt;xi)| ≤ Cρs,κ∥wt∥.

Hence,

γ̄(wt) =
argmini∈[n] yif(wt;xi)

∥wt∥
≤ Cρs,κ.

Besides, by Lemma A.9, we have

γa(wt) ≤ γ̄(wt) +
log 2n

ρt
≤ Cρs,κ +

log 2n

ρs
.

By Lemma A.10, we have

γc(wt) ≤ γb(wt) ≤ γa(wt) ≤ Cρs,κ +
log 2n

ρs
.

Let B0 = Cρs,κ +
log 2n
ρs

. Then, we complete the proof.

The following lemma is a variant of Proposition 5, item 1, in [Wu et al., 2024]. Before the lemma, we
need some auxiliary definitions. let us define

θt :=
wt

∥wt∥
, νt := θtθ

⊤
t (−∇Lt), µt :=

(
I− θtθ

⊤
t

)
(−∇Lt).

Therefore, we have
∥∇Lt∥2 = ∥νt∥2 + ∥µt∥2.

The key point of this decomposition is that we consider the gradient of the loss function as a sum of
two orthogonal components. The first component νt is the component in the direction of wt, and the
second component µt is the component orthogonal to wt. We will show that the modified margin
γc(wt) is monotonically increasing. And the increase of γc(wt) is lower bounded by a term that
depends on ∥µt∥2.

Lemma A.13 (Modified margin is monotonically increasing). Suppose Assumption 1 holds. If there
exists s such that

Ls ≤ min

{
1

eκ+22n
,

1

η̃(4ρ2 + 2β)

}
,

then for t ≥ s, we have

• Lt+1 ≤ Lt.

• vt ≥ −Lt log(2neκLt) ≥ 0.

• ρ2t+1 − ρ2t ≥ 2η̃vt.

• log γc(wt+1)− log γc(wt) ≥ ρ2t
v2t
∥µt∥2 log ρt+1

ρt
.

As a consequence, γc(wt) admits a finite limit.
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Proof of Lemma A.13. The first claim is by Lemma A.3 and induction. The second and the third
claims are consequences of Lemmas A.7 and A.8, respectively. We now prove the last claim. By
Lemma A.3, we have

Lt+1 − Lt := L(wt+1)− L(wt) ≤ −η̃(1− (2ρ2 + β)η̃Lt)∥∇Lt∥2.

Multiplying both sides by 2vt
1− 1

2 log(2neκLt)

1−(2ρ2+β)η̃Lt
> 0, we get

1− 1
2 log(2neκLt)

1− (2ρ2 + β)η̃Lt
2vt(Lt+1 − Lt) ≤ −2η̃vt

(
1− 1

2 log(2neκLt)

)
∥∇Lt∥2.

From Lemma A.8 we have

0 ≤ ρ2t+1 − ρ2t ≤ 2η̃vt

(
1− 1

2 log(2neκLt)

)
.

Using the above we get

1− 1
2 log(2neκLt)

1− (2ρ2 + β)η̃Lt
2vt(Lt+1 − Lt) ≤ −(ρ2t+1 − ρ2t )∥∇Lt∥2. (11)

Recall that
∥∇Lt∥2 = ∥νt∥2 + ∥µt∥2.

For νt, we have

∥νt∥ =
1

ρt
⟨wt,−∇Lt⟩ =

vt
ρt
.

Then we can decompose ∥∇Lt∥2 as

∥∇Lt∥2 = ∥νt∥2 + ∥µt∥2 =
v2t
ρ2t

+ ∥µt∥2. (12)

Plugging this into (11) and dividing both two sides by 2v2t , we have

1− 1
2 log(2neκLt)

(1− (2ρ2 + β)η̃Lt)vt
(Lt+1 − Lt) ≤ − 1

ρ2t
(ρ2t+1 − ρ2t )

(
1

2
+

ρ2t
2v2t

∥µt∥2
)
.

By Lemma A.7, we have vt ≥ −Lt log(2neκLt). Define

Ψ(x) := −
1− 1

2 log(2neκx)

(1− (2ρ2 + β)η̃x)x log(2neκx)
.

Then we have

Ψ(Lt)(Lt+1 − Lt) := −
1− 1

2 log(2neκLt)

(1− (2ρ2 + β)η̃Lt)Lt log(2neκLt)
(Lt+1 − Lt)

≤
1− 1

2 log(2neκLt)

(1− (2ρ2 + β)η̃Lt)vt
(Lt+1 − Lt)

≤ − 1

ρ2t
(ρ2t − ρ2t+1)

(
1

2
+

ρ2t
2v2t

∥µt∥2
)
.

(13)

We are going to show that Ψ(x) ≤ −Φ′(x). Note that when 0 < x ≤ min
{

1
eκ+22n ,

1
η̃(4ρ2+2β)

}
, we

have log(2neκx) < 0 and 1− (2ρ2 + β)η̃x) ≥ 1
2 > 0. Therefore, we have

Ψ(x) =
1− 1

2 log(2neκx)

1− (2ρ2 + β)η̃x︸ ︷︷ ︸
=:J>0

· −1

x log(2neκx)︸ ︷︷ ︸
>0

. (14)

To get an upper bound of Ψ(x), we just need an upper bound of J . Let a := −1
2 log(2neκx) > 0 and

b := (2ρ2 + β)η̃x ∈ (0, 1/2]. Then we invoke Lemma G.4 to get

J :=
1 + a

1− b
≤ 1 + 2a+ 2b = 1− 1

log(2neκx)
+ (4ρ2 + 2β)η̃x.
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Recall that x ≤ 1
eκ+22n ≤ 1

2neκ and 2neκ ≥ 1. Then we apply Lemma G.3 to get x ≤ −1
log(2neκx) .

Plugging this into the bound of J , we get

J ≤ 1− 1

log(2neκx)
+ (4ρ2 + 2β)η̃x ≤ 1− 1

log(2neκx)
(1 + (4ρ2 + 2β)η̃). (15)

Plugging (15) into (14), we have

Ψ(x) = J · −1

x log(2neκx)
≤ −

1− 1
log(2neκx) (1 + (4ρ2 + 2β)η̃)

x log(2neκx)
= −Φ′(x),

which verifies that Ψ(x) ≤ −Φ′(x). By this and (13), we have

Φ′(Lt)(Lt+1 − Lt) + φ′(ρ2t )(ρ
2
t+1 − ρ2t )

(
1

2
+

ρ2t
2v2t

∥µt∥2
)

≥ 0,

where φ(x) = − log x = log(1/x). Recall that for 0 < x ≤ 1
2neκ+2 , Φ(x) is convex by Lemma A.11.

