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Abstract

Distributed learning is essential to train machine learning algorithms across hetero-
geneous agents while maintaining data privacy. We conduct an asymptotic analysis
of Unified Distributed SGD (UD-SGD), exploring a variety of communication pat-
terns, including decentralized SGD and local SGD within Federated Learning (FL),
as well as the increasing communication interval in the FL setting. In this study,
we assess how different sampling strategies, such as i.i.d. sampling, shuffling, and
Markovian sampling, affect the convergence speed of UD-SGD by considering
the impact of agent dynamics on the limiting covariance matrix as described in
the Central Limit Theorem (CLT). Our findings not only support existing theories
on linear speedup and asymptotic network independence, but also theoretically
and empirically show how efficient sampling strategies employed by individual
agents contribute to overall convergence in UD-SGD. Simulations reveal that a few
agents using highly efficient sampling can achieve or surpass the performance of
the majority employing moderately improved strategies, providing new insights
beyond traditional analyses focusing on the worst-performing agent.

1 Introduction

Distributed learning deals with the training of models across multiple agents over a communication
network in a distributed manner, while addressing the challenges of privacy, scalability, and high-
dimensional data [[11 [55]. Each agent ¢ € [N] holds a private dataset X; and an agent-specified
loss function F; : R x X; — R that depends on the model parameter § € R? and a data point
X € X;. The goal is then to find a local minima §* of the objective function f(6) = + Zf\;l f:(9),

where agent i’s loss function f;(6) £ Exp,[F;(6, X)] and D; represents the target distribution
of data for agent i Each agent 4 can locally compute the gradient VF;(#, X) € R¢ w.r.t. 6 for
every sampled data point X € A;. Due to the distributed nature, {D; };c[n] and {X; };c[n are not
necessarily identically distributed over [N] so that the minima of each local function f;(#) can be far
away from L. This is particularly relevant in decentralized training data, e.g., Federated Learning
(FL) with heterogeneous data across data centers or devices [81} 31]].

In this paper, we focus on Unified Distributed SGD (UD-SGD), where each agent 7 € [N] updates its
model parameter ¢;, | in a two-step process:

Local update: 0’ 0;, — 1 VEi(0;,, X)), (1)

n+l/2 —

'Throughout the paper we don’t impose convexity assumption on f(6). For convex f(6), £ is the global
minima. For non-convex f(6), £ represents the collection of local minima, which is of great interest in
neural network training for sufficiently good performance [20} [19]. With an additional condition such as the
Polyak-Lojasiewicz inequality, non-convex f () is ensured to have a unique minima [T} 75| [78]].
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Aggregation: 0}, = Z;vzl wn(i,j)GfLJFI/27 (1b)
where 7,, denotes the step size, X' is the data sampled by agent 7 at time n (i.e., agent dynamics), and
W, = [wn (i, j)];,je[n) represents the doubly-stochastic communication matrix satisfying wy, (7, j) >
0and 17W,, =17, W,,1=1. In the special case of N =1, simplifies to the vanilla SGD where
W,, = 1 for all n. UD-SGD covers a wide range of distributed algorithms, e.g., decentralized SGD
(DSGD) [[714 180, 1614 168]], distributed SGD with changing topology (DSGD-CT) [24, 143]], local SGD
(LSGD) in FL [55}176l], and its variant aimed at reducing communication costs (LSGD-RC) [51].

Versatile Communication Patterns {W,, }:
For visualization, we depict the scenarios of o
UD-SGD () in Figure[T} In DSGD, each agent ~ “0™munication

. . o 4 ttern W
(node) in the graph communicates with its neigh- partert fn

bors after each SGD computation via W,,, rep-
resenting the underlying network topology. As

. & ying POTOgY . Heterogeneous i

a special case, central server-based aggregation, . i

sampling i

1

1

forming a fully connected network, translates strategy X, XJ
W,, into a rank-1 matrix W,, = 117 /N. To .
minimize communication expenses, FL variants
allow each agent to perform multiple SGD steps
before aggregation [55, 167, [76], resulting in a
communication interval of length K and a con-
sistent pattern W, = W for n = mK,Vm €
N, and W,, = Iy otherwise. In particular, i)
W =117 /N corresponds to LSGD with full agent participation (LSGD-FP) [76, 42} [51]}; ii) W is a
random matrix generated by partial agent participation (LSGD-PP) [155, 18], [74]; iii) W is generated
by Metropolis-Hasting algorithm in decentralized setting, e.g., hybrid LSGD (HLSGD) [37}32] and
decentralized FL (DFL) [46l (77, 116]]. We defer further discussion of W to Appendix

Markovian vs i.i.d. Sampling: Agents typically employ i.i.d. or Markovian sampling, as illustrated
in the bottom brown box of Figure[T] In cases where agents have full access to their data, DSGD with
i.i.d sampling has been extensively studied [60} 43161} 47]. In FL, many application-oriented LSGD
variants have been investigated [51} 18} (77, 132} 37, 53]. However, these works solely focus on i.i.d.
sampling, restricting their applicability to Markovian sampling scenarios.

Figure 1: GD-SGD algorithm with a communi-
cation network of N = 5 agents, each holding
potentially distinct datasets; e.g., agent j (in blue)
samples X i.i.d. and agent ¢ (in red) samples X;
via Markovian trajectory.

Markovian sampling, which has received increased attention in limited settings (see Table [I)), is
vital where agents lack independent data access. For instance, in statistical applications, agents with
an unknown a priori distribution often use Markovian sampling over i.i.d. sampling [40, 63]. In
HLSGD across device-to-device (D2D) networks [32,137]], random walks reduce communication costs
compared to the frequent aggregations required by Gossip algorithms [38} 28] 14]]. For single-agent
scenarios, vanilla SGD with Markovian noise, as applied in a D2D network, has shown improved
communication efficiency and privacy [69, 28, 135]. In contrast, for agents with full data access,
Markov Chain Monte Carlo (MCMC) methods can be more efficient than i.i.d. sampling, especially
in high-dimensional spaces with constraints [27,40]], where acceptance-rejection methods [[12]] lead to
computational inefficiency (e.g., wasted samples) due to multiple rejections before obtaining a sample
that satisfies constraints [26} |69]]. In addition, shuffling methods can be considered as high-order
Markov chains [38]], which achieves faster convergence than i.i.d. sampling [11 79} 78].

Limitations of Non-Asymptotic Analysis on Agent’s Sampling Strategy: Recent studies on the
non-asymptotic behavior of DSGD and LSGD variants under Markovian sampling, as summarized in
Table [T} have made significant strides. However, these works often fall short in accurately revealing
the statistical influence of each agent dynamics { X } on the performance of UD-SGD. For instance,

[71}, [68]] proposed the error bound 0(1/1(;%727(01/;)))’ where a € (0.5,1] and p denotes the identical
mixing rate for all agents, overlooking agent heterogeneity in sampling strategy. A similar assumption
to p is also evident in [42]]. More recent contributions from [80, [72]] have attempted to relax these
constraints by considering a finite-time bound of O(72,,,/(n + 1)), where 7,,,. is the mixing time
of the slowest agent. This approach, however, inherently focuses on the worst-performing agent,
neglecting how other agents with faster mixing rates might positively influence the system)’| Such
an analysis fails to capture the collective impact of other agents on the overall system performance,

2Although improving the finite-time upper bound to distinguish each agent may not be the focus of the
aforementioned works, their analyses require every Markov chain to be close to some neighborhood of its
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Table 1: Comparison of recent works in distributed learning: We classify the communication patterns
into seven categories, i.e., DSGD, DSGD-CT, LSGD-FP, LSGD-PP, LSGD-RC, HLSGD and DFL. We
mark ‘UD-SGD’ when all aforementioned patterns are included and the detailed discussion on {W,, }
is referred to Appendix [F.I] Abbreviations: ‘Asym.” = ‘Asymptotic’, ‘D.A.B’ = ‘Differentiating
Agent Behavior’, ‘L.S.” = ‘Linear Speedup’, ‘A.N.I.” = ‘Asymptotic Network Independence’.

Reference Analysis Sampling Communication Pattern D.A.B. L.S. AN.L

[58]] Asym. iid. DSGD v v v
[51] Asym. iid. LSGD-RC v v N/A
[43,147] Non-Asym. i.id. DSGD-CT X v X
[61] Non-Asym. Lid. DSGD X X v
[18153] Non-Asym. iid. LSGD-PP X v N/A
[37,132] Non-Asym. i.id. HLSGD X v X
77, 116]) Non-Asym. iid. DFL X v X
[71,180,168] Non-Asym. Markov DSGD X X X
(42, [72]] Non-Asym. Markov LSGD-FP X v N/A
[69,4,28]  Non-Asym. Markov N/A (single agent) N/A N/A N/A
[38,152] Asym. Markov N/A (single agent) N/A N/A N/A
Our Work Asym. Markov UD-SGD v v v

a crucial aspect in large-scale applications where identifying and managing the worst-performing
agent is challenging due to privacy concerns or sporadic unreachability. Since agents in distributed
learning have the freedom to choose their sampling strategies, it’s vital to understand how each
agent’s improved sampling approach contributes to the overall convergence speed of the UD-SGD
algorithm. This understanding is key to enhancing system performance, particularly in large-scale
machine learning scenarios where agent heterogeneity is a defining feature.

Rationale for Asymptotic Analysis: Recent trends in convergence analysis have leaned towards
non-asymptotic methods, yet it’s crucial to recognize the complementary role of asymptotic analysis
for a better understanding of convergence behaviors, as highlighted in 9156} 25/ 39]. For vanilla SGD,
[59,117] emphasized that central limit theorem (CLT) is far less asymptotic than it may appear under
both i.i.d. and Markovian sampling. Notably, the limiting covariance matrix, a key statistical feature
in vanilla SGD’s CLT, also prominently features in high-probability bound [59], explicit finite-time
bound [[17] and 1-Wasserstein distance in the non-asymptotic CLT [66]. [38]] further underscored
this by numerically showing that the limiting covariance matrix provides a more precise depiction of
convergence than the mixing rates often used in finite-time upper bounds [26,69]. Moreover, they
argued that finite-time analysis may not suitably apply to certain efficient high-order Markov chains,
due to the lack of comparative mixing-rate metrics.

