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Abstract

Large Language Models (LLMs) have achieved remarkable success in various nat-
ural language processing tasks, including language modeling, understanding, and
generation. However, the increased memory and computational costs associated
with these models pose significant challenges for deployment on resource-limited
devices. Structural pruning has emerged as a promising solution to reduce the
costs of LLMs without requiring post-processing steps. Prior structural pruning
methods either follow the dependence of structures at the cost of limiting flexibility,
or introduce non-trivial additional parameters by incorporating different projection
matrices. In this work, we propose a novel approach that relaxes the constraint
imposed by regular structural pruning methods and eliminates the structural de-
pendence along the embedding dimension. Our dimension-independent structural
pruning method offers several benefits. Firstly, our method enables different blocks
to utilize different subsets of the feature maps. Secondly, by removing structural
dependence, we facilitate each block to possess varying widths along its input
and output dimensions, thereby significantly enhancing the flexibility of structural
pruning. We evaluate our method on various LLMs, including OPT, LLaMA,
LLaMA-2, Phi-1.5, and Phi-2. Experimental results demonstrate that our approach
outperforms other state-of-the-art methods, showing for the first time that structural
pruning can achieve an accuracy similar to semi-structural pruning.

1 Introduction

Large Language Models (LLMs) have revolutionized the field of natural language processing by
leveraging deep learning techniques to process and generate human-like text. Compared to smaller
models, LLMs exhibit unique characteristics and demonstrate remarkable abilities in tackling a wide
range of complex tasks [40]. Despite their impressive capabilities, the vast number of parameters
in LLMs often hinders their deployment on resource-constrained devices, such as mobile phones.
Consequently, there is significant interest in reducing the computational and memory requirements of
LLMs.

Existing compression techniques for large language models (LLMs) include weight sparsification
[9], structural pruning [30], and quantization [10]. In this work, we focus on structural pruning and
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Figure 1: We use an MLP layer as an example. Left: Regular pruning methods have to follow
structural dependence thus their flexibility is limited. Right: Our dimension-independent structural
pruning method breaks the structural dependence via index operations and thus largely improves the
flexibility for pruning.

address the limitations of previous methods in this category. Structural pruning [30] is a general-
purpose compression solution that maintains LLM performance across various tasks, facilitates
deployment on devices, and is computationally efficient. However, existing methods may restrict
pruning flexibility or add significant overhead to the compressed model. For instance, LLM-Pruner
[30] follows structural dependence during pruning, requiring different layers to use the same subset
of feature maps, which limits pruning flexibility. SliceGPT [2] alleviates this issue by applying
orthogonal projections for each layer but introduces a non-trivial number of additional parameters
(e.g., 5% to 13% of the parameters of the original model for LLaMA-2 7B). Our approach aims to
overcome these drawbacks and offer a better performance-cost trade-off for structural pruning.

We aim to increase the flexibility of current structural pruning methods and consequently improve
performance. Our method provides different sub-spaces or subsets of features to different layers, but
unlike SliceGPT, it doesn’t introduce additional parameters. To achieve this, we break the structural
dependence of regular structural pruning methods, allowing different layers to have different subsets
of features along the embedding dimension and an example is given in Fig. 1. After pruning,
we employ index selection and index addition operations to sample subsets of features from the
residual connection and add them back after the computation of each layer. Furthermore, our method
introduces an additional level of flexibility by learning different widths for each layer. Our approach
significantly improves the flexibility of structural pruning without adding additional parameters.

Extensive experimental results show that our method can outperform state-of-the-art structural
pruning methods for LLMs while still maintaining low computational costs. Our method does not
require recovery fine-tuning to obtain such performance. In addition, our method does not update the
remained model weights during pruning which is a distinct departure from several other methods,
such as SparseGPT [9] and LLM Surgeon [37]. Our contributions are as follows:

• We break the structural dependence of regular structural pruning methods, significantly
increasing the flexibility of structural pruning. This allows different layers to select their
own subset of features from the embedding dimension. Importantly, our method achieves
this without introducing additional parameters, unlike SliceGPT.

• We propose to learn the widths of each layer using gradient-based optimization methods.
A hypernetwork generates the column or row selection matrices, while the width of each
layer is controlled globally. This approach allows for fine-grained control over the pruning
process and enhances the adaptability of our method to various models and tasks.

• Our method demonstrates superior performance compared to state-of-the-art structural
pruning techniques for LLMs across a range of models, including OPT, LLaMA, LLaMA-2,
Phi-1.5, and Phi-2. Notably, the resulting model from our method is a sub-network that
exists within the original model, indicating the effectiveness of our method in discovering
strong sub-networks.

2 Related Works

Magnitude-based pruning is the most straightforward approach to reduce model size, where weights
with the smallest magnitude are pruned. Han et al. [14] employ this strategy for pruning with L1

or L2 norm of weights. Filter pruning [24] extends this setting to structures of the model instead
of performing weight-level sparsification. Although magnitude-based pruning methods are very
efficient, they result in significant performance drops for LLMs, even for weight pruning [9]. Another
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line of research, Optimal Brain Damage [23] and Optimal Brain Surgeon [15], utilize second-order
information to remove connections. These methods require calculating the inverse of the Hessian
matrix, which is computationally intensive for modern neural network architectures like Convolutional
Neural Networks (CNNs) [22, 16], Transformers [38], or Large Language Models (LLMs) [35]. To
reduce the cost of computing the Hessian inverse matrix, Optimal Brain Surgeon can be applied in
a layer-wise fashion [7, 8], making the computation tractable. However, further scaling up these
methods for LLMs remains challenging.
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Figure 2: Our method, DISP-LLM, applies different
selection matrices to the input and output dimension
of the Attention layer and MLP layer (S1{S2: Atten-
tion in/out; S3{S4{S5: MLP in/middle/out). When
pruning the model, we add “Index Selection” before
Layer Norm and we replace addition with “Index
Add.” Ŝ1, ¨ ¨ ¨ , Ŝ5 are applied for pruning weight
matrices.

Recent methods like SparseGPT [9] or
GPTQ [10] aim to minimize the squared er-
ror before and after pruning or quantization
of a given layer. In this setting, the Hessian
inverse matrix becomes easy to compute, as it
is simply the multiplication between the fea-
ture map and its transpose for a given layer.
GPTQ and SparseGPT then quantize or spar-
sify model weights in a column-by-column
manner, and the unpruned or unquantized
weights are updated to compensate for the er-
ror of pruning and quantization. Wanda [34]
further avoids computing the inverse of the
Hessian matrix by only considering the diag-
onal of the Hessian matrix. While SparseGPT
and Wanda achieve good results, unstructured
sparsity is known to be harder to achieve ac-
tual speedup. They also applied their methods
on semi-structured settings [31], but the per-
formance becomes much worse.

Several researches [28, 19, 44, 13, 42, 12]
apply learnable parameters for specific struc-
tures when pruning vision or language models.
However, many of these methods cannot be
scaled up to LLMs since they need to learn
weights and structures together. In contrast,
our method explores sub-networks within the

original model without updating model weights. Additionally, our method mainly explores the
regime of pruning without recovery fine-tuning, which is rarely presented in previous methods with
learnable parameters on structures. Our method is also related to the unconstrained channel pruning
for CNNs [39]. However, our method explores this idea from the perspective of breaking structural
dependence and scales it to much larger models than [39]. Moreover, our method thoroughly explores
the global allocation of parameters, where [39] fails to do.