By convexity of φ and Φ, we have

Φ(Lt+1)− Φ(Lt) +

(
log

1

ρ2t+1

− log
1

ρ2t

)(
1

2
+

ρ2t
2v2t

∥µt∥2
)

≥ 0.

By the definition of γc in (10), this can be rewritten as

log γc(wt+1)− log γc(wt) = (Φ(Lt+1)− Φ(Lt)) +

(
log

1

ρt+1
− log

1

ρt

)
≥ −

(
log

1

ρ2t+1

− log
1

ρ2t

)
ρ2t
2v2t

∥µt∥2

=
ρ2t
v2t

∥µt∥2 log
ρt+1

ρt

≥ 0,

where the last inequality is because of Lemma A.8. We have shown that γc(wt) is monotonically
increasing. By Lemma A.12, γc(wt) is bounded. Therefore γc(wt) admits a finite limit. This
completes the proof.

A.4 Sharp rates of Loss and Parameter Norm

Right now, we have already proved that γc(wt) is monotonically increasing and bounded, which
indicates γc(wt) converges. However, if we want to show that γ̄(wt) converges, we still need to
verify that Lt → 0, which is the crucial condition for γc(wt), γ

b(wt), γ
a(wt), and γ̄(wt) to share

the same limit, by Lemma A.9 and Lemma A.10.

Fortunately, with the monotonicity of γc(wt), we can prove that Lt converges to zero and even
characterize the rate of Lt.
Lemma A.14 (Rate of Lt in general model). Suppose Assumption 1 holds. If there is an s such that

L(ws) ≤ min
{ 1

eκ+22n
,

1

η̃(4ρ2 + 2β)

}
,

then for every t ≥ s we have

1
1

L(ws)
+ 3η̃ρ2(t− s)

≤ L(wt) ≤
2

(t− s)η̃γc(ws)2
.

That is, L(wt) = Θ(1/t) → 0 as t→ ∞.

Proof of Lemma A.14. By Lemma A.3 and (12) in the proof of Lemma A.13, we know Lt is decreas-
ing and

Lt+1 − Lt ≤ − η̃
2
∥∇Lt∥2 ≤ − η̃

2
∥νt∥22 ≤ − η̃

2

v2t
ρ2t
. (16)
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We will establish an upper bound for ρt first. Note that γc(wt) is increasing for t ≥ s by Lemma A.13
and γb(wt) ≥ γc(wt) by Lemma A.10. By (9), we have

ρt =
− log(2neκLt)

γb(wt)
≤ − log(2neκLt)

γc(wt)
≤ − log(2neκLt)

γc(ws)
.

Combining this with Lemma A.7, we have

vt
ρt

≥ −Lt log(2neκLt)
− log(2neκLt)

γc(ws)

= Ltγ
c(ws).

Plugging this into (16), we have

Lt+1 − Lt ≤ − η̃
2
L2
tγ
c(ws)

2,

which implies

η̃γ(ws)
2

2
≤ Lt − Lt+1

L2
t

≤ Lt − Lt+1

LtLt+1
Since Lt+1 ≤ Lt

=
1

Lt+1
− 1

Lt
, t ≥ s.

Telescoping the sum from s to t, we have

(t− s)
η̃γc(ws)

2

2
≤ 1

Lt
− 1

Ls
≤ 1

Lt
.

Therefore we have
Lt ≤

2

(t− s)η̃γc(ws)2
.

Next we show the lower bound on the risk. By Lemma A.3 we have

Lt+1 − Lt ≥ −η̃(1 + βη̃Lt)∥∇Lt∥2 ≥ −̃3

2
η∥∇Lt∥2.

Observe that under Assumption 1A,

∥∇Lt∥ =

∥∥∥∥ 1n
n∑
i=1

ℓ′(qi(t))yi∇f(wt;xi)

∥∥∥∥ ≤ ρLt.

Then we have
Lt+1 − Lt ≥ −η̃ 3

2
ρ2L2

t , t ≥ s.

Let L̃t := 3η̃ρ2

2 Lt, we have L̃s ≤ 3η̃ρ2

2
1

η̃(4ρ2+2β) ≤ 3
8 ≤ 1

2 . Furthermore, since Lt decreases

monotonically, L̃t ≤ L̃s ≤ 1
2 . The inequality becomes

L̃t+1 − L̃t ≥ −L̃2
t .

Therefore, let c = 1
L̃s

and apply Lemma G.1, we have for any t ≥ s,

L̃t ≥
1

c+ 2(t− s)
.

This is equivalent to

Lt ≥
1

1
Ls

+ 3η̃ρ2(t− s)
.

We have completed the proof.

Furthermore, we can characterize the order of ρt in the stable phase.
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Lemma A.15 (Order of ρt in general model). Suppose Assumption 1 holds. If there is s such that

L(ws) ≤ min

{
1

eκ+22n
,

1

η̃(4ρ2 + 2β)

}
,

then for t ≥ s we have
ρt = Θ(log(t)).

Proof of Lemma A.15. Note that γc(wt) is increasing for t ≥ s by Lemma A.13 and γb(wt) ≥
γc(wt) by Lemma A.10. Therefore,

ρt ≤
− log(2neκLt)

γb(wt)
≤ − log(2neκLt)

γc(wt)
≤ − log(2neκLt)

γc(ws)
.

Combining this with Lemma A.14, we have

ρt ≤
log 1/L(ws)+3η̃ρ2(t−s)

2neκ

γc(ws)
= O(log(η̃t)).

Besides, we have qmin ≥ ι(log 1
L − log n) by Lemma A.9 and qmin ≤ B0ρt by Lemma A.12.

Therefore we have

ρt ≥
ι(log 1

nLt
)

B0
≥

log 1
nLt

2B0
≥

log (t−s)η̃γc(ws)
2

2n

2B0
= Ω(log(t)),

where the second inequality is because for ι(x) defined in (6), ι(x) ≥ x
2 for x ≥ 0.6, and the third

inequality is by Lemma A.14. Combining them, we get

ρt = Θ(log(t)).

This completes the proof.

A.5 Proof of Theorem 2.2

Proof of Theorem 2.2. We prove the items one by one.

• The monotonicity of Lt comes from the result of Lemma A.3 directly.

• Item 1 is due to Lemma A.14 .

• For item 2, the monotonicity of ρt comes from the result of Lemma A.8 and the order is due
to Lemma A.15.

• For item 3, we first know that Lt → 0 by Lemma A.14. Then, by Lemma A.13 and
Lemma A.12, we know that γc(wt) converges. Combining these with Lemma A.9 and
Lemma A.10, we know that γc(wt) is an

(
1 + O

(
1/(log 1

L(wt)

))
-multiplicative approxi-

mation ofγ̄(wt), and γ̄(wt) shares the same limit as γc(wt).

