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Abstract

Digital Twins (DTs) are computational models that simulate the states and temporal
dynamics of real-world systems, playing a crucial role in prediction, understanding,
and decision-making across diverse domains. However, existing approaches to
DTs often struggle to generalize to unseen conditions in data-scarce settings,
a crucial requirement for such models. To address these limitations, our work
begins by establishing the essential desiderata for effective DTs. Hybrid Digital
Twins (HDTwins) represent a promising approach to address these requirements,
modeling systems using a composition of both mechanistic and neural components.
This hybrid architecture simultaneously leverages (partial) domain knowledge and
neural network expressiveness to enhance generalization, with its modular design
facilitating improved evolvability. While existing hybrid models rely on expert-
specified architectures with only parameters optimized on data, automatically
specifying and optimizing HDTwins remains intractable due to the complex search
space and the need for flexible integration of domain priors. To overcome this
complexity, we propose an evolutionary algorithm (HDTwinGen) that employs
Large Language Models (LLMs) to autonomously propose, evaluate, and optimize
HDTwins.” Specifically, LLMs iteratively generate novel model specifications,
while offline tools are employed to optimize emitted parameters. Correspondingly,
proposed models are evaluated and evolved based on targeted feedback, enabling
the discovery of increasingly effective hybrid models. Our empirical results reveal
that HDTwinGen produces generalizable, sample-efficient, and evolvable models,
significantly advancing DTs’ efficacy in real-world applications.

1 Introduction

Digital Twins (DTs) are computational models that accurately simulate the states and temporal
dynamics of real-world systems [1, 2]. They are particularly useful in modeling dynamical systems,
which consist of multiple interdependent components that evolve over time [3, 4]. Take, for example,
the epidemiological dynamics of a contagious disease containing various components, including
infection rates, recovery rates, population movement, and intervention strategies. DTs can integrate
these factors to simulate future outcomes (e.g. predict disease spread), understand system changes
(e.g. examining shifts in disease dynamics for varying demographics), and evaluate the impact of
control measures (e.g. to curb disease transmission) [5, 6].

Desiderata. A notable differentiator between DTs and general machine learning (ML) models
is the emphasis on generalization. DTs are designed to simulate completely unseen scenarios or
interventions at inference time. Therefore, a crucial consideration is » [P1] out-of-distribution
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generalization: the ability to generalize to state-action distributions beyond those observed during
training. This challenge is often compounded by the scarcity of observational data available to accu-
rately learn dynamics, highlighting the importance of » [P2] sample-efficient learning. Additionally,
the model should be » [P3] evolvable: capable of efficiently adapting (i.e. with minimal retraining)
to changes in the underlying system dynamics. This is particularly crucial in healthcare domains,
such as epidemiological modeling and treatment planning, where DTs are regularly updated to
reflect fundamental changes in disease transmission patterns (caused by viral mutations, vaccination
coverage) or evolving drug resistance mechanisms, often with minimal additional data of emergent
dynamics [6, 7].

Existing approaches for creating DTs primarily utilize two approaches: mechanistic models or ML-
based neural models. Mechanistic models, denoted as fiech, are closed-form equations grounded
in domain knowledge such as biological or physical principles. They offer high accuracy and
generalization given sufficient domain understanding but are limited in their ability to model systems
where scientific knowledge is incomplete [8, 9]. Of related note, techniques have been introduced
to discover governing equations directly from data, but face challenges in scaling to more complex
problem settings [10, 11]. Conversely, neural approaches, fneural, leverage neural networks (NN) to
learn DTs directly from data, often requiring minimal knowledge [12, 13, 14, 15]. Such models are
effective given sufficient training data that provides adequate coverage of state-action distributions,
but struggle in data-scarce settings and are difficult to evolve to reflect changing conditions due to
their overparameterized, monolithic nature.

Key considerations. Informed by this context, Hybrid Digtal Tiwins (HDTwins) combine the strengths
of both approaches through compositions of neural and mechanistic components, i.e. f = fiech ©
Sreural- Here, fuecn symbolically incorporates domain-grounded priors, improving generalization and
regularization while simplifying the complexity of patterns that have to be learned by the neural
component. In other terms, fpeura complements the mechanistic component by modeling complex
temporal patterns in regions where the mechanistic model might be oversimplified or incomplete.
Consequently, HDTwins can more accurately and robustly capture system dynamics, particularly in
settings with (limited) empirical data and (partial) domain knowledge.

Conceptually, hybrid modeling involves two stages: model specification, determining the model
structure (e.g. neural architecture, symbolic equations), and model parameterization, estimating
model parameters (e.g. neural weights, coefficients). This process, with model specification in
particular, has traditionally relied heavily on human expertise to craft problem-specific models
[16, 17, 18, 19]. In this work, we investigate the feasibility of automatically designing hybrid models
with minimal expert involvement, which would significantly enhance the efficiency and scalability
of model development. This task is challenging, as it requires searching for optimal specification
and corresponding parameters within a vast combinatorial model space [20, 21]. To address this, we
introduce HDTwinGen, a novel evolutionary framework that autonomously and efficiently designs
HDTwins. At a high level, our method represents hybrid model specifications in code and leverages
large language models (LLMs) for their domain knowledge, contextual understanding, and learning
capabilities to propose symbolically represented models and search the model space [22, 23, 24].
This is coupled with offline optimization tools to empirically estimate model parameters from training
data. More specifically, HDTwinGen utilizes two LLM agents: the modeling agent, whose task is
to generate novel model specifications, and the evaluation agent, which analyzes performance and
provides targeted recommendations for improvement. Through multiple iterations, HDTwinGen
efficiently evolves better performing hybrid models with informed modifications.

Contributions: (D Conceptually, we present the first work in automated hybrid model design, jointly
optimizing model specification and parameterization of hybrid digital twins. @ Technically, we
introduce HDTwinGen, a novel evolutionary framework employing LL.Ms and offline optimization
tools to propose, evaluate, and iteratively enhance hybrid models. (® Empirically, we demonstrate
that our method learns more accurate DTs, achieving » better out-of-distribution generalization, »
sample-efficient learning, and » increased flexibility for modular evolvability.

2 Digital Twins of Dynamical Systems

A dynamical system S = (X, U, ®) is a tuple of its d-dimensional state space X C R¥, an
(optional) dy,-dimensional action space / C R%, and a dynamics model ®. The state at time
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t € T C Ry is represented as a vector, z(t) € X and similarly the action taken is represented as
a vector u(t) € U. The continuous-time dynamics of the system can be described by dz(t)/dt =
O(z(t),u(t),t), where @ : X x U x T — X. We optionally consider the existence of some policy
7w : X — P(U) that acts on the system by mapping a state x(t) to a distribution over actions u(t).

Digital Twins. Digital twins (DTs) aim to approximate ® : X' x U x T — X’ using a computational
model fy ., p) € F learned from data. Here, we use 6 € © to denote the specification of the model
(e.g. linear) and w(#) € ©(0) to indicate the set of parameters specified by 6. Additionally, F, O,
and (0) are the spaces of all possible models, specifications, and parameters, respectively. Next, we
outline the key desiderata for a DT:

[P1] Generalization to unseen state-action distributions. As DTs are required to simulate vary-
ing conditions, they should extrapolate to state-action distributions not observed during training
time. Formally, the generalization error E () u(t),y(t))~poon L fo.we) (2(t), u(t)), y(t))] should
be minimized, where L is some loss function, and poop represents the out-of-distribution scenario.
[P2] Sample-efficient learning. Given the often limited availability of real-world data, DTs should
learn robustly from minimal empirical data. In other words, they must have good sample complexity,
achieving the desired level of generalization with a limited number of observations [25].

[P3] Evolvability. Dynamical systems are, by nature, non-stationary and evolve over time [26, 27].
From a modeling perspective, the DT should be easily evolved to reflect changing underlying
dynamics, minimizing the need for additional data or expensive model re-development, i.e. # and
w(0) should be easily adjustable to reflect changing system dynamics.

For the purpose of model learning, we assume access to an offline dataset containing N € NV trajec-

tories, where the measurements of the systems are made at discrete time points [T'] = [¢1, o, ... T).
This dataset, D = {{(z™ (t),u™(t),y™(t)) | t € [T]}}_,, contains state-action trajectories

n=1»
sampled regularly over time, where y(™ (t) = (") (t 4+ At) represents the subsequent state.

3 Hybrid Digital Twins

HDTwin. A Hybrid Digital Twin is a composition of mechanistic and neural components, represented
as f97w(9) = fimech © fneural [18, 28]. This class of hybrid models offers several advantages that align
with our desiderata. The mechanistic component allows partial knowledge to be encoded through
its symbolic form, which, while not sufficient alone to accurately predict underlying dynamics, is
complemented by the neural components that learn from available data. This combination aids
in generalization ([P1]), especially moving beyond conditions observed in training, and improves
sample complexity ([P2]). Furthermore, the mechanistic component can be quickly and easily
updated with new parameters due to its simpler, lower-dimensional structure, allowing the overall
model to adapt efficiently to remain accurate in changing conditions ([P3]). In this work, we focus
on additive compositions, f, 0,w(0) = Smech + foeural> as they are more interpretable. Additionally, it
enables individual contributions of mechanistic and neural components to be easily disentangled and
simplifies the optimization to allow gradient-based methods [16]. Nonetheless, we encourage future
works to investigate alternative composition strategies (e.g. branching composition) to develop more
advanced HDTwins [29].

Learning the hybrid model can be decomposed into two steps: (1) model specification, or learning the
structure, § € O, of the dynamics function that describes how the system evolves over time; and (2)
model parameterization, which estimates the specific values of parameters w(¢) € €2(6) for a given
specification 6. For instance, the logistic-growth model specifies a structure for population growth,
while parameterization involves estimating the growth rate and carrying capacity.” More generally,
this learning problem can be mathematically formulated as a bilevel optimization problem:

0" = argmin Loyer(0, w*(0)), where w*(0) = argmin Lipner(0,w(d)) (1
0co we(d)

Here, the upper-level problem involves finding the optimal specification §* that minimizes the outer
objective Loyer, while the lower-level problem involves finding the optimal parameters w* () for a
given specification ¢ that minimizes the inner objective function L;,,e,. To be more concrete, the

3This model relates population size N, growth rate r, and carrying capacity K, ®N/o: = rN (1 — N/x) [30].
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Figure 1: HDTwinGen: evolutionary framework. The process begins with user-provided modeling
context S and D = {Dyin, Dvar}- 1) In iteration g, the modeling agent generates model
specification as a Python program fy (4. 2) Parameters are optimized using the offline optimization
tool to yield fy .« (9). 3) The HDTwin is evaluated based on model loss v and component-wise loss 4.

Subsequently, the model pool P(9) is updated with top-K models. 4) The evaluation agent provides

targeted feedback for model improvement H(9) by analyzing models in P9) using performance
metrics requirements outlined in S¢°"*¢®*, This iterative loop repeats for G iterations.

outer objective measures the generalization performance, empirically measured on the validation set
L1, while the inner objective measures the fitting error, as evaluated on the training set Li,.

Combinatorial search space. The space of possible specifications © (e.g. different networks,
functional forms) is discrete and combinatorially large, while () represents the continuous space
of parameters to be optimized. Selecting the optimal 6, w(#) thus involves searching through a vast
combinatorial space. Performing this search through traditional means, such as genetic programming
[21] or evolutionary algorithms [20], is computationally challenging, time-consuming, and often
technically infeasible. To the best of our knowledge, our work is the first to address the problem of
automatic HDTwin development, where we incorporate LLMs (combined with offline optimization
tools) to automatically optimize both the specification and the parameterization of hybrid models.

4 HDTwinGen: Automatic Design of HDTwins

Human experts craft models by making strategic design decisions based on their domain knowledge,
starting with a sensible initial model specification and performing intelligent modifications based
on empirical evaluations. Our key insight is that LLMs can effectively emulate these capabilities
to efficiently navigate the search space in Equation (1) and autonomously design HDTwins. More
specifically, our method utilizes LLMs for three major purposes: » source of domain knowledge,
where LLMs inject domain-consistent knowledge into the model specification, particularly through
the symbolic representation fiech; > efficient search, by making intelligent modifications to the
specification to converge more efficiently on the optimal hypothesis; and » contextual understand-
ing, enabling the algorithm to incorporate task-specific context and targeted feedback for model
improvement [22, 23, 24].

Overview. We operationalize this insight through HDTwinGen, an evolutionary algorithm that
iteratively evolves a population of candidate solutions to automatically search for the best HDTwin.
Our approach employs a framework comprising three key elements: (/) human experts provide
an initial system description, modeling objectives, and requirements as a structured prompt; (2)
a modeling agent proposes new model specifications, optimizes their parameters on a training
dataset, and collects validation performance metrics; (3) an evaluation agent assesses the proposed
models using both data-driven performance metrics and qualitative evaluations against expert-defined
objectives and requirements. The agents communicate using natural language and a custom code
format representing the HDTwin model, facilitating autonomous and iterative model enhancement.
An overview of our method is presented in Figure |, with pseudocode in Appendix

Initial prompt design. The optimization process begins with a human expert providing a structured
prompt, referred to as the modeling context S®™*', This modeling context outlines the system
description, modeling objectives £, and requirements R
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1. The system description semantically describes the system, including state and action variables,
giving the algorithm the contextual understanding necessary for informed model development.

2. The modeling objective specifies quantitative performance requirements via a metric L.

3. The modeling requirements R are qualitative and described in natural language, detailing aspects
such as interpretability (e.g. fully mechanistic or hybrid model) and additional scientific knowledge
(e.g. a log-linear relationship between variables).

In practice, R can incorporate various requirements, allowing for the design of both purely mechanis-
tic and hybrid models, a flexibility that we demonstrate experimentally. The model is represented
in Python, where purely mechanistic specifications are represented in native Python and neural
components are represented using PyTorch [31]. Moreover, S"*! includes a skeleton code
to guide the synthesis of executable code in a predetermined format. For illustrative purposes, an
example of ™! is provided in Appendix

Evolutionary optimization overview. Given S a5 input, HDTwinGen performs G iterations of
optimization, where G € N*. The population of proposed HDTwins at iteration g is represented as
P(9) . Each iteration creates a new candidate model based on previously created models in P(9) and
feedback. Only the top K models are retained after each iteration, except when g < K, in which
case all generated models are kept, i.e. max ¢q |73(9)| = K. Each model in P9 is characterized
by a tuple containing its model specification (represented symbolically through code) and validation
metrics. After completing G iterations, the model with the best validation performance in P() is
selected as the final model.

4.1 Modeling Agent

Proposing HDTwins. The goal of the modeling step is to propose novel HDTwins based on previously
proposed models and feedback from the evaluation agent. Specifically, on the g-th iteration, the
modeling agent takes as input » P9~1: the set of top-K previously generated models; » H(9—1):
the most recent feedback produced by the evaluation agent (where on the initial step, g = 1, both
are empty, ie., HO = @ PO = &); and » S®"*: the modeling context. The modeling
agent generates a model specification 6 using a predefined code format (i.e. skeleton code). By
observing multiple previously best-performing models and their performances, the modeling agent
can exploit this context as a rich form of in context-learning and evolve improved specifications
in subsequent generations [22]. Each generated specification emits its corresponding parameters,
w(0) are fitted to the training set Dy.;,. More formally, we represent this generative procedure as
fG,w(O) ~ LLMmodel(Ha 'P(g)’ Scontext).

Model specification. To generate model specifications, the modeling agent decomposes the system
into a set of components, with each component describing the dynamics of a specific state variable. In
other words, for a system with dy state variables, there will be d y components. Each component is
characterized by its own set of inputs and a unique dynamics function that describes the dynamics of
its associated state variable over time. This modular representation enables independent analysis and
optimization of individual components. In cases where R specifies purely mechanistic equations, the
component dynamics are entirely defined using closed-form equations. Conversely, in a hybrid model,
the mechanistic equation can be augmented with a neural network (implemented in PyTorch) to model
residuals (i.e. in an additive fashion). The choice between mechanistic and hybrid models is left to
the user, balancing the trade-off between transparency and predictive performance. Concretely, the
specification step involves ‘filling in’ the skeleton code with a detailed body of code, specifying
the decomposition, and delineating each component’s dynamics function as a separate code structure
(for a generated HDTwin example, see Appendix I).

Model optimization. The generated specification emits w(#), which are treated as placeholder values,
and are then optimized against the training dataset. Specifically, we optimize the mean squared
error for the parameters that minimize this loss as w* () = argmin,,g) L£(f,w(6)s Prrain)- In this
work, we consider w(#) to be continuous variables, and as such, we optimize 6 by stochastic gradient
descent, using the Adam optimizer [32]. However, we note other optimization algorithms, such as
black-box optimizers, could also be used (for more details, see Appendix I, Equation (5)). The
parameter optimization step then yields the complete model, fg - ().

Quantitative evaluation. For each generated model, we evaluate them quantitatively. Specif-
ically, we collect the validation mean squared error loss per component, which we denote as
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§ = [61,02,...,04,] (Appendix F, Equation (6)). We also compute the validation loss of the
overall model as well as v = L( fy .+ (¢), Dvar). Finally, the generated model and its validation losses

are included in a tuple and added to the top-K models P(9) « Pl—1 g (fo,.+(0), 6, V), where P9

automatically removes the lowest performing models, and also only adds a new model to P(9) if it is
unique. We highlight that we consider the top-K models only to apply selection pressure, such that
only the best-performing models are considered when generating the next HDTwin [33].