Recently, several works have been proposed to reduce the size of LLMs. LLM-Pruner [30] aims
to remove connected structures using importance calculated from Taylor expansions. SliceGPT [2]
offers more flexibility than regular pruning by projecting the feature maps to different spaces but
introduces extra parameters in the residuals. LLM Surgeon [37] periodically updates model weights
and structures, resulting in a higher cost than LLM-Pruner and SliceGPT. Our proposed DISP-LLM
breaks the structural dependence relied on by LLM-Pruner, without additional transformation matrices
in the residual connections like SliceGPT. Furthermore, in contrast to LLM Surgeon, which requires
extensive computational resources, our method is significantly more efficient.

3 Preliminary

3.1 Notations

To better understand our paper, we first define some notations. We use d to denote the model
dimension or embedding dimension of LLMs. X P ℜbˆnˆd is used to represent feature maps, and b
is the mini-batch size, n is the number of tokens. W P ℜd1ˆd2 is the model weights of size d1 ˆ d2.
Let S denote a pseudo-index selection matrix of size d ˆ d, which is a diagonal matrix filled with 0
or 1 and the positions of the ones indicate the selected index. We further use Ŝ of size d ˆ dsmall to
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Figure 3: Comparison of the projection matrices for structural pruning. We use Win and Wout in
Fig. 1 as an example. Left: SliceGPT employs orthogonal projection matrices, and it has to insert
the projection matrices into the residual connections. Middle: Regular structural pruning methods
remove structures based on their dependence, requiring to use the unified selection matrix S for all
blocks, which limits flexibility. Right: Our method breaks the structural dependence, allowing the use
of different selection matrices Sin and Sout for the embedding dimension, significantly improving
the flexibility of pruning.

represent the actual selection matrix by removing d ´ dsmall columns with all zeros from S. For any
matrix A, nnz(A) represents the number of nonzero entries of A.

3.2 Revisit SliceGPT

The core idea of SliceGPT [2] is to achieve computational invariance within the transformer
architecture. It demonstrates that orthogonal projections can be applied to the output of each block and
subsequently undone in the next block. This transformation is computed using Principal Component
Analysis (PCA), allowing the feature maps between blocks to be projected into their principal
components. A significant advantage of this approach is that it projects the feature maps of different
blocks into distinct spaces, thereby introducing an additional degree of freedom for compression.
This flexibility is not captured by regular structural pruning methods like LLM-Pruner [30], which
rely on structural dependence.

After slicing (pruning), the feature map and weight matrix of lth layer of SliceGPT become:

X̃l “ XlQlŜ, W̃l “ ŜJQJ
l Wl. (1)

where Ŝ is a dˆdsmall selection matrix, Xl is the output of the lth block, and Ql contains eigenvectors
of Cl:

Cl “
ÿ

i

XJ
l,iXl,i

and Xl,i is the i-th column of Xl (corresponding to the ith sequence in the calibration dataset). From
Eq. 1, we can see that SliceGPT uses the same selection matrix Ŝ for all layers, but the feature map Xl

is firstly projected by Ql, and the pruning for different layers is along with different directions. One
crucial drawback of SliceGPT also comes from the projection matrix Ql, since the residual connection
must be multiplied by the linear transformation QJ

l Ql`1 (shown in Fig. 7 left in the Appendix).
These additional operations bring a non-trivial amount of additional parameters. For a model that has
L blocks, with the model dimension d and the remaining percentage of parameters p P r0, 1s, it brings
approximately Ld2p2 additional parameters to the model (more than 10% of model parameters in
some cases, and more details are given in Fig 10 in the Appendix).

3.3 Residual Connections Limit the Flexibility of Structural Pruning

SliceGPT offers significant flexibility, but achieving similar flexibility with regular structural pruning
methods without adding extra parameters is challenging. This section explains the reasons behind
this difficulty. To simplify our reasoning, we replace Ŝ with its pseudo selection matrix S.

Assume we follow the basic setting of dependence-based structural pruning but allow each layer
the flexibility to have its own selection matrix, Sl, along the embedding dimension. Under this
assumption, due to structural dependence, all layers will share the same width of nnzpS0S1 ¨ ¨ ¨SLq.

In order to prune different positions for different layers, we need to add a transformation matrix to
align the width of layers l and l ` 1. Intuitively, if we have Sl and Sl`1, we can then insert SJ

l Sl`1

in the residual connection to align consecutive layers.

4

72222https://doi.org/10.52202/079017-2305



Algorithm 1: Block inference after pruning.
Input: Feature map of the previous block Xin. Preserved indices sets Ind1, Ind2, Ind3, Ind5.
1. X̂in “ LayerNormpXinr:, Ind1sq. Ź Index Selection for Attention
2. Xatt “ MultiHeadpX̂inŜ

J
1 Wq, X̂inŜ

J
1 Wk, X̂inŜ

J
1 WvqWoŜ2.

3. Xres “ Index_AddpXin,Xattn, Ind2q. Ź Index Addition with the input
4. X̂res “ LayerNormpXresr:, Ind3sq. Ź Index selection for MLP
5. Xmlp “ pσpX̂resŜ

J
3 W1Ŝ4q d pX̂resŜ

J
3 W2Ŝ4qqŜ4

JW3Ŝ5.
6. Xout “ Index_AddpXres,Xmlp, Ind5q Ź Index Addition with the residual
Return Xout for the next block.

With this setup, we can use XlSl to select subsets of features for different layers, mimicking QlS for
SliceGPT. Although it seems promising, this formulation has issues with layer widths, as detailed in
Proposition 1.

Proposition 1 (Decreasing feature dimensions for deeper layers). Let the pseudo-selection matrices
in layers l and l ` 1 be Sl and Sl`1, respectively. The number of nonzero entries in the residual
adapter satisfies

nnzpSJ
l Sl`1q ď mintnnzpSlq, nnzpSl`1qu.

For compression strategies that remove dependent structures for layer l ` 1 following SJ
l Sl`1, this

implies that the dimension in layer l ` 1 is less than or equal to that in layer l, with equality holding
when the feature indices selected in layer l ` 1 are contained within those in layer l or vice versa.

Remark. The proof of Proposition. 1 is straightforward and it is given in the Appendix A.1. From
Proposition 1, we observe that if we naively apply Sl for different layers, the model width will
progressively decrease as we go deeper into the network. It also fails to provide different sets of
features for different layers; instead, it merely passes a subset of features from the previous layer
to the next. To avoid this restriction, all blocks must share the same width and the same pruned
columns or rows. And we then fall back to the regime of previous structural pruning methods such as
LLM-Pruner [30], Shared LLaMA [43], etc.

Proposition 1 highlights two significant obstacles. First, dependence-based structural pruning methods
result in a uniform width along the embedding dimension. Second, inserting selection matrices in the
residual connections causes the embedding dimension to decrease with depth. These challenges are
unavoidable due to the residual connections linking structures across layers. To enhance flexibility
along the embedding dimension, bypassing the residual connections is crucial.

4 Dimension-Independent Large Language Model
4.1 Break the Structural dependence

Section 3.3 demonstrates that the residual connection is the primary barrier preventing pruning
methods from achieving better flexibility. To avoid modifying the residual connection, we relocate
the selection matrices inside the residual connection. This approach allows us to successfully create
different subsets from the feature maps for different layers.