B EoS Phase Analysis

In this section, we focus on the linearly separable case, that is, we work under Assumption 3. We
mainly follow the idea of [Wu et al., 2024] for the proof. In detail, we consider a comparator

u := u1 + u2,

where where

u1 :=

u
(1)
1
...

u
(m)
1

 , with u
(j)
1 := aj

log(γ2ηT ) + κ

αγ
·w∗, j = 1, . . . ,m, (17)
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and

u2 :=

u
(1)
2
...

u
(m)
2

 , with u
(j)
2 := aj

η

2γ
·w∗, j = 1, . . . ,m. (18)

Consider the following decomposition,

∥wt+1 − u∥2 = ∥wt − u∥2 + 2mη⟨∇L(wt),u−wt⟩+m2η2∥∇L(wt)∥2

= ∥wt − u∥2 + 2mη ⟨∇L(wt),u1 −wt⟩︸ ︷︷ ︸
=:I1(wt)

+mη
(
2⟨∇L(wt),u2⟩+mη∥∇L(wt)∥2︸ ︷︷ ︸

=:I2(wt)

)
.

We aim to prove I1(wt) ≤ 1
T − L(wt) and I2(wt) ≤ 0. Then we can get a bound for the average

loss by telescope summing the decomposition. Here we also introduced the following vector w̄∗:

w̄∗ :=

a1w∗
...

anw∗


We can observe that u1 = log(γ2ηT )+κ

αγ w̄∗ and u2 = η
2γ w̄∗.

Lemma B.1 (A bound on I1(w) in the EoS phase). For u1 defined in (17), we have

I1(w) := ⟨∇L(w),u1 −w⟩ ≤ 1

γ2ηT
− L(w).

Proof. Since L is averaged over the individual losses incurred at the data (xi, yi)
n
i=1 and gradient is

a linear operator, it suffices to prove the claim assuming there is only a single data point (x, y). Then
by Assumption 3, we have

⟨yx,w∗⟩ ≥ γ > 0.

Then the loss becomes

L(w) = ℓ(yf(w;x)) = ℓ

(
y
1

m

m∑
j=1

ajϕ(x
⊤w(j))

)
.

Now we expand I1(w):

I1(w) := ⟨∇L(w),u1 −w⟩
= ℓ′

(
yf(w;x)

)
⟨y∇f(w;x),u1 −w⟩

= ℓ′
(
yf(w;x)

) 1
m

m∑
k=1

akyϕ
′(x⊤w(k))x⊤(u

(k)
1 −w(k))

= ℓ′
(
yf(w;x)

)[ 1

m

m∑
k=1

aky
(
ϕ′(x⊤w(k))x⊤u

(k)
1 + ϕ(x⊤w(k))− ϕ′(x⊤w(k))x⊤w(k)

)
︸ ︷︷ ︸

=:J1

− 1

m

m∑
k=1

akyϕ(x
⊤w(k))︸ ︷︷ ︸

=:J2

]
. (19)

By definition we have J2 = yf(w;x).As for J1, using ϕ′ ≥ α and akyx⊤u
(k)
1 ≥ 0 by Assumption 3,

we have

J1 :=
1

m

m∑
k=1

aky
(
ϕ′(x⊤w(k))x⊤u

(k)
1 + ϕ(x⊤w(k))− ϕ′(x⊤w(k))x⊤w(k)

)
≥ 1

m

m∑
k=1

akαyx
⊤u

(k)
1 +

1

m

m∑
k=1

aky
(
ϕ(x⊤w(k))− ϕ′(x⊤w(k))x⊤w(k)

)
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≥ 1

m

m∑
k=1

a2kα
log(γ2ηT ) + κ

αγ
yx⊤w∗ −

1

m

m∑
k=1

|ak|κ

since |ϕ(x⊤w(k))− ϕ′(x⊤w(k))x⊤w(k)| ≤ κ by Assumption 2C

≥ log(γ2ηT ) + κ− κ

since yx⊤w∗ ≥ γ and
m∑
k=1

a2k = m

= log(γ2ηT ). (20)

Plugging in J2 = yf(w;x) and (20) into (19), we get

I1(w) = ⟨∇L(w),u1 −w⟩ = ℓ′
(
yf(w;x)

)
(J1 − J2)

≤ ℓ′
(
yf(w;x)

)[
log(γ2ηT )− yf(w;x)

]
since ℓ′ < 0

≤ ℓ(log(γ2ηT ))− ℓ(yf(w;x)) since ℓ is convex

≤ 1

γ2ηT
− L(w).

where in the last inequality, we use ℓ(x) ≤ exp(−x) and we only consider a single data point. This
completes the proof.

Lemma B.2 (A bound on I2(w) in EoS). For u2 defined in (18), for every w,

I2(w) := 2⟨∇L(w),u2⟩+mη∥∇L(w)∥2 ≤ 0.

Proof. For simplicity, we define

gi(w
(j)) := ℓ′(yif(w;xi))ϕ

′(x⊤
i w

(j)).

Note that −1 ≤ ℓ′(·) ≤ 0 and 0 < α ≤ ϕ′(·) ≤ 1, we have

−1 ≤ gi(w
(j)) ≤ 0.

Under this notation, we have

∂L(w)

∂wi
=

1

n

n∑
i=1

ℓ′
(
yif(w;xi)

)
yiajm

−1ϕ′
(
x⊤
i w

(j)
)
xi

=
1

n

n∑
i=1

gi
(
w(j)

)
ajm

−1yixi.

So we have

I2(w) := 2⟨∇L(w),u2⟩+mη∥∇L(w)∥2

=
1

m

m∑
j=1

[
2

n

n∑
i=1

gi(w
(j))ajyi · x⊤

i u
(j)
2 + η

∥∥∥∥ 1n
n∑
i=1

gi(w
(j))ajyixi

∥∥∥∥2
]
.

For the term inside the bracket, we have

2

n

n∑
i=1

gi(w
(j))ajyi · x⊤

i u
(j)
2 + η

∥∥∥∥ 1n
n∑
i=1

gi(w
(j))ajyixi

∥∥∥∥2
=
2

n

n∑
i=1

gi(w
(j))ajyi · x⊤

i

η

2γ
ajw∗ + η

∥∥∥∥ 1n
n∑
i=1

gi(w
(j))ajyixi

∥∥∥∥2 since u
(j)
2 :=

ηaj
2γ

w∗ by (18)

≤ 2

n

n∑
i=1

gi(w
(j))a2j

η

2γ
γ + η

∥∥∥∥ 1n
n∑
i=1

gi(w
(j))ajyixi

∥∥∥∥2 since gi(·) ≤ 0 and yix⊤i w∗ ≥ γ

=η

(
1

n

n∑
i=1

gi(w
(j)) +

∥∥∥∥ 1n
n∑
i=1

gi(w
(j))yixi

∥∥∥∥2) since a2j = 1
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≤η
(
1

n

n∑
i=1

gi(w
(j)) +

1

n

n∑
i=1

g2i (w
(j))

)
since |gi(·)| ≤ 1 and ∥yx∥ ≤ 1

≤0. since −1 ≤ gi(·) ≤ 0

Hence, we prove that I2(w) ≤ 0.