4.1.1 Evaluation Agent

Model evaluation. The goal of the evaluation step is to reflect on the current set of top- K models, P(9)
against requirements R and provide actionable and detailed feedback to the modeling agent for model
improvement: H(9) ~ LLMeval(R, P(g)). We note that H(9) is provided in natural language and can
be viewed as a dense feedback signal, a notable distinction from traditional learning methods, where
feedback often takes the form of simple scalar values, such as loss gradients or rewards. Leveraging
natural language feedback allows the agent to (/) engage in comparative analysis, identifying effective
specifications in P(9) contributing to higher performance and discerning patterns common in less
effective models, informing its suggestions for further model improvement; (2) qualitatively evaluate
models against qualitative requirements R—Ileveraging the LLM’s capacity to reason about proposed
HDTwins to reflect these requirements via model improvement feedback.

Enhancing search. By providing rich feedback to improve model specification, the evaluation and
modeling agent collaborate to efficiently evolve high-performing models. Empirically, in Appendix J,
we observe that the evaluation agent provides targeted and specific feedback, including component-
specific suggestions, proposing alternative decompositions, removing parameters, or introducing
non-linear terms. It is noteworthy that the feedback H(9), expressed flexibly in natural language,
could easily be further enriched through direct human feedback. We demonstrate this human-in-
the-loop capability by including expert feedback during the optimization process through H (9 and
observed that it was integrated into newly generated HDTwins. Though further investigation is
beyond the scope of this work, this demonstration highlights promising avenues for augmenting
human-machine collaboration in the autonomous design of DTs.

5 Related Works

For an extended related work, refer to Appendix B. Our work focuses on autonomously learning DTs
from data, with several relevant research strands:

Neural sequence models. ML approaches commonly address learning system dynamics as a se-
quential modeling problem. In these settings, fy .,(9) are typically black-box models, where 6 € ©
is the NN architecture and w(0) are its weights. Early models like Hidden Markov Models [34]
and Kalman filters [35] made simplifying Markovian and linearity assumptions, later extended to
nonlinear settings [36, 37]. Subsequent models, including recurrent neural networks [38], along
with their advanced variants [39, 40, 41], introduced the capability to model longer-term depen-
dencies. More recent advancements include attention mechanisms [42] and Transformer models
[43], significantly improving the handling of long-term dependencies in sequence data. Another line
of work, Neural Ordinary Differential Equations (NODE) [14, 44, 45], interprets neural network
operations as differential equations. These methods have found utility in modeling a range of complex
systems [46, 47, 48, 49]. While deep sequence models are proficient at capturing complex dynamics,
they are heavily reliant on training data for generalization ([P1, P2]), and their monolithic and
overparameterized structures limit evolvability ([P3]).

Mechanistic (discovery) models. Beyond purely neural approaches, another line of work aims to
discover a system’s governing equations directly from data. Here § € © are closed-form equations
and w(#) are their parameters. These include symbolic regression techniques [10], Eureqga [50],
SINDy [11], D-CODE [51, 52], among others [52, 53] that search for 6 and w(6) from data. These
techniques struggle to scale to higher-dimensional settings and rely on experts to perform variable
selection and define the function set and primitives available to the search algorithms.

Hybrid models. Recent efforts have also created hybrid models by integrating physical laws with
neural models. Physics-informed neural networks [15, 54], and methods including Hamiltonian
Neural Networks [55], Lagrangian Neural Networks [56] integrate structural priors of physical
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systems to improve generalization. These techniques introduce specialized mechanisms to incorporate
precisely known physical principles. Additionally, [57] integrates prior ODE/PDE knowledge into
a hybrid model, using specialized regularization to penalize the neural component’s information
content. [58, 59] consider settings where an expert equation is known, but equation variables are
latent and unobserved. Correspondingly, they employ two sets of latent variables: one governed
by expert equations and another linked to neural components. [60] performs data augmentation by
sampling out-of-distribution trajectories from expert models. While existing approaches rely on
expert models to perform the hybrid model design, HDTwinGen is an automated approach to jointly
optimize hybrid model specification and its parameters.

6 Experiments and Evaluation

In this section, we evaluate HDTwinGen and verify that it significantly outperforms state-of-the-art
methods in modeling system dynamics over time from an observed dataset and corresponding system
description.

Benchmark datasets. We evaluate against six real-world complex system datasets; where each
dataset is either a real-world dataset or has been sampled from an accurate simulator designed by hu-
man experts. Three are derived from a state-of-the-art biomedical Pharmacokinetic-Pharmacodynamic
(PKPD) model of lung cancer tumor growth, used to simulate the combined effects of chemotherapy
and radiotherapy in lung cancer [61] (Equation (2))—this has been extensively used by other works
[62, 63, 64]. Here we use this bio-mathematical lung cancer model to create three variations of
lung cancer under the effect of no treatments (Lung Cancer), chemotherapy only (Lung Cancer
(with Chemo.)), and chemotherapy combined with radiotherapy (Lung Cancer (with Chemo. &
Radio.)). We also compare against an accurate and complex COVID-19 epidemic agent-based
simulator (COVID-19) [65], which is capable of modeling non-pharmaceutical interventions, such
as physical distancing during a lockdown. Furthermore, we compare against an ecological model
of a microcosm of algae, flagellate, and rotifer populations (Plankton Microcosm)—replicating
an experimental three-species prey-predator system [66]. Moreover, we also compare against a
real-world dataset of hare and lynx populations (Hare-Lynx), replicating predator-prey dynamics
[67]. We detail all benchmark datasets details in Appendix

Evaluation Metrics. We employ mean squared error (MSE) to evaluate the benchmark methods on a
held-out test dataset of state-action trajectories, denoted as Dy, using the loss defined in Equation (5)
and report this as T;sg. Each metric is averaged over ten runs with different random seeds, and we
present these averages along with their 95% confidence intervals, further detailed in Appendix

Benchmark methods. To assess whether HDTwinGen is state-of-the-art, we compare it with the
most competitive and popular neural network models, which, when modeling the dynamics of a
system over time, becomes a form of ODE model, that is a neural ODE [14] with action inputs
(DyNODE) [68]. Moreover, we also compare against a recurrent neural network (RNN) [69] and a
state-of-the-art transformer (Transformer) [64]. We also compare against mechanistic dynamical
equations derived from equation discovery methods for ODEs, including Genetic Programming (GP)
[10] and Sparse Identification of Nonlinear Dynamics (SINDy) [11]. Lastly, we compare against
a hybrid model (APHYNITY) that integrates prior knowledge in the form of ODEs into hybrid
models, while penalizing the information content from the neural component [57]. Moreover, we
compare against the ablations of our method, of the zero-shot generated HDTwin (ZeroShot) and this
model with subsequently optimized parameters (ZeroOptim). We provide method implementation,
hyperparameter, and experimental details in Appendix

7 Main Results

We evaluated all our benchmark methods across all our datasets tabulated in Table |. HDTwinGen
models the system the most accurately, achieving the lowest test prediction mean squared error on
the held-out test dataset of state-action trajectories. In the interest of space, we include additional
experimental evaluations in the appendix. Specifically, we also evaluate » HDTwinGen performance
on a suite of synthetically and procedurally generated benchmarks (Appendix ); » comparisons

*Our implementation is available at https: //github.com/samholt/HDTwinGen. We also provide a wider
lab code repository at https://github. com/vanderschaarlab/HDTwinGen.
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Table 1: Benchmark method performance. Reporting the test prediction MSE (7y;sg) of the
produced system models on held-out test datasets across all benchmark datasets. HDTwinGen
achieves the lowest test prediction error. The results are averaged over ten random seeds, with +
indicating 95% confidence intervals.

Lung Cancer

Lung Cancer (with Chemo.)

Lung Cancer (with Chemo. & Radio.)

Hare-Lynx

Plankton Microcosm

COVID-19

Method Tuse 4 Tuse Tuse | Tuse L Tarse L Tuse L
SINDy 327+5.79 11.840.395 13.7£0.573 388+4.29e-14 0.00135£0 93.41+0.458

GP 158494.1 1544505 1714+8.99 5144381 0.00474+0.0564 10.1+18
DyNODE 327£58 52+47.1 16.3+5.58 43910 0.00036+0.00078 T4£2.36
RNN 1.17e+0643.08e+04 708+86.1 136+5.6 3.71e+0343.39e+03 0.028140.0406 1.38e+04+1.65e+03
Transformer 7.48%1.06 0.34840.0618 0.21640.0345 716+42.5 3.69e-05£1.83e-05 0.309+0.222
APHYNITY 9.06+1.37 81.6481.3 1.21e+0341.69¢+03 321412.6 4.21e-0543.45e-05 88.849.97
ZeroShot 5.45e+0316.71e+03 292+80.2 5.81e+03+4.02e+03 338+0 0.325£0.242 2.31e+03+2.24e+03
ZeroOptim 216172 31.2445 6.08+7.9 353+0 0.0132+0.00116 7.88+0.0414
HDTwinGen 4.41+8.07 0.0889-0.0453 0.131+0.198 291+30.3 2.51e-0612.2¢-06 1.72+2.28

Table 2: Out of distribution shifts. On a varia- . | ;. =

tion of the Lung Cancer (with Chemo. & Radio.), ol
HDTwinGen is more robust to OOD shifts in un-
seen state-action distributions.

Test MSE

BT I —
10"

100 10" 10°

Number

102

of trajectories

Lung Cancer . . .

(with Chemo. & Radio.) Figure 2: Sample efficiency. Analyzing perfor-
Method 1D Tyse 4 00D Ty | mance as a function of the number of training
SDI}I’\II\IDOYDE Og;agig‘géél ! '5731%29 trajectories in the Lung Cancer (with Chemo. &
RNN 1.43e+04+2.02e403  1.84e+05+4.06e+04 ~ Radio.) dataset. We observe that HDTwinGen
Transformer 0.0262+0.00514  1.19e+044+2.78e+03  achieves the lowest test prediction error, even in
ZeroShot 4.95e+03+1.43e+04  1.91e+04+£6.36e+04  (he very challenging low data regime. This high-
ZeroOptim 3.49+0.0364 4.84+5.17 . ; . .2
HDTwinGen | 0.008720.0187 0.0846-0.0801  lights the role of priors embedded in HDTwin in

sample-efficient generalization.

against domain-specific baselines (Appendix
ablation of LLM hyperparameters, prompt design, and algorithm settings (Appendices

) and » various ablation experiments, including
to ).

7.1 Insight Experiments

This section provides an in-depth analysis of HDTwinGen’s effectiveness related to its benchmark
counterparts. Specifically, we examine the core desiderata for an effective DT described in Section
[P1] out-of-distribution generalization, [P2] sample-efficient learning, and [P3] evolvability.

[P1] Can an HDTwin generalize to out-of-distribution shifts? To explore out-of-distribution shifts,
we adapt the Lung Cancer (with Chemo. & Radio.) to produce a training dataset of states in a range
that is outside those observed in the test set over all trajectories (Appendix H.1). We tabulate this
in Table 2. Empirically, we find that HDTwinGen is more robust to out-of-distribution shifts than
existing methods, benefiting from explicit decomposition and robust hybrid models. Notably, the
neural network method DyNODE shows the largest relative error increase from IID to OOD by two
orders of magnitude, while the mechanistic method SINDy exhibits a smaller increase by only one
order of magnitude. This demonstrates the importance of hybrid models that leverage both neural
and mechanistic components to enhance generalization performance under distribution shifts.

[P2] Can HDTwinGen improve sample-efficiency in model learning? To explore the low data
settings, we re-ran all benchmark methods with fewer samples in their training dataset on the Lung
Cancer (with Chemo. & Radio.) dataset. We plot this in Figure 2. Empirically, we observe that
HDTwinGen can achieve lower performance errors, especially in lower-sample regimes.

[P3] Can HDTwinGen evolve its modular HDTwin to fit the system? We analyze this from an
empirical point of view to determine if HDTwinGen can correctly evolve the generated HDTwin
and reduce its prediction error over subsequent generations. We observe that HDTwinGen can
indeed understand, reason, and iteratively evolve the generated code representation of the HDTwin
to incorporate a better fitting HDTwin, as observed in Figure 3. In particular, the annotated results
demonstrate that HDTwinGen effectively refines the hybrid model by strategically adjusting its neural
and mechanistic components (in a fashion akin to human experts), leading to significant improvements
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Figure 3: HDTwinGen effectively evolves HDTwin. Validation MSE of the HDTwin generated in
each iteration, showing the Pareto-front of the best generated HDTwin (Top-1 HDTwin), and the
generated HDTwin per generation step—additionally with a few of the HDTwins labeled with their
model descriptions. HDTwinGen can efficiently understand, modify, and hence evolve the HDTwin
to achieve a better-fitting model (Appendix H.4).
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Figure 4: COVID-19 unobserved intervention. The symbolic code-based representation of HDTwin
can be easily adapted to unobserved interventions through targeted adjustments of parameters.

in accuracy and robustness. This iterative evolution process demonstrates HDTwinGen’s ability to
adapt and optimize its modular components.

Can HDTwinGen Understand and Modify Its HDTwin? We investigate whether large language
model (LLM) agents can take an optimized high-dimensional twin (HDTwin) from an existing
benchmark dataset and adapt it to model an unobserved intervention that is not present in the training
data. We note that this intervention emulates scenarios where the dynamics of the underlying system
changes. We affirmatively answer this question by constructing a scenario where our COVID-19
simulator incorporates an unobserved intervention of a lockdown policy, which reduces physical
interactions between individuals (Appendix ). As demonstrated in Figure 4, we observe that
the code-model representation of the HDTwin can be (1) understood by the modeling agent LLM
and (2) adapted in its parameters to accurately model and reflect this intervention. We find that
HDTwinGen is the only method capable of changing the overall functional behavior by modifying a
single parameter in the model; in contrast, all other existing data-driven methods require a dataset of
state-action trajectories under the new dynamics introduced by this intervention.

Ablation Studies. We conducted ablation studies on HDTwinGen and found several key insights.
First, retaining the top- K models within the LLM context leads to improved model generation (Ap-
pendix H.5). Additionally, HDTwinGen is compatible with various LLMs and different temperature
settings (Appendix ). It also benefits from including textual descriptions of the variables to be
modeled as prior information (Appendix H.7). Finally, HDTwinGen can be specifically instructed to
generate mechanistic white-box models if desired (Appendix ).
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8 Limitations and Discussions

In summary, this work addresses the problem of learning digital twins for continuous-time dynamical
systems. After establishing clear learning objectives and key requirements, we introduce Hybrid
Digital Twins (HDTwins)—a promising approach that combines mechanistic understanding with
neural architectures. HDTwins encode domain knowledge symbolically while leveraging neural
networks for enhanced expressiveness. Conventional hybrid models, however, rely heavily on
expert specification with learning limited to parameter optimization, constraining their scalability
and applicability. To overcome these limitations, we propose a novel approach to automatically
specify and parameterize HDTwins through HDTwinGen, an evolutionary framework that leverages
LLMs to iteratively search for and optimize high-performing hybrid twins. Our empirical results
demonstrate that evolved HDTwins consistently outperform existing approaches across multiple
criteria, exhibiting superior out-of-distribution generalization, enhanced sample efficiency, and
improved modular evolvability.

Limitations. While our results are promising, several important limitations remain. HDTwinGen’s
efficacy depends critically on human experts providing initial system specifications and on the
underlying LLM’s domain knowledge and model generation capabilities. Our current implementation
focuses exclusively on continuous-time systems, which, although broadly applicable, represent only
a subset of real-world systems. Future work could extend our approach through human-in-the-loop
feedback mechanisms, integration with external tools, and expansion to broader system classes.

Ethical implications. We acknowledge the risk of bias transmission from the black-box LLMs
into the evolved models. While our hybrid approach enables greater expert scrutiny through its
human-interpretable components, we strongly recommend a comprehensive evaluation of evolved
models for fairness, bias, and privacy concerns before deployment in sensitive applications.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers, area and program chairs, members of the van der Schaar lab,
and Andrew Rashbass for many insightful comments and suggestions. TL and SH would like to
acknowledge and thank AstraZeneca for their sponsorship and support. This work was supported by
Microsoft’s Accelerate Foundation Models Academic Research initiative.

References

[1] F. Tao,J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, “Digital twin-driven product design,
manufacturing and service with big data,” The International Journal of Advanced Manufacturing
Technology, vol. 94, pp. 3563-3576, 2018.

[2] J. Corral-Acero, F. Margara, M. Marciniak, C. Rodero, F. Loncaric, Y. Feng, A. Gilbert, J. F.
Fernandes, H. A. Bukhari, A. Wajdan et al., “The ‘digital twin’to enable the vision of precision
cardiology,” European heart journal, vol. 41, no. 48, pp. 45564564, 2020.

[3] H. A. Simon, The sciences of the artificial. MIT press, 1996.

[4] J. Ladyman, J. Lambert, and K. Wiesner, “What is a complex system?” European Journal for
Philosophy of Science, vol. 3, pp. 33-67, 2013.

[5] Q. Qi and F. Tao, “Digital twin and big data towards smart manufacturing and industry 4.0: 360
degree comparison,” leee Access, vol. 6, pp. 3585-3593, 2018.

[6] V.Iranzo and S. Pérez-Gonzilez, “Epidemiological models and covid-19: a comparative view,”
History and Philosophy of the Life Sciences, vol. 43, no. 3, p. 104, 2021.

[7] L. Bozic, J. G. Reiter, B. Allen, T. Antal, K. Chatterjee, P. Shah, Y. S. Moon, A. Yaqubie,
N. Kelly, D. T. Le et al., “Evolutionary dynamics of cancer in response to targeted combination
therapy,” elife, vol. 2, p. 00747, 2013.

[8] R. Rosen, G. Von Wichert, G. Lo, and K. D. Bettenhausen, “About the importance of autonomy
and digital twins for the future of manufacturing,” Ifac-papersonline, vol. 48, no. 3, pp. 567-572,
2015.

https://doi.org/10.52202/079017-2304 72179



[9] T. Erol, A. F. Mendi, and D. Dogan, “The digital twin revolution in healthcare,” in 2020 4th
international symposium on multidisciplinary studies and innovative technologies (ISMSIT).
IEEE, 2020, pp. 1-7.