Based on this idea, we propose a solution that involves pruning different positions in consecutive
blocks and selecting or merging feature maps from or back to the residual connection. This approach
breaks the structural dependence inherent in previous pruning methods. Formally, given a transformer
block, we apply the following operations:

AttentionpXq “ MultiHeadpXSJ
1 Wq,XSJ

1 Wk,XSJ
1 WvqWoS2, (2)

MLPpXq “ pσpXSJ
3 W1S4q d pXSJ

3 W2S4qqS4
JW3S5, (3)

where S1, . . . ,S5 are pseudo selection matrices of size d ˆ d, and d denotes element-wise multi-
plication. Eq. 3 gives an example operation for gated MLP modules used in LLaMA [35]. For Phi
models [1] or OPT [46], the MLP operation is defined as MLPpXq “ σpXSJ

3 W1S4qS4
JW3S5.

Fig 2 illustrates how to insert these selection matrices into a transformer block.
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Given the operations defined in Eq. 2 and Eq. 3, we successfully remove the constraint in Proposition 1.
The input and output of both the Attention layer and the MLP layer can be selected differently from the
original feature maps for different layers, mimicking the function of Ql in SliceGPT. Additionally, our
method eliminates the need for extra parameters in QJ

l Ql`1 as it does not alter the residual connection.
We also enhance flexibility by pruning the middle dimension of the MLP layer. Additionally, this
flexibility can be further improved by allowing the query, key, and value weight matrices to use
different selection matrices. Our current form is kept for two reasons: (1) SliceGPT uses one Ql per
layer, and we followed this design for a fair comparison, and (2) adding separate selection matrices
would increase indexing operations, potentially slowing down the inference. Fig 3 further compares
the projection matrices for SliceGPT, regular structural pruning, and the proposed method.

Once we have the final selection matrices S1, . . . ,S5, the pruned model will use a combination
of index selection and index addition for inference as shown in Algorithm 1, where Indi is a set
containing all indices equal to one in the diagonal of Si:

Indi “ tj | if sirjs “ 1u, si “ diagpSiq.

The same color is used to mark the index set Indi and its corresponding selection matrix Ŝi.
Index_AddpA,B, Indq adds matrices A and B along the last dimension on selected positions from
Ind, then returns A after index addition. With index selection and addition, the block dimension can
be freely changed. Index selection and addition introduce some overhead, but as demonstrated in the
experiment section, we still observe improvements in throughput.

4.2 Learning the Width for Dimension-Independent LLMs

Building on the dimension-independent setting introduced in Section 4.1, our approach offers much
greater flexibility in selecting sub-networks from the original dense model compared to the constrained
settings in LLM-Pruner [30]. The next challenge is determining the width of each layer. Given the
large search space of our dimension-independent structural pruning and the computationally intensive
nature of LLMs, it is impractical to use reinforcement learning [17] or evolutionary search-based
algorithms [27]. Therefore, we adopt gradient-based methods to address this challenge. Given the
diagonal vector si P t0, 1ud from Si, the Straight-Through (ST) gradient estimator [3] is used to
estimate the gradients with respect to learnable continuous latent parameters. More specifically, we
use the recently proposed gradient estimator ReinMax [26] to estimate the gradients through the
binary operation. A detailed explanation of ReinMax for the binary case is provided in Appendix A.2.

Given the large search space of our method, we find that only using element-wise learnable parameters
is insufficient. To address this issue, a hypernetwork is introduced to generate latent parameters for
ReinMax, as detailed below:

s “ ReinMaxpHyperNetworkpΘqq, (4)

where Θ represents the parameters of the hypernetwork and s contains si from all blocks. The
hypernetwork is composed of GRU [5] and fully connected layers, where the GRU captures block-
wise relationships and the fully connected layers capture relationships between different dimensions.
With the hypernetwork and ReinMax, we can effectively learn the width of each block. The details of
the hypernetwork are provided in Appendix A.3.

4.3 Dimension-Independent Structural Pruning as an Optimization Problem

With the methods described above, we can formulate dimension-independent structural pruning as an
optimization problem, with regularization to control the number of remaining parameters. We insert
s back into S as defined in section 4.1 for forward and backward calculations. The overall objective
function is listed below:

min
Θ

LpX ;W, sq ` λRpT psq, pTtotalq, (5)

RpT psq, pTtotalq “ logpmaxpT psq, pTtotalq{minpT psq, pTtotalqq, (6)

where L is the language modeling loss function of next word prediction, X represents the input tokens,
W is the collection of model weights, s is defined in Eq. 4, and R is a parameter regularization loss
function defined in Eq. 6. Here, T psq denotes the number of parameters controlled by the current
structure s, Ttotal is the total number of parameters of the model, and p P p0, 1s is a user-defined
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Table 1: Perplexities of different structural pruning methods on WikiText-2. Our method is the only
one that does not update model weights. SliceGPT does not directly update model weights, however,
it applies orthogonal transformation matrices to the weights.

Method Pruning Ratio W Update?
Test Performance (PPL)

OPT 125M OPT 1.3B OPT 2.7B OPT 6.7B LLaMA-2 7B LLaMA-2 13B
Dense 0% - 27.65 14.62 12.47 10.86 5.12 4.57

SliceGPT [2]

10% ✓✗ 29.34 15.10 12.75 10.92 5.89 5.21
20% ✓✗ 34.26 16.43 13.73 11.48 6.64 5.81
25% ✓✗ 37.74 17.46 14.56 11.90 7.24 6.30
30% ✓✗ 43.98 19.09 15.83 12.51 8.12 6.99

K-OBD [34]

20% ✓ 29.89 15.63 12.47 11.28 9.14 6.29
30% ✓ 36.54 18.29 14.53 13.03 15.43 10.08
40% ✓ 47.54 24.65 18.09 16.21 28.03 13.06
50% ✓ 75.95 37.68 26.68 25.54 46.64 16.06

LLM Surgeon [34]

20% ✓ 28.73 15.12 12.27 11.02 6.18 5.29
30% ✓ 31.82 16.24 12.92 11.64 7.83 6.21
40% ✓ 38.47 18.45 14.23 12.58 10.39 7.25
50% ✓ 49.78 22.95 17.15 14.90 15.38 9.43
20% ✗ 25.21 13.12 11.72 9.89 6.10 5.21
30% ✗ 28.16 14.79 12.16 10.90 6.85 5.77
40% ✗ 34.31 17.77 14.11 12.18 8.11 6.59DISP-LLM (Ours)

50% ✗ 39.87 21.70 17.07 14.06 9.84 7.11

Table 2: Comparison of our method against semi-structure pruning methods on WikiText-2.
Method Pruning Ratio W Update? Structure?

Test Performance (PPL)
LLaMA 7B LLaMA 13B LLaMA-2 7B LLaMA-2 13B

Dense 0% - - 5.68 5.09 5.12 4.57
Magnitude 2:4 ✗ ✗ 42.13 18.37 54.59 8.33
SparseGPT [9] 2:4 ✓ ✗ 11.00 9.11 10.17 8.32
Wanda [34] 2:4 ✗ ✗ 11.53 9.58 11.02 8.27
DISP-LLM (ours) 50% ✗ ✓ 11.47 8.15 9.84 7.11

parameter to control how many parameters should be preserved within the model. With the objective
function in Eq. 5, the structures for dimension-independent pruning can be efficiently optimized.
Moreover, the overhead of our method is minimal and comparable to parameter-efficient fine-tuning
methods like LoRA [18], as it does not require storing gradients or the first and second-order
momentum of model weights for the Adam optimizer [21].