Theorem B.3 (A split optimization bound). For every η > 0 and u = u1 + u2 such that

u1 :=

u
(1)
1
...

u
(m)
1

 , with u
(j)
1 := aj

log(γ2ηt) + κ

αγ
·w∗, j = 1, . . . ,m,

and

u2 :=

u
(1)
2
...

u
(m)
2

 , with u
(j)
2 := aj

η

2γ
·w∗, j = 1, . . . ,m.

we have:

∥wT − u∥2

2mηT
+

1

T

T−1∑
k=0

L
(
w(k)

)
≤ 1 + 8 log2(γ2ηT )/α2 + 8κ2/α2 + η2

γ2ηT
+

∥w0∥2

mηT
,

for all T .

Proof. By Lemma B.1 and Lemma B.2, we have

∥wt+1 − u∥2 = ∥wt − u∥2 + 2mηI1(wt) + ηmI2(wt)

≤ ∥wt − u∥2 + 2mηI1(wt)

≤ ∥wt − u∥2 + 2mη

(
1

γ2ηT
− L(wt)

)
.

Telescoping the sum, we get

∥wT − u∥2

2mη
+

T−1∑
t=0

L(wt) ≤ 1 +
∥w0 − u∥2

2mη
.

By (17)and (18), we have

∥w0 − u∥2 ≤ 2∥w0∥2 + 2∥u∥2

≤ 2∥w0∥22 + 4∥u1∥2 + 4∥u2∥2

= 2∥w0∥22 +
8m log(γ2ηT )2 + 8mκ2

α2γ2
+
mη2

γ2
,

which implies that

∥wT − u∥2

2mηt
+

1

T

T−1∑
k=0

L
(
w(k)

)
≤ 1 + 8 log2(γ2ηT )/α2 + 8κ2/α2 + η2

γ2ηT
+

∥w0∥2

mηT
.

We complete the proof.

B.1 Proof of Theorem 3.2

Proof of Theorem 3.2. By Theorem B.3, we have

1

T

T−1∑
k=0

L
(
w(k)

)
≤ 1 + 8 log2(γ2ηT )/α2 + 8κ2/α2 + η2

γ2ηT
+

∥w0∥2

mηT
.

This completes the proof.

28

71333https://doi.org/10.52202/079017-2278



C Phase Transition Analysis

In this section, we will analyze the phase transition. In detail, we follow the idea of [Wu et al., 2024]
and apply the perceptron argument [Novikoff, 1962] to locate the phase transition time. Compare to
the previous EoS phase analysis, we need an extra assumption on the smoothness of the activation
function, which is the Assumption 2B.

To proceed, let us define the following quantities for the GD process:

G(w) :=
1

n

n∑
i=1

1

1 + exp
(
yif(w;xi)

) , F (w) :=
1

n

n∑
i=1

exp
(
− yif(w;xi)

)
.

Due to the self-boundedness of the logistic function, we can show that G(w), L(w), F (w) are
equivalent in the following sense.
Lemma C.1 (Equivalence of G,L, F ).

1. G(w) ≤ L(w) ≤ F (w).

2. αγG(w) ≤
√
m∥∇L(w)∥ ≤ G(w).

3. If G(w) ≤ 1
2n , then F (w) ≤ 2G(w).

Proof. The first claim is by the property of the logistic loss. For the second one,

∥∇L(w)∥2 =

m∑
j=1

∥∥∥∥∥ 1n
n∑
i=1

ℓ′(yif(w;xi)) · yi · ajm−1ϕ(x⊤
i w

(j))xi

∥∥∥∥∥
2

2

≤
m∑
j=1

(
1

n

n∑
i=1

ℓ′(yif(w;xi)) ·m−1

)2

since ∥yiajϕ(x⊤
i w

(j))xi∥ ≤ 1

=
1

m
G2(w).

Besides, we have
√
m∥∇L(w)∥ ≥ ⟨−∇L(w), w̄∗⟩ since ∥w̄∗∥ ≤

√
m

= − 1

nm

n∑
i=1

m∑
j=1

ℓ′(yif(w;xi))yiϕ
′(x⊤

i w∗)x
⊤
i w∗

≥ αγ
1

n

n∑
i=1

1

1 + exp
(
yif(w;xi)

) since ϕ′ ≥ α and yix⊤
i w

∗ ≥ γ

= αγG(w).

For the third claim, by the assumption, we have

1

n
· 1

1 + exp
(
yif(w;xi)

) ≤ G(w) ≤ 1

2n
,

which implies that
yif(w;xi) ≥ 0, ∀i ∈ [n].

Therefore,

G(w) =
1

n

n∑
i=1

1

1 + exp
(
yif(w;xi)

) ≥ 1

n

n∑
i=1

1

2 exp
(
yif(w;xi)

) =
1

2
F (w).

We complete the proof.

The key ingredient of the phase transition analysis is the following lemma. The main idea is to
consider the gradient potential G(w) instead of the loss function L(w) in EoS phase. And this will
decrease the order of the bound of phase transition time from Õ(η2) to Õ(η).
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Lemma C.2 (A bound of ∥wt∥). For every η, we have

∥wt∥ ≤
√
m · 2 + 8 log(γ2ηt)/α+ 8κ/α+ 4η

γ
+ 2∥w0∥.

Proof of Lemma C.2. By Theorem B.3, we have

∥wt − u∥2

2mηt
≤ ∥wt − u∥2

2mηt
+

1

t

t−1∑
k=0

L
(
w(k)

)
≤ 1 + 8 log2(γ2ηt)/α2 + 8κ2/α2 + η2

γ2ηt
+

∥w0∥2

mηt
.

Besides, we know that

∥u∥2 ≤ 2∥u1∥2 + 2∥u2∥2 =
4m log(γ2ηt)2 + 4mκ2

α2γ2
+
mη2

2γ2
.

Combining them, we have

∥wt∥2 ≤ 2∥wt − u∥2 + 2∥u∥2 ≤ m · 2 + 24 log2(γ2ηt)/α2 + 24κ2/α2 + 3η2

γ2
+ 2∥w0∥2.

Hence, we can get a bound for ∥wt∥.

∥wt∥ ≤
√
m · 2 + 8 log(γ2ηt)/α+ 8κ/α+ 4η

γ
+ 2∥w0∥.