Our Contributions: We present an asymptotic analysis of the UD-SGD algorithm (TJ) under hetero-
geneous agent dynamics { X, } and a large family of communication patterns {W,, }. Specifically,

e Under appropriate assumptions, all agents performing (I)) asymptotically reach the consensus and

find 6*: Vi € [N], 0, & + Zfil 9% denotes the average model parameter among all agents, we have

lim [|0",—0,]/=0, lim ||6,—0%||=0 as. )
n—oo n—oo

Moreover, we derive the CLT of UD-SGD in the form of

dist.
—_—

Yo 2 (0, — 07) N(0,V). 3)

n—oo
Our framework addresses technical challenges in quantifying consensus error under various commu-
nication patterns and slowly increasing communication interval. This shows a substantial extension
compared to previous studies [58 143} 51], particularly in regulating the growth of communication

stationary distribution. This naturally incurs a maximum operator, and thus convergence is strongly influenced
by the slowest mixing rate, i.e., the worst-performing agent.
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intervals (Assumption [2.3}ii) and in proving the scaled consensus error’s boundedness (Lemma [B.T)).
Furthermore, we reformulate UD-SGD as a stochastic approximation-like iteration and tackle the
Markovian noise term using the Poisson equation, a technique previously confined only to vanilla
SGD with Markovian sampling [17,138}52]. The key here is to devise the noise decomposition that
separates the consensus error among all agents from the error caused by the bias from the Markov
chain, which aligns with the target distribution only asymptotically at infinity, not at finite times.

e In analyzing (3), we derive the exact form of V as ﬁ Zfil V. Here, V; is the limiting covariance
matrix of agent i, which depends mainly on its sampling strategy { X/ }. This allows us to show
that improving individual agents’ sampling strategy can reduce the covariance in CLT, which in turn
implies a smaller mean-square error (MSE) for large time n. This is a significant advancement over
previous finite-sample bounds that only account for the worst-performing agent and do not fully
capture the effect of individual agent dynamics on overall system performance. Our CLT result
also treats recent findings in [38] as a very special case with N = 1, where the relationship therein
between the sampling efficiency of the Markov chain and the limiting covariance matrix in the CLT
of vanilla SGD, can carry over to our UD-SGD.

e We demonstrate that our analysis supports recent findings from studies such as [42]], which exhibited
linear speedup scaling with the number of agents under LSGD-FP with Markovian sampling; and
[62, 161], which examined the notion of ‘asymptotic network independence’ for DSGD with i.i.d.
sampling, where the convergence of the algorithm at large time n depends solely on the left
eigenvector of W, (%1 considered in this paper) rather than the specific communication network
topology encoded in W, but now under Markovian sampling. We extend these findings in view of
CLT to a broader range of communication patterns { W, } and general sampling strategies { X }.

e We conduct numerical experiments using logistic regression and neural network training with
several choices of agents’ sampling strategies, including a recently proposed one via nonlinear
Markov chain [25]]. Our results uncover a key phenomenon: a handful of compliant agents adopting
highly efficient sampling strategies can match or exceed the performance of the majority using
moderately improved strategies. This finding is crucial for practical optimization in large-scale
learning systems, moving beyond the current literature that only considers the worst-performing
agent in more restrictive settings.

2 Preliminaries

Basic Notations: We use ||v|| to indicate the Euclidean norm of a vector v € R? and || M| to indicate
the spectral norm of a matrix M € R?*? The identity matrix of dimension d is denoted by I, and
the all-one (resp. all-zero) vector of dimension N is denoted by 1 (resp. 0). Let J = 117 /N. The
diagonal matrix with the entries of v on the main diagonal is written as diag(v). We also use ‘>’ for
Loewner ordering such that A = B is equivalent to x” (A — B)x > 0 for any x € R?,

Asymptotic Covariance Matrix: Asymptotic variance is a widely used metric for evaluating the
second-order properties of Markov chains associated with a scalar-valued test function in the MCMC
literature, e.g., Chapter 6.3 [12], and asymptotic covariance matrix is its multivariate version for a
vector-valued function. Specifically, we consider a finite, irreducible, aperiodic and positive recurrent
(ergodic) Markov chain { X, },,>0 with transition matrix P and stationary distribution 7, and the
estimator /i, (g) £ %22;01 g(X,) for any vector-valued function g : [N] — RY. According to
the ergodic theorem [12} [13]], we have lim,,_, fin(g) = Ex(g) a.s.. As defined in [13] [38]], the
asymptotic covariance matrix X x (g) for a vector-valued function g(-) is given by

Sx(g)2 lim n - Var(i,(g))= lim 1 ‘E{A,AT}, @

n— 00 n—oo n

where A,, £ Z;:Ol (g(Xs) — Ex(g)). By following the algebraic manipulations in [12, Theorem
6.3.7] for asymptotic variance (univariate version), we can rewrite (@) in a matrix form such that

Sx(g) = GTdiag(n) (Z — Iy + 177) G, 6))
where G = [g(1), -+ ,g(N)]T € RN*?and Z £ [Iy — P + 177]~L. This matrix form explicitly

shows the dependence on the transition matrix P and its stationary distribution 7, and will be utilized
in our Theorem[3.3l
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Model Description: The UD-SGD in @) can be expressed in a compact iterative form, i.e., we have
0 = S0 wn (i, §) (04, — 11 VE (03, X3)), ©)

at each time n, where each agent i samples according to its own Markovian trajectory { X/ },,>0
with stationary distribution 7; such that Ex., [F;(6, X)]= f: (). Let K; denote the communication

interval between the (I — 1)-th and [-th aggregation among N agents, and n; = Zlm:l K,, be the
time instance for the I-th aggregation. We also define 7,, = min;{l : n; > n} as the index of the
upcoming aggregation at time n such that K, indicates the communication interval for the 7,,-th
aggregation, or more precisely, the length of the communication interval that includes the time index
n. The communication pattern follows that W,, = L, if n # n; and W,, = W otherwise for
[ > 1, where the examples of W will be discussed in Appendix [F.I] Note that i) when K; = 1, (6)
reduces to DSGD; ii) when K; = K > 1, (6) becomes the local SGD in FL. iii) When K increases
with [, we recover some choices of K; studied in [S1] beyond LSGD-RC with i.i.d. sampling. This
increasing communication interval aims to further reduce the frequency of aggregation among agents
for lower communication costs, but now under a Markovian sampling setting and a wider range of
communication patterns. We below state the assumptions needed for the main theoretical results.

Assumption 2.1 (Regularity of the gradient). For eachi € [N] and X € X°, the function F;(0, X)
is L-smooth in terms of 0, i.e., for any 01,05 € R,

IVE(01, X) — VFi(02, X)[| < L[|61 — 62]]. Q)

In addition, we assume that the objective function f is twice continuously differentiable and ji-strongly
convex only around the local minima 0* € L, i.e.,

H £ V2f(6") = ply. (8)

Assumption imposes the regularity conditions on the gradient VF;(-, X) and Hessian matrix
of the objective function f(-), as is commonly assumed in [10} 45l [29] 38]. Note that requires
per-sample Lipschitzness of V F; and is stronger than the Lipschitzness of its expected version V f;,
which is commonly assumed under i.i.d sampling setting [73} 50, 30]. However, we remark that this
is in line with previous work on DSGD and LSGD-FP under Markovian sampling as well [[71}142,80],
because VF; (0, X) is no longer the unbiased stochastic version of V f;(6) and the effect of { X} }
has to be taken into account in the analysis. The local strong convexity at the minimizer is commonly
assumed to analyze the convergence of the algorithm under both asymptotic and non-asymptotic
analysis [10, 29038145152, [80].

Assumption 2.2 (Ergodicity of Markovian sampling). {X!},
with stationary distribution m; such that Ex .., [F;(0,X)] =

The ergodicity of the underlying Markov chains, as stated in Assumption[2.2} is commonly assumed
in the literature [26} 169 180} 42} 38]]. This assumption ensures the asymptotic unbiasedness of the loss
function F; (6, -), which takes i.i.d. sampling as a special case.

>0 is an ergodic Markov chain
fi(0), and is independent from

Assumption 2.3 (Decreasing step size and slowly increasing communication interval). i) For bounded
communication interval K. < K,¥n, we assume the polynomial step size vy, = 1/n® and a €
(0.5,1]; Orii) If K-, — 00 as n — 0o, we assume v, = 1/n and define 1, = v, K™, where the

sequence {K;},> satisfies Y, n2 < oo, K, = 0(7_1/2(L+1)) and imy o0 Nny41/ Mgy +1 = 1.

In Assumptlon 23 the polynomial step size 7,, is standard in the literature and it has the property
>, = 00, 3., 72 < oo [17,38]l. Inspired by [51]l, we introduce 7,, to control the step size
within each [-th communication interval with length K] to restrict the growth of K. Specifically,

S, m2 < ooand K, = o(yn 1/2(L+1)) ensure that 7, — 0 and K does not increase too fast
in n. im0 Mny+1/Mn, +1+1 = 1 sets the restriction on the increment from n; to n;41. Several
practical forms of K; suggested by [51]], including K; ~ log(l) and K; ~ loglog(l), also satisfy
Assumption [2.3}ii). We defer to Appendix [A]the mathematical verification of these two types of K7,
together with the practical implications of increasing communication interval K.

Remark 1. In Assumption we incorporate an increasing communication interval along with
a step size v, = 1/n. This complements the choice of step size 7y, in [51) Assumption 3.3], where
Yo = 1/n% for a € (0.5,1). It is important to note, however, that the increasing communication
interval specified in [51, Assumption 3.2] is applicable only in i.i.d sampling. Under the Markovian
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sampling framework, the expression V F;(0, X )—V f;(0) loses its unbiased and Martingale difference
properties. Consequently, the Martingale CLT application as utilized by [51)] does not directly extend
to Markovian sampling. To address this, we adapted techniques from [29} 58] to accommodate the
increasing communication interval within the Markovian sampling setting and various communication
patterns. This adaptation necessitates v, = 1/n, a specification not covered in [31|]. Exploring more
general forms of K| that could relax this assumption is outside the scope of our current study.

Assumption 2.4 (Stability on model parameter). We assume sup,, ||0% || < oo almost surely Vi € [N].

Assumption claims that the sequence of {6? } always remains in a path-dependent compact set. It
is to ensure the stability of the algorithm that serves the purpose of analyzing the convergence, which
is often assumed under the asymptotic analysis of vanilla SGD with Markovian noise [23,[29[52]]. As
mentioned in [58, 70]], checking Assumption [2.4]is challenging and requires case-by-case analysis,
even under i.i.d. sampling. Only recently the stability of SGD under Markovian sampling has been
studied in [9], but the result for UD-SGD remains unknown in the literature. Thus, we analyze each
agent’s sampling strategy in the asymptotic regime under this stability condition.

Assumption 2.5 (Contraction property of communication matrix). i). {W,,},,>¢ is independent of
the sampling strategy { X} },>0 for all i € [N] and is assumed to be doubly-stochastic for all n; ii).
At each aggregation step n;, W, is independently generated from some distribution P,,, such that
[Ewnp, [WTW]|=J|| <C\ <1 for some constant C\.

The doubly-stochasticity of W, in Assumption [2.5}i) is widely assumed in the literature [54] 24
43 180]. Assumption [2.5}ii) is a contraction property to ensure that agents employing UD-SGD will
asymptotically achieve the consensus, which is also common in [[7, 24} [80]. Examples of W that
satisfy Assumption [2.5}ii), e.g., Metropolis-Hasting matrix, partial agent participation in FL, are
deferred to Appendix [F.Idue to space constraint.

3 Asymptotic Analysis of UD-SGD

Almost Sure Convergence: Let §,, £ % vazl 0% represent the consensus among all the agents at

time n, we establish the asymptotic consensus of the local parameters 6, as stated in Lemma

Lemma 3.1. Under Assumptions and the consensus error 0%, —0,, diminishes to zero
at the rate specified below: Almost surely, for every agent i € [N],

1650, = O(vn) under Assum. 2.3}i), ©)
M\ O®y)  under Assum. [23}ii).

Lemma [3.1]indicates that all agents asymptotically reach consensus at a rate of O(7,,) (or O(,)).
This finding extends the scope of [58, Proposition 1], incorporating considerations for Markovian
sampling, FL settings, and increasing communication interval K. The proof, detailed in Appendix [B]
primarily tackles the challenge of establishing the boundedness of the sequences {v,, (6, — 6,,)} (or
{n; 1 (0}, — 6,,)}) almost surely for all i € [N]. This is specifically analyzed in Lemma Next,
with additional Assumption we are able to obtain the almost sure convergence of 6,, to 8* € L.