5 Experiments

5.1 Settings

Models. We evaluate our DISP-LLM method using several LLMs with transformer blocks. Specif-
ically, we choose the following models: OPT [46]: OPT-125M, OPT-1.3B, OPT-2.7B, OPT-6.7B;
Phi-1.5 [25] and Phi-2 [20]; LLaMA 7B [35]; LLaMA-2 [36]: LLaMA-2 7B and LLaMA-2 13B.

Implementations. We implemented our method using Pytorch [32] and Hugging Face transformer li-
brary [41]. We freeze the model weights W when training the hypernetwork. We use the AdamW [29]
optimizer to optimize the hypernetwork. The hypernetwork is trained for 10,000 iterations for all
models. For all experiments, we set λ in Obj. 5 to 6. Depending on the size of the base model, we use
1 to 4 NVIDIA A100 GPUs to train the hypernetwork. More implementation details can be found in
the Appendix A.4.

Datasets. Following previous papers [2, 30], we use WikiText-2 and Alpaca datasets to train the
hypernetwork. Following SliceGPT [2], we evaluate our method and other methods on five well-
known zero-shot tasks: PIQA [4]; WinoGrande [33]; HellaSwag [45]; ARC-e and ARC-c [6]. We
use llm-eval-harness [11] to evaluate the compressed models.

Baselines. We compare our DISP-LLM across baselines from structural pruning like LLM-
Pruner [30], SliceGPT [2] and LLMSurgeon [37]. We also include semi-structure pruning baselines
like SparseGPT [9] and Wanda [34].

5.2 Language Modeling

In Table 1, we report the perplexity of pruned OPT and LLaMA-2 models. Our DISP-LLM, which
does not update weights, consistently outperforms more complex pruning methods such as K-OBD
and LLM Surgeon, which involve weight updates, across all pruning ratios and models. The
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Table 3: Zero-shot performance of the compressed LLaMA 7B, LLaMA-2 7B and Phi models. The
structure of DISP-LLM is based on the WikiText dataset, and the structure of DISP-LLM Alpaca is
based on the Alpaca dataset.

Pruning Ratio Method W Update?
WinoGrande HellaSwag ARC-e ARC-c PIQA

Avgacc acc-norm acc-norm acc-norm acc-norm
0% LLaMA 7B - 69.85 76.21 72.81 44.71 79.16 68.55

LLM-Pruner [30] ✗ 61.33 65.34 59.18 37.12 75.57 59.71
+finetuning ✓ 65.11 68.11 63.43 37.88 76.44 62.19
DISP-LLM (Ours) ✗ 66.54 68.75 59.60 35.24 74.97 61.0220%

DISP-LLM Alpaca (Ours) ✗ 64.72 68.39 64.81 37.12 76.66 62.34
LLM-Pruner [30] ✗ 53.20 35.64 33.50 27.22 59.63 41.84
+finetuning ✓ 55.09 47.56 46.46 28.24 68.82 49.23
DISP-LLM (Ours) ✗ 58.41 47.71 44.40 28.50 64.09 48.6250%

DISP-LLM Alpaca (Ours) ✗ 56.91 48.76 48.91 31.57 67.46 50.72
0% LLaMA-2 7B - 69.14 75.99 74.58 46.15 79.11 68.99

SliceGPT [2] ✓✗ 61.33 49.62 51.77 31.23 63.55 51.50
K-OBD [34] ✓ 56.83 53.07 51.05 33.11 71.82 53.18
LLM Surgeon [34] ✓ 61.09 60.72 63.09 36.69 73.56 59.03
DISP-LLM (Ours) ✗ 62.27 63.43 59.81 33.19 71.82 58.10

30%

DISP-LLM Alpaca (Ours) ✗ 63.93 62.87 60.10 37.03 73.72 59.53
K-OBD [34] ✓ 53.04 36.84 36.11 26.71 60.66 42.67
LLM Surgeon [34] ✓ 52.57 40.29 44.91 26.28 64.36 45.68
DISP-LLM (Ours) ✗ 54.54 46.33 43.06 25.85 63.93 46.7250%

DISP-LLM Alpaca (Ours) ✗ 56.20 49.35 51.14 30.20 68.34 51.05
0% Phi-1.5 - 72.77 62.58 73.11 48.04 75.63 66.43

SliceGPT [2] ✓✗ 64.96 42.54 53.66 31.91 65.45 51.52
30% DISP-LLM (Ours) ✗ 61.48 47.97 57.66 33.01 71.08 54.24
0% Phi-2 - 75.61 73.86 78.24 54.01 79.11 72.17

SliceGPT [2] ✓✗ 63.14 47.56 53.03 30.29 65.94 51.99
30% DISP-LLM (Ours) ✗ 65.19 54.43 63.59 38.48 73.34 59.00

Model Dimension

D
ep

th

Preserved Pruned
Pruning Decisions along the Model Dimension and Depth Pruning Rate along the Model Dimension 

and the Overall Pruning Rate

Figure 4: The pruned model architecture along the embedding dimension (model dimension) for the
LLaMA-2 7B model when the pruning ratio equals 50%.

performance gap is even larger when compared to SliceGPT. The advantage is particularly clear in
better-trained models like LLaMA-2 7B and 13B. For instance, our method surpasses LLM Surgeon
by margins of 5.54 and 2.22 when pruning 50% of parameters of LLaMA-2 7B and 13B, respectively.
Against K-OBD, our performance advantage extends to 36.80 and 9.49 under the same setting. For
consistency, we let the pruning ratio of SliceGPT equal the slicing ratio. However, the actual pruning
ratio for SliceGPT is much lower than the slicing ratio. More details are given in Appendix A.5.

In Table 2, we report the perplexity of pruned LLaMA and LLaMA-2 models and we compare our
method with semi-structure pruning methods. From the table, we can see that our method outperforms
both SparseGPT and Wanda on LLaMA 13B and LLaMA-2 7B/13B models. Our method performs
on par with SparseGPT and Wanda with the LLaMA 7B model, and our DISP-LLM is a little bit
worse than SparseGPT and is similar to Wanda. We are the first to show that structural pruning
methods can have a better or similar performance than semi-structural pruning methods.

5.3 Zero-shot Performance

In Tab. 3, we present the zero-shot performance of the pruned model. For the LLaMA 7B model,
we compare our method against LLM-Pruner with and without recovery fine-tuning. Our method
consistently outperforms LLM-Pruner without fine-tuning, and the gap ranges from 2.63 to 8.88
across different pruning rates for average task performance. After fine-tuning, the performance of
LLM-Pruner is largely boosted, however, our method is still able to outperform it demonstrating
the existence of strong sub-networks within the original model. For the LLaMA-2 7B model, we
compare our method against SliceGPT, K-OBD, and LLM Surgeon. With weight updates, LLM
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(a) Ablation Loss L (b) Ablation Loss R (c) Ablation p (d) Ablation Iterations

(e) Given p Loss L (f) Given p Loss R

Dense

𝟏. 𝟎𝟖 ×

𝟏. 𝟐𝟎 ×

𝟏. 𝟑𝟔 ×

𝟏. 𝟓𝟎 ×

(g) Acceleration

𝟏𝟒. 𝟕𝟔 ×

𝟐𝟕. 𝟑𝟗 ×

(h) Costs

Figure 5: The training dynamics when learning the hypernetwork are shown in Figs. 5a, 5b, 5e, 5f.
The results of different settings are in Figs. 5c, 5d, throughput is in Fig. 5g, and cost is in Fig. 5h.