Lemma C.3 (Gradient potential bound in the EoS phase). For every η, we have

1

t

t−1∑
k=0

G(w(k)) ≤ ⟨wt, w̄∗⟩ − ⟨w0, w̄∗⟩
mαγηt

≤
√
m∥wt∥ − ⟨w0, w̄∗⟩

mαγηt
, t ≥ 1.

Additionally, we have

1

t

t−1∑
k=0

G(w(k)) ≤
2 + 8 log

(
γ2ηt

)
/α+ 8κ/α+ 4η

αγ2ηt
+

3∥w0∥
αγηt

, t ≥ 1.

This

Proof. This is from the perceptron argument [Novikoff, 1962]. Specifically,

⟨wt+1, w̄∗⟩ = ⟨wt, w̄∗⟩ −mη⟨∇L(wt), w̄∗⟩

= ⟨wt, w̄∗⟩ − η

n∑
i=1

m∑
k=1

a2kℓ
′(yif(wt;xi))yiϕ(x

⊤
i w

(k)
t )⟨xi,w∗⟩

≥ ⟨wt, w̄∗⟩ − η

n∑
i=1

m∑
k=1

a2kℓ
′(yif(wt;xi))αγ

≥ ⟨wt, w̄∗⟩+mαγηG(wt).

Telescoping the sum, we have

1

t

t−1∑
k=0

G(w(k)) ≤ ⟨wt, w̄∗⟩ − ⟨w0, w̄∗⟩
mαγηt

≤
√
m∥wt∥ − ⟨w0, w̄∗⟩

mαγηt

≤
2 + 8 log

(
γ2ηt

)
/α+ 8κ/α+ 4η

αγ2ηt
+

3∥w0∥√
mαγηt

. by Lemma C.2

We have completed the proof.
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Besides, we can make use of the equivalence between G and L to get a bound for the loss function
which is independent of the initial margin at s.
Lemma C.4 (A risk bound in the stable phase for Two-layer NN). Suppose that there exists a time s
such that

L(ws) ≤ min

{
1

η(4 + 2β̃)
,

1

2eκ+2n

}
.

Then for every t ≥ s+ 1, we have

L(wt) ≤
2

(t− s)α2γ2
.

Proof. By Lemma A.3 and f(x) is 1√
m

Lipschitz and β̃
m smooth, we have

Lk+1 ≤ Lk −mη(1− (2 + β̃)ηL(wk))∥∇Lt∥2.

By Lemma C.1 and Lt ≤ 1
η(4+2β̃)

, we have

Lk+1 ≤ Lk −
α2γ2

2
L2
k.

Multiplying 1
L2

k
in both sides, we have

α2γ2

2
≤ Lt − Lk+1

L2
k

≤ 1

Lk+1
− 1

Lk
.

Taking summation for k = s, . . . , t− 1, we have

1

Lt
>

1

Lt
− 1

Ls
≥ (t− s)α2γ2

2
=⇒ Lt ≤

2

(t− s)α2γ2
.

At last, we will use the bound for the gradient potential to get an upper bound for the phase transition
time.

C.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Applying Lemma C.3, we have

1

τ

τ−1∑
k=0

G(w(k)) ≤
2 + 8 log

(
γ2ητ

)
/α+ 8κ/α+ 4η

αγ2ητ
+

3∥w0∥√
mαγητ

≤ 2 + 8κ/α+ 8 log(γ2τ)/α+ (4 + 8/α)η

αγ2ητ
+

3∥w0∥√
mαγητ

since log(η) ≤ η,

Let c1 = 4eκ+2, c2 = (8 + 4β̃). Note that we have

2 + 8κ/α

αγ2ητ
≤ 1

4(c1n+ c2η)
if γ2τ ≥ 4(2 + 8κ)

c2η + c1n

ηα2

8 log(γ2τ)/α

αγ2ητ
≤ 1

4(c1n+ c2η)
if γ2τ ≥ 128

c2η + c1n

ηα2
log

c2η + c1n

η
, since Lemma G.5

(4 + 8/α)η

αγ2ητ
≤ 1

4(c1n+ c2η)
if γ2τ ≥ 48

α2
(c2η + c1n),

3∥w0∥
mαγητ

≤ 1

4(c1n+ c2η)
if γτ ≥ 12

α

(c2η + c1n)

η
· ∥w0∥√

m

and that the two conditions are satisfied because

γ2τ :=
128(1 + 4κ)

α2
max

{
c2η, c1n, e,

c2η + c1n

η
log

c2η + c1n

η
,
(c2η + c1n)∥w0∥

η
√
m

}
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≥ max

{
4(2 + 8κ)

c2η + c1n

ηα2
, 128

c2η + c1n

ηα2
log

c2η + c1n

η
,
48

α2
(c2η + c1n),

12

α

(c2η + c1n)

η
· ∥w0∥√

m

}
.

So there exits s ≤ τ such that

G(ws) ≤ min

{
1

eκ+24n
,

1

η(8 + 4β̃)

}
Then we have L(ws) ≤ F (ws) ≤ 2G(ws) ≤

{
1

eκ+22n ,
1

η(4+2β̃)

}
. We complete the proof.

C.2 Proof of Corollary 4.2

Proof of Corollary 4.2. The main idea is to show that τ ≤ T
2 . Note that by Theorem 4.1, we have

τ =
128(1 + 4κ)

α2
max

{
c2η, c1n, e,

c2η + c1n

η
log

c2η + c1n

η
,
(c2η + c1n)

η
· ∥w0∥√

m

}
,

in which expression c1 = 4eκ+2 and c2 = (8 + 4β̃). We can verify that,

128(1 + 4κ)

α2
c2η =

128(1 + 4κ)

α2
c2 ·

α2γ2

256(1 + 4κ)c2
T =

T

2
,

128(1 + 4κ)c1n

α2
≤ T

2
.

Furthermore, we have n ≤ α2γ2T
256(1+4κ)c1

. Hence,

c2η + c1n

η
=

α2γ2T
256(1+4κ) + c1n

α2γ2T
256(1+4κ)c2

≤
2 · α2γ2T

256(1+4κ)

α2γ2T
256(1+4κ)c2

≤ 2c2.

We get that:

128(1 + 4κ)

α2
· c2η + c1n

η
log

c2η + c1n

η
≤ 2

128(1 + 4κ)

α2
c2 ln(2c2) ≤

128(1 + 4κ)

α2
4c22 ≤ T

2
,

128(1 + 4κ)

α2
· (c2η + c1n)

η
· ∥w0∥√

m
≤ 128(1 + 4κ)

α2
· 2c2

∥w0∥√
m

≤ T

2
.

Hence, we have τ ≤ T
2 . Applying Theorem 4.1, we have

L(wT ) ≤
2

α2γ2η(T − τ)
≤ 4

α2γ2ηT
≤ 2048(1 + 4κ)c2

α4γ4T 2
= O(1/T 2).