[10] J. R. Koza, “Genetic programming as a means for programming computers by natural selection,”
Statistics and computing, vol. 4, pp. 87-112, 1994.

[11] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems,” Proceedings of the national academy of
sciences, vol. 113, no. 15, pp. 3932-3937, 2016.

[12] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy evolution,” Advances in
neural information processing systems, vol. 31, 2018.

[13] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative adversarial networks,”
Advances in neural information processing systems, vol. 32, 2019.

[14] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” Advances in neural information processing systems, vol. 31, 2018.

[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘“Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational physics, vol. 378, pp. 686-707, 2019.

[16] L. Faure, B. Mollet, W. Liebermeister, and J.-L. Faulon, “A neural-mechanistic hybrid approach
improving the predictive power of genome-scale metabolic models,” Nature Communications,
vol. 14, no. 1, p. 4669, 2023.

[17] J. Pinto, J. R. Ramos, R. S. Costa, and R. Oliveira, “A general hybrid modeling framework for
systems biology applications: Combining mechanistic knowledge with deep neural networks
under the sbml standard,” Al, vol. 4, no. 1, pp. 303-318, 2023.

[18] P. Wang, Z. Zhu, W. Liang, L. Liao, and J. Wan, “Hybrid mechanistic and neural network
modeling of nuclear reactors,” Energy, vol. 282, p. 128931, 2023.

[19] R. Cheng, A. Verma, G. Orosz, S. Chaudhuri, Y. Yue, and J. Burdick, “Control regularization for
reduced variance reinforcement learning,” in International Conference on Machine Learning.
PMLR, 2019, pp. 1141-1150.

[20] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin,
“Large-scale evolution of image classifiers,” in International conference on machine learning.
PMLR, 2017, pp. 2902-2911.

[21] T. N. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. M. Faissol, and B. K. Petersen,
“Symbolic regression via neural-guided genetic programming population seeding,” in Proceed-

ings of the 35th International Conference on Neural Information Processing Systems, 2021, pp.
24912-24923.

[22] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877-1901, 2020.

[23] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou ef al., “Chain-of-
thought prompting elicits reasoning in large language models,” Advances in neural information
processing systems, vol. 35, pp. 24 824-24 837, 2022.

[24] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways,”
Journal of Machine Learning Research, vol. 24, no. 240, pp. 1-113, 2023.

[25] M. J. Kearns and U. Vazirani, An introduction to computational learning theory. MIT press,
1994.

[26] H. A. Simon, “The architecture of complexity,” Proceedings of the American philosophical
society, vol. 106, no. 6, pp. 467-482, 1962.

72180 https://doi.org/10.52202/079017-2304



[27] T. L. Rogers, B. J. Johnson, and S. B. Munch, “Chaos is not rare in natural ecosystems,” Nature
Ecology & Evolution, vol. 6, no. 8, pp. 1105-1111, 2022.

[28] M. Sokolov, M. von Stosch, H. Narayanan, F. Feidl, and A. Butté, “Hybrid modeling—a
key enabler towards realizing digital twins in biopharma?” Current Opinion in Chemical
Engineering, vol. 34, p. 100715, 2021.

[29] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, Y. Yue et al., “Neurosymbolic
programming,” Foundations and Trends® in Programming Languages, vol. 7, no. 3, pp. 158—
243, 2021.

[30] A. Tsoularis and J. Wallace, “Analysis of logistic growth models,” Mathematical biosciences,
vol. 179, no. 1, pp. 21-55, 2002.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in neural information processing systems, vol. 32, 2019.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[33] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1, pp. 6673, 1992.

[34] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.

[35] R. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME, D,
vol. 82, pp. 35-44, 1960.

[36] L. Li, Y. Zhao, D. Jiang, Y. Zhang, F. Wang, 1. Gonzalez, E. Valentin, and H. Sahli, “Hybrid
deep neural network—hidden markov model (dnn-hmm) based speech emotion recognition,”

in 2013 Humaine association conference on affective computing and intelligent interaction.
IEEE, 2013, pp. 312-317.

[37] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep kalman filters,” arXiv preprint
arXiv:1511.05121, 2015.

[38] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179-211, 1990.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735-1780, 1997.

[40] K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[41] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
Advances in neural information processing systems, vol. 27, 2014.

[42] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align
and translate,” arXiv preprint arXiv:1409.0473, 2014.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,
vol. 30, 2017.

[44] E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural odes,” Advances in neural information
processing systems, vol. 32, 2019.

[45] S. I. Holt, Z. Qian, and M. van der Schaar, “Neural laplace: Learning diverse classes of

differential equations in the laplace domain,” in International Conference on Machine Learning.
PMLR, 2022, pp. 8811-8832.

https://doi.org/10.52202/079017-2304 72181



[46] M. A. Zaytar and C. El Amrani, “Sequence to sequence weather forecasting with long short-term
memory recurrent neural networks,” International Journal of Computer Applications, vol. 143,
no. 11, pp. 7-11, 2016.

[47] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘“Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[48] L. Sehovac and K. Grolinger, “Deep learning for load forecasting: Sequence to sequence
recurrent neural networks with attention,” leee Access, vol. 8, pp. 36 411-36 426, 2020.

[49] S. Holt, A. Hiiyiik, Z. Qian, H. Sun, and M. van der Schaar, “Neural laplace control for
continuous-time delayed systems,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2023, pp. 1747-1778.

[50] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,” science,
vol. 324, no. 5923, pp. 81-85, 2009.

[51] Z. Qian, K. Kacprzyk, and M. van der Schaar, “D-CODE: Discovering closed-form ODEs
from observed trajectories,” in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=wENMVIsxNN

[52] K. Kacprzyk, Z. Qian, and M. van der Schaar, “D-cipher: discovery of closed-form partial
differential equations,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[53] K. Kacprzyk, T. Liu, and M. van der Schaar, “Towards transparent time series forecasting,” in
The Twelfth International Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?id=TYXtXLYHpR

[54] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific
machine learning through physics—informed neural networks: Where we are and what’s next,”
Journal of Scientific Computing, vol. 92, no. 3, p. 88, 2022.

[55] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” Advances in neural
information processing systems, vol. 32, 2019.

[56] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho, “Lagrangian neural
networks,” arXiv preprint arXiv:2003.04630, 2020.

[57] Y. Yin, V. Le Guen, J. Dona, E. de Bézenac, I. Ayed, N. Thome, and P. Gallinari, “Augmenting
physical models with deep networks for complex dynamics forecasting,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2021, no. 12, p. 124012, 2021.

[58] N. Takeishi and A. Kalousis, ‘“Physics-integrated variational autoencoders for robust and
interpretable generative modeling,” Advances in Neural Information Processing Systems, vol. 34,
pp. 14 809-14 821, 2021.

[59] Z. Qian, W. Zame, L. Fleuren, P. Elbers, and M. van der Schaar, “Integrating expert odes
into neural odes: pharmacology and disease progression,” Advances in Neural Information
Processing Systems, vol. 34, pp. 11 364—-11 383, 2021.

[60] A. Wehenkel, J. Behrmann, H. Hsu, G. Sapiro, G. Louppe, and J.-H. Jacobsen, ‘“Robust
hybrid learning with expert augmentation,” Transactions on Machine Learning Research, 2023.
[Online]. Available: https://openreview.net/forum?id=0e4dl4MCGY

[61] C. Geng, H. Paganetti, and C. Grassberger, “Prediction of Treatment Response for Com-
bined Chemo- and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a
Bio-Mathematical Model,” Scientific Reports, vol. 7, no. 1, p. 13542, Oct. 2017.

[62] 1. Bica, A. M. Alaa, J. Jordon, and M. van der Schaar, “Estimating counterfactual treatment
outcomes over time through adversarially balanced representations,” in International Conference
on Learning Representations, 2020.

[63] N. Seedat, F. Imrie, A. Bellot, Z. Qian, and M. van der Schaar, “Continuous-time modeling
of counterfactual outcomes using neural controlled differential equations,” arXiv preprint
arXiv:2206.08311, 2022.

72182 https://doi.org/10.52202/079017-2304


https://openreview.net/forum?id=wENMvIsxNN
https://openreview.net/forum?id=TYXtXLYHpR
https://openreview.net/forum?id=oe4dl4MCGY

[64] V. Melnychuk, D. Frauen, and S. Feuerriegel, “Causal transformer for estimating counterfactual
outcomes,” in International Conference on Machine Learning. PMLR, 2022, pp. 15293—
15329.

[65] C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, K. Rosenfeld, G. R. Hart, R. C. Niiiez,
J. A. Cohen, P. Selvaraj, B. Hagedorn et al., “Covasim: an agent-based model of covid-19
dynamics and interventions,” PLOS Computational Biology, vol. 17, no. 7, p. e1009149, 2021.

[66] T. Hiltunen, L. Jones, S. Ellner, and N. G. Hairston Jr, “Temporal dynamics of a simple
community with intraguild predation: an experimental test,” Ecology, vol. 94, no. 4, pp. 773—
779, 2013.

[67] E.P. Odum and G. W. Barrett, “Fundamentals of ecology,” The Journal of Wildlife Management,
vol. 36, no. 4, p. 1372, 1972.

[68] V. M. M. Alvarez, R. Rosca, and C. G. Fiélcutescu, “Dynode: Neural ordinary differential
equations for dynamics modeling in continuous control,” arXiv preprint arXiv:2009.04278,
2020.

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533-536, 1986.

[70] S. Holt, A. Hiiyiik, and M. van der Schaar, “Active observing in continuous-time control,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[71] S. Holt, Z. Qian, and M. van der Schaar, “Deep generative symbolic regression,” in The
Eleventh International Conference on Learning Representations, 2023. [Online]. Available:
https://openreview.net/forum?id=07koEEMA 1bR

[72] K. Kacprzyk, S. Holt, J. Berrevoets, Z. Qian, and M. van der Schaar, “ODE
discovery for longitudinal heterogeneous treatment effects inference,” in The Twelfth
International Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?id=pxI5IPeWgW

[73] T. Liu, N. Astorga, N. Seedat, and M. van der Schaar, “Large language models to enhance
bayesian optimization,” in The Twelfth International Conference on Learning Representations,
2024. [Online]. Available: https://openreview.net/forum?id=0OxotBmGol

[74] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen, “Large language models
as optimizers,” in The Twelfth International Conference on Learning Representations, 2024.
[Online]. Available: https://openreview.net/forum?id=Bb4VGOWELI

[75] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman et al., “Evaluating large language models trained on code,” arXiv
preprint arXiv:2107.03374, 2021.

[76] S. Holt, M. R. Luyten, and M. van der Schaar, “L2ZMAC: Large language model automatic
computer for extensive code generation,” in The Twelfth International Conference on Learning
Representations, 2024. [Online]. Available: https://openreview.net/forum?id=EhrzQwsV4K

[77] S. Holt, Z. Qian, T. Liu, J. Weatherall, and M. van der Schaar, “Data-driven discovery of
dynamical systems in pharmacology using large language models,” in The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[78] N. Astorga, T. Liu, N. Seedat, and M. van der Schaar, “Partially observable cost-aware active-
learning with large language models,” in The Thirty-Eighth Annual Conference on Neural
Information Processing Systems, 2024.

[79] W. Bonnaffé and T. Coulson, “Fast fitting of neural ordinary differential equations by bayesian
neural gradient matching to infer ecological interactions from time-series data,” Methods in
Ecology and Evolution, vol. 14, no. 6, pp. 1543-1563, 2023.

[80] S. K. Kumar, “On weight initialization in deep neural networks,” arXiv preprint
arXiv:1704.08863, 2017.

https://doi.org/10.52202/079017-2304 72183


https://openreview.net/forum?id=o7koEEMA1bR
https://openreview.net/forum?id=pxI5IPeWgW
https://openreview.net/forum?id=OOxotBmGol
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=EhrzQwsV4K

I

[81] A. Graves, S. Fernandez, and J. Schmidhuber, “Multi-dimensional recurrent neural networks,
in International conference on artificial neural networks. ~Springer, 2007, pp. 549-558.

[82] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T. Kim, “Deep
symbolic regression: Recovering mathematical expressions from data via risk-seeking policy
gradients,” in International Conference on Learning Representations, 2020.

[83] S. Hsiang, D. Allen, S. Annan-Phan, K. Bell, I. Bolliger, T. Chong, H. Druckenmiller, L. Y.
Huang, A. Hultgren, E. Krasovich et al., “The effect of large-scale anti-contagion policies on
the covid-19 pandemic,” Nature, vol. 584, no. 7820, pp. 262-267, 2020.

[84] O. N. Bjgrnstad, K. Shea, M. Krzywinski, and N. Altman, “The seirs model for infectious
disease dynamics.” Nature methods, vol. 17, no. 6, pp. 557-559, 2020.

[85] F. Brauer, C. Castillo-Chavez, and C. Castillo-Chavez, Mathematical models in population
biology and epidemiology. Springer, 2012, vol. 2.

72184 https://doi.org/10.52202/079017-2304



Appendix

Table of Contents
A HDTwinGen Overview 17
B Extended Related Work 17
C Benchmark Dataset Environment Details 18
C.1 CancerPKPD . . .. ... ... ... .. 18
C2 COVID-19 . . . . . 19
C.3 Plankton Microcosm . . . . . . . . . .. Lo 19
C4 Hare-Lynx . . . . . .. . e 20
D Benchmark Method Implementation Details 20
E HDTwinGen Implementation Details 21
E.1 HDTwinpseudocode . . . . . . . . . . . . . 21
E.2 Training HDTwins . . . . . . . . . . o 21
E.3 HDTwinGen Prompt Templates . . . . . . . . ... ... ... .. ...... 22
E.4 HDTwinGen System Requirements Prompts . . . . . .. ... ... ... ... 23
F Model Optimization Losses 27
G Evaluation Metrics 27
H Additional Results 28
H.1 Out-of-distribution Experimentand Setup . . . . . . . . ... ... ... .... 28
H.2 COVID-19 Unobserved Intervention Experiment and Setup . . . . . . ... .. 28
H.3 HDTwinGen top-1 decreases overtime . . . . . . . ... ... ... ...... 28
H.4 HDTwinGen Evolution . . . .. ... ... ... ... ... .......... 29
H.5 HDTwinGen Ablation NoMemory . . . . . ... ... ... ... ....... 32
H.6 Evaluating Different LLMs . . . . . . . .. ... ... ... ... ... ... 32
H.7 Prompt Ablations with Varying Amounts of Prior Information . . . . . ... .. 32
H.8 Domain-Specific Baselines . . . .. ... ... ... . ... . ...... 33
H.9 Procedurally Generated Synthetic Model Benchmark . . . . . . ... ... ... 34
H.10 Interpretability Scale, Performance of only White-Box Models . . . . . . .. .. 35
H.11 HDTwinGen Flexibly Integrates Expert-in-the-loop Feedback . . . . . . .. .. 35
H.12 HDTwinGen Accelerates Model Development and Enhances Performance . . . . 36
I Hybrid Model Output Examples 38
J HDTwinGen can reason about HDTwins 40

https://doi.org/10.52202/079017-2304 72185



A HDTwinGen Overview
We provide an illustrative example of HDTwinGen working in practice in Figure

User Generation 1 Generation 2 PPN Generation 20 HDTwin

|

System
—— —>

R
HDTwin HDTwin
Dataset —
{Dtrain, Dval}
Validation MSE Validation MSE
4.41 423

Figure 5: HDTwinGen Illustrative Example in Operation. HDTwinGen can generate and further
evolve HDTwins for a particular system based on user-given system requirements and a dataset
D = {Duain, Drest } Of state-action trajectories. First, the system requirements—which include dataset
statistics are incorporated into a prompt and fed into the modeling agent that returns the code for the
HDTwin. This HDTwin is then trained on the training dataset Dy, and a validation loss is computed
with Dy, . In subsequent generations, the evaluation agent is given the existing generated top-K
HDTwins, their corresponding validation losses, and validation losses per component, and is asked
to reflect on how to improve the HDTwin. This provides detailed, actionable feedback, leveraged
from its inherent understanding, and provides this as detailed verbal feedback as H, whereby this
feedback is next used with the modeling agent to generate the next HDTwin [P3]. This process
iterates several generation times, and the best-performing HDTwin (w.r.t. validation performance) is
returned. Overall, this produces an HDTwin that fulfills [P1-P3].

B Extended Related Work

Sequence models. ML approaches frequently address system dynamics as a sequential modeling
problem. Initial models like Hidden Markov Models [34] and Kalman filters [35] made simplifying
Markovian and linearity assumptions, later extended to nonlinear settings [36, 37]. Subsequent
models, including recurrent neural networks [38], along with their advanced variants [39, 40, 41],
introduced the capability to model longer-term dependencies. More recent advancements include
attention mechanisms [42] and transformer models [43], significantly improving the handling of
long-term dependencies in sequence data. Another line of work, Neural Ordinary Differential
Equations (NODE) [14, 44, 45], interprets neural network operations as integrations of differential
equations to model continuous-time processes. Despite being initially driven by natural language
processing applications [47], these methods have found utility in modeling complex systems like
weather forecasting [46] and energy systems [48]. Furthermore, sequence models can be used in
model-based RL [70].