𝐒𝟏

𝐒𝟐

𝐒𝟑

𝐒𝟒

𝐒𝟓

Figure 6: Model width after pruning for the LLaMA-2 7B model when the pruning ratio equals 50%.

Surgeon performs well with a lower pruning ratio like 30%. At this pruning ratio, our method performs
similarly to LLM Surgeon, and our method outperforms other comparison baselines. When increasing
the pruning ratio to 50%, the advantage of our method becomes obvious, and the gap between our
method and LLM Surgeon is 5.37 for average task performance. We further compare our method
with SliceGPT on Phi-1.5 and Phi-2, and our method consistently achieves better performance.

5.4 Analysis

Ablation Study. We visualize the results of ablation studies in Figs. 5a, 5b, 5c, 5d with Phi-1.5
model. The setting “DISP-LLM w/o HN” refers to using element-wise gates for learning sub-
networks. The setting “Constrained LLM w HN” refers to pruning the embedding dimension
following the structural dependence like LLM-Pruner. From Figs. 5a, 5b, we can see that using
the hypernetwork largely accelerates the learning process for DISP-LLM, which is also verified in
Figs. 5c, 5d. From Figs. 5c, 5d, we also see that our DISP-LLM always outperforms constrained
structural pruning, demonstrating the value of added flexibility by breaking the dependence. To
further study the impact of the HyperNetwork architecture, we provide more results in Tab. 4. “w/o
HN” is equivalent to “DISP-LLM w/o HN”. The setting “w/o Bi-GRU” simply removes GRU and
adds a fixed input (initialized in the same way as see Appendix A.3 for more details) for each
linear layer. These results indicate that both GRU and linear layers within the HyperNetwork affect
the final performance. One explanation is that linear layers connect different dimensions of the
model, accelerating learning, while GRU layers capture inter-layer relationships, further reducing the
difficulty of learning sub-network structures. Therefore, both GRU and linear layers are essential to
the HyperNetwork.

Different Pruning Ratios, Costs and Throughput. In Figs. 5e, 5f, we show the language modeling
loss L and regularization loss R in Obj 5 given different pruning ratios p with Phi-1.5 model. We can
see that our method consistently minimizes the language modeling loss across different p. In addition,
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Table 4: The impact of the Hypernetwork architecture on the Phi-1.5 model. Performance is measured
by PPL (perplexity).

Compression RateSettings 0% 10% 20% 30% 40% 50%
w/o HN

21.82
20.37 22.30 28.66 34.33 47.29

w/o Bi-GRU 19.90 21.65 26.11 30.88 37.43
Full HyperNetwork 18.75 20.23 22.81 25.49 32.89

our method quickly pushes the regularization loss R to near 0 values within 200 iterations. In Fig. 5g,
the pruned model from LLaMA-13B improves the throughput of the dense model by 1.08ˆ to 1.50ˆ.
In Fig. 5h, we compare the costs of our method against LLM Surgeon. Our method is 27.39ˆ and
14.76ˆ cheaper compared to LLM Surgeon with LLaMA-2 7B and LLaMA-2 13B models.

Every Embedding Dimension is Important. In Fig. 4, we visualize the pruning decisions along
the embedding dimension and depth for the LLaMA-2 7B model, we can see that all embedding
dimensions have been used across different layers. This becomes more obvious in the second right
figure of Fig. 4, where we sum all pruning decisions along the depth dimension, and we can see that
every embedding dimension is kept around 80% given all layers. We further visualize the model
width after pruning for the LLaMA-2 7B model in Fig. 6, where we can see that several layers are
more severely pruned than other layers.

6 Conclusion

In this paper, we proposed dimension-independent structural pruning for Large Language Models. By
breaking the structural dependence imposed by previous compression methods, our method creates
sub-networks with a lot more flexibility than regular structural pruning methods and also avoids the
overhead brought by SliceGPT. The flexibility of our method is reflected in two perspectives. Firstly,
our method provides different subsets of the feature maps for different layers. Secondly, our method
freely selects the width for each layer without considering architecture dependence. With dramatically
increased flexibility, our method outperforms other structural pruning and semi-structural pruning
methods given similar pruning ratios. The novel design of the unconstrained pruning space along
with strong empirical performance opens new possibilities for structural pruning for LLMs.

10

72228https://doi.org/10.52202/079017-2305



References
[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,

Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

[2] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The Twelfth
International Conference on Learning Representations, 2024.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical common-
sense in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 7432–7439, 2020.

[5] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[7] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise optimal
brain surgeon. In Advances in Neural Information Processing Systems, pages 4857–4867, 2017.

[8] Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488, 2022.

[9] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pages 10323–10337. PMLR, 2023.

[10] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In The Eleventh International Conference on Learning Representations,
2023.

[11] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, September
2021.

[12] Shangqian Gao, Junyi Li, Zeyu Zhang, Yanfu Zhang, Weidong Cai, and Heng Huang. Device-wise
federated network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12342–12352, 2024.

[13] Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang, and Heng Huang. Structural alignment for
network pruning through partial regularization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 17402–17412, 2023.

[14] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pages 1135–1143, 2015.

[15] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Morgan Kaufmann, 1993.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[17] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of the European conference on computer vision
(ECCV), pages 784–800, 2018.

[18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[19] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pages 304–320, 2018.

[20] Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio César Teodoro
Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al. Phi-2: The surprising power
of small language models. Microsoft Research Blog, 2023.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

72229 https://doi.org/10.52202/079017-2305



[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[23] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[24] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. ICLR, 2017.

[25] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

[26] Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao. Bridging discrete and back-
propagation: Straight-through and beyond. Advances in Neural Information Processing Systems, 36,
2023.

[27] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey on
evolutionary neural architecture search. IEEE transactions on neural networks and learning systems,
34(2):550–570, 2021.

[28] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In ICCV, 2017.

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

[30] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36:21702–21720, 2023.

[31] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv e-prints, pages arXiv–2104,
2021.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[33] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[34] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. In The Twelfth International Conference on Learning Representations, 2024.

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[36] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[37] Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, and Tijmen Blankevoort. The llm surgeon.
In The Twelfth International Conference on Learning Representations, 2024.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[39] Alvin Wan, Hanxiang Hao, Kaushik Patnaik, Yueyang Xu, Omer Hadad, David Güera, Zhile Ren, and
Qi Shan. Upscale: unconstrained channel pruning. In International Conference on Machine Learning,
pages 35384–35412. PMLR, 2023.

[40] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

[41] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, October 2020. Association for Computational Linguistics.

[42] Xidong Wu, Shangqian Gao, Zeyu Zhang, Zhenzhen Li, Runxue Bao, Yanfu Zhang, Xiaoqian Wang, and
Heng Huang. Auto-train-once: Controller network guided automatic network pruning from scratch. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16163–
16173, 2024.

12

72230https://doi.org/10.52202/079017-2305



[43] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. In The Twelfth International Conference on Learning Representations,
2024.

[44] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate models.
In Association for Computational Linguistics (ACL), 2022.

[45] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4791–4800, 2019.

[46] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

13

72231 https://doi.org/10.52202/079017-2305



A Appendix
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Figure 7: Left: SliceGPT inserts QJ
l Ql`1 to the residual connection and brings additional parameters.

It also modifies the weights and Layer Norms within the original model. The selection matrix S
is omitted for consistency. Right: Our method, DISP-LLM, applies different selection matrices
to the input and output dimension of the Attention layer and MLP layer (S1{S2: Attention in/out;
S3{S4{S5: MLP in/middle/out).