We have completed the proof.

C.3 Proof of Theorem 4.3

Proof of Theorem 4.3. The main idea is to construct an upper bound of η and apply the analysis in
Theorem 2.2. Note that give w0 = 0, we have

f(w0;xi) =
1

m

m∑
k=1

akϕ(x
⊤
i w

(k)
0 ) = saϕ(0),

where sa =
∑m
k=1 ak/m. Therefore,

[∇L(w0)]
(k) =

1

2
ℓ′(saϕ(0)) ·

ak
m
ϕ′(0)x1 +

1

2
ℓ′(saϕ(0)) ·

ak
m
ϕ′(0)x2

=
ak
m
ℓ′(saϕ(0))ϕ

′(0)
x1 + x2

2

=
ak
m
ℓ′(saϕ(0))ϕ

′(0)(γ,

√
1− γ2

4
).
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Let x̄ := 1
mℓ

′(saϕ(0))ϕ
′(0)(γ,

√
1−γ2

4 ), we have

w
(k)
1 = 0− η∇[L(w0)]

(k) = −ηakx̄.
Therefore,

f(w1;xi) =
1

m

m∑
k=1

akϕ(−x⊤
i (ηakx̄)).

We can notice that −x⊤
1 x̄ < 0 and −x⊤

2 x̄ > 0, when γ ≤ 0.1. Furthermore, we have

f(w1;x1) =
1

m

∑
ak=1

ϕ(−x⊤
1 (ηx̄)) +

1

m

∑
ak=−1

−ϕ(x⊤
1 (ηx̄))

=
1

m

∑
ak=1

[ϕ(0)− x⊤
1 (ηx̄)ϕ

′(ϵ1)] +
1

m

∑
ak=−1

[−ϕ(0)− x⊤
1 (ηx̄)ϕ

′(ϵ2)]

= saϕ(0)− ηx⊤
1 x̄

1

m
[
∑
ak=1

ϕ′(ϵ1) +
∑

ak=−1

ϕ′(ϵ2)]

≤ saϕ(0)− ηx⊤
1 x̄α ϕ′(ϵi) ≥ α.

Note that
1

2
ℓ(saϕ(0)− ηx⊤

1 x̄α) ≤
1

2
ℓ(f(w1;x1)) ≤ L(w1) ≤ L(w0) = ℓ(saϕ(0)).

We apply Lemma G.7 to get

η ≤ |saϕ(0)|+ ln 3

x⊤
1 x̄α

.

We use c3 := |saϕ(0)|+ln 3

x⊤
1 x̄α

. Now we know η ≤ c3. Furthermore, notice that

∥∇L(wt)∥ ≤ Lt ≤ L0.

We get that ∥wt+1 −wt∥ ≤ ηL0 ≤ c3L0. Hence,

|f(wt+1;xi)− f(wt;xi)| ≤ c3L0.

Assume that lb = min
{

1
eκ+24n ,

1

η(8+4β̃)

}
and

Ls−1 ≥ lb, Ls ≤ lb.

We know that

lb ≥ min

{
1

eκ+24n
,

1

c3(8 + 4β̃)

}
=: lc.

We want to show that there is an lower bound for Ls. Now that

Ls =
1

2

[
ℓ(f(ws;x1)) + ℓ(f(ws;x2))

]
.

Applying Lemma G.6, we can get that

Ls ≥ exp(−c3L0)Ls−1 ≥ exp(−c3L0)lb.

Recall that by Lemma A.14, we have

Lt ≥
1

1
Ls

+ 3η̃ρ2(t− s)
, t ≥ s.

Combine this with ρ = 1√
m
, η̃ = ηm and Ls ≥ exp(−c3L0)lb and we get

Lt ≥
1

exp(c3L0)
lb

+ 3η(t− s)
, t ≥ s.

Note that when t ≤ s, Lt ≥ lb. We can get a lower bound for Lt by

Lt ≥
1

exp(c3L0)
lb

t+ 3ηt
≥ 1

exp(c3L0)
lb

t+ 3c3t
≥ 1

exp(c3L0)
lc

t+ 3c3t
=
c4
t
,

where c4 = 1
exp(c3L0)

lc
+3c3

depends only on {aj}mj=1, ϕ(0), κ, β̃ and n.
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D Scaling and Homogenous Error

In this section, we consider different scaling of two-layer networks. We add a scaling factor b into the
model, i.e.,

f(w;x) =
b

m

m∑
j=1

ajϕ(x
⊤w(j)).

We will show that given a limited computation budget T (total iterations), larger b and a corresponding
best η̃ = η ·m will achieve the same best rate as b = 1, i.e., O(1/T 2). While for smaller b, the rate
is O(b−3/T 2). Before we present the analysis, here are the bounds with b and η̃ = m · η following
the process of Lemma C.3:

1

t

t−1∑
k=0

L(wk) ≤
1 + 8 log2(γ2ηt)/(α2b2) + 8κ2/α2 + η2b2

γ2ηt
+

∥w0∥2

mηt
,

1

t

t−1∑
k=0

G(wk) ≤
2 + 8 log(γ2ηt)/(αb) + 8κ/α+ 2ηb

αγ2bηt
+

3∥w0∥√
mηbt

.

Case when b ≥ 1. Given the previous bounds, we have the following results following the idea in
Appendix C:

• Gradient potential bound: G(wt) ≤ C
t for all t ≥ 0,

• Phase transition threshold: G(ws) ≤ min
{
1/4eκ+2n, 1/η(8ρ2b2 + 4β̃b)

}
,

• Stable phase bound: L(wt) ≤ 2
Cb2η(t−s) ,

where C depends on α, γ. Combine the first two arguments and assume η(8ρ2b2 + 4β̃b) ≥ 4eκ+2n.
We get s ≤ Cη(8ρ2b2 + 4β̃b). Plug this into the third bound. We have

L(wT ) ≤
2

Cb2η(T − Cη(8ρ2b2 + 4β̃b))
.

It’s obvious that the best η = T
16ρ2b2C+8β̃bC

. Hence,

L(wT ) ≤
8(8ρ2b2C + 4β̃bC)

Cb2T 2
= O

(
1

T 2

)
.

Then, the rate is still O(1/T 2).

Case when b < 1. Similarly, we can get the following bounds:

• Gradient potential bound: G(wt) ≤ Cb−2

t for all t ≥ 0,

• Phase transition threshold: G(ws) ≤ min
{
1/4eκ+2n, 1/η(8ρ2b2 + 4β̃b)

}
,

• Stable phase bound: L(wt) ≤ 2
Cb2η(t−s) ,

where C depends on α, γ. Without loss of generality, we can assume η(8ρ2b2 + 4β̃b) ≥ 4eκ+2n,
since η can be small enough. Then, we have

s ≤ Cη(8ρ2 + 4β̃b−1).