Theorem 3.2. Under Assumptions[2.1]-[2.3] the consensus 0., converges to L almost surely, i.e.,
limsup,, infg«cz |0, — 0%]| =0 a.s. (10)

Theorem [3.2|is achieved by decomposing the Markovian noise term V F; (6%, X%) — V f;(6%), using
the Poisson equation technique as discussed in [6} 29, [17]], into a Martingale difference noise term,
along with additional noise terms. We then reformulate (6) into an iteration akin to stochastic
approximation, as depicted in (56). The subsequent step involves verifying the conditions on these
noise terms under our stated assumptions. Crucially, this theorem also establishes that UD-SGD
ensures an almost sure convergence of each agent to a local minimum 6* € L, even in scenarios
where the communication interval K; gradually increases, in accordance with Assumption [2.3}ii).
The detailed proof of this theorem is provided in Appendix [C|

Central Limit Theorem: Let U; = X, (VE;(6*,-)) represent the asymptotic covariance matrix
(defined in (3))) associated with each agent i € [IV], given their sampling strategy { X } and function
VF;(0%,). Define U £ > Zf\il U;. We assume the polynomial step-size v, ~7«/n%, a € (0.5,1]
and v, > 0. In the case of a = 1, we further assume ~, > 1/2u, where yu is defined in ().
For notational simplicity, and without loss of generality, our remaining CLT result is stated while
conditioning on the event that {6,, — 6*} for some 6* € L.
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Theorem 3.3. Let Assumptions[2.1]-[2.3| hold. Then,

720, 67) 5 N(O, V), (1n

where the limiting covariance matrix V is in the form of
V= [ eMUMt. (12)
Here, we have M = —H ifa € (0.5,1), or M = 1,/2v, — H if a = 1, where H is defined in (8).
Moreover, let 0,, = % Z:L:_Ol 0sand V' = H-'UH™. Fora € (0.5,1), we have
V0, — 07) 24 N (0, V), (13)

n—oo

The proof, presented in Appendix [D] addresses the technical challenges in deriving the CLT for
UD-SGD, specifically the second-order conditions in decomposing the Markovian noise term, which
is not present in the i.i.d. sampling case [58, 43} 51]]. We decompose V F;(0,,, X:)—V fi(6,,) into
three parts in (@8) using Poisson equation: €}, , ,, v/, &’ ;. The consensus error 0!, — 6,, embedded
in noise terms e/, ,; and &, is a new factor, whose characteristics have been quantified in our
Lemma 3.1 but are not present in the single-agent scenario analyzed as an application of stochastic
approximation in [22| [29]. The specifics of this analysis are expanded upon in Appendices[D.I|to
We require 7, > 1/2p for a=1 to ensure that the largest eigenvalue of M is negative, as this
is a necessary condition for the existence of V in (I12) (otherwise integration diverges). In the case
where there is only one agent (N =1), V and V' reduce to the matrices specified in the CLT result
of vanilla SGD [29} (38| 152]. In addition, for a special case of constant communication interval in
Assumption [2.3}) and i.i.d. sampling as shown in Table[I} we recover the CLT of LSGD-RC in [51].
See Appendix [E] for detailed discussions.

Theoremhas significant implications for the MSE of {#,,} for large time n, i.e., E[||0,,— 0*||?]=
S €TE[(0p— 0)(0n— 0°)Tei = vn X0, €T Ve; = 7, Tr(V), where e; is the d-dimensional

7
vector of all zeros except 1 at the ¢-th entry. This indicates that a smaller limiting covariance matrix
V, according to the Loewner order, results in a smaller trace of V and consequently in a reduced
MSE for large n. Consideration for smaller V will be presented in the next section, where agents

have the opportunity to improve their sampling strategies.

Remark 2. Studies by [62, 161|] have shown that in DSGD with a fixed doubly-stochastic matrix
W, the influence of communication topology diminishes after a transient period. Our Theorem[3.3]
extends these findings to Markovian sampling and a broader spectrum of communication patterns as
in Table[l} This extension is based on the fact that the consensus error, impacted primarily by the
communication pattern, decreases faster than the CLT scale O(\/¥,,) and is thus not the dominant
factor in the asymptotic regime, as suggested by Lemma 3.1

Remark 3. Recent studies have highlighted linear speedup with increasing number of agents N in
the dominant term of their finite-sample error bounds under DSGD-CT with i.i.d. sampling [43)] and
LSGD-FC with Markovian sampling [42]]. However, our Theorem[3.3]demonstrates this phenomenon
under more diverse communication patterns and Markovian sampling in Table[I|via the leading term

V in our CLT. Specifically, it scales with 1/N, i.e. V=V /N, where V = % Zf\i1 V,; denotes the
average limiting covariance matrices across all N agents and V ; = fooc MU, eMdt, suggesting
that the MSE E|||0,, — 0*||?] will be improved by 1/N. A similar argument also applies to V' in (13),
ie, V' =V'/N, where V' = LN V/and V, =H "U;H .

Impact of Agent’s Sampling Strategy: In the literature, the mixing time-based technique has
been widely used in the non-asymptotic analysis in SGD, DSGD and various LSGD variants in FL.
[26. 1691 68l 1801 [42]], i.e., for each agent i € [N] and some constant C,

IVE:(0,X5) = V£(0)ll < Cllollp7, (14)

where p; is the mixing rate of the underlying Markov chain. However, typical non-asymptotic analyses

often rely on p £ max; p; among N agents, i.e., the worst-performing agent in their finite-time
bounds [80, [72]], or assume an identical mixing rate across all N agents [42] 68]].

In contrast, Remark [3| highlights that each agent holds its own limiting covariance matrices V; and
V!, which are predominantly governed by the matrix U;, capturing the agent’s sampling strategy
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{X?} and contributing equally to the overall performance of UD-SGD. For each agent 4, denote by
U and UY the asymptotic covariance matrices associated with two candidate sampling strategies
{X?} and {Y;'}, respectively. Let VX and V¥ be the limiting covariance matrices of the distributed
system in (12)), where agent i employs { X} and {Y,!}, respectively, while keeping other agents’
sampling strategies unchanged. Then, we have the following result.

Corollary 3.4. For agent i, if there exist two sampling strategies { X },>0 and {Y,! },,>0 such that
UX = UY, we have VX = VY,

Corollary 3.4]directly follows from the definition of Loewner ordering, and Loewner ordering being
closed under addition (i.e., A > B implies A+ C > B+ C). It demonstrates that even a single agent
improves its sampling strategy from { X } to {Y,i}, it leads to an overall reduction in V (in terms
of Loewner ordering), thereby decreasing the MSE and benefiting the entire group of IV agents.

The subsequent question arises: How do we identify an improved sampling strategy {Y,'} over the
baseline { X" }?

This question has been partially addressed by [57, 148l 138], which qualitatively investigates the
‘efficiency ordering’ of two sampling strategies. In particular, [38, Theorem 3.6 (i)] shows that
sampling strategy {Y,,} is more efficient than {X,,} if and only if ¥ x(g) = Xy (g) for any
vector-valued function g(-) € R%. Consequently, in the UD-SGD framework, employing a more
efficient sampling strategy {Y,’} over the baseline { X/} by agent i leads to X y:(VF;(6*,-)) =
Sy (VF;(0%,-)), thus satisfying U;* = UY". This finding, as per Corollary implies an overall
improvement in UD-SGD.

For illustration purposes, we list a few examples where two competing sampling strategies follow
efficiency ordering: i) When an agent has complete access to the entire dataset (e.g., deep learning),
shuffling techniques like single shuffling and random reshuffling are more efficient than i.i.d. sampling
[38L[78]]; ii) When an agent works with a graph-like data structure and employs a random walk, e.g.,
agent ¢ in Figure (I} using non-backtracking random walk (NBRW) is more efficient than simple
random walk (SRW) [48]]. iii) A recently proposed self-repellent random walk (SRRW) is shown to
achieve near-zero sampling variance, indicating even higher sampling efficiency than NBRW and
SRW [25]E] This random-walk-based sampling finds a particular application in large-scale FL within
D2D networks (e.g., mobile networks, wireless sensor networks), where each agent acts as an edge
server or access point, gathering information from the local D2D network [37, 32]]. Employing a
random walk over local D2D network for each agent constitutes the sampling strategy.

Theorem and Corollary not only qualitatively compare these sampling strategies but also
allow for a quantitative assessment of the overall system enhancement. Since every agent contributes
equally to the limiting covariance matrix V of the distributed system as in Remark 3] a key application
scenario is to encourage a subset of compliant agents to adopt highly efficient strategies like SRRW,
potentially yielding better performance than universally upgrading to slightly improved strategies like
NBRW. This approach, more feasible and impactful in large-scale machine learning scenarios where
some agents cannot freely modify their sampling strategies, is a unique aspect of our framework not
addressed in previous works focusing on the worst-performing agent [80 142, |68, [72].

4 Experiments

In this section, we empirically evaluate the effect of agents’ sampling strategies under various
communication patterns in UD-SGD. We consider the Lo-regularized binary classification problem

N B
1 A 1 : _ 1 ngij T K 2
min (9) £ N;fi(e), w1thfi(9)—BjZ=;10g(1+e ) =i (07xi) + 5012, (15)

where the feature vector x; ; and its corresponding label y; ; are held by agent 7, with a penalty
parameter « set to 1. We use the ijcnnl dataset [14] with 22 features in each data point and 50k
data points in total, which is evenly distributed to two groups with 50 agents each (N = 100 agents

3Note that SRRW is a nonlinear Markov chain that depends on the relative visit counts of each node in the
graph. While its application in single-agent optimization has been studied in [39], expanding the theoretical
examination of SRRW to multi-agent scenarios is beyond the scope of this paper. However, we can still
numerically evaluate the performance of UD-SGD with multiple agents on general communication matrices
using SRRW as a highly efficient sampling strategy in SectionE}
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Figure 2: Binary classification problem. From left to right: (a) Impact of efficient sampling strategies
on convergence. (b) Performance gains from partial adoption of efficient sampling. (c) Comparative
advantage of SRRW over NBRW in a small subset of agents. (d) Asymptotic network independence
of four algorithms under UD-SGD framework with fixed sampling strategy (shuffling, SRRW). (e)
Different sampling strategies in the DSGD algorithm with time-varying topology (DSGD-VT). (f)
Different sampling strategies in the DFL algorithm with increasing communication interval.

in total) and each agent holds B = 500 distinct data points. Each agent in the first group has full
access to its entire dataset, and thus can employ i.i.d. sampling (baseline) or single shuffling. On
the other hand, each agent in the other group has a graph-like structure and uses SRW (baseline),
NBRW or SRRW with reweighting to sample its local dataset with uniform weight. In this simulation,
we assume that agents can only communicate through a communication network using the DSGD
algorithm. This scenario with heterogeneous agents, as depicted in Figure[T] is of great interest in
large-scale machine learning [37,[32]]. In addition, we employ a decreasing step size v, = 1/n in our
UD-SGD framework (T)) because it is typically used for the strongly convex objective function and is
tested to have the fastest convergence in this simulation setup. Due to space constraints, we defer
detailed simulation setup, including the introduction of SRW, NBRW, and SRRW, to Appendix @

The simulation results are obtained through 120 independent trials. In Figure 2(a)l we assume that
the first group of agents perform either i.i.d. sampling or shuffling method, while the other group of
agents all change their sampling strategies from baseline SRW to NBRW and SRRW, as shown in the
legend. This plot shows that improved sampling strategy leads to overall convergence speedup since
NBRW and SRRW are more efficient than SRW [38] 25]]. Furthermore, it illustrates that SRRW is
significantly more efficient than NBRW in this simulation setup, i.e., SRRW > NBRW > SRW
in terms of sampling efficiency. While keeping the second group of agents unchanged, we can see
that shuffling method outperforms i.i.d. sampling with smaller asymptotic MSE. However, shuffling
method may not perform perfectly for small time n due to slow mixing behavior in the initial period,
which is also observed in the single-agent scenario in [65} 1} [38]]. The error bar therein also indicates
that the random-walk sampling strategy has a significant impact on the overall system performance
and SRRW has smaller variance than NBRW and SRW.