Model Dimension

D
ep

th

Preserved Pruned

Pruning Decisions along the Model Dimension and Depth

Figure 8: The pruned model architecture along the embedding dimension (model dimension) for the
LLaMA-2 13B model when the pruning ratio equals 50%.

Figure 9: Model width after pruning for the LLaMA-2 13B model when the pruning ratio equals
50%.

A.1 Proof of Proposition 1

Proposition 1 (Decreasing feature dimensions for deeper layers). Let the pseudo-selection matrices
in layers l and l ` 1 be Sl and Sl`1, respectively. The number of nonzero entries in the residual
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Algorithm 2: Binary ReinMax
Input: x: sigmoid input;
τ : temperature; c: constant bias.
Output: x: binary vector.
1. π0 “ sigmoidpx ` cq,
2. B “ sample_binarypπ0q,
3. π1 “

B`sigmoidppx`cq{τq

2 ,
4. π1 “ sigmoidpstop_gradientplnpπ1q ´ px ` cqq ` px ` cqq,
5. π2 “ 2π1 ´ 1

2π0,
6. x “ π2 ´ stop_gradientpπ2q ` B
Return x.

adapter satisfies
nnzpSJ

l Sl`1q ď mintnnzpSlq, nnzpSl`1qu.

For compression strategies that remove dependent structures for layer l ` 1 following SJ
l Sl`1, this

implies that the dimension in layer l ` 1 is less than or equal to that in layer l, with equality holding
when the feature indices selected in layer l ` 1 are contained within those in layer l or vice versa.

Proof. Consider the pseudo-selection matrices Sl and Sl`1, both of size d ˆ d, and both diagonal
matrices. The number of nonzero entries in Sl and Sl`1 are given by nnzpSlq “ kl and nnzpSl`1q “

kl`1, respectively.

The product SJ
l Sl`1 is also a diagonal matrix of size d ˆ d. Each diagonal entry pi, iq in SJ

l Sl`1 is
the product of the i-th diagonal entry of Sl and the i-th diagonal entry of Sl`1. For an entry pi, iq to
be nonzero, both Slpi, iq and Sl`1pi, iq must be nonzero.

Thus, the number of nonzero entries in SJ
l Sl`1, nnzpSJ

l Sl`1q, is the number of indices i where
both Slpi, iq and Sl`1pi, iq are nonzero. This count cannot exceed the smaller of the total number of
nonzero entries in Sl and Sl`1.

Hence,
nnzpSJ

l Sl`1q ď mintnnzpSlq, nnzpSl`1qu.

This implies that the effective feature dimension will be smaller or equal to the previous layer.
Equality holds if and only if the set of indices corresponding to nonzero entries in Sl`1 is a subset of
those in Sl, or vice versa. This concludes the proof.

Figure 10: Expected compres-
sion rate vs. actual compres-
sion rate of our method and
Slice-GPT on the LLaMA-7B
model.

In Proposition 1, “remove dependent structures for layer l ` 1 fol-
lowing SJ

l Sl`1” means that the actual selection matrix for layer
l ` 1 becomes S1

l`1 “ SJ
l Sl`1, and the structure dependence is cut

off by the next residual connection. The pruning for layer l ` 1 will
based on S1

l`1 instead of Sl`1. Although this setting partially breaks
the structural dependence, it has the limitation that the embedding
dimensions will be reduced when going deeper.

A.2 Binary ReinMax

In this section, we provide details for ReinMax when handling
binary variables. The ReinMax in our work can be written as shown
in Algorithm. 2. We add a constant bias c to x so that we can
control binary vectors to have all one value at the beginning when
learning the sub-network architecture for DISP-LLMs. Through all
experiments, we set c to 3.0 and τ to 1.0.

A.3 Details of the Hypernetwork
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Table 5: The architecture of hypernetwork.
Input z

Bi-GRU(32,64)Ñ LayerNormÑ GeLU

Linearl(128, Nl)ÑOutputs sl, l “ 1, ¨ ¨ ¨ , L

Table 6: Time costs of our method.
Model Time / GPUs

LLaMA/LLaMA-2 7B 2.41 Hours / 2 NVIDIA A100 80G
LLaMA/LLaMA-2 13B 8.83 Hours / 4 NVIDIA A100 80G

(a) WikiText Loss L (b) WikiText Loss R (c) Alpaca Loss L (d) Alpaca Loss R

Figure 11: The training dynamics when learning the hypernetwork for LLaMA-2 7B model with
WikiText and Alpaca datasets.

As we discussed in the paper, the Hypernetwork is composed of linear layers and Bi-GRUs, and now
we present the architecture of the HN in Tab. 5. z is initially sampled from a normal distribution, and
it is then fixed during training. Outputs sl are continuous values and it is then fed to ReinMax to
produce the binary vector: s “ ReinMaxpsq, where s is the collection of sl from all layers. Nl is the
original model width, and it equals the embedding dimension for S1, S2, S3 and S5.

A.4 More Implementation Details

Figure 12: Preserved rates
of the LLaMA-2 13B model
across different dimensions.
The result is accumulated
across all the layers.

Additional Training Details. During training the hypernetwork,
we use AdamW optimizer to optimize it with a constant learning
rate 10´3 and weight decay 0.05. We train the hypernetwork for
different models, we always set the mini-batchsize to 1 on each
GPU. For OPT 6.7B, LLaMA 7B, and LLaMA-2 7B models, we use
2 NVIDIA A100 GPUs, and for LLaMA 13B and LLaMA-2 13B
models, we use 4 NVIDIA A100 GPUs. For all the rest models, we
use 1 NVIDIA A100 GPU. We set p “ t0.5, 0.4, 0.3, 0.2, 0.1u when
the pruning ratios equals to t50%, 40%, 30%, 20%, 10%u. For the
Alpaca dataset 2, we use the ‘text’ column within the dataset which
combines the columns of ‘instruction’ and ‘output’. When training
the hypernetwork, we again minimize the language modeling loss
on the Alpaca dataset instead of applying the training process of
instruction fine-tuning.

Details of Eq. 6. The parameter regularization loss function in Eq. 6
is defined as follows:

Rpx, yq “ log

ˆ

maxpx, yq

minpx, yq

˙

“

$

’

&

’

%

log
´

x
y

¯

if x ą y,

0 if x “ y,

log
`

y
x

˘

if x ă y

.

Since y is fixed, when x ą y, Eq. 6 will decrease x, making it closer to y. Conversely, when x ă y,
Eq. 6 will increase x, also making it closer to y. Thus, the parameter regularization loss always tries
to push the current sub-network to achieve the pre-defined parameter budget.

2https://huggingface.co/datasets/tatsu-lab/alpaca
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Table 7: Zero-shot performance of the compressed LLaMA-2 13B model.
Pruning Ratio Method W Update?