Physics-inspired models. Beyond purely data-centric approaches, recent efforts have focused on
integrating physical laws into neural system models. Physics-informed neural networks [15, 54]
embed physical laws, often as partial differential equations, directly into the learning process. Other
notable methods include Hamiltonian Neural Networks [55] and Lagrangian Neural Networks [56],
which respect the structural principles of physical systems. These methods are primarily concerned
with modeling physics-related phenomenon and require relatively precise knowledge about the
system being modeled (e.g. specific differential equations or energy conservation principles) and
specialized mechanisms to incorporate them. Regardless, they have demonstrated that the integration
of known principles can significantly improve extrapolation abilities beyond the range of training
data. We are similarly inspired to incorporate prior knowledge. In contrast, our work aims to integrate
more general or partial knowledge flexibly into a hybrid model using LLMs within a evolutionary
multi-agent framework, while introducing more generalized mechanisms to incorporate loose-form
prior knowledge.
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Discovering closed-form models. Closely aligned with our research are techniques aimed at dis-
covering closed-form mathematical expressions from data. Symbolic regression [10, 71, 72] and
methods like Eureqa [50], SINDy [11], and D-CODE [51, 52] have showcased their prowess in
discovering physical laws from experimental observations. However, these techniques can struggle in
higher-dimensional settings and rely on experts to perform the system decomposition to identify the
most relevant variables before feeding this information to the algorithm. Additionally, they also rely
on experts to specify the function set and mathematical operations that the algorithm uses to search for
symbolic expressions. In contrast, our method autonomously learns both the system decomposition
and the functional forms of component dynamics, potentially enhancing scalability and efficiency.
Moreover, the incorporation of LLMs facilitates the flexible integration of prior knowledge at various
stages of the search process [73, 74]. Furthermore, using LLMs to generate code, prior work has
shown LLM multi-agent frameworks’ ability to excel at large code-generation tasks [75, 76], which
we could expect to apply here to scale up the size of the generated models in future works. Such
future work could also explore acquiring features as well [77, 78].

C Benchmark Dataset Environment Details

In the following, we outline the six real-world system dynamics datasets, where each dataset is either
a real-world dataset or has been sampled from an accurate simulator designed by human experts.

C.1 Cancer PKPD

Three of our environments that we sample a dataset from are derived from a state-of-the-art biomedical
Pharmacokinetic-Pharmacodynamic (PKPD) model of lung cancer tumor growth, used to simulate the
combined effects of chemotherapy and radiotherapy in lung cancer [61]—this has been extensively
used by other works [62, 63, 64]. Here we use this bio-mathematical lung cancer model to create
three variations of lung cancer under the effect of no treatments (Lung Cancer), chemotherapy only
(Lung Cancer (with Chemo.)), and chemotherapy combined with radiotherapy (Lung Cancer (with
Chemo. & Radio.)); for each model we sample a respective dataset. First, let us detail the general
case of Lung Cancer (with Chemo. & Radio.), which comes from the general model (Cancer PKPD
Model), and then detail the variations.

Cancer PKPD Model. This is a state-of-the-art biomedical Pharmacokinetic-Pharmacodynamic
(PKPD) model of tumor growth, that simulates the combined effects of chemotherapy and radiotherapy
in lung cancer [61] (Equation (2))—this has been extensively used by other works [62, 63, 64].
Specifically, this models the volume of the tumor x(¢) for days ¢ after the cancer diagnosis—where
the outcome is one-dimensional. The model has two binary treatments: (1) radiotherapy u; and (2)
chemotherapy uy.

dx(t K
CZE:):(PlO%(w)‘ B.L(1)  — (apd(t) + Brd(t)?) )a(t) @
\——~——"  Chemotherapy Radiotherapy

Tumorgrowth

Where the parameters K, p, 8., .., B, for each simulated patient are detailed in [61], which are also
described in Table 3. Additionally, the chemotherapy drug concentration ¢(¢) follows an exponential

Table 3: Cancer PKPD parameter values.

Model Variable Parameter Parameter Value
Tumor growth Growth parameter ) 7.00 x 1075
Carrying capacity K 30
. Radio cell kill () o 0.0398
Radiotherapy R i cell kill EB) 3. Sets.t. a/3=10
Chemotherapy =~ Chemo cell kill Be 0.028

decay relationship with a half-life of one day:

de(t)
dt

= —0.5¢(t) )
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where the chemotherapy binary action represents increasing the c(t) concentration by 5.0mg/m? of
Vinblastine given at time ¢. Whereas the radiotherapy concentration d(t) represents 2.0Gy fractions
of radiotherapy given at timestep ¢, where Gy is the Gray ionizing radiation dose.

Time-dependent confounding. We introduce time-varying confounding into the data generation
process. This is accomplished by characterizing the allocation of chemotherapy and radiotherapy as
Bernoulli random variables. The associated probabilities, p. and p,., are determined by the tumor
diameter as follows:

pe(t) =0 (Dz;x (D(t) - 5C)> pe(t) =0 (DZ;X (D(t) — &)) : @

where Dyax = 13cm represents the largest tumor diameter, 8, = 6, = Dyax/2 and D(ﬁ) signifies
the mean tumor diameter. The parameters ~. and ~,. manage the extent of time-varying confounding.
Weuse v, = v, = 2.

Sampling datasets. Using the above Cancer PKPD model, we sample N = 1,000 trajectories,
which equates to N = 10, 000 patients, where we sample their initial tumor volumes from a uniform
distribution x(0) ~ 2/(0, 1149), and use the Cancer PKPD Equation (2) along with the action policy
of Equation (4) to forward simulate patient trajectories for 60 days, using a Euler stepwise solver.
This forms one dataset sample. We repeat this process with independent random seeds to generate
Ditains Dval, Diest- Specifically for each benchmark method run for random seed, we re-sample the
datasets. For each variation described above, we either include the chemotherapy dosing action,
chemotherapy and radiotherapy dosing action or neither. We further outline this dataset’s system
description and variable descriptions with the following prompt template as given in Appendix

C.2 COVID-19

We use the accurate and complex epidemic agent-based simulator of COVASIM [65] to simulate
COVID-19 epidemics. This is an advanced simulator that is capable of simulating non-pharmaceutical
interventions (such as lockdowns through social distancing, and school closures) and pharmaceutical
interventions (such as vaccinations). As this is an agent-based simulator, each agent is an individual
in a population, and they can be in one of the following states minimally, of being susceptible to
COVID-19, exposed, infectious or recovered (which includes deaths). We use the simulator with
the default parameters set by the open source implementation of the simulator . COVASIM runs a
simulation for a population of individuals. To ensure an accurate simulation, we simulate 24 countries
collecting trajectories for each, wherein each simulation we use a population size of 1,000, 000
individuals, and simulate each individual separately (disabling simulation rescaling) and start with
a random number of individuals who are infected with COVID-19, I(0) = /(10, 000, 100, 000),
and forward simulate the simulation for 60 days. We repeat this process with independent random
seeds to generate Dyin, Dyar, Diest- Specifically for each benchmark method run for random seed, we
re-sample the datasets. We further outline this dataset’s system description and variable descriptions
with the following prompt template as given in Appendix

C.3 Plankton Microcosm

This describes an ecological model of a microcosm of algae, flagellate, and rotifer populations,
thus replicating an experimental three-species prey-predator system [66]. We use the dataset made
available by [79]". The dataset consists of a single trajectory of 102 time steps, and we use a train,
val, test split of 70%, 15% and 15%, ensuring the splits are along the time dimension to maintain
the integrity of temporal causality, following their chronological order. We further outline this
dataset’s system description and variable descriptions with the following prompt template as given in
Appendix

SCOVASIM is an opensource simulator, from which we access it here https://github.com/
InstituteforDiseaseModeling/covasim.

The Plankton Microcosm and Hare-Lynx datasets are both open source and available from https://
github.com/WillemBonnaffe/NODEBNGM.
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C.4 Hare-Lynx

This describes a real-world dataset of hare and lynx populations, replicating predator-prey dynamics
[67]. We use the dataset made available by [79]. The dataset consists of a single trajectory of 92 time
steps, and we use a train, val, test split of 70%, 15% and 15%, ensuring the splits are along the time
dimension to maintain the integrity of temporal causality, following their chronological order. We
further outline this dataset’s system description and variable descriptions with the following prompt
template as given in Appendix

D Benchmark Method Implementation Details

To be competitive we compare against popular black-box models, which, when modeling the dynamics
of a system over time, becomes a form of ODE model, that is a neural ODE [14] with action inputs
(DyNODE) [68]. We also compare against transparent dynamical equations derived from equation
discovery methods for ODEs such as Sparse Identification of Nonlinear Dynamics (SINDy) [11].
Moreover, we compare against the ablations of our method, of the zero-shot generated HDTwin
(ZeroShot) and this model with subsequently optimized parameters (ZeroOptim).

DyNODE

DyNODE is a black-box neural network-based dynamics model [68], that models the underlying
dynamics of a system by incorporating control into the standard neural ordinary differential equation
framework [14]. We use a DyNODE model with 3-layer Multilayer Perceptron (MLP), with a
hidden dimension of 128 units, with tanh activation functions, and make it competitive by using
Xavier weight initialization [80]. To be competitive we use the same objective, optimizer and same
hyperparameters for the optimizer that we use in HDTwinGen. That of an Adam optimizer [32], with
a learning rate of 0.01, with a batch size of 1,000 and early stopping with a patience of 20, and train
it for 2,000 epochs to ensure it converges.

Causal Transformer

Causal Transformer is a state-of-the-art transformer model for estimating counterfactual outcomes
[64]. Due to the complexity of the Causal Transformer, incorporating three separate transformer
networks, each one for processing covariates, past treatments, and past outcomes, respectively—
which is unique to estimating counterfactual outcomes in treatment effect settings; we implemented
only a single transformer to model the past outcomes, which is applicable to our datasets and task
domains. Specifically, this consists of a standard transformer encoder, where the input dataset is
normalized to the training dataset. We encode input observed dimension of the state-action into an
embedding vector dimension of size 250 through a linear layer, followed by the addition of a standard
positional encoder [64]; this is then fed into a transformer encoder layer, with a head size of 10,
dropout 0.1, and the output of this is then fed into a linear layer to reconstruct the next step ahead
state, of size of the state dimension. We train this model using the AdamW [32] optimizer with a
learning rate of 0.00005 and a step learning rate scheduler of step size 1.0 and gamma 0.95; we also
implement gradient clipping to 0.7, with a batch size of 1,000 and early stopping with a patience of
20, and train it for 2,000 epochs to ensure it converges.

RNN

Recurrent Neural Network [81] is a standard baseline that is widely used in autoregressive time series
next step ahead prediction. We implement this where the input dataset is normalized to the training
dataset. It consists of a gated recurrent unit RNN taking the state-action dimension in mapping it to
a hidden dimension of size 250, with two layers. The output is then fed to a linear layer to convert
the hidden dimension back to the state dimension to predict the next step ahead. To be competitive
we use the same objective, optimizer and same hyperparameters for the optimizer that we use in
HDTwinGen. That of an Adam optimizer [32], with a learning rate of 0.01, with a batch size of 1,000
and early stopping with a patience of 20, and train it for 2,000 epochs to ensure it converges.

SINDy

Sparse Identification of Nonlinear Dynamics (SINDy) [11], is a data-driven framework that aims
to discover the governing dynamical system equations directly from time-series data, discovering a
white-box closed-form mathematical model. The algorithm works by iteratively performing sparse
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regression on a library of candidate functions to identify the sparsest yet most accurate representation
of the dynamical system.

In our implementation, we use a polynomial library of order two, which is a feature library of
L = {1,z0,x1,x021 }. Finite difference approximations are used to compute time derivatives from
the input time-series data, of order one. Here the alpha parameter is kept constant at 0.5 across all
experiments, and the sparsity threshold is set to 0.02 for all experiments, apart from the COVID-19
dataset where it is set to 1 x 1072,

APHYNITY

APHYNITY [60] is implemented using domain-specific expert models as defined in Appendix
combined with a 3-layer MLP, with the same hyper-parameters as in [60].

GP

Genetic programming (GP) is implemented using the implementation and hyper-parameters from the
baseline in [82].

HDTwinGen

See the section Appendix E for the implementation details. Specifically, ZeroShot and ZeroOptim
are ablations of our method using the exact same setup, hyperparameters and prompts. Here ZeroShot
generates one HDTwin, and does not fit its parameters, thus evaluating the loss of the model output
directly from the LLM. Whereas ZeroOptim, repeats ZeroShot with the additional step of optimizing
the parameters of the HDTwin that was generated—again using the same training as detailed in
Appendix

E HDTwinGen Implementation Details

Our proposed method follows the framework as described in Section 4. We present pseudocode in
Appendix E.1, how the code-generated HDTwins are trained in Appendix E.2, prompt templates
in Appendix E.3, system requirements prompts in Appendix for each dataset, and we provide
examples of training runs in Appendix J. Specifically, we find a top-K, where K = 16 is sufficient.
Additionally, we use the LLM of GPT4-1106-Preview, with a temperature of 0.7.

E.1 HDTwin pseudocode

Algorithm 1 Pseudocode for Hybrid Digital Twin Generator Framework

1: Input: modeling context S<°™%!; training dataset Dy, validation dataset D,,, maximum
generations GG, top K programs to consider, R
Output: Best fitting hybrid model fg .,(g).
P+ 0,H«+0
for g = 1to G do
Jo,w@) ~ LLM poger (H, P9), Seonterty ( Generate HDTwin from modeling agent}
w(#)* = argmin,,g)cq@) L£(fo.w(6) Prain) {Fit the model}
Compute validation loss per component and overall §, v
Plotl)  plo) g (fo.w(6)=»9,v) {Add HDTwin to the set of top-K HDTwins}

H ~ LLMeyai(R, Pple )) { Generate self-reflection on how to improve the HDTwin. }
end for
Return: fy )~ {The best fitting model that scored the lowest validation loss}

TP XN

—_ =

E.2 Training HDTwins

Once the modeling agent has generated an HDTwin fy ,(g), it generates it as code. Specifically, it
outputs code for a PyTorch [31] neural network module, where this code string is executed, and
the module is then trained on the training dataset. The agent importantly observes a code skeleton
within its system requirements context S¢°"¢®t_ of which examples of such a skeleton are given
in Appendix E.4. However we stipulate that the skeleton must be a “torch.nn.Module”, be called
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“StateDifferential”, and the parameters must be initialized, and it must define a forward function
for computing the state differential of the state, where the state and action for that system are input
variables to the function. The LLM is instructed to not to modify the code skeleton, only complete it,
and return it. This makes it straightforward to process this from text, execute the module, and then
train the model.

Specifically, we train the model on the training dataset, using the standard MSE loss Equation (5),
optimizing using the Adam optimizer [32]. We use the same optimizer hyperparameters as the
black-box neural network method, that of a learning rate of 0.01, with a batch size of 1,000 and early
stopping with a patience of 20, and train it for 2,000 epochs to ensure it converges, to ensure fair
comparison.

Once the model is trained, we compute the val MSE and val MSE per component, which corresponds
to the val loss per state output dimension Equation (6). Notably, when we append the trained HDTwin
back into P, we include a string representation of it, which includes the values of any named
parameters that were initialized in the model. We observe that feeding in the previous optimized
parameters helps the LLM in subsequent generations to suggest good starting initial values for the
named parameters, from which they can be further refined with the optimization step.

E.3 HDTwinGen Prompt Templates

In the following we detail the prompt templates used. We always use the system prompt when
interacting with the LLM.

System prompt

Objective: Write code to create an effective differential equation simulator for a given task.
Please note that the code should be fully functional. No placeholders.

You must act autonomously and you will receive no human input at any stage. You have to return as output the complete code for
completing this task, and correctly improve the code to create the most accurate and realistic simulator possible.

You always write out the code contents. You always indent code with tabs.

You cannot visualize any graphical output. You exist within a machine. The code can include black box multi-layer perceptions where
required .

Use the functions provided. When calling functions only provide a RFC8259 compliant JSON request following this format without
deviation.

Defined function schema prompt
{

"name": "complete_StateDifferential_code",
"description": "Write out the code body for the ‘StateDifferential * torch model.",

"parameters "
"type": "object",
"properties ": {
"StateDifferential_code": {
"type": "string",
"description": 'Code for the ‘StateDifferential * torch model, inclusive of the model definition. If you are unsure,

take your best guess. This must be a nonempty string.’,
)

"code_description”

B

"type": "stri s
"description": 'A concise description of the code model, indicating if it is a white box only or white and black box
model . ",
}
}.
"required": ["StateDifferential_code", "code_description"],

Modeling agent first task prompt

You will get a system description to code a differential equation simulator for.

System Description:®**
{system_description }

Modelling goals:‘**
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:***
# The code generated should achieve the lowest possible validation loss, of le-10 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:®**
{skeleton_code }

Useful to know:*®**
# You are a code evolving machine, and you will be called {generations} times to generate code, and improve the code to achieve the
lowest possible validation loss.
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# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

# You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

# It is preferable to decompose the system into differential equations (compartments) if possible.

% You can use any unmary functions, for example log, exp. power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the code.

# The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further

best program iteration improvement with white box models.
# Make sure your code follows the exact code skeleton specification.
Use PyTorch.

*

Think step-by-step, and then give the complete full working code. You are generating code for iteration {current_iteration} out of {
generations }.

Reflection prompt

You generated the following code completions, which then had their parameters optimized to the training dataset. Please reflect on
how you can improve the code to minimize the validation loss to le-6 or less. The code examples are delineated by ###.

Here are your previous iterations the best programs generated. Use it to see if you have exhausted white box models, i.e. when a
white box model repeats with the same val loss and then only add black box models to the white box models: " "
{history_best_completions_str}

Here are the top code completions so far that you have generated, sorted for the lowest validation loss last:®‘*
{completions }

Please reflect on how you can improve the code to fit the dataset as accurately as possible, and be interpretable. Think step-by—
step. Provide only actionable feedback, that has direct changes to the code. Do not write out the code, only describe how it
can be improved. Where applicable use the values of the optimized parameters to reason how the code can be improved to fit
the dataset as accurately as possible. This is for generating new code for the next iteration {iteration} out of {self.config
.run.generations }.

Modeling agent in subsequent generations

Please now regenerate the code function, with the aim to improve the code to achieve a lower validation error. Use the feedback
where applicable. You are generating code for iteration {generation_id} out of {self.config.run.generations} total iterations
When generating code if you are unsure about something, take your best guess. You have to generate code, and cannot give an
empty string answer.