In Figure[2(b)] we let the first group of agents perform i.i.d. sampling while only changing a portion
of agents in the second group to upgrade from SRW to SRRW, e.g., 30 SRW 20 SRRW in the legend
means that there are 30 agents using SRW while the rest 20 agents in the second group upgrade
to SRRW. We observe that more agents willing to upgrade from SRW to SRRW lead to smaller
asymptotic MSE, as predicted by Theorem [3.3]and Remark 3} This improvement in MSE reduction
doesn’t scale linearly with more agents adopting SRRW because each agent holds its own dataset that
are not necessarily identical, resulting in different individual limiting covariance matrices V; #V ;.

While maintaining i.i.d. sampling for the first group of agents, we compare the performance when the
second group of agents in Figure employ NBRW or SRRW. Remarkably, the case with only 10
agents out of 50 agents in the second group adopting far more efficient sampling strategy (40 SRW,
10 SRRW) through incentives or compliance already produces a smaller MSE than all 50 agents
using slightly better strategy (50 NBRW). The performance gap becomes even more pronounced

72762 https://doi.org/10.52202/079017-2316



when 20 agents upgrade from SRW to SRRW (30 SRW, 20 SRRW). We show that the performance
of a distributed system can be improved significantly when a small proportion of agents adopt highly
efficient sampling strategies.

Figure 2(d)|empirically illustrates the asymptotic network independence property via four algorithms
under our UD-SGD framework: Centralized SGD (communication interval X = 1, communication
matrix W = 117 /N); LSGD-FP (FL with full client participation, K = 5, W = 117 /N); DSGD-
VT (DSGD with time-varying topologies, randomly chosen from 5 doubly stochastic matrices);
DFL (decentralized FL with fixed MH-generated W and increasing communication interval K; =
max{1,log()} after [-th aggregation). We fix the sampling strategy (shuffling, SRRW) throughout
this plot. All four algorithms overlap around 1000 steps, implying that they have entered the
asymptotic regime with similar performance where the CLT result dominates, implying the asymptotic
network independence in the long run.

Figure[2(e)|and 2(F)] show the performance of different sampling strategies in DSGD-VT and DFL
algorithms in terms of MSE. Both plots consistently demonstrate that improving agent’s sampling
strategies (e.g., shuffling > iid sampling, and SRRW > NBRW > SRW) leads to faster convergence
with smaller MSE, supporting our theory.

Furthermore, in Appendix [G.2} we simulate an image classification task with CIFAR-10 dataset [44]]
by training a 5-layer CNN and ResNet-18 model collaboratively through a 10-agent network. The
result is illustrated in Figure [3} where SRRW outperforms NBRW and SRW as expected. In summary,
we find that upgrading even a small portion of agents to efficient sampling strategies (e.g., shuffling
method, NBRW, SRRW under different dataset structures) improves system performance in UD-SGD.
These results are consistent in binary and image classification tasks, underscoring that every agent
matters in distributed learning.

5 Conclusion

In this work, we develop an UD-SGD framework that establishes the CLT of various distributed algo-
rithms with Markovian sampling. We overcome technical challenges such as quantifying consensus
error under very general communication patterns and decomposing Markovian noise through the
Poisson equation, which extends the analysis beyond the single-agent scenario. We demonstrate that
even if only a few agents optimize their sampling strategies, the entire distributed system will benefit
with a smaller limiting covariance in the CLT, suggesting a reduced MSE. This finding challenges the
current established upper bounds where the worst-performing agent leads the pack. Future studies
could pivot towards developing fine-grained finite-time bounds to individually characterize each
agent’s behavior, and theoretically analyze the effect of SRRW in UD-SGD.
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A Discussion of Assumption [2.3}ii)

A.1 Suitable choices of K

When wet let K; ~ log(l) (resp. K; ~ loglog(l)), as suggested by [51]], it trivially satisfies
K., = o(yn /PEHD) = o(n1/2(L4+D) since by definition K, < K, ~ log(n) (resp. loglog(n)),
and log(n) = o(n®) (resp. loglog(n) = o(n*)) for anye > 0. Besides, >, n2 = > 2KQ(LH) <

S, n2n2EAe = 57 p2(EHDe=2 o ensure Y, n2 < oo, itis sufficient to have 2(L+1)e—2 <
-1, or equivalently, ¢ < 1 J2(L + 1) Since € can be arbitrarily small to satisfy the condition,
>, m2 < oo is satisfied. When K; ~ log (1), we can rewrite the last condition as

Trutl Ol KL+1 — <nl+1 + 1> <log(l +1)+ 1>L+1
Tlnl+1+1 7’ﬂl+1+1 KZ+JE1 ny + 1 10g<l) + 1

_ (1, B ) (log(+1) + 1\

B n+1 log(l) +1 ’
where we have n; ~ log(1!) such that K11 /n; = log(l+1)/log(l') — 0 andlog(l+1)/log(l) — 1
as | — oo, which leads to limy, o0 M, +1/n1+1 = 1. Similarly, for K; ~ loglog(l), we

have n; ~ log(ng 1 log(s)) such that K;q/n; ~ loglog(l + 1)/log log(]_[f9=1 log(s)) — 0 and
loglog(l 4+ 1)/loglog(l) — 1 as I — oo, which also leads to limy, o0 7, +1/Mny 1 +1 =

(16)

A.2 Practical implications of Assumption [2.3}ii)

In this assumption, we allow the number of local iterations to go to infinity asymptotically. In
distributed learning environments such as mobile, 0T, and wireless sensor networks, where nodes
are often constrained by battery life, increasing communication interval in Assumption [2.3}ii) plays
a crucial role in balancing energy costs with communication effectiveness. It allows agents to
communicate more frequently early on, leading to a faster initial convergence to the neighborhood of
0*. Then, we slow down the communication frequency between agents to conserve energy, leveraging
the diminishing returns on accuracy improvements from additional communications.

Consider the scenario where devices across multiple clusters collaborate on a distributed optimization
task, utilizing local datasets. Devices within each cluster form a communication network that allows
a virtual agent to perform a heterogeneous Markov chain trajectory via random walk, or an i.i.d.
sequence in a complete graph with self-loops, depending on the application context. Each cluster
features an edge server that supports the exchange of model estimates with neighboring clusters. By
performing K local updates before uploading these to the cluster’s edge server, the model benefits
from reduced communication overhead. As the frequency of updates between devices and edge
servers decreases — optimized by gradually increasing K — we effectively lower communication
costs, particularly as the model estimation 6,, is close to 6*.

B Proof of Lemma

LetJ, 21y —J e RN and 7, £ J, ®1; € RV*Nd ywhere ® is the Kronecker product.
Let ©, = [()T,---, (6N)T]T € RN, Then, motivated by [58], we define a sequence ¢,, =

77;_,1_le 0,, € RV in the increasing communication interval case (resp. ¢, = 'yglljl ©,, in the
bounded communication interval case), where 1,41 is defined in Assumption ii). J.L0, =
0, — %(IIT ® 17)0,, represents the consensus error of the model.

We first give the following lemma that shows the pathwise boundedness of ¢,,.

Lemma B.1. Let Assumptwns ! E and hold. For any compact set @ C RN, the
sequence ¢, satisfies sup,, E[||dn|| ]lmjgn,l{(—)jesz}] < o0.

Lemma and Assumption ii) imply that for any n > 0, E[|JLOu[*1n,_, _,(e,e}] =
na 1 Elllonl*1n, ., 1 {e,eqy) < Cni .y for some constant C' that depends on C; and 2. Along
with Assumption such that || 7, ©,,|| is always bounded per each trajectory, it means

Hjl@nH]lﬂan,l{@jeQ} =0(m) as.
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Let {2, }:m>0 be a sequence of increasing compact subset of RV such that U,, Qm =RY 4 Then,
we know that for any m > 0,

[T1Onl1n, ., (0,0, = Olmn) a.s. (17)
(T7) indicates either one of the following two cases:

* there exists some trajectory-dependent index m’ such that each trajectory {©,},>¢ is
always within the compact set 2,7, i.e., 1n,_ (0,eq,,} = 1 (satisfied by the construction
of increasing compact sets {{2,, } >0 and Assumption[2.4), and we have || 71 O, || = O(n,,)
such that lim,,_,o. J1.©,, = 0;

* ©,, will escape the compact set (2, eventually for any m > 0 in finite time such that
In,.,_.{0;e0,} = 0 when n is large enough.

We can see the second case contradicts Assumptionbecause we assume every trajectory {©,, },>0
is within some compact set. Therefore, (T7) for any m > 0 is equivalent to showing || 7.0, =
O(nyp) and lim,, o J1 ©, = 0. Under Assumption i) we can obtain similar result || 7, O, =
O(7yn) by following the same steps as above, which completes the proof of Lemma (3.1

Proof of Lemma(B-1] We begin by rewriting (6) in the matrix form,

Ont1 =W, (@n - 'Yn+1VF(@an)) , (18)
where X, £ (X5, X7, -+, X}Y) and VF(0,,,X,,) £ [VFi(0,, X)), -, VEN (0, X)) €
RN?, Recall 0, 2 £ 57V 60/ € R? and we have [T, --- ,07]T = L (117 ® 1,)0,, € RN

Case 1 (Increasing communication interval K. ): By left multiplying (T8) with (117 ® I,5),
along with v,,11 = N1/ K TL:i in Assumption ii), we have the following iteration

1 1 1 VF(0,,X,)
~ (117 ©14)0ns1 = (117 @ L1)0y — 1 (11T @ L) ——777—=, (19
N N N KER

where the equality comes from + (117 @ In))W,, = +(117W,, ® I) = % (117 ® I;). With (8)
and (19), we have

1
Ont1 — N(llT ®13)0n41

= (Wn — N(llT ®Id)> On — Mnt1 (Wn — N(IIT ® Id)> ](;(v_%tll)
VF(O,, X, (20)
=(J1W, ®12)T10n = nt1(JLW, ® Id)%
Tn+1
_ VF(0,,X,
:nn+1(JJ_Wn & Id) <7ln41»1jl@” - é(L—H)> ’
Tn+1

where the second equality comes from W, — £ (117 @ I;) = (W, — 111 @ L; =J W, ® I,
and (J, W, @I1)7. =J W, J, @I; =J, W, ®1,. Leta, = n,/m.41, dividing both sides
of (20) by 712 gives

2

Tn+1

VF(0,,X,
¢n+1 = a71+1(JLWn (24 Id) (fbn - [((L—i-1)> .
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Define the filtration {F;, },>0 as F,, £ 0{0¢, X0, Wy, 01, X1, W1, -+, X,,_1,W,,_1,0,,X,}.
Recursively computing (21)) w.r.t the time interval [n;, ;1] gives