Then, we can get

L(wT ) ≤
2

Cb2η(T − Cη(8ρ2 + 4β̃b−1))
.

It’s obvious that the best η = T
16ρ2C+8β̃b−1C

. Hence,

L(wT ) ≤
8(8ρ2Cb−2 + 4β̃b−3C)

CT 2
= O

(
b−3

T 2

)
.
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Combining the analysis for two cases, we observe that when b ≥ 1, the fast loss rate is O(1/T 2)
given finite budget T . While b < 1, the rate is O(b−3/T 2). In our main results, we set b = 1 for
the mean-field scaling. Under the mean-field regime, all bounds are independent of the number of
neurons since we consider the dynamics of the distributions of neurons. Alternatively, if we set
b =

√
m, then the model becomes:

f(w;x) =
1√
m

m∑
j=1

ajϕ(x
⊤w(j)).

The model falls into the NTK regime. The loss threshold will be related to m, but the loss rate is the
same as that of the mean-field scaling.

E Extra Experiments

Here we provide additional experiments to support our theoretical results. In Figure 3, we show
the test accuracy of two-layer networks for CIFAR-10 under the same setting of Figure 2. We can
observe that large stepsizes lead to stronger implicit biases with “nicer” features.

In Figure 4, we show the training loss and margins of a two-layer network with leaky softplus
activations on a synthetic linear separable dataset. We can observe that both neurons have negative
margins during the training, while the network’s margin increases and becomes positive. This
indicates that even the two-layer networks can have complicated dynamics. It remains an open
question to understand each neuron’s dynamics in deep networks.

Figure 3: Test accuracy of two-layer networks for CIFAR-10 under the same setting of Figure
2(d)-(f).The results support our intuition that large stepsizes lead to stronger implicit biases with
“nicer“ features.

F Additional Proofs

F.1 Proof of Example 2.1

Proof of Example 2.1. Recall that the two-layer neural network is defined as:

f(w;x) =
1

m

m∑
j=1

ajϕ(x
Tw(j)).

We can verify that if ϕ(x) is β-smooth and ρ-Lipschitz with respect to x, then f(w;x) is β/m-smooth
and ρ/

√
m-Lipschitz with respect to w. This is because:

∇L(w) = Êℓ′(yf(w;x))y∇f(w;x),
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(a) Training loss, synthetic dataset. (b) Normalized Margins, synthetic dataset.

Figure 4: Training loss and margins of a two-layer network with leaky softplus activa-
tions on a synthetic linear separable dataset. There are five samples in the dataset, which
are ((0.05, 1, 2), 1), ((0.05,−2, 1), 1), ((−1, 0, 2),−1), ((0.05,−2,−2), 1), ((0.05, 1,−2), 1). The
max margin direction is (1, 0, 0) with a normalized margin of 0.05. The network only has two neurons
with fixed weights 1/2 and −1/2. The leaky softplus activation is ϕ̃(x) = (x+ ϕ(x))/2, where ϕ is
the softplus activation. The stepsize is 3. We can observe that both neurons have negative margins
during the training, while the network’s margin increases and becomes positive.

∇2L(w) = Êℓ′′(yf(w;x))∇f(w;x)⊗2 + ℓ′(yf(w;x))y∇2f(w;x),

and that

∇f(w;x) =


...

1
majϕ

′(x⊤w(j))x
...

 , ∇2f(w;x) =


. . . 0 0
0 1

majϕ
′′(x⊤w(j))xx⊤ 0

0 0
. . .

 .

Now, we will focus on the parameters of each activation function.

• GELU. ϕ(x) = x · erf(1 + (x/
√
2))/2 = x · F (x).

ϕ′(x) = F (x) + x · f(x),
ϕ′′(x) = 2f(x) + x · f ′(x),

where F (x), f(x) are the CDF and PDF of standard normal distribution. Note that xf(x) =
x√
2π
e−x

2/2 and (xf(x))′ = 1√
2π

(1 − x2)e−x
2/2. We can find the maximum of xf(x) is

1√
2π
e−1/2. Besides, we know that F (x), f(x) ≤ 1 and x · f ′(x) ≤ 0. Combining them, we

have ρ = 1 + e−1/2/
√
2π and β = 2. For κ, ϕ− ϕ′(x)x = −x · f(x). So the bound of κ

is e−1/2/
√
2π.

• Softplus. ϕ(x) = log(1 + ex). Therefore,

ϕ′(x) =
ex

1 + ex
≤ 1,

ϕ′′(x) =
ex

(1 + ex)2
≤ 1.

Besides,

(ϕ(x)− ϕ′(x)x)′ =

(
log(1 + ex)− exx

1 + ex

)′

= − exx

(1 + ex)2
.

So the maximum is ϕ(0)−ϕ′(0)0 = log 2. Besides, when x > 1, ϕ(x) ≥ x ≥ exx
1+ex . When

x→ −∞, ϕ(x)− ϕ′(x)x→ 0. Therefore, κ = log 2.
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• Sigmoid. ϕ(x) = 1/(1 + e−x). Hence,

ϕ′(x) =
e−x

(1 + e−x)2
≤ 1,

ϕ′′(x) =
e−2x − e−x

(1 + e−x)3
≤ 1.

As for κ, we know that

|ϕ(x)− ϕ′(x)x| =
∣∣∣∣1 + e−x − xe−x

(1 + e−x)2

∣∣∣∣ ≤ 1 + e−x + |x|e−x

(1 + e−x)2
.

Note that |x|e−x ≤ e−2x + 1. We have

|ϕ(x) ≤ 1 + e−x + e−2x + 1

(1 + e−x)2
≤ 2.

• Tanh. ϕ(x) = ex−e−x

ex+e−x ≤ 1. Note that

ϕ′(x) = 1− ϕ(x)2 ≤ 1

ϕ′′(x) = 2ϕ(x)3 − ϕ(x) ≤ 2.

Besides, we know that

|xϕ′(x)| = 4|x|
(ex + e−x)2

≤ 4.

Hence
|ϕ(x)− ϕ′(x)| ≤ |ϕ(x)|+ |xϕ′(x)| ≤ 5.

• SiLU. Note that

ϕ′(x) =
1 + e−x + xe−x

(1 + e−x)2
,

ϕ′′(x) =
(2− x)e−x

(1 + e−x)2
+

xe−2x

(1 + e−x)3
.

Because |x|e−x ≤ e−2x + 1 and |x|e−2x ≤ e−3x + 1. We get |ϕ′(x)| ≤ 2 and ϕ′′(x)| ≤ 4.
At last,

|ϕ(x)− xϕ′(x)| = |x|e−x

(1 + e−x)2
≤ 1.