Please always only fill in the following code skeleton:*®*
{prompts. get_skeleton_code(self.env.env_name)}

You cannot change the code skeleton, or input variables.

E.4 HDTwinGen System Requirements Prompts

By following our proposed system requirements format, we constructed prompts for each of the
datasets that we evaluated against, which are listed in the following.

Lung Cancer (with Chemo. & Radio.)

You will get a system description to code a differential equation simulator for.

System Description:* "

Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-
Mathematical Model

Here you must model the state differential of tumor_volume, and chemotherapy_drug_concentration; with the input actions of
chemotherapy_dosage , and radiotherapy_dosage.

Description of the variables:

tumor_volume: Volume of the tumor with units cm”3

chemotherapy_drug_concentration: Concentration of the chemotherapy drug vinblastine with units mg/m*3
chemotherapy_dosage: Dosage of the chemotherapy drug vinblastine with units mg/m"3
radiotherapy_dosage: Dosage of the radiotherapy with units Gy

* % % %

The time units is in days.

Additionally these variables have the ranges of:
tumor_volume: [0.01433, 1170.861]
chemotherapy_drug_concentration: [0, 9.9975]
chemotherapy_dosage: [0, 5.0]
radiotherapy_dosage: [0, 2.0]

* % % %

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals:‘**
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:**
% The code generated should achieve the lowest possible validation loss, of le-6 or less.
# The code generated should be interpretable, and fit the dataset as accurately as possible.

Skeleton code to fill in:
class StateDifferential (nn.Module):
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def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:
# TODO: Fill in the code here
return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Useful to know:‘**

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to

%

%

define these.

It is preferable to decompose the system into differential equations (compartments) if possible.

You can use any unary functions, for example log, exp. power etc.

Under no circumstance can you change the skeleton code function definitions , only fill in the code.

The input tensors are vectors of shape (batch_size).

Use initially white box models first and then switch to hybrid white and black box models for the residuals, only after no further
best program iteration improvement with white box models.

Make sure your code follows the exact code skeleton specification.

Use PyTorch.

% % % %

Think step-by-step ., and then give the complete full working code. You are generating code for iteration 0 out of 20.

Lung Cancer (with Chemo.)
You will get a system description to code a differential equation simulator for.

System Description:**
Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-
Mathematical Model

Here you must model the state differential of tumor_volume, and chemotherapy_drug_concentration; with the input actions of
chemotherapy_dosage .

Description of the variables:
# tumor_volume: Volume of the tumor with units cm”3

# chemotherapy_drug_concentration: Concentration of the chemotherapy drug vinblastine with units mg/m"3
% chemotherapy_dosage: Dosage of the chemotherapy drug vinblastine with units mg/mA3

The time units is in days.

Additionally these variables have the ranges of:
# tumor_volume: [0.64196031, 1260.60290569]

% chemotherapy_drug_concentration: [0, 9.9975]
# chemotherapy_dosage: [0, 5.0]

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals:***
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:**
% The code generated should achieve the lowest possible validation loss, of le-6 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:**
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__ ()

# TODO: Fill in the code here

a
o
iy

forward (self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor]:

# TODO: Fill in the code here

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

Useful to know:*

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

*

# You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

# It is preferable to decompose the system into differential equations (compartments) if possible.

% You can use any unary functions, for example log, exp, power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the code.

+ The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further

best program iteration improvement with white box models.
# Make sure your code follows the exact code skeleton specification.
# Use PyTorch.

Think step-by-step, and then give the complete full working code. You are generating code for iteration 0 out of 20.

Lung Cancer

You will get a system description to code a differential equation simulator for.
System Description:**
Prediction of Treatment Response for Combined Chemo and Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-

Mathematical Model

Here you must model the state differential of tumor_volume. There are not treatments applied.
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Description of the variables:
# tumor_volume: Volume of the tumor with units cm"3

The time units is in days.

Additionally these variables have the ranges of:
# tumor_volume: [0.64196031, 4852.45734281]

The training dataset consists of 1000 patients , where each patient is observed for 60 days.

Modelling goals:‘**
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:***
# The code generated should achieve the lowest possible validation loss, of le-6 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:®**
class StateDifferential (nn.Module) :
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

def forward(self ., tumor_volume: torch.Tensor) —> Tuple[torch.Tensor]:
# TODO: Fill in the code here
return (d_tumor_volume__dt)

Useful to know:‘**

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

It is preferable to decompose the system into differential equations (compartments) if possible.

You can use any unary functions, for example log, exp, power etc.

Under no circumstance can you change the skeleton code function definitions , only fill in the code.

The input tensors are vectors of shape (batch_size).

Use initially white box models first and then switch to hybrid white and black box models for the residuals, only after no further
best program iteration improvement with white box models.

Make sure your code follows the exact code skeleton specification.

Use PyTorch.

* %

% % % %

Think step-by-step . and then give the complete full working code. You are generating code for iteration 0 out of 20.

Hare-Lynx

You will get a system description to code a differential equation simulator for.

System Description: ©**
"Modeling Di-Trophic Prey—-Predator Dynamics in a Hare and Lynx Ecological System

Here you must model the state differential of hare_population, and lynx_population: with the additional input of time_in_years. This
aims to simulate the population dynamics within a simplified di-trophic ecological system comprising prey (hares), and
predators (lynxes). The interactions include direct predation and competition for resources, mirroring natural predator-prey
mechanisms .

Description of the variables:
# hare_population: Annual count of hare pelts, serving as a proxy for the hare population size, in tens of thousands.
# lynx_population: Annual count of lynx pelts, serving as a proxy for the lynx population size, in tens of thousands.

The model should capture the dynamics of these populations, reflecting the di-trophic prey—predator interactions , and predict the
population sizes based on historical data. The data exhibits l10-year long characteristic oscillations due to prey-predator
dynamics .

Additionally these variables have the ranges of:
« hare_population: [1.80, 152.65]

« lynx_population: [3.19, 79.35]

« time_in_years: [1845, 1935]

The training dataset consists of 63 time steps, validation and training dataset consists of 14 time steps each.

Modelling goals:‘**
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
% The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:®**
# The code generated should achieve the lowest possible validation loss, of le-6 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

o
o

forward (self , hare_population: torch.Tensor, lynx_population: torch.Tensor, time_in_years: torch.Tensor) —> Tuple[torch.
Tensor, torch.Tensor]:

# TODO: Fill in the code here

return (d_hare_population__dt, d_lynx_population__dt)

Useful to know:

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

72194 https://doi.org/10.52202/079017-2304



# You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

# It is preferable to decompose the system into differential equations (compartments) if possible.

% You can use any unary functions, for example log, exp. power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the code.

# The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further

best program iteration improvement with white box models.
# Make sure your code follows the exact code skeleton specification.
# Use PyTorch.

Think step-by-step, and then give the complete full working code. You are generating code for iteration 0 out of 20.

.
Plankton Microcosm
You will get a system description to code a differential equation simulator for.

System Description: "
"Modeling Artificial Tri-Trophic Prey—Predator Oscillations in a Simplified Ecological System

Here you must model the state differential of algae_population, flagellate_population, and rotifer_population; with no input actions
This aims to simulate the population dynamics within a simplified tri—-trophic ecological system comprising prey (algae),
intermediate predators (flagellates), and top predators (rotifers). The interactions include direct predation and competition
for resources, mirroring natural intraguild predation mechanisms.

Description of the variables:

% prey_population: Total count of algae, serving as the primary prey

# intermediate_population: Total count of flagellates , acting as intermediate predators and prey
# top_predators_population: Total count of rotifers, representing top predators

The dataset encapsulates daily population counts across multiple simulated ccosystems over a period of 100 days, allowing for the
analysis of temporal oscillations and phase lags between species.

Additionally these variables have the ranges of:
+ prey_population: [0.095898, 2.469735]

# intermediate_population: [0.008438, 1.500000]
« top_predators_population: [0.030316, 0.739244]

The training dataset consists of 70 time steps, validation and training dataset consists of 15 time steps each.

Modelling goals:®**
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:**
# The code generated should achieve the lowest possible validation loss, of le-6 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__ ()

# TODO: Fill in the code here

a
o
-

forward (self , prey_population: torch.Tensor, intermediate_population: torch.Tensor, top_predators_population: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:

# TODO: Fill in the code here

return (d_prey_population__dt, d_intermediate_population__dt, d_top_predators_population__dt)

Useful to know:*

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

# The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

# You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

# It is preferable to decompose the system into differential equations (compartments) if possible.

# You can use any unary functions, for example log, exp, power etc.

# Under no circumstance can you change the skeleton code function definitions, only fill in the code.

+ The input tensors are vectors of shape (batch_size).

# Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further
best program iteration improvement with white box models.

# Make sure your code follows the exact code skeleton specification.

*

Use PyTorch.

Think step-by-step, and then give the complete full working code. You are generating code for iteration 0 out of 20.

COVID-19

You will get a system description to code a differential equation simulator for.

System Description:**
Prediction model of COVID-19 Epidemic Dynamics

Here you must model the state differential of susceptible, exposed, infected and recovered; with the input action of a constant
total_population. There are no interventions applied. Here the states are normalized ratios of the total fixed population.

Description of the variables:

# susceptible: Ratio of the population that is susceptible to the virus.

# exposed: Ratio of the population that is exposed to the virus, not yet infectious.

# infected: Ratio of the population that is actively carrying and transmitting the virus.

#« recovered: Ratio of the population that have recovered from the virus, including those who are deceased.
# total_population: Total population of the country, a constant.

The time units is in days.

Additionally these variables have the ranges of:
# susceptible: [0, 1]
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exposed: [0, 1]

infected: [0, 1]

recovered: [0, 1]
total_population: [10000, 10000]

The training dataset consists of 24 countries , where each country is observed for 60 days.

Modelling goals:***
« The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:®**
# The code generated should achieve the lowest possible validation loss, of le-10 or less.
# The code generated should be interpretable , and fit the dataset as accurately as possible.

Skeleton code to fill in:*‘*
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

o
o
i

forward (self , susceptible: torch.Tensor, exposed: torch.Tensor, infected: torch.Tensor, recovered: torch.Tensor,
total_population: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:

# TODO: Fill in the code here

return (d_susceptible__dt, d_exposed__dt, d_infected__dt, d_recovered__dt)

Useful to know:‘**

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

It is preferable to decompose the system into differential equations (compartments) if possible.

You can use any unary functions, for example log, exp., power ectc.

Under no circumstance can you change the skeleton code function definitions , only fill in the code.

The input tensors are vectors of shape (batch_size).

Use initially white box models first and then switch to hybrid white and black box models for the residuals , only after no further
best program iteration improvement with white box models.

Make sure your code follows the exact code skeleton specification.

Use PyTorch.

* %

T

Think step-by-step, and then give the complete full working code. You are generating code for iteration 0 out of 20.

F Model Optimization Losses

We consider the optimization loss of mean squared error on a dataset D and also consider a higher
fidelity mean squared error loss per component.

MSE Loss. Specifically, we optimize the following mean squared error objective,

N T

1
L0.D) = 77 2 2 Mooy (@) (1.0 (1), 1) At =y (1) ®)

n=113=0

where N x T is the total number of state-action pairs in the dataset. For a given model find the
parameters 0* that minimize this loss, i.e. 8* = argming £(6, Dyain). Here we optimize 6 by
stochastic gradient descent, using the Adam optimizer [32], however, we note other optimization
algorithms could also be used such as black box optimizers.

MSE Loss per component. We seek to collect detailed quantitative statistics on how well the
generated trained system model performs. Therefore, we collect the validation loss per component.
Here, we use (/) to indicate the predictions for the j*" component.

Nval Tvgl
* 1 j n n n 2
win (0%, Dya) = WZZ (f57) ) @ (1), ul™ (8), ) At — ™ (2,)) ©)
v n=1i=0

and collect these scalar validation losses per component into a vector w = [w1,wa, .. .,wy], and
compute its mean as v = L Z;":l w;(0*, Dya) i.e. the validation loss.

G Evaluation Metrics

We employ mean squared error (MSE) to evaluate the benchmark methods on a held-out test dataset
of state-action trajectories, denoted as Dy, using the loss defined in Equation (5) and report this
as Tarse. Bach metric is averaged over ten runs with different random seeds, and we present these
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averages along with their 95% mean confidence intervals’. For each random seed run, we generate a
new train, validation and test dataset independently, when we have access to a simulator. Additionally,
when sampling a dataset from a simulator, we collect datasets of the same number of trajectories for
the validation and test set as was used to generate the training set. We then train each baseline on the
training dataset and use the validation dataset for early stopping when the method supports this. We
then evaluate the performance of each baseline on the test dataset. We repeat this process for each
random seed run. We perform all experiments and training using a single Intel Core i9-12900K CPU
@ 3.20GHz, 64GB RAM with an Nvidia RTX3090 GPU 24GB.

H Additional Results

H.1 Out-of-distribution Experiment and Setup

To explore the out-of-distribution shifts, we adapt the Lung Cancer (with Chemo. & Radio.) simulator
to have a training dataset of tumor volumes in a range that is outside of the tumor volume range
within the test set over all trajectories. To do this we sampled a training dataset, with starting state
tumor volumes sampled from = ~ U/(0,574) and then collected 1, 000 trajectories for 60 time steps.
We then sampled a test dataset out of distribution from that seen in training, with a starting initial state
of © ~ U(804,1149). To ensure that the test state-action states are completely out of the training
distribution we slowed down the time interval of the simulator to that of per hour, rather than day,
i.e., simulating at At = 2—14 rather than At = 1 day resolution. We then also verified that the range of
cancer volumes seen within the test set do not overlap at all with those in the training set, especially
throughout and at the end of the trajectory.

H.2 COVID-19 Unobserved Intervention Experiment and Setup

To assess whether HDTwinGen can understand and modify its HDTwin, we setup an experiment
to see if the modeling agent can adapt an already optimized and best-discovered HDTwin for an
unobserved intervention, that is a change of the true system state function dynamics, that are latent.

We constructed a scenario with our COVID-19 simulator, to have a realistic intervention of a
lockdown policy, which reduces the physical distance of individuals to one another. In COVASIM we
implemented this, where this happens at day 19, dramatically altering how the COVASIM simulator
behaves after the intervention is applied. This is known to reduce the effective contact rate
parameter in an SEIR model [83], for the intervention this approximately corresponds to the (3
parameter reducing its value by 75% after the lockdown intervention is applied. Importantly we now
sampled a training dataset, and validation dataset from the simulator for before the intervention was
applied, and only sampled a test dataset after the intervention was applied.

We took the best-found trained HDTwin model for COVID-19, itself created a HDTwin model that
is an SEIR model with black-box residual components, as seen in Appendix I. The agent then was
specifically instructed to attempt to adapt this HDTwin model to this unobserved intervention, that
was purely described in words. The LLM was able to reason about it, and similarly decreased the
HDTwin models internal 3 parameter by approximately 70%, leading to un-observed modelling of
such an intervention, when rolling out from the current state, from day 19. This shows the utility of
such a hybrid DT framework. Interestingly, the competing methods, such as the black-box method,
DyNODE and SINDy incorrectly continue the expected trajectory as they are unaware that the
underlying system has been intervened on, and its behavior is now different from what they have
learnt to optimize to.

H.3 HDTwinGen top-1 decreases over time

We observe in Figure 0, that averaged over 10 random seed runs, the top-K, specifically the top-K
HDTwin found at each iteration step decreases, implying on average the HDTwin improves in the
iteration loop in the beginning stages.

"We use the code at https://stackoverflow.com/questions/15033511/
compute-a-confidence-interval-from-sample-data to compute these
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Figure 6: Average evolution over generations for HDTwinGen—for the Lung Cancer (with Chemo.
& Radio.)

H.4 HDTwinGen Evolution

Here we list out the specific HDTwins that have been generated at generation steps and are labeled in
Figure 3.

Iteration 1. Val Loss: 4.414876937866211 Description: White box only.

Val Loss: 4.41 (Where the val loss per dimension is tumor_volume val loss: 2.77, chemotherapy_drug_concentration val loss: 6.06)
Iteration: 1
##

import torch
import torch.nn as nn
from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# Parameters for the tumor growth model
self.alpha = nn.Parameter(torch.tensor(0.1)) # Tumor growth rate
self.beta nn. Parameter (torch.tensor (0.05)) # Tumor death rate due to chemotherapy
self .gamma = nn.Parameter (torch.tensor(0.03)) # Tumor death rate due to radiotherapy

def forward(self ., tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:
# Tumor volume change rate
d_tumor_volume__dt = self.alpha * tumor_volume - self.beta % chemotherapy_drug_concentration = tumor_volume - self.gamma
radiotherapy_dosage * tumor_volume

# Chemotherapy drug concentration change rate
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage - chemotherapy_drug_concentration # Assuming a simple model
where the drug is administered and then decays

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters = { alpha’: 0.04550161585211754, ’beta’: 0.02731170691549778, ’gamma’: 0.0489218533039093}
##

Iteration 2. Val Loss: 4.233582019805908 Description: White box model with logistic growth for
tumor volume and decay rate for chemotherapy drug concentration.