® Id> (bm

niy1 niy1—1
¢n,+1=[ 1T ak‘| <lJJ_ IT W

k=n;+1 k=n,
nip1—1 [ nigr ni41—1
VF(0,,X
- [H a; ([‘n 1w ®Id>§<f+1’“> (22)
k=n; i=k+1 i=k +1
0 ety VF (0, X})
n;+1 n;+1 k> k
e (JJ_Wn ® Id) ¢n - - (JJ_Wn & Id) - o +1
Mnpp1+1 ! ' kgz k42 ' Kll_/;'_tl

where [] is the backward multiplier, the second equality comes from J, W, J, = J, W,
and W, = Iy for ¥ ¢ {n;}. In Assumption we have [|Ew~p, [WTIL W] =
H]Ewwpnl [WTW — J]|| < Cy < 1. Then,

EH|¢TLI,+1 ||2|‘Fnz]

2
= (7;77”:) d)g;LEanNPnl [(lem ® Id)T (JLWTU ® Id)} bn,
N1

ni41 —1

2
n? VF(O, X
—2E it ¢£l (JLWnl oy Id)T (lenl ® Id) ( Lk+1 k) Fm
e My +17Mk+2 Kl+1
=n,
nl+1—1 2
Mng+1 VF(@k7Xk)
+E Tl (3 W, @ 1) ~— SR
Ic;L Mk+2 I Ki! l
2
S( Ty +1 ) ST EwW,, o, [(WEILW,, ©14)] 60,
Mnypa+1 23)
2 niy1—1
n VF(O,, X
_ 2( ni+1 ) E Z ¢Zl (WZLJJ_WM ®Id) ( Lk+1 k‘) ]:m
777Ll+1+1 k=n,; Kl+1
2 np41—1 2
Ny +1 > VF (0, X)
+ | ——— ) E|||(J.W,, ®14) —— | |Fn
(nnz+1+1 ! k:znl Kﬁ:{l !
2 2 M|ni+1—1
Nni+1 Mni+1 VF (O, Xi)
< () oo P +2 () o || Y YRR 5,
e+ a1 +1 vz Ko
n N 2 np41—1 VF(@k Xk) 2 T
L (m+> CE|| Y B2 F
77m+1+1 k=n,; Kl+1

where the first inequality comes from JJT_JL =J1 and g2 > Ny, 41 for k € [y, nyp1 — 1].

Then, we analyze the norm of the gradient || VF (©y, X},)|| in the second term on the RHS of (23)

conditioned on F,,,. By Assumption @ we assume O, is within some compact set (2 at time
X

ny such that sup;c(y) xicx, VF,»(@}'”7 ') < Cgq for some constant C. For n = n; + 1 and any

XeX] x Xy x---x Xy, we have

IVE(On, 11, X)[| < [VF(On;11,X) = VF(Op,, X)|| + [[VF(O,, X)]|.

Considering [VF(©,,,X)|, we have supx [|[VF(0,,,X)|? <
>Y, supyicu, [|VE;(05,, X9)||? < NC3 such that [ VF(0,,,X)|| < v/ NCq. In addition, we
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have

s XOIIP

N
IVE(©n,+1,X) = VF(On,, X)|* =Y [IVFi(6], 41, X") = VEi(6]
=1

N
< L2 91’ _ 91’ 2
_Z 167, 1 — 6, | o)

N
<> A LIVE(G;,, X))
i=1
<Y1 CANL?
such that || VF(0,,11,X) — VF(0,,, X)|| < Yn,+1CoVNL. Thus, for any X,
IVF(On 41, X)|l < (14,1 L) VN Co. (25)
For n = n; + 2 and any X, we have
IVE(On, 12, X)|| < [VF(On;12,X) = VF(On, 11, X)[| + [[VF (O, 41, X).
Similar to the steps in (24)), we have
N
IVE (O 42, X) = VE(Or,+1,X)[> <D 7 o LPIVE (6}, 410 X001
i=1
=2 L2 I VF (O, 41, Xy )12,
Then, |[VEF(0,, 12, X)|| < (1 + vp,+2L) supx || VF(O,,+1, X)|| and, together with 23), we have
IVE (O, 42, X)[| < (14 42L) (1 + Yn,41L)VNCo. (27)
By induction, || VF (0, 4m, X)|| < 11, (1 + Yn,+s L)V NCq form € [1, K41 — 1].
The next step is to analyze the growth rate of [, (1 + 7y, 4+sL). By 1+ 2 < e” for z > 0, we have

(26)

[T+ mgaL) < eEEiammes,

s=1
For step size v, = 1/n,wehave LY """ | vy, 45 = LY 0o 1/(m+s) < LY "0 1/s < L(log(m)+
1) such that [T~ (1 4+ Y, +5L) < (em)”. Then,

niy1—1 ni41—1 Kig1—-1
VF (O, Xk) 1 1 i z
S R S VRO, X)) € VNG > m
i () K2y o K3 =0 (28)
< \/NeLCQ,
where the last inequality comes from Zfiﬁéfl ml < Kj1 (K — 1DE < KlL_ﬁll. We can see the

sum of the norm of the gradients are bounded by v/ N e’ Cq,, which only depends on the compact set
Q at time n = n,.

Let §; € (Cy,1). Since from Assumption ii), 1imy o0 My +1/Mnysa+1 = 1, there exists some
large enough [y such that (1777""7“)201 < 81 <69 := (61 +1)/2 < 1forany [ > ly. Note that &;

"l+1+1

depends only on C; and is independent of F,,. Then, let C’Q := v/ NelCq, we can rewrite @ as
E[H¢”z+1 ||2|]:m] <4 ||¢m ”2 + 2510@“¢m H =+ 510522
<0\ ¢m,[I* + M,

where Mg satisfies Mg > 8C2/(1 — 8;) + 6,C3, which is derived from rearranging (29) as
Mg > (81 — 02)|¢n, ||? + 201Cql|pn, || + 51C3 and upper bounding the RHS. Upon noting that
ﬂﬁjﬁnl{ejeﬂ} S ]]'njﬁnl,l {©;€0}> we obtain

E [éna |2 Ln, <., (0,60 ] < 02 (60,7102, (0,e0y] + Mo (30)

(29)
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The induction leads to E[||¢m+1||2]1mj§m{®jeﬂ}] < 5;”17MOE[||¢WOHQJleSWWI{@jeQ}] +
M/(1 — 63) < oo for any I > ly. Besides, for m € (n;,n;11), by following the above steps

(23) applied to 1), we have

2 2
Mni+1 Mini+1
Ellom 7] < (2252 ) o2 +2 (22) o,
By ([28) we already show that || 327+ ! YE©OLXE) |« o conditioned on F,,. Therefore,

k=n L+1
1 Kl+1

mi VF(Oy, X)

Nm+1 Nm+1 k=n, Kll_/,'_tl
2 m—1 2
Ty +1 VF (O, Xi)
() = (|2 e
m+ k=n; I+1

IE[HqsmH?]Lijm{@jEQ}] < oo form € (ng,ny4+1). This completes the boundedness analysis of
E[H¢”H2]lmj§n—1{@jeﬂ}]'
Case 2 (Bounded communication interval K. < K): In this case, we do not need the auxiliary
step size 1), and can directly work on 7,, = 1/n® for a € (0.5, 1]. Similar to (20), we have
1 _
Ons1 = (117 ©1)Onp1 = Y1 (L Wa @ L) (1,41.710n = VE(O,,X,)), - (32)

and let b,, £ 7,,/Yn1, dividing both sides of above equation by 7,, ;o gives
¢n+1 - bn+1<JJ_Wn & Id) (¢n - VF<@na Xn)) . (33)
Then, by following the similar steps in (22)) and (23], we obtain

2 ni41—1
Bllon P15 < ( 2252-) cl<||¢m||2+2||¢m||E S VF(OL.X) fm]
i1 k:m

’nl+171 2

> VF(0,Xy)

k:nl

+E

7. )

Also similar to (23) - (28), we can bound the sum of the norm of the gradients as

ni41—1 ni41—1 k
Y VEOLXy)|< Y l]‘[(lﬂsHL) VNCa. (35)
k=n; k=n, s=n,

Now that K is bounded above by K, H]::m (I+7vs41L) < L X ot LTI e Ck.
Then, we further bound (33) as

Ni4+1— 1
Y VF(©y,Xy)|| < VNKCkCo. (36)
k=n;
The subsequent proof is basically a replication of (29) - (31)) and is therefore omitted. O

C Proof of Theorem 3.2

We focus on analyzing the convergence property of 6, which is obtained by left multiplying (T8) with
+1T ®1,),ie
N ( d)s 1.C.,

1
9n+1 = N(]-T & Id)6n+1

1 (37)
=0n — %HN(IT @ 1)VF(0,,X,).

where the second equality comes from W,, being doubly stochastic and %(IT ® Ipw, =
%(1TWTL ® Id) = %(17‘ ® Id).

For self-contained purpose, we first give the almost sure convergence result for the stochastic
approximation that will be used in our proof.
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Theorem C.1 (Theorem 2 [23]]). Consider the stochastic approximation in the form of
Ont1 = On + Yngp1h(0n) + Yns1€ns1 + Yns1Tns1- (38)
Assume that
Cl. w.p.1, the closure of {0, } >0 is a compact subset of R%;
C2. {7n} is a decreasing sequence of positive number such that Y, v, = 00;
C3. wp.1, lim, ZZZI Yn€n exists and is finite. Moreover, lim,,_, . 17, = 0.

C4. vector-valued function h is continuous on R® and there exists a continuously differentiable
function V : R — R such that (VV (0),h(6)) < 0 for all § € RY. Besides, the interior of
V(L) is empty where L = {0 € R : (VV (), h(0)) = 0}.
Then, w.p.1, lim sup,, d(,,, L) = 0. O
We can rewrite (37)) as

1
Ony1 =0, — ’)’n+1ﬁ(1T ®14)VF(©,,X,)
=0, — ’)’n+1vf( — Yn+1 ( Z vfz 91 ( )) (39)

1 . . 1 )
i=1 i=1

and work on the converging behavior of the third and fourth term. By definition of function V f(-),
we have

N
1
A 7 7 .
£ Z V£:(05) =% Zl V£i(63,) =V fi(02)] - (40)
By the Lipschitz continuity of function V F;(- in (), we have

L
n T a7 :7j6n7 41
fH el @y

where the second inequality comes from the Cauchy-Schwartz inequality. In Appendix |B| we have
shown lim,, 7, ©,, = 0 almost surely such that lim,,_, ,, 7,, = 0 almost surely.

N
1 _
rall < NZLHGZ —Onll < 11T®Id)@
=1

Next, we further decompose the fourth term in (39). For an ergodic transition matrix P and a function
v associated with the same state space X, define the operator P*v(z) £ doyex P%(z,y)v(y) for the
k-step transition probability P¥(x, 7). Denote by Py, - , P the underlying transition matrices

of all V agents with corresponding stationary distribution 71, - - - , 7. Then, for every function
VE;(6,.) : X; — RY, there exists a corresponding function mg: (+) : X; — R? such that

mgi (x) — Pymgi(z) = VF;(0",2) — V£i(6"). (42)

The solution of the Poisson equation has been studied in the literature, e.g., [17, 38]]. For
self-contained purpose, we derive the closed-form myg: () from scratch. First of all, we can obtain
function my: () in the recursive form as follows,

me: () = VEF(0,2) =V fi(0") +Pi[VE, (0", ) =V £;(0)) () + P [VEF; (0", ) =V fi(0")] () + s
It is not hard to check that (@3)) satisfies {#2)). Note that by induction we get

Pf—1(m)" = (P, — 1(m)T)" Wk e Nk > 1. (44)

7
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Then, we can further simplify (3, and the closed-form expression of myg: () is given as

mgi(x) = > [Py = 1(m)T]" (2,9)(VE(8,y) — V£i(6))

yeX;

+ Y [Py —1(m)"] (2, y)(VE(O,y) — V£(6) +

yeX?