WinoGrande HellaSwag ARC-e ARC-c PIQA
Avgacc acc-norm acc-norm acc-norm acc-norm

0% LLaMA-2 13B - 72.22 79.39 77.48 49.23 80.47 71.76
SliceGPT [2] ✓✗ 65.11 52.69 51.77 31.23 66.10 55.16
K-OBD [34] ✓ 64.96 64.18 56.23 36.01 74.43 59.16
LLM Surgeon [34] ✓ 68.67 71.52 69.74 40.27 76.50 65.34
DISP-LLM (Ours) ✗ 66.85 70.86 63.80 39.42 74.43 63.07

30%

DISP-LLM Alpaca (Ours) ✗ 67.32 70.04 68.98 44.28 77.31 65.59
K-OBD [34] ✓ 60.46 55.52 49.62 32.68 70.24 53.70
LLM Surgeon [34] ✓ 65.75 65.04 63.80 37.12 73.01 60.94
DISP-LLM (Ours) ✗ 62.67 65.86 60.31 37.63 73.39 59.9740%

DISP-LLM Alpaca (Ours) ✗ 64.25 67.52 66.79 42.75 75.30 63.32
K-OBD [34] ✓ 57.46 48.39 46.59 30.72 66.54 49.94
LLM Surgeon [34] ✓ 63.22 56.19 56.19 31.83 68.77 55.24
DISP-LLM (Ours) ✗ 59.27 58.63 52.57 33.28 68.77 54.5050%

DISP-LLM Alpaca (Ours) ✗ 59.59 62.39 55.72 37.54 72.20 57.49

Table 8: Zero-shot performance of the compressed Phi-2 given more pruning rates and settings.
Pruning Ratio Method W Update?

WinoGrande HellaSwag ARC-e ARC-c PIQA
Avgacc acc-norm acc-norm acc-norm acc-norm

0% Phi-2 - 75.61 73.86 78.24 54.01 79.11 72.17
SliceGPT [2] ✓✗ 67.80 57.76 58.00 35.32 71.87 58.15
+fine-tuning ✓ 67.17 54.86 56.61 38.91 71.27 57.7620%
DISP-LLM (Ours) ✗ 67.09 62.93 68.18 44.11 74.86 63.43
SliceGPT [2] ✓✗ 65.35 52.40 53.70 31.66 69.21 54.46
+fine-tuning ✓ 65.19 52.48 52.78 35.49 69.91 55.1725%
DISP-LLM (Ours) ✗ 65.11 59.95 65.93 43.34 74.27 61.72
SliceGPT [2] ✓✗ 63.14 47.56 53.03 30.29 65.94 51.99
+fine-tuning ✓ 63.54 49.72 46.38 32.68 66.16 51.7030%
DISP-LLM (Ours) ✗ 65.19 54.43 63.59 38.48 73.34 59.00

Ablation Study Settings. In the ablation study 5.4, we removed the hyperntwork, and we revise
Eq. 4:

s “ ReinMaxpΘq,

where Θ now has the same size of s, and the parametrization space becomes much smaller. For the
constrained setting used in the ablation study 5.4, we simply let S1 “ S2 “ S3 “ S5. In section 5.4,
we calculate the costs of our method and LLM-Surgeon, and the price comes from the official website
of Lambda Cloud3. We also list the detailed time costs of our method in Tab. 6. In Fig. 5b, 5f and
also in Fig. 11, we normalized the parameter regularization loss R with its maximum value to make
plots more consistent.

Licenses. The licenses for various models and datasets are as follows: LLaMA and LLaMA
2: Licensed under the LLAMA 2 Community License. Phi 1.5 and Phi 2: Licensed under the
MIT License. WikiText dataset: Licensed under the Creative Commons Attribution-ShareAlike
License (CC BY-SA 4.0). Alpaca dataset: Licensed under the Creative Commons Attribution-
NonCommercial License (CC BY-NC 4.0).

A.5 Additional Results

SliceGPT compression rates: In Fig. 10, we show the expected compression rate and the actual
compression rate for our method and SliceGPT given the LLaMA-2 7B model. It can be seen that
SliceGPT adds 5% to 13% parameters of the original model across different pruning rates, which
is non-trivial for most LLMs. Notably, SliceGPT with 10% slicing actually adds 3% more parameters
to the original model.

LLaMA-2 13B Results. In Tab. 7, we show the results of the LLaMA-2 13B model given different
pruning rates. From the table, we can see that our method consistently outperforms LLM Surgeon
under different pruning rates. The advantage of our method becomes more obvious compared to other
methods like K-OBD and SliceGPT.

Phi-2 Results. In Tab. 8, we present a more comprehensive comparison of our method compared
to SliceGPT. Our method outperforms SliceGPT by 5.28 to 7.01 giving SliceGPT with or without

3https://lambdalabs.com/service/gpu-cloud#pricing
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Table 9: Zero-shot performance of the compressed LLaMA 13B model.
Pruning Ratio Method W Update?

WinoGrande HellaSwag ARC-e ARC-c PIQA
Avgacc acc-norm acc-norm acc-norm acc-norm

0% LLaMA 13B - 72.53 79.06 74.62 47.78 80.41 70.88
Magnitude ✗ 57.54 52.90 50.13 31.14 67.57 51.86
+fine-tuning ✓ 64.64 71.86 67.59 39.93 76.77 64.15
LLM Pruner [30] Channel ✗ 58.96 49.17 49.62 31.83 66.87 51.29
+fine-tuning ✓ 66.38 68.89 62.08 38.99 76.55 62.58
LLM Pruner [30] Block ✗ 65.11 73.41 68.35 38.40 77.15 64.48
+fine-tuning ✓ 67.88 75.16 71.09 42.41 77.91 66.89
DISP-LLM (Ours) ✗ 68.75 75.28 70.16 44.80 76.61 67.12

20%

DISP-LLM Alpaca (Ours) ✗ 66.54 74.80 69.73 44.71 78.07 66.77
DISP-LLM (Ours) ✗ 60.85 57.81 52.51 32.51 68.44 54.42

50% DISP-LLM Alpaca (Ours) ✗ 59.80 58.63 56.44 34.85 71.27 56.20

Table 10: Average results with 5 different runs.
The result is evaluated on WikiText-2.

Test Performance (PPL), Phi-1.5 Dense: 21.82
10% 20% 30% 40% 50%

18.72 ˘ 0.07 20.48 ˘ 0.24 22.62 ˘ 0.31 25.44 ˘ 0.39 32.72 ˘ 0.37

Table 11: Throughput of the pruned model.
Model Pruning Ratio Tokens/seconds

LLaMA-2 13B

0% 227.99
20% 245.65
30% 273.60
40% 310.07
50% 342.09

fine-tuning on the WikiText dataset. These observations again demonstrate the effectiveness of our
method, and our method outperforms methods with recovery fine-tuning in several settings.

LLaMA-2 3B Results. In Table 9, we present a comparison of our method against LLM Pruner and
magnitude pruning. At a pruning ratio of 20%, our method surpasses the performance of LLM Pruner
both with and without fine-tuning. Remarkably, even when the pruning ratio is increased to 50%, our
method continues to outperform the LLM Pruner Channel and the Magnitude pruning baselines at a
20% pruning rate. These results further illustrate our method’s ability to identify strong sub-networks
within the original dense model.

Architecture of the pruned LLaMA-2 13B. In Fig. 8 and Fig. 9, we visualize the pruned architecture
of the LLaMA-2 13B model pruned with the WikiText dataset. We have similar observations as in
section. 5.4. In Fig. 9, we can see that middle to late layers have large pruning rates, especially for the
attention layer. In Fig. 8 and Fig. 12, we can also see that the preserved rates for different dimensions
are similar, and all embedding dimensions are effectively utilized. More interestingly, similar pruning
rates across different dimensions are achieved without adding any regularization or constraints.

Training loss for LLaMA-2 7B. In Fig. 11, we further visualize the training dynamics of the
LLaMA-2 7B model on WikiText and Alpaca datasets, respectively. The regularization loss with the
Alpaca dataset decreases a little bit faster than the WikiText dataset, probably because the loss value
on the Alpaca dataset is smaller. From Fig. 11c, we can also see that the language modeling loss
continues to decrease when training longer, especially when the pruning ratio is higher.