Val Loss: 4.23 (Where the val loss per dimension is tumor_volume val loss: 8.47, chemotherapy_drug_concentration val loss: 8.95e-14)
Iteration: 2
#i#HH

import torch
import torch.nn as nn
from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):

super(StateDifferential , self).__init__()
# Parameters for the tumor growth model
self.alpha = nn.Parameter(torch.tensor(0.1)) # Tumor growth rate
self.beta = nn.Parameter(torch.tensor(0.05)) # Tumor death rate due to chemotherapy
self.gamma = nn.Parameter(torch.tensor(0.03)) # Tumor death rate due to radiotherapy
self.kappa = nn.Parameter(torch.tensor (1000.0)) # Carrying capacity of the environment
self.delta = nn.Parameter(torch.tensor(0.01)) # Decay rate of the chemotherapy drug

def forward(self ., tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:
# Logistic growth model for tumor volume
d_tumor_volume__dt = self.alpha * tumor_volume * (1 — tumor_volume / self.kappa) — self.beta =
chemotherapy_drug_concentration * tumor_volume — self.gamma = radiotherapy_dosage % tumor_volume

# Chemotherapy drug concentration change rate with decay
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage — self.delta * chemotherapy_drug_concentration

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters = {’alpha’: 0.05583872273564339, ’beta’: 0.026076778769493103, 'gamma’: 0.037345148622989655, ’kappa’:
1015.9735107421875, “delta *: 0.5000000596046448}
#i#H#
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Iteration 3. Val Loss: 2.902040958404541 Description: White box model with logistic growth for tu-
mor volume, interaction term for combined therapy effect, and bi-exponential decay for chemotherapy
drug concentration.

Val Loss: 2.9 (Where the val loss per dimension is tumor_volume val loss: 5.36, chemotherapy_drug_concentration val loss: 0.448)
Tteration: 3

#iH#

import torch

import torch.nn as nn

from typing import Tuple

class StateDifferential (nn.Module) :
def __init__(self):

super(StateDifferential , self).__init__()
# Parameters for the tumor growth model
self.alpha = nn.Parameter(torch.tensor(0.05583872273564339)) # Tumor growth rate
self .beta = nn.Parameter(torch.tensor(0.026076778769493103)) # Tumor death rate due to chemotherapy
self .gamma = nn.Parameter(torch.tensor(0.037345148622989655)) # Tumor death rate due to radiotherapy
self . kappa = nn.Parameter(torch.tensor(1015.9735107421875)) # Carrying capacity of the environment
self.delta = nn.Parameter(torch.tensor(0.5000000596046448)) # Decay rate of the chemotherapy drug
self.eta = nn.Parameter(torch.tensor(0.01)) # Interaction term between chemotherapy and radiotherapy

a
°
iy

forward (self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:
# Logistic growth model for tumor volume with interaction term
d_tumor_volume__dt = self.alpha * tumor_volume % (1 — tumor_volume / self.kappa) — self.beta *
chemotherapy_drug_concentration % tumor_volume — self.gamma = radiotherapy_dosage * tumor_volume — self.eta =
chemotherapy_drug_concentration * radiotherapy_dosage # tumor_volume

# Bi—exponential decay model for chemotherapy drug concentration
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage — self.delta = chemotherapy_drug_concentration=2

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters = {’alpha’: 0.0490952804684639, ’beta’: 0.023840805515646935, 'gamma’: 0.03170385956764221, ’'kappa’:
1032.3638916015625, “delta ’: 0.06566499918699265, ’cta 0.002417867537587881}

#i#t#

Iteration 4: Val loss: 1.2533262968063354 Description: White and black box model with logistic
growth for tumor volume, Michaelis-Menten saturation for chemotherapy effect, sigmoid function
for radiotherapy effect, resistance development, and a black box MLP for residuals.

Val Loss: 1.25 (Where the val loss per dimension is tumor_volume val loss: 2.49, chemotherapy_drug_concentration val loss: 0.0203)
Tteration: 4

#iHH

import torch

import torch.nn as nn

from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):

super(StateDifferential , self).__init__()
# Parameters for the tumor growth model
self.alpha = nn.Parameter(torch.tensor(0.0490952804684639)) # Tumor growth rate
self . beta nn. Parameter (torch.tensor(0.023840805515646935)) # Tumor death rate due to chemotherapy
self .gamma = nn.Parameter(torch.tensor(0.03170385956764221)) # Tumor death rate due to radiotherapy
self . kappa = nn.Parameter(torch.tensor(1032.3638916015625)) # Carrying capacity of the environment
self.delta = nn.Parameter(torch.tensor(0.06566499918699265)) # Decay rate of the chemotherapy drug
self .eta = nn.Parameter (torch.tensor(0.002417867537587881)) # Interaction term between chemotherapy and radiotherapy
self.theta = nn.Parameter(torch.tensor(0.5)) # Michaelis—Menten saturation constant for chemotherapy
self.rho = nn.Parameter(torch.tensor(0.5)) # Sigmoid steepness for radiotherapy effect
self.zeta = nn.Parameter(torch.tensor(0.1)) # Resistance development rate

# Black box component for capturing residuals
self.residual_mlp = nn.Sequential(

nn. Linear (4, 10),

nn.ReLU() ,

nn. Linear (10, 2)
)

a
o
iy

forward (self , tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:
# Logistic growth model for tumor volume with interaction term and resistance

resistance = 1 + self.zeta % tumor_volume

d_tumor_volume__dt = self.alpha * tumor_volume * (1 — tumor_volume / self.kappa) — (self.beta *
chemotherapy_drug_concentration # tumor_volume) / (self.theta + chemotherapy_drug_concentration) - self.gamma =
radiotherapy_dosage = tumor_volume / (1 + torch.exp(—self.rho * (radiotherapy_dosage — 1))) — self.cta =

chemotherapy_drug_concentration  radiotherapy_dosage * tumor_volume / resistance

# Bi—exponential decay model for chemotherapy drug concentration
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage — self.delta = chemotherapy_drug_concentration=2

# Black box residual component
residuals = self.residual_mlp (torch.stack ((tumor_volume, chemotherapy_drug_concentration, chemotherapy_dosage ,
radiotherapy_dosage), dim=1))

# Combine white box model with residuals
d_tumor_volume__dt += residuals 0]
d_chemotherapy_drug_concentration__dt += residuals[:, 1]

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)
optimized_parameters = { alpha’: 0.029592309147119522, “beta ’: 0.27041515707969666, 'gamma’: 0.08552337437868118, 'kappa:
1032.418701171875, ’delta ’: 0.03764118626713753, ’eta’: 0.037968311458826065, ’theta ’: 5.688083648681641, 'rho’:
0.444132924079895, “zeta ': 0.1205417588353157}
H##H
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Iteration 5. Val loss: 0.1756206750869751 Description: White and black box model with dynamic
carrying capacity and decay rate, enhanced interaction term, and an expanded black box MLP for

residuals.

Val Loss: 0.176 (Where the val loss per dimension is tumor_volume val loss: 0.335,
Tteration: 5

#i#HH

import torch

import torch.nn as nn
from typing import Tuple

chemotherapy_drug_concentration val

loss:

0.0163)

to chemotherapy
rate due to radiotherapy

capacity based on treatment
rate of the chemotherapy drug

term between chemotherapy and radiotherapy
constant
for radiotherapy
rate

for chemotherapy
effect

class StateDifferential (nn.Module):
def __init__(self):
super (StateDifferential , self).__init__()
# Parameters for the tumor growth model
self.alpha = nn.Parameter(torch.tensor(0.029592309147119522)) # Tumor growth rate
self.beta = nn.Parameter(torch.tensor(0.27041515707969666)) # Tumor death rate due
self .gamma = nn.Parameter(torch.tensor(0.08552337437868118)) # Tumor death
self . kappa_base = nn.Parameter(torch.tensor(1032.418701171875)) # Base carrying capacity of the environment
self .kappa_mod = nn.Parameter(torch.tensor(0.1)) # Modifier for carrying
self.delta_base = nn.Parameter(torch.tensor(0.03764118626713753)) # Base decay
self.delta_mod = nn.Parameter(torch.tensor(0.1)) # Modifier for decay rate based on tumor volume
self.eta = nn.Parameter(torch.tensor(0.037968311458826065)) # Interaction
self . theta = nn.Parameter(torch.tensor(5.688083648681641)) # Michaelis—Menten saturation
self.rho nn.Parameter (torch.tensor(0.444132924079895)) # Sigmoid steepness
self.zeta = nn.Parameter(torch.tensor(0.1205417588353157)) # Resistance development
# Black box component for capturing residuals
self .residual_mlp = nn.Sequential(
nn. Linear (4, 20),
nn.ReLU() ,
nn.Linear (20, 20),
nn.ReLU() ,
nn. Linear (20, 2)
)
def forward(self ., tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor,

radiotherapy_dosage:
# Adjusted carrying
kappa =

torch.Tensor) —> Tuple[torch.Tensor,
capacity based on treatment
self.kappa_base + self.kappa_mod =

torch.Tensor]:

# Adjusted decay rate based on tumor volume

(chemotherapy_dosage + radiotherapy_dosage)

chemotherapy_dosage:

torch . Tensor,

delta = self.delta_base + self.delta_mod * tumor_volume

# Logistic growth model for tumor volume with interaction term and resistance

resistance = 1 + self.zeta % tumor_volume

d_tumor_volume__dt = self.alpha * tumor_volume * (1 — tumor_volume / kappa) — (self.beta % chemotherapy_drug_concentration =
tumor_volume) / (self.theta + chemotherapy_drug_concentration) — self.gamma # radiotherapy_dosage * tumor_volume /
(1 + torch.exp(-self.rho * (radiotherapy_dosage — 1))) — self.eta * chemotherapy_drug_concentration =

radiotherapy_dosage * tumor_volume / resistance
# Non-linear decay model for chemotherapy drug concentration

d_chemotherapy_drug_concentration__dt =

# Black box residual component
residuals = self.residual_mlp (torch.stack ((tumor_volume ,
radiotherapy_dosage), dim=1))

# Combine white box model with residuals
d_tumor_volume__dt += residuals[:, 0]
d_chemotherapy_drug_concentration__dt += residuals|[:,

1]

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters = (’alpha
1031.5604248046875, "kappa_mod ’:
‘eta’: 0.0037569233682006598,

’: 0.02282065525650978, ’beta ': 0.343279629945755,
—-2.13154935836792, ’delta_base ’
“theta ': 8.673722267150879, ’rho ":

’gamma’ :

0.37428149580955505,
i

chemotherapy_drug_concentration ,

-0.02879924327135086,

chemotherapy_dosage - delta * torch.pow(chemotherapy_drug_concentration ,

0.08097328990697861 ,
*delta_mod
‘zeta '

1.5)

chemotherapy_dosage ,

‘kappa_base ’
0.00033023624564521015,
0.156700998544693}

Iteration 12. Val loss: 0.07228073477745056 Description: White and black box model with logistic
growth for tumor volume, Michaelis-Menten saturation for chemotherapy effect, sigmoid function
for radiotherapy effect, resistance development, and a simplified black box MLP for residuals.

Val Loss: 0.0723 (Where the val loss per dimension is tumor_volume val loss: 0.133,
Iteration: 11
H##H#
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential . self).__init__()
# Parameters for the tumor growth model
self .alpha = nn.Parameter(torch.tensor(0.03)) # Tumor growth rate
self.beta = nn.Parameter(torch.tensor (0.4)) # Tumor death rate due to chemotherapy
self .gamma = nn.Parameter(torch.tensor(0.08)) # Tumor death rate due to radiotherapy
self.kappa_base = nn.Parameter(torch.tensor(1030.0)) # Base carrying
self .kappa_mod = nn.Parameter(torch.tensor(-2.0)) # Modifier for

chemotherapy_drug_concentration val

loss:

0.012)

capacity of the environment
carrying capacity based on treatment

rate based on tumor volume

for chemotherapy

self.delta_base = nn.Parameter(torch.tensor(0.1)) # Base decay rate of the chemotherapy drug
self.delta_mod = nn.Parameter (torch.tensor (0.0003)) # Modifier for decay

self.eta = nn.Parameter(torch.tensor(0.004)) # Interaction term between chemotherapy and radiotherapy
self.theta = nn.Parameter(torch.tensor(10.0)) # Michaelis —Menten saturation constant

self .rho = nn.Parameter(torch.tensor(0.3)) # Sigmoid steepness for radiotherapy effect

self.zeta = nn.Parameter(torch.tensor(0.15)) # Resistance development rate

# Black box component for capturing
self.residual_mlp = nn.Sequential(
nn.Linear (4, 16),
nn . LeakyReLU (0.1) ,
.Linear (16, 8),
_LeakyReLU (0.1) ,
.Linear (8, 2)

residuals

55

n

=l

n

1

n

=
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def forward(self, tumor_volume: torch.Tensor, chemotherapy_drug_concentration: torch.Tensor, chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor]:
# Adjusted carrying capacity based on treatment
kappa = self.kappa_base + self.kappa_mod % (chemotherapy_dosage + radiotherapy_dosage)

# Adjusted decay rate based on tumor volume
delta = self.delta_base + self.delta_mod * tumor_volume

# Logistic growth model for tumor volume with interaction term and resistance

resistance = 1 + self.zeta % tumor_volume

d_tumor_volume__dt = self.alpha % tumor_volume # (1 — tumor_volume / kappa) — (self.beta % chemotherapy_drug_concentration =
tumor_volume) / (self.theta + chemotherapy_drug_concentration) — self.gamma % radiotherapy_dosage # tumor_volume /
(1 + torch.exp(-self.rho * (radiotherapy_dosage — 1))) - self.eta * chemotherapy_drug_concentration =
radiotherapy_dosage # tumor_volume / resistance

# Non-linear decay model for chemotherapy drug concentration
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage — delta * torch.pow(chemotherapy_drug_concentration , 1.5)

# Black box residual component

residuals = self.residual_mlp (torch.stack ((tumor_volume, chemotherapy_drug_concentration , chemotherapy_dosage .
radiotherapy_dosage), dim=1))

# Combine white box model with residuals

d_tumor_volume__dt += residuals[:, 0]

d_chemotherapy_drug_concentration__dt += residuals[:, 1]

return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

optimized_parameters = { alpha’: 0.016903197392821312, ’beta’: 0.5582640171051025, ’gamma’: 0.08495774865150452, ’kappa_base ":

1029.802490234375, “kappa_mod ’: -2.4545891284942627, ’'delta_base ': 0.12832798063755035, ’delta_mod ’: -3.1435782148037106e-05,
Teta ’: 0.006932476069778204, ’theta *: 13.699580192565918, ’rho’: 0.24815633893013, 'zeta ': 0.13727830350399017}
H##HH#

H.5 HDTwinGen Ablation No Memory

Ablation Study. We also ablate HDTwin by removing its memory, only keeping the last hybrid
model it generated. We observe decreased performance as shown in Table

Table 4: HDTwinGen Ablation
Lung Cancer
(with Chemo. & Radio.)

Method Tuse |
HDTwinGen 0.0889£0.0453
HDTwinGen-no-memory 17.6+215

H.6 Evaluating Different LLMs

We performed a complete re-run of our main experiments under the same settings, now using a
different LLM within our HDTwinGen framework, GPT-3.5. These new results are included in
Table 5. HDTwinGen can operate fully with a less capable LLM model. However, the generated and
discovered models’ performance correlates to the underlying LLM model’s performance as expected.

Table 5: Ablation of using different LLMs. Test MSE (7;/55) averaged over ten random seeds.
HDTwinGen is capable of using other LLM models, however, the best performance results are
provided with better-performing LLMs (e.g. GPT-4). The results are presented with + indicating
95% confidence intervals.

Lung Cancer Lung Cancer (with Chemo.) | Lung Cancer (with Chemo. & Radio.) | Hare-Lynx | Plankton Microcosm | COVID-19
Method Tuse L Tuse L Tuse L Tuse L Tuse L Tuse L
HDTwinGen (GPT-3.5) | 2.89¢ + 03 £ 6.17¢ + 03 151 £57.8 46.4£52.1 298 £19.2 [ 0.0007 & 0.000233 56 £ 28.2
HDTwinGen (GPT-4) 4.41 + 8.07 0.0889 + 0.0453 0.131 + 0.198 291 + 30.3 | 2.51e-06 + 2.2¢-06 | 1.72 + 2.28

We also explored the effect of changing the LLMs underlying temperature hyperparameter, here using
GPT-4, varying the temperature from 0, 0.7 to 2.0, where we used 0.7 throughout all our experiments
(Appendix E). As outlined in Table 6, we observe that HDTwinGen is still able to operate with a
different underlying temperature of the LLM.

H.7 Prompt Ablations with Varying Amounts of Prior Information
We conducted a complete re-run of our main experiments, ablating the prompt, which provides the

prior information in the form of a textual prior to HDTwinGen. We provide the ablation results
in Table 7. Specifically the prompt as outlined in Appendix E is structured to include separately a
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Table 6: Ablation of varying the LLMs temperature. HDTwinGen can still operate with different
LLM temperatures. Reporting the test prediction MSE (735 g) averaged over ten random seeds.

Lung Cancer | Lung Cancer (with Chemo.) | Lung Cancer (with Chemo. & Radio.) | Hare-Lynx | Plankton Microcosm | COVID-19
Method Tuse L Tuse L Tuse 4 Tuse 4 Tuse 4 Tuse 4
HDTwinGen (Temp 0.0) | 8.84£17.8 0.353£0.936 0.414£1.12 258+32.9 | 4.06e-05£0.000102 | 0.0461+2.37
HDTwinGen (Temp 0.7) | 4.41+8.07 0.0889+0.0453 0.131+0.198 291+30.3 2.51e-06+2.2¢-06 1.724£2.28
HDTwinGen (Temp 2.0) 1.054+2.27 0.548+0.698 8.434+26.4 249453 2.32e-06+3.26e-06 | 0.0447+3.95

{system description}, {skeleton code}, and {useful to know} components. Here, prior
information is conveyed through the {system description}, which describes the system to be
modeled, its features, and their ranges; minor system prior information is also conveyed through
the {skeleton code}l, as this includes task-specific feature names as input variables. The other
components of the prompt (e.g. {useful to knowl}), do not include any task-specific information,
and are there to provide general instructions to make the framework work, such as generate a pytorch
model as code in the response.