=

yeX;
yex
where the fourth equality comes from (@4). Note that the so-called ‘fundamental matrix’ (I — P; +
1(m;)T) ! exists for every ergodic Markov chain X* from Assumption Since function V F; is
Lipschitz continuous, we have the following lemma.

Lemma C.2. Under assumption (Al), functions mg: (x) and P;mygi () are both Lipschitz continuous
in 0" for any x € X.

(45)

oo

> [P k] (z,y)(VE(0",y) — Vfi(6"))

k=0

Proof. By (@), for any 6%, 0% € R? and z € X;, we have

s (@) = may @) < || 3 (1= Pi s+ 1(m)) ™ (2,9) [VE01,9) — V(8 )]

yE i
+ ||V £:(65) = V£ (65| (46)
<Cimax |[VF (6] y) — VE(65.9) | + [V £(6}) — V i(63)]
<(CiL+1)]107 = 63,
where the second inequality holds for a constant C; that is the largest absolute value of the entry

in the matrix (I — P; + 1(m;)7)~L. Therefore, mg: (z) is Lipschitz continuous in §*. Moreover,
following the similar steps as above, we have

[Pimg; (@) = Pimg (@) = | 32 Pite,ymag (9) = 3 Pile,y)mey(v)
yeEX; yEX;

= Z P;(z,y) (mgi (y) — may (y))

YEX; (47)
< z Pi(z,y) Hmeg (y) — me;(y)H
yeX?
< y) —mg; (y) H
< |XI(CL + 116y — o2
such that P;my: () is also Lipschitz continuous in #¢, which comletes the proof. O

Now with (#2) we can decompose VF;(0:, X1) — V£;(0%) as
VF(0;,,X,) =V fi(0),) =mg: (X)) — Pimg: (X))
=mgi (X)) — Pimg: (X, )

iL+1
+Pimg; (X;,_1) —Pimg: (X)) (48)
%,—/ —_—

v i
n 7

+Pimg: (X)) — Pimg; (X5,) .

Snt1
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Here {v,e!,} is a Martingale difference sequence and we need the martingale convergence theorem
in Theorem

Theorem C.3 (Theorem 6.4.6 [64]]). For an F,,-Martingale S,,, set X,,_1 = Sy, — Sp_1. If for some
1<p<y

(oo}
ZE[HXn—alLFn—l] < oo a.s. (49)
n=1

then S, converges almost surely. 0

We want to show that Y~ 72 E[|le},;||*|Fn] < oo such that Y ~,e!, converges almost surely
by Theorem [C.3] As we can see in @3], with Lemma [C.2] and Assumption [2.4] for a sample
path (©,, within a compact set ), sup,, ||mg: (z)|| < oo and sup,, ||[P;myg: (z)|| < oo almost
surely for all z € X;. This ensures that €/, ; is an Lo-bounded martingale difference sequence, i.e.,

sup,, [le?, 111 < sup,, ([[mg: (X7, 4 1) [[+[Pimg: (X)|]) < Do < oc. Together with Assumptlon
we get

> e Bl P Fa € Do d vhiy < oo as. (50)

and thus ) Yne€l converges almost surely.

Next, for the term I/fl we have

P p

> Ve Wh = Vig) = D (V1 — W)VE Y0¥ — Vo1V b
k=0 k=0

As i i ()| is bounded almost surely for all n and

r € X' such that sup,, |[v5|| < oo almost surely "Since limy, oo (Yn+1 — ¥n) = 0, we have
limy, 00 (Y1 — Yn)v2, = 0. Note that there exists a path-dependent constant C (that bounds ||/} ||)
such that for any n > m,

n

Z (Ye41 — M)Vi

k=m

<Oy (w = t1) = COhm = Mm41) < Oy (52)

k=m

Since lim,,—, oo yn = 0, there exists a positive integer M such that for all n > m > M, ~,, < ¢/C
and || Yr_, (ve+1—vk)v} || < eforevery e > 0. Therefore, {1 _,(Vk+1 —Vk)Vi }p>o0 is a Cauchy
sequence and Z;O:O (Yk+1 — Y& )V}, converges by Cauchy convergence criterion. The last term of
(BT) tends to zero. Therefore, Y~ Ve+1(v}, — v/j,) converges and is finite.

For the last term ¢!, Lemma |C.2|leads to

) c!
~ Z &l < 5 Z 10041 =001l < = 1Ons1 = Ol (53)

for the Lipschitz constant C’ of P;my:(x). However, the relationship between 6,, and 0,,.1 is
not obvious in the D-SGD and FL setting due to the update rule (T8) with communication matrix
W,,, unlike the classical stochastic approximation shown in (38). We come up with the novel
decomposition of 5;, which takes the consensus error into account, to solve this issue, i.e.,

Eni1 = {Pime;,H(Xfl) - Pimem(Xﬁ)} + [Pime, (X,) — Pimg: (X,,)]
(X3,) = Pimg, (X3,)] .

(54)

n+1

+ [Pimg
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Using the Lipschitzness property of P;mg(X) in Lemma we have

1 o .
N Z ||§’:L+1|| Sﬁ Z (||0:L+1 - 9n+1|| + ||9n+1 - 9n|| + ||9n - G:LH)
i=1 i=1
<% o —l(11T®I )© + % e —i(11T®I )©
_\/N n+1 N d n+1 \/N n N d n
+ C/ ||0n+1 - Hn“
o ,
:\/N(||jl®n+l” + [ TLOn) + C" [|0n+1 — O
c’ 1
=/ (ITLOns1ll + 1TLOw) + C' Yt N(lT @ 14)VF(0,,X,)| -

(55)

In Appendix [B| we have shown lim, ... J1©, = 0 almost surely. Moreover, ||%(1T ®
I,)VF(0,,X,)| is bounded per sample path. Therefore, lim, oo 4 Zf\il €511l = 0 such
that lim,, o0 & SN | €4 = 0 almost surely.

To sum up, we decompose (39) into
N
1 i i i i
Ont1 =0n — Y41V f(0n) — Yny1mn — 7n+1N Z (€n+1 +Vy = Vpp + ‘fn+1) . (56)
i=1

Now that im0 30 & S ~,ef and limy o0 30 & SN 41 (V) — v, ) converge
and are finite, lim,,_, r, = 0, lim,, s % Zi\; 52 = 0, all the conditions of C3 in Theorem
[C.T]are satisfied. Additionally, Assumption [2.4corresponds to C1, Assumption 2.3 meets C2, and
C4 is automatically satisfied when we choose the lyapunov function V' (6) = f(6). Therefore,
lim sup,, infg-c ||0, — 0*| = 0.

D Proof of Theorem

To obtain Theorem [3.3] we need to utilize the existing CLT result for general SA in Theorem [D.T|and
check all the necessary conditions therein.

Theorem D.1 (Theorem 2.1 [29]). Consider the stochastic approximation iteration (38), assume

Cl. Let 0* be the root of function h, i.e., h(0*) = 0, and assume lim,,_, . 0,, = 0*. Moreover,
assume the mean field h is twice continuously differentiable in a neighborhood of 6*, and
the Jacobian H = YV h(0*) is Hurwitz, i.e., the largest real part of its eigenvalues B < 0;

C2. The step size ., Y = 00, Y., V2 < oo, and either (i). 10g(Yn—1/Vn) = o(n), or (ii).
10g(Yn—1/7n) ~ Yn/ 7V« for some v, > 1/2|B

>

C3. sup,, ||0%|| < oo almost surely for any i € [N];

C4. (a) {en}n>0 is an F,-Martingale difference sequence, i.e., Ele,|F,,—1] = 0, and there
exists T > 0 such that sup,, o E[[|e,||*T7| Fr—1] < oo;

(b) Elepiiel 1| F,] = U+ DY + D) where Uisa symmetric positive semi-definite

matrix and
{ D;A) — 0 almost surely,

, 57
lim,, v,E {szzl D](CB) H =0. (>7)

C5. Letr, = n(,l) + ry(f), Ty I8 Fp-adapted, and

rM| = o(v/Vn) a.s.
n 2
V|2 ket r,g )H =o(l) a.s.

(58)
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Then,

1 dist.
— (0, — 0") —— N(0,V), (59)
=00 T NO,V)
where
VHT + HV = -U in case C2 (i), (60)
V(I;+2vH?) + Iy + 2v.H)V = =27, U in case C2 (ii).

O

Note that the matrix U in the condition C4(b) of Theorem D.I|was assumed to be positive definite in
the original Theorem 2.1 [29]. It was only to ensure that the solution V to the Lyapunov equation (60)
is positive definite, which was only used for the stability of the related autonomous linear ODE (e.g.,
Theorem 3.16 [[15] or Theorem 2.2.3 [36]])). However, in this paper, we do not need strict positive
definite matrix V. Therefore, we extend U to be positive semi-definite such that V is also positive
semi-definite (see Lemma [D.2]for the closed form of matrix V). Such kind of extension does not
change any of the proof steps in [29]].

D.1 Discussion about C1-C3

Our Assumption 2.1 corresponds to C1 by letting function h(f) = —V f(6) therein. We can also let
7« in Theorem 3.3]large enough to satisfy C2. The typical form of step size, also indicated in [29], is
polynomial step size v, ~ v«/n® for a € (0.5, 1]. Note that a € (0.5, 1) satisfies C2 (i) and a = 1
satisfies C2 (ii). Assumption 2.4 corresponds to C3E]

D.2 Analysis of C4

To check condition C4, we need to analyze the Martingale difference sequence {et}. Recall
ent1 = me: (X,,) — Pimg: (X;,_;) such that there exists a constant C,

E [|lehs [

Fa] < CE oy (XD + [Pima, ()"

=C ) Pi(X} 1Y) [[me, (V)]

7

241 247 (61)

+ C||Pimgs (X))

Yeas
Since |[mg: (Y)|| < oo almost surely by Assumptionand X' is a finite state space, at all time n,
we have
i 241
> PiXL L Y) |[me (V)T <00 aus. (62)

Yexi
and there exists another constant C’ such that by definition of P;m; (X i 1), we have

[Pimgs (X2 _D|T7 <€ Y PiXi_ V) |lmgs (V)| <00 as. (63)

Yext
Therefore, E||el, ., ||**7|F,] < oo a.s. for all n and C4.(a) is satisfied.

We now turn to C4.(b). Note that for any i # j, we have ]E[eﬁl+1(efl+1)T|fn] = Elel, ;1| Fn] -

E[(el,11)"|Fa] = 0 due to the independence between agent i and j, and E[ef, | F,,] = 0. Then, we
have

1 1 g 1 X , ,
N <N Ze:ﬁl) (N Z%Jrl) | =3 ZE [enia(ens)” [ Ful - (64)
i—1 i—1 i—1

The analysis of E[ef, , ; (¢}, ,1)”|F,] is inspired by Section 4 [29] and Section 4.3.3 [22], where they
constructed another Poisson equation to further decompose the noise terms thereinE] Here, expanding

4Theoremis slightly modified in terms of condition C3, which is mentioned as a special case in Section
2.2 [29]]. For the sake of mathematical simplicity, we stick to condition C3 in the proof.