• Huberized ReLU. It’s obvious that ϕ′(x) ≤ 1 and β = 1/h. Note that ϕ is not second-order
differentiable. At last,

|ϕ(x)− xϕ′(x)| =


0 x < 0,

x2/2h 0 ≤ x ≤ h,

h/2 x > h.

Hence, it’s upper bounded by h/2.

F.2 Proof of Example 3.1

Proof of Example 3.1. Because for activation functions in Example 2.1, β ≤ 4 and ρ ≤ 2. Hence,
for ϕ̃(x) = cx + (1 − c)ϕ(x)/4, β̃ = 1 and ρ = 1. Besides, since 0.5 < c < 1, we must have
(ϕ̃(x))′ ≥ 0.25.
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G Additional Lemmas

Lemma G.1. If 1
2 ≥ L1 ≥ 1

c and L2 ≥ L1 − L2
1, we have

L2 ≥ 1

c+ 2
.

Proof. For function g(x) = x− x2, g′(x) = 1− 2x. If x ≤ 1
2 , then g(x) is increasing. Then

g(L1) ≥ g(
1

c
) =

c− 1

c2
=
c2 + c− 2

c2(c+ 2)
≥ 1

c+ 2
.

Lemma G.2. Given a continuous function f(x) s.t. |f(x) − ⟨∇f(x), x⟩| ≤ κ, then for a fixed
constant r > 0 there exists Cr,κ and Cr s.t. for any ∥x∥ ≥ r,

|f(x)| ≤ Cr,κ∥x∥,
and for any x,

|f(x)| ≤ Cr,κ∥x∥+ Cr.

Proof. Since f is continuous, let
Cr = max

∥x∥=r
|f(x)|/r.

Now for any ∥x∥ > r, let y = rx
∥x∥ and consider g(s) = f(sy)

s . Then we have

g′(s) =
⟨∇f(sy), sy⟩ − f(sy)

s2
.

Therefore, − κ
s2 ≤ g′(s) ≤ κ

s2 . Let s = ∥x∥/r,

f(x)r

∥x∥
= g(s) = g(1) +

∫ s

1

g′(t)dt

≤ g(1) +

∫ s

1

κ

t2
dt ≤ g(1) + κ

≤ rCr + κ.

Therefore, f(x) ≤ (Cr +
κ
r ) · ∥x∥. Similarly, we can show that −f(x) ≤ (Cr +

κ
r ) · ∥x∥. Therefore,

for any ∥x∥ ≥ r,
|f(x)| ≤ (Cr +

κ

r
) · ∥x∥.

Let D = max∥x∥≤r |f(x)|, we have for any x,

|f(x)| ≤ (Cr +
κ

r
) · ∥x∥+D.

We have completed the proof.

Lemma G.3. Fixing c > 1, then for every 0 < x ≤ 1
c , we have

x ≤ −1

log(cx)
.

Proof of Lemma G.3. This is equivalent to show that

x log(cx) ≥ −1.

Let s(x) = x log(cx), then s′(x) = 1 + log(cx). Hence s(x) is decreasing when 0 < x < 1
ce and is

increasing when x ≥ 1
ce . The minimum of s(x) is achieved at x = 1

ce , which is

s(1/(ce)) = − 1

ce
≥ −1.

This completes the proof.
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Lemma G.4. Given 0 < b ≤ 1
2 and a > 0, we have

1 + a

1− b
≤ (1 + 2a+ 2b).

Proof. This is equivalent to show that

(1 + a) ≤ (1 + 2a+ 2b)(1− b) = 1 + 2a+ b− 2ab− 2b2.

This is equivalent to
2b(a+ b) ≤ (a+ b).

Since a+ b > 0 and b ≤ 1
2 , this is true.

Lemma G.5. Given c > e, we have for any x > 2c log c,

log x

x
≤ 1

c
.

Proof. It’s equivalent to show that x− c log x ≥ 0. Let g(x) = x− c log x. g′(x) = 1− c/x. When
x > 2c log c > 2c, g′(x) < 0. Hence, the minimal is g(2c log c). Note that

g(2c log c) = 2c log c− c log c− c log 2− c log log c = c log c− c log 2− c log log c = c log
c

2 log c
.

Now we want to show that c > 2 log c. Let h(y) = y − 2 log y. h′(y) = 1− 2/y > 0 when y > e.
h(e) = e− 2 > 0. Hence h(c) > h(e) > 0 and g(2c log c) > 0. This leads to g(x) > 0. Then, we
complete the proof.

Lemma G.6. Given ℓ(x) = log(1 + e−x) and c > 0, we have for any x,

ℓ(x+ c) ≥ exp(−c)ℓ(x).

Proof. Let g(x) = ℓ(x+ c)− exp(−c)ℓ(x). Then, we have

g′(x) =
−1

1 + exp(x+ c)
+

1

exp(c) + exp(x+ c)
< 0.

Therefore, g(x) is monotonically decreasing. When x→ ∞, we have

lim
x→∞

g(x) = lim
x→∞

[ℓ(x+ c)− exp(−c)ℓ(x)] = exp(−x− c)− exp(−c) exp(−x) = 0.

Therefore, g(x) ≥ 0 for any x. Now, we complete the proof.

Lemma G.7. Assume ℓ(x) = log(1 + e−x). If ℓ(x+ c) ≤ 2ℓ(x), we have

c ≤ ln 3 + |x|.

Proof. Note that

ℓ(x+ c)− 2ℓ(x) = log
1 + ex+c

1 + 2ex + e2x
≤ 0.

Then,
1 + ex+c

1 + 2ex + e2x
≤ 1 =⇒ ec ≤ 2 + ex ≤ 2 + e|x| ≤ 3e|x|.

Therefore, c ≤ ln 3 + |x|.
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Answer: [Yes]
Justification: The claims are accurate and reflect the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sections 6 and 7, we compare our results with existing works and discuss
the limitations of our approach and future directions.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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assumptions and proofs. We put all the proofs in the Appendix due to space constraints.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
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of the paper (regardless of whether the code and data are provided or not)?
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• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our experiments are easy to reproduce, and we provide all the necessary
information in the paper. We focus on the theoretical analysis in this paper, and the code is
not provided. The dataset CIFAR-10 can be found online.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are provided in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiments are completely deterministic and it’s not necessary to plot er-
ror bars. We provide the convergence plots of different models and show that the convergence
rates are consistent with our theoretical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We focus on the theoretical analysis in this paper, and we only provide some
illustrative experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our research
conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical paper, and we do not discuss societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We only use the CIFAR-10 dataset. It does not have any license restrictions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t introduce any new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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