We ablate these components of the prompt, first by removing the task-specific prior
{system description} labeled HDTwinGen (Partial Context); second, by removing all task-
specific priors removing both {system description} and {skeleton code} (where we change
the feature names to meaningless names such as x1, x2, etc.) labeled HDTwinGen (No Context);
third, by removing only the {useful to know} information that helps the framework, such as
instructions to decompose the system, and or combine white-box models with black-box models for
the white-box model residuals, labeled HDTwinGen (No Instructions). We observe in the tabulated
results (Table 7) that HDTwinGen can still operate without any task-specific prior information,
however having textual prior aids in generating better-performing models, and partially removing
HDTwinGen operation instructions, makes it generate slightly less good models.

Table 7: Prompt Ablations with Varying Amounts of Prior Information. Test MSE Tj;sg
averaged over ten random seeds. HDTwinGen can still operate without any task-specific prior
information, however having textual prior aids in generating better-performing models. The results
are averaged over ten random seeds, with + indicating 95% confidence intervals.

Lung Cancer | Lung Cancer (with Chemo.) | Lung Cancer (with Chemo. & Radio.) | Hare-Lynx | Plankton Microcosm COVID-19
Method Tuse L Tuse L Tuse L Tuse L Tuse L Tuse L
HDTwinGen (Partial Context) 6.77+6.4 0.601+1.83 0.061+0.159 277+54.3 3.9e-061+8.87e-06 231424
HDTwinGen (No Context) 30.3450.3 2.57+2.44 1.524+1.98 2974519 | 6.91e-06+4.11e-06 | 5.12e+10+1.31e+11
HDTwinGen (No Instructions) | 2.31+2.78 0.0933+0.287 0.21240.0487 313+63.1 0.00160.00407 17.3+47.7
HDTwinGen 4.41:8.07 0.0889-£0.0453 0.131£0.198 291+30.3 | 2.51e-0612.2¢-06 1.72+2.28

H.8 Domain-Specific Baselines

We performed a complete re-run of our main datasets using domain-specific white-box baselines, as
determined by a human expert, as shown in Table 8. Specifically, for COVID-19 modeling, we fit
a SEIR model [84], a Lotka—Volterra model for predator-prey population dynamics (Hare-Lynx &
Plankton Microcosm datasets) [85], and a logistic tumor growth model with chemo. & radio. effects
modeling. HDTwinGen still models the system most accurately, achieving the lowest test prediction
MSE on the held-out test dataset of state-action trajectories.

SEIR Model for COVID-19 Modeling. The SEIR model is a compartmental model used in
epidemiology to simulate how a disease spreads through a population. It divides the population into
four compartments: susceptible (S), exposed (E), infectious (I), and recovered (R). The transitions
between these compartments are governed by the following differential equations:

PN b
%zoE—’yI,
%=vl,
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Table 8: Table 5. (Test MSE 7,5 averaged over ten random seeds)

Method Lung Cancer Lung Cancer (with Chemo.) Lung Cancer (with Chemo. & Radio.) Hare-Lynx Plankton Microcosm COVID-19
Domain Specific Baselines Description | Logistic Tumor Growth | Logistic Tumor Growth (with Chemo.) | Logistic Tumor Growth (with Chemo. & Radio.) | Lotka—Volterra | Multi-species Lotka—Volterra SEIR
Domain Specific Baselines 904162 200+71.1 6.39-£0.637 346+6.7 0.0127+0.00203 7.88+0.046
HDTwinGen 4.41+8.07 0.0889-£0.0453 0.131+£0.198 291+30.3 2.51e-06+2.2¢-06 1.7242.28

where NV is the total population (assumed constant), /3 is the transmission rate, o is the rate at which
exposed individuals become infectious, and  is the recovery rate. These parameters are crucial for
capturing the dynamics of the disease spread and are estimated from data or literature.

Lotka-Volterra Model for Predator-Prey Dynamics. The Lotka-Volterra model describes the
dynamics of biological systems in which two species interact, one as a predator and the other as prey.
The model is represented by a set of first-order, non-linear, differential equations:

dzx

= aw — fay,
Y s
dat Y=Y,

where x and y represent the prey and predator populations, respectively. The parameters «, /3, v, and
0 denote the prey reproduction rate, the predation rate upon the prey, the predator mortality rate, and
the rate at which predators increase by consuming prey, respectively.

Lotka-Volterra Triple Species Model. The extended Lotka-Volterra model incorporating a third
species involves additional interactions that can represent various ecological relationships such as
competition, predation, or mutualism. For the sake of illustration, let’s consider a system with two
predators and one prey. The model is described by the following set of differential equations:

dzr

T =z(a— By — 02),
Y~ g+ ),
& a(ptw),

where: x represents the prey population. y and z represent the two predator populations. « is the
natural growth rate of the prey in the absence of predation. /5 and § are the predation rates of the first
and second predators on the prey, respectively. v and u are the natural death rates of the first and
second predators, respectively, in the absence of the prey. € and v are the growth rates of the first and
second predators per unit of prey consumed.

Logistic Tumor Growth Model with Treatment Effects. The logistic tumor growth model with
chemotherapy and radiotherapy effects incorporates the logistic growth model’s capacity to simulate
the saturation effect observed in tumor growth, alongside treatment effects. The model can be
described as:

NN <1 _ g) ~ C(N) = R(N),

where N is the tumor cell population, r is the intrinsic growth rate of the tumor, and K is the carrying
capacity of the environment. C(N) and R(N) represent the effects of chemotherapy and radiotherapy
on the tumor cell population, respectively. These treatment functions are often modeled based on
dose-response curves and can vary depending on the specific drugs and radiation doses used.

H.9 Procedurally Generated Synthetic Model Benchmark

We performed a complete re-run of our main baselines on a new entirely procedurally generated
synthetic model benchmark. Specifically, by procedurally generating synthetic models, this allows us
to test how HDTwinGen performs when the LLM has never seen such a model. To create diverse
synthetic models, we modified the structure of underlying cancer with chemo and radio models to
incorporate non-biological random modifications, which include the use of trigonometric operators
and division operators. In the following, we provide the exact changes made and the structure of the
underlying equation.
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Synthetic 1 (inc. v sin(wt)). Here the underlying equation is

dz(t)
dt

= (plo

Synthetic 2 (inc. —61(t))

x(t)

Synthetic 3 (inc. log(m))

dx(t)
dt

Synthetic 4 (inc. € cos(¢t))

dx(t)
dt

x(t)

Synthetic 5 (inc. 6C(t)d(t))

‘We observe in the tabulated results in Table

well.

dx(t)
dt

a(t)

K 9 .
0 () ~ BC(8) — (and(t) + Bod()?) + vsm(wt)) ()

— (p log (x(t)fN(t)) — B.C(t) — (apd(t) + Brd(t)2)> z(t)
= (o10x (757 ) = A:Cl0) — (avdt) 4 B + ccos(on) ) ()

= (108 (5757 ) = CO) = (ardl0) + o0 ~ 601 ) ()

that HDTwinGen can still generate models that perform

Table 9: Procedurally Generated Synthetic Model Benchmark. Test MSE Tj,s g averaged over
ten random seeds. Reporting the test prediction MSE (7s5g) of the produced system models on
held-out test datasets across all synthetic datasets. HDTwinGen achieves the lowest test prediction
error. The results are averaged over ten random seeds, with + indicating 95% confidence intervals.

Synthetic 1 (inc. ysin(wt)) | Synthetic 2 (inc. —1(¢)) | Synthetic 3 (inc. log(m)) Synthetic 4 (inc. e cos(¢t)) | Synthetic 5 (inc. 0C(t)d(t))
Method Tuse | Tuse | Tuse | Tuse | Tuse |
DyNODE 65.945.82 17.6+15.3 12.845.32 63+4.28 15.1+8.64
SINDy 69+1.87 16.2+0.972 13.740.574 68.4+1.45 14.240.598
ZeroShot 6.05e+03+3.77e+03 1.18e+04+2.25e+04 6e+0314.16e+03 3.86e+03+3.73e+03 4.56e+03+3.84e+03
ZeroOptim 56.2+£1.96 14.5+1.17 1.82+0.774 56.9+1.82 3.07+£1.11
HDTwinGen 54.242.55 0.0707+0.113 0.245+0.377 54.8+1.98 0.0683-0.0464

H.10 Interpretability Scale, Performance of only White-Box Models

To investigate questions, of how well do the white-box models that HDTwinGen generates perform,
we explore an ablation of HDTwinGen where we constrain the generated models to be white-box
only, i.e., a mathematical equation with no black-box neural network components. We tabulate this
in Table 10, and observe that even when HDTwinGen is constrained to only generate white-box
models (HDTwinGen (Only White-Box)) it still performs acceptably, indicating that the white-box
generated models are modeling well the underlying system when fitted to the dataset.

Table 10: Interpretability Scale, Performance of only White-Box Models. Reporting the test
prediction MSE (735 k) of the produced system models on held-out test datasets across all benchmark
datasets. The results are averaged over ten random seeds, with + indicating 95% confidence intervals.

Lung Cancer | Lung Cancer (with Chemo.) | Lung Cancer (with Chemo. & Radio.) | Hare-Lynx | Plankton Microcosm | COVID-19
Method Tuse L Tuse 4 Tuse L Tuse L MSE L Tuse |
HDTwinGen (Only White-Box) 59.4£101 48+11.8 2.4242.02 337£25.4 | 0.000111+0.000125 | 5.92+1.17
HDTwinGen (White-Box & Black-box residuals) | 4.41+8.07 0.0889+0.0453 0.131-+0.198 291+30.3 2.51e-06+2.2e-06 1.72+2.28

H.11 HDTwinGen Flexibly Integrates Expert-in-the-loop Feedback

Experts play an active role in model development in two main ways:
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1. Imitial prompt. Experts can describe the system, and specify modeling goals and task-
specific requirements through S<°"t¢%t (Appendix E).

2. Direct model feedback. In each iteration of HDTwinGen, the expert can provide direct
feedback through H to guide model improvement.

To further demonstrate the flexibility of expert involvement in the modeling process, we supply two
additional experiments:

1. Expert specifies instructions to produce a fully white-box model through S¢°"*¢* which is
provided in Appendix

2. Expert provides specific feedback on model improvement during the development process
through H. We performed this experiment by stopping HDTwinGen during its iterations,
providing human expert targeted feedback, and then observing if the subsequent model
generated was able to incorporate the feedback by making targeted changes to the underlying
model. We confirm that this is the case and provide insight that the underlying LLM is able
to interpret the HDTwin code model and selectively change parts. We provide a figure to
illustrate this result, as seen in Figure

& Expert Feedback

Create a model to predict changes in tumor

volume and chemotherapy drug concentration
in NSCLC patients, using differential

equations that incorporate logistic tumor

growth with a log term, chemotherapy, and | (1,
radiotherapy effects, with parameters

estimated from patient data.

[Iteration 5] [Iteration 6]

# Intrinsic growth rate of the tunor

py_drug_concentration_

Validation loss:
0.948

Figure 7: HDTwinGen can flexibly integrate expert-in-the-loop feedback, if it is provided.

H.12 HDTwinGen Accelerates Model Development and Enhances Performance

We seek to determine the runtimes of HDTwinGen model development compared to human-clock
time from a human experiment (Mechanical Turk) experiment where participants are asked to refine
models and how performant these models are compared to Bayesian optimization (BO) for a fixed
model budget. To assess this we performed the additional experiments of:

1. Human-driven model development: Hiring two experienced software engineers (Mechani-
cal Turks) to develop and refine models, providing them with exactly the same prompts that
HDTwinGen uses, using a human instead of the LLM in the model development loop.

2. AutoML: Hyperparameter tuning (HPT) using for DyNODE and SINDy using BO (HPT
search space detailed in Table 11).

We performed these two experiments on the Lung Cancer (with Chemo. & Radio.) dataset, and the
results are tabulated in Table 12. Here we present, the time to generate an individual model (which
includes generating the model and training time); the test MSE 7,5 g after one hour of run-time, and
test MSE separately for a budget of only 15 model evaluations.

Analyzing the results provides the following insights:

1. HDTwinGen Makes Model Development Notably Faster Compared to Human-Clock
Time: HDTwinGen takes an average of 45.56 minutes to complete an experiment using 15
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Table 11: HPT details. BO HPT search space for Figure

Method

Hyperparameter Search Space

Best Params

DyNode learning_rate
DyNode weight_decay
DyNode hidden_dim
DyNode model_activation
DyNode model_initialization

[le-5, le-1]
[le-5, le-1]
[32, 1024]

[xavier, normal]

[tanh, silu, ELU]

0.0123
0.00029
788
tanh
normal

SINDy polynomial_library_degree

SINDy polynomial_library_interaction_only

SINDy threshold
SINDy alpha

[1,3]
[True, False]
[le-5, le-1]
[le-5, le-1]

2
True
0.0194
0.0015

Table 12: Method performance comparison. Reporting the time to generate a model (in minutes)
and the test MSE (7,5 E) after one hour of run-time and with a budget of only 15 model evaluations.
Here * indicates 73.11% of iteration time is consumed by LLM querying.

Method

Time to generate a model (Minutes) |
0.37

HPO for DyNODE

HPO for SINDy
Human Experts
HDTwinGen

0.16
9.875
3.037%

(Mechanical Turk)

Test MSE Thss (After one hour of run-time) |
8]

13.225
68.004
0.072

Test MSE 7yssx (Budget of only 15 model evaluations) |
2.209

13.245
2.209
0.072

102

10°

Test MSE

100

10"

model evaluations/generations, whereas human experts took 148.1 minutes (2 hours and 28
minutes) to generate and iterate 15 models. Therefore, using HDTwinGen is considerably
faster than human-clock time, which is also an advantage of HDTwinGen.

. HDTwinGen Generates Better Performing Models for a Fixed Model Budget: HDTwin-

Gen generates better-performing models compared to the human experts and the Bayesian
hyperparameter optimization (HPO) of the baselines of DyNode and SINDy, for a fixed
budget of 15 model evaluations. We provide a figure showing the best-performing model
performance against each generation in a Figure 8. This figure shows that across model
evaluations, HDTwinGen still generates models that perform well.

———-

NSDT

Human Experts

———-

HPO for DyNode
HPO for SINDy

———-

6 8 10
Number of Generations

Figure 8: Best-performing model performance against each generation, for setup in Appendix
HDTwinGen Generates Better Performing Models for a Fixed Model Budget.

72206

https://doi.org/10.52202/079017-2304



I Hybrid Model Output Examples

These are the final discovered hybrid models generated from our method HDTwin, for each respective
environment.

Cancer (with Chemo & Radio)

class StateDifferential (nn.Module):
def __init__(self):
super (StateDifferential , self).__init__ ()
# Parameters for the tumor growth model
self.alpha nn.Parameter (torch.tensor (0.03)) # Tumor growth rate
self.beta = nn.Parameter (
torch.tensor (0.4)
) # Tumor death rate due to chemotherapy
self .gamma = nn.Parameter (
torch . tensor (0.08)
) # Tumor death rate due to radiotherapy
self . kappa_base = nn.Parameter (
torch.tensor (1030.0)
) # Base carrying capacity of the environment
self.kappa_mod = nn.Parameter (
torch.tensor (-2.0)
) # Modifier for carrying capacity based on treatment
self.delta_base = nn.Parameter (
torch . tensor (0.1)
) # Base decay rate of the chemotherapy drug
self.delta_mod = nn.Parameter(
torch.tensor (0.0003)
) # Modifier for decay rate based on tumor volume
self.eta = nn.Parameter (
torch.tensor (0.004)
) # Interaction term between chemotherapy and radiotherapy
self.theta = nn.Parameter(
torch.tensor (10.0)
) # Michaelis—Menten saturation constant for chemotherapy
self.rho = nn.Parameter(
torch.tensor (0.3)
) # Sigmoid steepness for radiotherapy effect
self.zeta = nn.Parameter(torch.tensor(0.15)) # Resistance development rate

# Black box component for capturing residuals
self.residual_mlp = nn.Sequential(

nn.Linear (4, 16),

nn.LeakyReLU (0.1) ,

nn.Linear (16, 8),

nn . LeakyReLU (0.1) ,

nn. Linear (8, 2),

55

)

o
8

[ forward (
self |,
tumor_volume: torch.Tensor,
chemotherapy_drug_concentration: torch.Tensor,
chemotherapy_dosage: torch.Tensor,
radiotherapy_dosage: torch.Tensor,
) —=> Tuple[torch.Tensor, torch.Tensor]:
# Adjusted carrying capacity based on treatment
kappa = self.kappa_base + self.kappa_mod # (
chemotherapy_dosage + radiotherapy_dosage

)

# Adjusted decay rate based on tumor volume
delta = self.delta_base + self.delta_mod % tumor_volume

# Logistic growth model for tumor volume with interaction term and resistance

resistance = | + self.zeta * tumor_volume
d_tumor_volume__dt = (
self .alpha = tumor_volume # (I — tumor_volume / kappa)

— (self.beta * chemotherapy_drug_concentration # tumor_volume)
/ (self.theta + chemotherapy_drug_concentration)

— self .gamma

# radiotherapy_dosage

# tumor_volume

/ (1 + torch.exp(-self.rho * (radiotherapy_dosage — 1)))
- self.eta

% chemotherapy_drug_concentration

% radiotherapy_dosage

# tumor_volume

/ resistance

)

# Non-linear decay model for chemotherapy drug concentration
d_chemotherapy_drug_concentration__dt = chemotherapy_dosage — delta = torch.pow(
chemotherapy_drug_concentration, 1.5

)

# Black box residual component
residuals = self.residual_mlp (
torch . stack (

tumor_volume ,
chemotherapy_drug_concentration ,
chemotherapy_dosage ,
radiotherapy_dosage ,

).
dim=1,
)
)
# Combine white box model with residuals
d_tumor_volume__dt += residuals[:, 0]
d_chemotherapy_drug_concentration__dt += residuals[:, 1]
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return (d_tumor_volume__dt, d_chemotherapy_drug_concentration__dt)