SHowever, we note that [29] 22] considered the Lipschitz continuity of function F; (x) defined in (GS) as an
assumption instead of a conclusion, where we give a detailed proof for this. We also obtain matrix U; in an
explicit form, which coincides with the definition of asymprotic covariance matrix and was not simplified in
[29]. The discussion on the improvement of Uj; is outlined in Section 3.2, which was not the focus of [29] 22]]
and was not covered therein.
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Elel 1 (el 1)T|Fn] gives
E[eni1(eni)’ | Fa] = [mm@”mmaﬂ|EJ+Em%@$4NEm%@ﬁﬂy
—Emo; (X3)|Fo] (Pimag (X5,11)) "= Pimgs (Xi_1)Elma; (X3)7 |7
=Y Pi(Xn 1,y 7nwﬂyﬁnwjyfifpﬂn%(xﬁ_ﬁ(Pﬂn%(xﬁ_ﬁ)T-

YyEX;
(65)
Denote by
23 Pi(x, y)me: (y)mo: ()" — Pimgs (z) (Pimgi (z)) ", (66)
yeX;

and let its expectation w.r.t the stationary distribution 7; be g;(0°) £ E,wr,[Gi(6%,2)], we can
construct another Poisson equation, i.e.,

E [e;+1(e;+1)T’ ]:n] - Z W(X%)E [e;+1(ei+1)T‘ ]:n}
Xlex;
=Gi(0;, X;,_1) — 9i(6},)
:@9; (X51) — Pi‘»ozob (Xn-1);

for some matrix-valued function ¢* : R% x X; — R*?. Following the similar steps shown in ({#2) -
({@3), we can obtain the closed-form expression

(@)= 3 (I-P; +1(m)7) " (2,9)Gi(0,2) — gi(6). (68)

YyEX;

(67)

Then, we can decompose (63) into
Gi(0r,, X5o1) = i(0%) +9i(0,,) — 9i(0") + s (X3,) = Paggp (Xp_1) + s (Xim1) — i (X5) -

U, 1) o
D! DZ® D&Y

i,n i,n

(69)
Lt U 2 LYY U, DY 2 LN pi), P 2 LN D ang DFY £
N2 ZZ 1 D(2 b) we want to prove that D; ) satisfies the first condition in C4, and Dg a), Dg b)

n,m

meet the second condition in C4.

We now show that for all i, G;(#*, x) is Lipschitz continuous in §* € (2 for some compact subset
Q C R% Forany x € X; and 0%, 0% € (), we can get

lmgy () (2)T — mg; (x)mgy ()7 |
=|[me; (2)(mg; (x) — mgy ()" — (mg; (x) — mgy (2))mgy ()" |
<llmyg; () — moy ()| (mg; ()| + [Imey (2)])
<C167 — 651,

for some constant C', where the last inequality comes from [mg; (2)[| < oo since 0 € Q and the

(70)

Lipschitz continuous function my: (). Similarly, we can get ||P;my; (x) —Pimyg; ()| < C||6; -5
Therefore, G; (6%, ) and g;(0?) are Lipschitz continuous in §* € (2 for any = € X;.

For the sequence {D }n>0, by applying Theorem 2| and conditioned on lim,, ., 0, = 6* for
an optimal point 6* € E we have lim,, o ||g:(0%) — g:(6%)]| < lim,, oo C||0% — 6% = 0. This

implies D( ) 5 0 for every ¢ € [IN] and thus DS = 0as n — oo almost surely, which satisfies the
first condition in 7).

For the Martingale difference sequence {Dl(-i;a) }n>0, we use Burkholder inequality (e.g., Theorem
2.10 [33], [21]) such that for p > 1 and some constant C',,
p/2
> . (71)

’ < C,E (ZHD(“

(2,a)
,n
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By the definition (66) and Assumption 2.4, for a sample path, sup,, [|G;(6},, z)|| < oo forany z € X,
as well as sup,, [|g;(0%,)|| < oo, which leads to sup,, ||¢}, (z)|| < oo for any x € X; because of (68).

Then, we have sup,, ||D(2 .a) | < C < oo for the path-dependent constant C'. Taking p = 1 and we
have

2
< li_>m CpCnv/n=0 a.s. (72)

n—oo

lim 7,y | 3 [DE
=1

Thus, Lebesgue dominated convergence theorem gives

n
. 2,a (2,a
Jim nGE || IDEY2 | =B | lim 5.C 3 ID)e

=1

and we have lim,, . 7 E[| 27—, D[] = 0

For the sequence {D }n>0, we have

2,b 7 7 i 7 7 7 7 7
ZD< )= Z(so%(Xk_l)fso%_l(Xk_l)) + b (X8) — b (X7)
k=1

(s (Xhoa) =0, (Xia) b, (Xia) = by, (Xia) + 0, (Xia) — by (X))
=1

‘Pég (Xg) — @Zé; (X5)-

=

(73)
Since G;(¢*, z) and g;(6") are Lipschitz continuous in 6" € €2, ¢}, () is also Lipschitz continuous

in 6° € Q and is bounded. We have

(2,b) - i (v i i
i ;%;(qu) @o;fl(kal)

b (X + [Jooh (X2

o (Xi1) — @ (X 1)| +Da (74)

<Y DyDavi + Dy
k=1

where [|h, (X4)I| + ll¢h: (X2)I| < Dy for a given sample path, D; is the Lipschitz constant of
. 0 . 4/” . . .
@pi(x), and [|[VF;(2*, X*)|| < Dq for any ' € Q and X* € X”. Then,

n Dgz’b)
; g

because v, > p_; Y = O(n'~2%) by assumption Therefore, the second condition of C4 is
satisfied.

n

< DaDavn Y Yk + D1 =0 asn — oo (75)
k=1

Tn

D.3 Analysis of C5

We now analyze condition C5. The decreasing rate of each term in (36) has been proved in Appendix|[C}
Specifically, by assumption [2.4] there exists a compact subset for a given sample path, and

)H = 0o(\/7n) as.

* For + El 1 €! in the case of increasing communication interval, % Z@Z\; & =0y +
M), by Assumption 2.3-ii), we know (v, + )/ \/n = /n + /I KL = o(1) such
that || % vazl €|l = o(\/¥n) almost surely. On the other hand, in the case of bounded

communication interval, & SN | € = O(~,) such that | £ SN €0 || = o(,/7n) as

¢ we have shown that ‘

)H = ) a.s., which implies ||r
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P

* Since sup,, [[v5| < oo almost surely, we have sup,, ||+ Zf\il b O(I/k vii)ll =

N .
suppHW Zi:1(”0 — V;H)H < oo almost surely. Then, «/’YpHN ZZ 1Zk O(Z/k —

i N i i
Vk+1)|| = O(\/pr) leads to |, /fypH% Doict ZZ:O(VIC - I/k+1)|| =o0(1) as.

ol

Let riV 2 00 4 LsN.e and riP) £ LS (i - Vi.+1)- From above, we can see that C5 in
Theoremmhs satisfied and we show that all the ¢ COHdlthHS in Theorem[D.I]have been satisfied.

D.4 CLosed Form of Limitimg Covariance Matrix

Lastly, we need to analyze the closed-form expression of U as in C4 (b) of Theorem [D.1] Recall
that U = < Zf\il U, and U; = g;(6*) in (69). We now give the exact form of function g;(6*) as

follows:
9:(07) = Y mi(x) [ mo- (x)me-(2)" = [ D Pilw,y)me-(y) | | Y Pilw,y)me-(y)
TEX; YyeEX; YyeEX;
=E <Z[VF (0%, Xs) — sz(ﬂ*)]> (Z[VF (0%, Xs) — sz(ﬁ*)}>
s=0 s=0
-E (Z[VFZ-(G*,XS) - Vfi(a*)]> (Z[VFi(é)*, X,) - Wi(a*)])
—E[(VF0", X5) - VA(0") (VE©", X5) = V(")) ]
_ N .
+E [ (VE(0%, X5) — Vi(67)) <Z[VF1’(9*)XS) - Vfi(H*)]>
+E (Z[vm(a*,xs) - Vfi(o*)]> (VF,(6", X{) — Vfi(e*))T]
Cov(VE(6°, Xo), VE(6°, X0)
+ ) [Cov(VE,(6%, Xo), VF;(0%, X,)) + Cov(VE; (0%, X,), VF;(6*, X0))] ,
_ (V@)
(76)

where the second equality comes from the recursive form of mg: (z) in @3), and that the process
{Xn}n>0 is in its stationary regime, i.e., Xo ~ 7; from the beginning. The last equality comes
from rewriting Cov(V F;(6*, X;), VF;(6*, X)) in a matrix form. Note that g;(6*) is exactly the
asymptotic covariance matrix of the underlying Markov chain {X? },,>0 associated with the test
function VF;(0*,-). By utilizing the following lemma, we can obtain the explicit form of V as

defined in (60).

Lemma D.2 (Lemma D.2.2 [41]]). If all the eigenvalues of matrix M have negative real part, then for
every positive semi-definite matrix U there exists a unique positive semi-definite matrix 'V satisfying
U+ MV + VMT = 0. The explicit solution V is given as

V= / eMtUeMDt gt (77)
0

D.5 CLT of Polyak-Ruppert Averaging
We now consider the CLT result of Polyak-Ruppert averaging 0, = + k 0 Gk The steps follow

similar way by verifying that the conditions in the related CLT of Polyak -Ruppert averaging for the
stochastic approximation are satisfied. The additional assumption is given below.
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C6. For the sequence {r,} in (38), n=2/23""_  r{") — 0 with probability 1.

Then, the CLT of Polyak-Ruppert averaging is as follows.

Theorem D.3 (Theorem 3.2 of [29]). Consider the iteration (38)), assume CI, C3, C4, C5 in
Theoremare satisfied. Moreover, assume C6 is satisfied. Then, with step size v, ~ 7. /n® for
a € (0.5,1), we have

Vil — 67) 5 N0, V), (78)

n— oo

where V. = H-1UHT.

Discussion about C1 and C3 can be found in Section[D.I] Condition C4 has been analyzed in Section
[D.7]and condition C5 has been examined in Section |D.3] The only condition left to analyze is C6,
which is based on the results obtained in Section In view of (36), r) =M 4 % Zf\il &1

so C6 is equivalent to

n N
—1/2 (A) 1 i
n 23 +NZ(§’“+1)] —0 wp.l (79)
k=1 i=1
In Section we have shown that || ‘ =0, + Zf\il & = O(7y). Note that by Assump-

tion we consider bounded communication interval for step size 7, ~ v,/n® for a € (0.5, 1), and
i H = O(7,). We then know that

hence, 17, = O(y) such that

>

k=1

—a S 1 al 7 —a
riVll =o', ;I\N;é“n\\ZO(nl ) (80)

such that

=0(n'?7%) = o(1), 81)

v 1 :
n 1/2; T](CA)+NZ(§,€+1)

which proved and C6 is verified. Therefore, Theorem[D.3]is proved under our Assumptions [2.1]-

E Discussion on the comparison of Theorem 3.3|to the CLT result in [51]

As a byproduct of our Theorem [3.3] we have the following corollary.