Lastly, we evaluate our method on the Phi-1.5 model with 5 runs, and we report our result with mean
and standard deviation in Tab. 10. We also measure the throughput of our method on the LLaMA-2
13B model, and the result is shown in Tab. 11

A.6 Additional Analysis

Table 12: Impact of λ on Phi-1.5

Test Performance (PPL), Phi-1.5 Dense: 21.82
λ=1.0 λ=2.0 λ=4.0 λ=6.0 λ=8.0 λ=10.0

NC 36.39 33.71 32.89 33.31 33.20

Impact of λ on Phi-1.5 when pruning 50% of
parameters. We show the result in Tab. 12. ‘NC’
means the loss R does not converge, and it is much
larger than zero, thus it can not prune the model to
the target budget. From the table, we can see that
the PPL of the model becomes quite stable if it is
larger or equal to 6. If λ is not large enough, it takes longer to push the loss R to reach near 0 values
and thus leaves less time for the model to explore different configurations of subnetworks. On the
other hand, if λ is large enough, the loss R will reach zero in several hundred iterations and leave
enough time to find the desirable subnetwork. Due to this reason, our method is quite stable across
larger values of λ as shown in the table.

18

72236https://doi.org/10.52202/079017-2305



Table 13: PPL vs. pruning ratio trade-off for the
Phi-2 model.

Test Performance (PPL), Phi-2 Dense: 10.98
10% 20% 30% 40% 50%
10.22 10.94 14.46 16.02 20.05

Table 14: Zero-shot task performance vs pruning
ratio trade-off for the LLaMA-2 7B model with
the WikiText dataset

Avg task acc, LLaMA-2 7B
0% 20% 30% 40% 50%

68.99 62.54 58.10 52.63 46.72

Table 15: Zero-shot performance of the compressed LLaMA-2 7B model with LoRA fine-tuning.
Pruning Ratio Method W Update?

WinoGrande HellaSwag ARC-e ARC-c PIQA
Avgacc acc-norm acc-norm acc-norm acc-norm

0% LLaMA 7B - 69.85 76.21 72.81 44.71 79.16 68.55

50%
DISP-LLM Alpaca ✗ 56.20 49.35 51.14 30.20 68.34 51.05
+LoRA ft ✓ 56.83 53.74 57.49 32.42 70.78 54.25

More results on pruning ratio vs. performance trade-offs. We provide the trade-off between the
pruning ratio and performance for the Phi-2 and LLaMA-2 7B model below in Tab. 13 and Tab. 14.

LoRA fine-tuning [18] of the compressed LLaMA-2 7B model. We follow similar settings of the
SliceGPT and the model is fine-tuned on Alpaca. The result is shown in Table. 15. We can see that
our method can be further boosted by using parameter-efficient fine-tuning techniques. Since the
performance without fine-tuning is already good enough, we prefer not to involve this additional
process in our method to save time and computational costs.

A.7 Generation Samples

We show the generated text given DISP-LLM and SliceGPT in Tab. 16. The examples are obtained
based on removing 20% of the model weights with DISP-LLM and 20% slicing of SliceGPT ( 10%
compression rate). Both models are compressed from LLaMA-2 7B and they are not finetuned. From
these two examples, we can see that SliceGPT only generates a small part of meaningful content
and then starts repeating itself. On the other hand, our method tends to generate more relevant
content, and the self-repeating behavior is much less obvious. These observations comply with the
performance gap between DISP-LLM and SliceGPT.

A.8 Limitations

Our method explores how to break the structural dependency of pruning for LLMs. Although our
method achieves competitive performance, there are still some limitations that are not solved in our
current version. The throughput improvements of our method are not consistent across different
models, which is probably because the current implementation of index add or index select operations
with PyTorch is not efficient enough. An alternative implementation of our method is to select weight
matrices instead of feature maps. In this approach, we perform matrix multiplication with the full
feature map and fill the weight matrices with zeros. If we have a custom matrix multiplication
implementation that ignores zero rows or columns, it may achieve further speed-up. However, this
approach primarily focuses on the engineering perspective and is beyond the scope of this work. We
leave the exploration of this alternative implementation to future research.

A.9 Border Impact

Our dimension-independent structural pruning method significantly reduces the computational and
memory requirements of LLMs, enabling their deployment on resource-limited devices and lowering
energy consumption, thus contributing to environmental sustainability. By facilitating the use of effi-
cient LLMs on affordable hardware, our approach democratizes access to advanced AI technologies.
However, it is crucial to address potential ethical concerns when reducing the size of LLMs, ensuring
privacy and fairness in AI applications with compressed LLMs. Overall, our method fosters a more
accessible and sustainable use of AI.
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Table 16: Generation samples of LLaMA-2 7B with 20% compression rate
SliceGPT AI is a very important part of the game. The game is played in a 3D environment, the player controls a character

that can move freely around the environment. The player can interact with the environment by picking up items,
using them to solve puzzles. The player can also interact with other characters in the game. The player can also
interact with the environment by picking up items and using them to solve puzzles. The player can also interact
with other characters in the game. The player can also interact with the environment by picking up items and using
them to solve puzzles. The player can also interact with other characters in the game. The player can also interact
with the environment by picking up items and using them to solve puzzles. The player can also interact with other
characters in the game. The player can also interact with the environment by picking up items and using them to
solve puzzles. The player can also interact with
The room-temperature superconductor is a material that exhibits superconductivity at room temperature.(100
°C). The first room temperature superconductor was discovered in 1970 by Peter C. Edwards and his colleagues
at the University of Michigan. The material was a mixture of bismuth and tin, and was named " bismuth- tin."
The discovery of bismuth tin was followed by the discovery of other room temperature superconductors, including
bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin,
bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin,
bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin,
bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin,
bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin,
bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin,
bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin, bismuth tin

DISP-LLM AI is a branch of computer science that seeks to create intelligent machines that can think and learn like humans.
The field was developed in the 1950s and 1960s by researchers who focused on making machines that could
learn and solve problems like people do. The field was commercially successful in the 1980s and 1990s with the
development of the first generation of intelligent agents. The term " artificial intelligence " was coined by John
McCarthy in 1956. He was inspired by the idea of creating a machine that could learn and solve problems like
humans do.
The room-temperature superconductor is a class of superconductors that exhibit zero resistance at room tem-
perature. ## History The room-temperature superconductor was discovered in 1986 by the Japanese scientist K.
Masamichi Aoki and his colleagues at the University of Tokyo. The discovery was made possible by the use of a new
technique called " zero temperature transport measurement " ( ZTM ), which allowed them to measure the resistance
of the superconductor at temperatures as low as 0.05 K. The discovery was made possible by the use of a new
technique called " zero temperature transport measurement " ( ZTM ), which allowed them to measure the resistance
of the superconductor at temperatures as low as 0.05 K. ## Discovery The discovery of the room-temperature
superconductor was made possible by the use of a new technique called " zero temperature transport measurement "
( ZTM ),

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.
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IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract/introduction are reflected by the experimental results
and other related sections of our method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is provided in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: It is given in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided the detailed experimental settings in the experiment section and
also in the Appendix to ensure reproducibility of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to the company policy, the code will only be released after going through
the internal review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the settings of previous methods where the result of a single run is
provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This has been provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics in preparing our manuscript.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Provided in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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