COVID-19

class StateDifferential (nn.Module):

def __init__(self):
super (StateDifferential , self).__init__ ()
# Initialize the parameters for the SEIR model using optimized values
self.beta nn.Parameter (torch.tensor (0.2607165277004242)) # Transmission rate
self.sigma nn.Parameter (torch.tensor (0.23686641454696655)) # Incubation rate
self .gamma = nn.Parameter(torch.tensor(0.105068139731884)) # Recovery rate
self.delta = nn.Parameter(torch.tensor(0.01)) # Death rate

# Define a neural network for capturing complex patterns
# Adjust the architecture based on previous iterations
self .residual_nn = nn.Sequential (

nn.Linear (4, 12),

nn.ReLU() ,
nn.Linear (12, 12),
nn.ReLU() ,
nn.Linear (12, 4)

)

def forward(self, susceptible: torch.Tensor, exposed: torch.Tensor, infected: torch.Tensor, recovered: torch.Tensor,
total_population: torch.Tensor) —> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# SEIR model differential equations

d_susceptible__dt = —self.beta * susceptible * infected

d_exposed__dt = self.beta * susceptible # infected - self.sigma * exposed
d_infected__dt = self.sigma * exposed — (self.gamma + self.delta) = infected
d_recovered__dt = self.gamma * infected - self.delta * infected

# Calculate residuals using the neural network
states = torch.stack ([susceptible , exposed, infected, recovered], dim=1)
residuals = self.residual_nn(states)

# Add residuals to the differential equations
d_susceptible__dt += residuals[:, 0]
d_exposed__dt += residuals[:, 1]
d_infected__dt += residuals[:
d_recovered__dt += residuals|[:, 3]

return (d_susceptible__dt, d_exposed__dt, d_infected__dt, d_recovered__dt)

Plankton Microcosm

class StateDifferential (nn.Module):
def __init__(self):
super (StateDifferential , self).__init__ ()
# Define the parameters for the improved model with carrying capacities
self.alpha = nn.Parameter(torch.tensor(0.022967826575040817)) # Prey growth rate
self.beta nn.Parameter (torch.tensor(0.6899635791778564)) # Prey death rate due to predation
self.gamma = nn.Parameter(torch.tensor(0.15562176704406738)) # Intermediate predator efficiency
self.delta = nn.Parameter(torch.tensor(0.8135092854499817)) # Top predator efficiency
# Carrying capacities for each population
self .K_prey = nn.Parameter(torch.tensor(0.4680666923522949)) # Carrying capacity for the prey population
self.K_intermediate = nn.Parameter(torch.tensor(0.8180080652236938)) # Carrying capacity for the intermediate predator
population
self .K_top = nn.Parameter(torch.tensor(0.4186957776546478)) # Carrying capacity for the top predator population
# Competition coefficients
self.sigma = nn.Parameter(torch.tensor(-0.27261480689048767)) # Competition coefficient for prey and intermediate predators
self.eta = nn.Parameter(torch.tensor(0.06442223489284515)) # Competition coefficient for intermediate predators and top
predators
# MLP for residuals with refined architecture
self.residual_mlp = nn.Sequential(
nn. Linear (3, 128),
nn. LeakyReLU (0.01) ,
nn. Dropout (0.25) ,
nn.Linear (128, 128),
nn.LeakyReLU (0.01) ,
nn.Dropout (0.25) ,
nn.Linear (128, 3)

555

)

def forward(self , prey_population: torch.Tensor, intermediate_population: torch.Tensor, top_predators_population: torch.Tensor) —>
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# Improved differential equations with carrying capacities

d_prey_population__dt = self.alpha = prey_population = (1 — prey_population / self.K_prey) — self.beta * prey_population =
intermediate_population

d_intermediate_population__dt = (self.gamma * prey_population # intermediate_population / (I + prey_population)) — self.delta =
intermediate_population % top_predators_population — self.sigma # intermediate_populations2 = (1 -
intermediate_population / self.K_intermediate)

d_top_predators_population__dt = —self.gamma = top_predators_population + self.delta = intermediate_population *
top_predators_population — self.eta * top_predators_population#+2 = (1 — top_predators_population / self.K_top)

# Calculate residuals using MLP
residuals = self.residual_mlp (torch.stack ([ prey_population, intermediate_population, top_predators_population], dim=1))

# Correct the differential equations with the residuals
d_prey_population__dt += residuals[:, 0]
d_intermediate_population__dt += residuals[:, 1]
d_top_predators_population__dt += residuals[:, 2]

return (d_prey_population__dt, d_intermediate_population__dt, d_top_predators_population__dt)

Hare-Lynx

class StateDifferential (nn.Module) :
def __init__(self):
super(StateDifferential , self).__init__()
# Define the parameters for the modified Lotka-Volterra equations
self . alpha = nn.Parameter(torch.tensor(0.067)) # Prey birth rate
self .beta = nn.Parameter(torch.tensor(0.005)) # Predation rate

72208 https://doi.org/10.52202/079017-2304



self.gamma = nn.Parameter(torch.tensor(0.253)) # Predator death rate
self.delta = nn.Parameter(torch.tensor(0.0028)) # Predator reproduction rate
# Additional parameters for carrying capacity and time-dependent effects
self.kappa = nn.Parameter (torch.tensor (1.0)) # Carrying capacity for hares
self .omega = nn.Parameter(torch.tensor(2 # torch.pi / 10)) # Frequency of oscillations (10-year period)
self .phi = nn.Parameter(torch.tensor(0.0)) # Phase shift for oscillations
# Neural network for capturing residuals
self . residual_mlp = nn.Sequential(

nn. Linear (3, 10),

nn.ReLU() ,

nn.Linear (10, 2)

)

a
e
&

forward (self , hare_population: torch.Tensor, lynx_population: torch.Tensor, time_in_years: torch.Tensor) —> Tuple[torch.
Tensor, torch.Tensor]:
# Modified Lotka-Volterra equations with carrying capacity and time-dependent effects

d_hare_population__dt = self.alpha % hare_population % (I — hare_population / self.kappa) — self.beta = hare_population =
lynx_population

d_lynx_population__dt = —self.gamma * lynx_population + self.delta = hare_population * lynx_population

# Time—dependent oscillatory component

time_effect = torch.sin(self.omega * time_in_years + self.phi)

# Combine white box model with neural network residuals

residuals = self.residual_mlp (torch.stack ((hare_population, lynx_population, time_effect), dim=1))

d_hare_population__dt += residuals[:, 0]

d_lynx_population__dt += residuals[:, 1]

return (d_hare_population__dt, d_lynx_population__dt)

J HDTwinGen can reason about HDTwins

Worked log output of HDTwinGen of part of a run, running on the Plankton Microcosm dataset. It
can reason about structures and parameters.

You will get a system description to code a differential equation simulator for.

System Description:**
"Modeling Artificial Tri-Trophic Prey-Predator Oscillations in a Simplified Ecological System

Here you must model the state differential of algae_population, flagellate_population, and rotifer_population:; with no input actions
This aims to simulate the population dynamics within a simplified tri—trophic ecological system comprising prey (algae),
intermediate predators (flagellates), and top predators (rotifers). The interactions include direct predation and competition
for resources , mirroring natural intraguild predation mechanisms.

Description of the variables:

# prey_population: Total count of algae, serving as the primary prey

# intermediate_population: Total count of flagellates , acting as intermediate predators and prey
# top_predators_population: Total count of rotifers , representing top predators

The dataset encapsulates daily population counts across multiple simulated ecosystems over a period of 100 days, allowing for the
analysis of temporal oscillations and phase lags between species.

Additionally these variables have the ranges of:
# prey_population: [0.095898, 2.469735]

# intermediate_population: [0.008438, 1.500000]
# top_predators_population: [0.030316, 0.739244]

The training dataset consists of 70 time steps, validation and training dataset consists of 15 time steps each.

Modelling goals:***
# The parameters of the model will be optimized to an observed training dataset with the given simulator.
# The observed training dataset has very few samples, and the model must be able to generalize to unseen data.

Requirement Specification:
# The code generated should achieve the lowest possible validation loss, of le-6 or les
# The code generated should be interpretable ., and fit the dataset as accurately as po

Skeleton code to fill in:**‘*
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

o
o
i

forward (self , prey_population: torch.Tensor, intermediate_population: torch.Tensor, top_predators_population: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:

# TODO: Fill in the code here

return (d_prey_population__dt, d_intermediate_population__dt, d_top_predators_population__dt)

Useful to know:‘**

# You are a code evolving machine, and you will be called 20 times to generate code, and improve the code to achieve the lowest
possible validation loss.

The model defines the state differential and will be used with an ODE solver to fit the observed training dataset.

You can use any parameters you want and any black box neural network components (multi-layer perceptrons); however, you have to
define these.

%

%

% It is preferable to decompose the system into differential equations (compartments) if possible.

# You can use any unary functions, for example log, exp, power etc.

# Under no circumstance can you change the skeleton code function definitions , only fill in the code.

# The input tensors are vectors of shape (batch_size).

% Use initially white box models first and then switch to hybrid white and black box models for the residuals, only after no further
best program iteration improvement with white box models.

# Make sure your code follows the exact code skeleton specification.

# Use PyTorch.

Think step-by-step, and then give the complete full working code. You are generating code for iteration 0 out of 20.

MainProcess| 2024-01-29 00:02:01,082,82 multiprocessing INFO [User]
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You generated the following code completions, which then had their parameters optimized to the training dataset. Please reflect on
how you can improve the code to minimize the validation loss to le-6 or less. The code examples are delineated by ###.

Here are your previous iterations the best programs generated. Use it to see if you have exhausted white box models, i.e. when a
white box model repeats with the same val loss and then only add black box models to the white box models: " "

Tteration 0. Best Val Loss: 0.012224067933857441. Model description: white box model

Iteration 1. Best Val Loss: 0.003129902994260192. Model description: white box model with additional parameters for competition and
carrying capacity , and improved differential equations to better capture the tri—trophic dynamics.

Here are the top code completions so far that you have gemerated, sorted for the lowest validation loss last:®*

Val Loss: 0.0122 (Where the val loss per dimension is prey_population val loss: 0.0316, intermediate_population val loss: 2.13e-05,
top_predators_population val loss: 0.00505) Iteration: 0

#i#tH

import torch

import torch.nn as nn

from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):

super(StateDifferential , self).__init__()
# Define the parameters for the Lotka-Volterra equations
self.alpha = nn.Parameter(torch.rand (1)) # Prey growth rate
self.beta nn. Parameter(torch.rand (1)) # Prey death rate due to predation
self .gamma = nn.Parameter(torch.rand (1)) # Predator growth rate due to predation
self.delta = nn.Parameter(torch.rand(1)) # Predator death rate

o
o

f forward(self , prey_population: torch.Tensor, intermediate_population: torch.Tensor, top_predators_population: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# Lotka—Volterra equations

d_prey_population__dt = self.alpha # prey_population — self.beta % prey_population % intermediate_population

d_intermediate_population__dt = self.gamma # prey_population * intermediate_population — self.delta =
intermediate_population % top_predators_population

d_top_predators_population__dt = —self.gamma * top_predators_population + self.delta * intermediate_population =

top_predators_population

return (d_prey_population__dt, d_intermediate_population__dt, d_top_predators_population__dt)

optimized_parameters = { alpha’: 0.10977201908826828, 'beta : 0.68703693151474, 'gamma’: 0.12234053760766983, ’delta ':
0.8221619725227356}
#i#H#

Val Loss: 0.00313 (Where the val loss per dimension is prey_population val loss: 0.00776, intermediate_population val loss: 2.31e
—-05, top_predators_population val loss: 0.00161) Iteration: 1

##H#

import torch

import torch.nn as nn

from typing import Tuple

class StateDifferential (nn.Module):
def __init__(self):

super(StateDifferential , self).__init__()
# Define the parameters for the improved model
self . alpha nn.Parameter (torch.tensor(0.10977201908826828)) # Prey growth rate
self . beta nn.Parameter (torch.tensor (0.68703693151474)) # Prey death rate due to predation
self .gamma = nn.Parameter(torch.tensor(0.12234053760766983)) # Predator growth rate due to predation
self.delta = nn.Parameter(torch.tensor(0.8221619725227356)) # Predator death rate
# Additional parameters for competition and carrying capacity
self.sigma = nn.Parameter(torch.rand (1)) # Competition coefficient for prey and intermediate predators
self.eta = nn.Parameter (torch.rand (1)) # Competition coefficient for intermediate predators and top predators
self .K = nn.Parameter (torch.rand (1)) # Carrying capacity for the prey population

def forward(self, prey_population: torch.Tensor, intermediate_population: torch.Tensor, top_predators_population: torch.Tensor)
—> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# Improved differential equations
d_prey_population__dt = self.alpha = prey_population * (1 - prey_population / self.K) — self.beta * prey_population *
intermediate_population

d_intermediate_population__dt = self.gamma * prey_population * intermediate_population — self.delta »*
intermediate_population % top_predators_population — self.sigma * intermediate_population*2

d_top_predators_population__dt = —self.gamma # top_predators_population + self.delta % intermediate_population =
top_predators_population — self.eta * top_predators_population#2

return (d_prey_population__dt, d_intermediate_population__dt, d_top_predators_population__dt)
optimized_parameters = { alpha’: -0.013438135385513306, ’beta’: 0.6186316609382629, ’gamma’: 0.36335352063179016, ’delta ’:
0.6213762760162354, ’'sigma’: 0.47441932559013367, ’eta’: -0.43212178349494934, "K’: 0.3493500351905823}
#i#H#

Please reflect on how you can improve the code to fit the dataset as accurately as possible, and be interpretable. Think step-by-
step. Provide only actionable feedback, that has direct changes to the code. Do not write out the code, only describe how it
can be improved. Where applicable use the values of the optimized parameters to reason how the code can be improved to fit
the dataset as accurately as possible. This is for generating new code for the next iteration 2 out of 20.

MainProcess | 2024-01-29 00:02:01,082,82 multiprocessing INFO [Assistant] To improve the code for iteration 2, consider the following
actionable feedback:

1. =xIncorporate Resource Limitation for Intermediate Predators and Top Predators##: The current model includes a carrying capacity
term (K) for the prey population but does not account for resource limitation for intermediate predators and top predators.
Introduce carrying capacity parameters for these populations to model their growth saturation.

2. =xRefine Interaction Termss#x: The interaction terms currently use simple multiplicative factors between populations. Consider
more complex interactions that may include nonlinear effects or functional responses, such as a Holling Type IT functional
response , to better capture the dynamics of predation.

3. ##Adjust Negative Growth Ratesxsx: The optimized parameter “alpha’ for the prey growth rate has a negative value, which is

biologically unrealistic as it would imply the prey population decreases in the absence of predators. Ensure that the growth
rate parameters are constrained to be positive during optimization.
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4. =xReview Competition Coefficients=x: The optimized parameters ’sigma’ and ’eta’ for competition are positive and negative ,
respectively. While 'sigma’ being positive is consistent with competition, 'eta’ being negative is not typical for a
competition coefficient. Re-evaluate the competition terms in the equations to ensure they are biologically meaningful and
constrain the coefficients to be non-negative during optimization.

5. sxIntroduce Density-Dependent Mortality for Top Predatorssx: The model currently does not include a term for density —dependent
mortality of top predators. Add a term to the differential equation for top predators that accounts for intraspecific
competition or other density —dependent mortality factors.

6. =xParameter Initialization Based on Optimized Values#x: Use the optimized parameter values from iteration 1 as initial values for
the parameters in iteration 2. This can provide a better starting point for the optimization process.

7. #xConsider Time Delays##: In real ecosystems, there can be time delays between predation and changes in population sizes due to
factors like gestation or maturation periods. If the validation loss does not improve significantly with the above changes,
consider adding time delay terms to the model.

8. #xHybrid White and Black Box Model#x: If the validation loss does not improve below the threshold of le-6 with the above white
box model improvements, consider introducing a black box component, such as a multi-layer perceptron, to capture the

residuals of the white box model. This hybrid approach can potentially model complex interactions that are not captured by
the white box differential equations.

B

=

implementing these changes, the model should become more biologically realistic and may fit the dataset more accurately ,
potentially achieving a lower validation loss.

MainProcess| 2024-01-29 00:02:01,082,82 multiprocessing INFO [User]

Please now regenerate the code function, with the aim to improve the code to achieve a lower validation error. Use the feedback

where applicable. You are generating code for iteration 2 out of 20 total iterations. When generating code

if you are unsure
about something, take your best gue You have to generate code, and cannot give an empty string answer.

Please always only fill in the following code skeleton:***
class StateDifferential (nn.Module):
def __init__(self):
super(StateDifferential , self).__init__()
# TODO: Fill in the code here

a
°
i

forward (self , prey_population: torch.Tensor, intermediate_population: torch.Tensor, top_predators_population: torch.Tensor)
—> Tuple[torch . Tensor, torch.Tensor, torch.Tensor]:
# TODO: Fill in the code here

return (d_prey_population__dt, d_intermediate_population__dt, d_top_predators_population__dt)

You cannot change the code skeleton, or input variables.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main claims, which are backed
up by empirical evidence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitations of the work are discussed in Section 8, including the
assumption of semantic priors and types of system studied.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not introduce any theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 6 and Appendices C to G, we thoroughly outline the experimental
procedure. This, combined with the released code, will enable all results in the paper to be
reproduced.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code at https://github. com/samholt/HDTwinGen. Addition-
ally, the datasets and preprocessing procedure are described in Appendix

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendices C to G details all training and test details, including data splits
and hyperparameter tuning procedures for all baselines.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report results over 10 seeded runs for all methods, reporting mean and 95%
confidence interval of results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

72214 https://doi.org/10.52202/079017-2304


https://github.com/samholt/HDTwinGen
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix G, we report all computer resources required to reproduce the
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the Code of Ethics and confirm that the paper conforms
to the code.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section & discusses the societal impacts of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any pretrained models or collated datasets that
might pose a risk to misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites original owners of all code (for baselines) and datasets used in
the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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