Corollary E.1. Under Assumptions - IZqu for the sub-sequence {n; };>o where K; = K for all |,
we have

1 ! o % dist. /
ﬁ;wm—@ ) NO,V) (82)

Proof. Since K; = K for all [, we have n; = K. There is an existing result showing the CLT result
of the partial sum of a sub-sequence (after normalization) has the same normal distribution as the
partial sum of the original sequence.

Theorem E.2 (Theorem 14.4 of [8]])). Given a sequence of random variable 0,05, - - - with partial

sum S, & >n_y Ok such that ﬁSn dist. , N(0,V). Let n; be some positive random variable
n—oo

taking integer value such that 0,,, is on the same space as 0,,. In addition, for some sequence {b; };>0

. P .. dist.
going to infinity, n; /by — ¢ for a positive constant c. Then, \/%Sm % N(0,V).

From Theoremand our Theorem we have \/% S (O —0%) %) N(0, V). O
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Recently, [51] studied the CLT result under the LSGD-FP algorithm with i.i.d sampling (with slightly
different setting of the step size). We are able recover Theorem 3.1 of [S1] under the constant
communication interval while adjusting their step size to make a fair comparison. We state their
algorithm below for self-contained purpose. During each communication interval n € (n;, nj+1],

ei . 9711 —’WVFA@;,X:;) if ne (nhmﬂ), (83)
A S 6 - wVE6;. X)) i =,
The CLT result associated with is given below.
Theorem E.3 (Theorem 3.1 of [51]). Under LSGD-FP algorithm with i.i.d. sampling, we have
l
\/”71 n * dist. !
T};(ank—a ) = N(0,vV), (84)

where v £ lim;_, o 1%(2221 Kﬂ(Z;Zl Kfl).

Note that v = 1 for constant K. We can rewrite (84) as

VNS g VLS e RS
Y e — =YX - — (O, —0")=VEK— (O, — 07) (85)
3 Vivis Vit
such that l
1 = dist. 1
— 3", - 07) L= A0, V). 86
ﬂ;( ) o N0, V) (86)

Note that the step size in (83]) keeps unchanged during each communication interval, while ours in
(T) keeps decreasing even in the same communication interval. This makes our step size decreasing
faster than theirs. To make a fair comparison, we only choose a sub-sequence {nx; };>¢ in (86) such
that it is ‘equivalent’ to see that our step sizes become the same at each aggregation step. In this case,
we again use Theorem [E.2]to obtain

l
1 ~ * ist. 1
m Z(enks -0 ) licio; N(O7 Ev/)a (87)
s=1
such that l l
1 _ 1 = ist.
\TZZ(%KS —0) = VKﬁ D (Onye. = 07) f_)—;>N(0,V’)- (88)
s=1 s=1

Therefore, our Corollary [E.1|also recovers Theorem 3.1 of [51] under the constant communication
interval K, but with more general communication patterns and Markovian sampling.

F Discussion on Communication Patterns

F.1 Examples of Communication Matrix W

Metropolis Hasting Algorithm: In the decentralized learning such as D-SGD, HLSGD and DFL,
‘W at the aggregation step can be generated locally using the Metropolis Hasting algorithm based on
the underlying communication topology, and is deterministic [62} 43][80]. Specifically, each agent ¢
exchanges its degree d; with its neighbors j € N (¢), forming the weight W (4, j) = min{1/d,,1/d;}
for j € N(i) and W(i,i) = 1 — 37 n¢;) W(i,j). In this case, W is doubly stochastic and
symmetric. By Perron-Frobenius theorem, its SLEM \o(W) < 1. Then, |[WIW — J|| =
[W?2 — J|| = A3(W) < 1, which satisfies Assumption[2.5}i). It is worth noting that this algorithm
is robust to time-varying communication topologies.

Client Sampling in FL: For LSGD-FP studied in [67, 76} 42], W = 117 /N trivially satisfies
Assumption [2.5}ii). For LSGD-PP on the other hand, only a small fraction of agents participate in
each aggregation step for consensus [50} [30]. Denote by S a randomly selected set of agents (without
replacement) of fixed size |S| € {1,2,---, N} at time n and W s plays a role of aggregating 6,
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for agent i € S. Additionally, the central server needs to broadcast updated parameter 6,41 to
the newly selected set S” with the same size, which results in a bijective mapping o (for § — S’
and [N]/S — [N]/S8’) and a corresponding permutation matrix Ts_,s/. Then, the communication
matrix becomes W = Ts_, s W 5’| Specifically, Ts_, s/ (i,7) = 1if j = o(i) and Ts_,5/(¢,5) =0
otherwise. Besides, Ws(i,j) = 1/|S| fori,j5 € S, Ws(i,4) = 1fori ¢ S, and Wg(i, ]) =0
otherwise. Note that W is now a random matrix, since S is a randomly chosen subset of size
|S|. Clearly, for each choice of S, W s is doubly stochastic, symmetric and W% = W . Taking
the expectation of Wg w.r.t the randomly selected set S gives Eg [Wg](z i)=1-(S|-1)/N

for i € [N] and Es[Ws](4,5) = (|S] — 1) N — 1) for ¢ # j. Note that Eg[Wg] has all
positive entries. Therefore, we use the fact T =1I for permutatlon matrix T such that |[E[W] —
J|| = |Ess/ [WETS 5 Tss Ws] — J|| = H]ES[W Ws] —J|| = |[Es[Ws] — J|| < 1by

Perron—Frobenius theorem and eigendecomposition, which satisfies Assumption [2.3}ii).

F.2 Discussion on partial client sampling

The commonly used partial client sampling algorithm in the FL literature [50, 30] is FedAvg as
follows:
1. At time n, the central server updates its global parameter §,, = é—‘ D ies ¢ from the
agents in the previous set S. Then, the central server selects a new subset of agents S” and
broadcasts 6, to agenti € &', i.e., 0!, = Oy

2. Each selected agent ¢ computes K steps of SGD locally and consecutively updates its local
parameter 0], ;,--- , 0}, ;- according to (Ta);

3. Each selected agent i € S’ uploads 6, . i to the central server.

Then, the central server repeats the above three steps with 6,1 x and a new set of selected agents.

In our client sampling scheme, at the aggregation step n, the design of W results in éﬁl =
T8 $| > jes b, for a selected agent i € S, and 9: = @' for an unselected agent i ¢ S. Mean-

while, the central server updates the global parameter 0, = ég for i € S. Then, the permutation

matrix Ts_, s/ ensures that the newly selected agent i € S’ will use 6,, as the initial point for its subse-
quent SGD iterations. Consequently, from the selected agents’ perspective, the communication matrix
W = Ts_,ssWg corresponds to step 1 in FedAvg. As we can observe, both algorithms update
the global parameter identically from the central server’s viewpoint, rendering them mathematically
equivalent regarding the global parameter update.

We acknowledge that under the i.i.d sampling strategy, the behavior of unselected agents in our
algorithm differs from FedAvg. Specifically, unselected agents are idle in FedAvg, while they
continue the SGD computation in our algorithm (despite not contributing to the global parameter
update). Importantly, when an unselected agent is later selected, the central server overwrites its local
parameter during the broadcasting process. This ensures that the activities of agents when they are
unselected have no impact on the global parameter update.

To our knowledge, the FedAvg algorithm under the Markovian sampling strategy remains unexplored
in the FL literature. Extrapolating the behavior of unselected agents in FedAvg from i.i.d sampling to
Markovian sampling suggests that unselected agents would remain idle. In contrast, our algorithm
enables unselected agents to continue evolving X/ . These additional transitions contribute to faster
mixing of the Markov chain for each unselected agent and a smaller bias of F; (6, X ) relative to its
mean field f;(6), potentially accelerating the convergence.

G Additional Simulation

G.1 Simulation Setup in Section 4]

This simulation is performed on a PC with an AMD R9 5950X, RTX 3080 and 128 GB RAM. In
this simulation, we assume that agents follow the DSGD algorithm (). In Figure 2(a)|- each

%In Appendix we will discuss the mathematical equivalence between our client sampling strategy and
the commonly used one in the FL literature [50,130].
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agent holds a disjoint local dataset (non-overlapping data points for every agent), while we distribute
the ijennl dataset [[14] with more varied distribution among 100 agents by leveraging Dirichlet
distribution with the default alpha value of 0.5 in Figure 2(d)] - 2(P)}

Moreover, we assume that all agents are distributed over a communication network. In order to create
this network among 100 agents and the graph-like dataset structure held by each agent, we utilize
connected sub-graphs from the real-world graph Facebook in SNAP [49]. All 100 agents collaborate
together to generate a deterministic communication matrix W = [I¥;;] with Metropolis Hasting
algorithm of the following form: For i, j € [N], we have

W - {min {d%_, i} if agent 7 is the neighbor of agent 4,

0 otherwise,
Wi =1— Z Wij,
JEIN]

where d; represents the degree of agent ¢ in the graph. The communication interval K is set to 1, as
is the usual choice in DSGD [71} 80, 61} 168]].

For the first group of agents, we assume they have full access to their datasets, thus performing i.i.d.
sampling or single shuffling. In particular,

e ii.d. sampling employed by agent i means that the data point X is independently and
uniformly sampled from its dataset &; at each time n.

* Single shuffling, by its name, only shuffles the dataset once and adheres to that specific order
throughout the training process.

On the other hand, within the second group of agents, we assume that they hold graph-like datasets.
Now, we introduce simple random walk (SRW), non-backtracking random walk (NBRW), and
self-repellent random walk (SRRW) in order:

* SRW refers to the walker that chooses one of the neighboring nodes uniformly at random.

* NBRW, as studied in [2, 48l 3], is a variation of SRW, which selects one of the neighbors
uniformly at random, with the exception of the one visited in the last step.

* SRRW, recently proposed by [25]], is designed with a nonlinear transition kernel K[x] €
[0, 1]V XN of the following form:

s Pylai/p)™® -
K [x] & 3\ Tj/Hj . Vi, N, 89
5 1x] Zke[N] Pre(zr/115) i,j € [N] (89)

where matrix P = [P;;] is the transition kernel of the baseline Markov chain and g = [1,] is
its corresponding stationary distribution. Additionally, o denotes the force of self repellence,
and larger « leads to stronger force of self repellence, thus higher sampling efficiency
[25, Corollary 4.3]. Moreover, vector x € RY is in the interior of probability simplex,
representing the empirical distribution, in other words, the visit frequency of each node in
the graph. The update rule of this empirical distribution is in the following form:

Xn+1 = Xnp + ﬂnJrl((sX”Jrl - Xn)7 (90)

where 3, = (n + 1)~ is the step size of SRRW iterates. b = 1 was original proposed in

[25] and is recently extended to b € (0.5, 1) in [39]. In this simulation, we use SRW as the
baseline Markov chain of SRRW, and in turn p is proportional to the degree distribution.
We also assume xo = 1/N, i.e., each node has been visited once, and choose the step
size B, = (n + 1)7°8, force of self repellence o = 20 according to the suggestion in [39,
Section 4].

Since SRW, NBRW, and SRRW all admit the stationary distribution that is proportional to degree
distribution, in order to obtain unfirom target in (T3), we need to reweight the gradient computed by
each agent 7 in order to maintain an asymptotic unbiased gradient. Thus, agent ¢ should modify its
SGD update from (Ta) to the following:

0h 1/ = 0t — Y1 VFi(0;, X,)/d(X). 1)
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Figure 3: Image classification experiment. From left to right: (a) Comparison of various sampling
strategies in image classification problem using 5-layer neural network. (b) Train a 5-layer CNN
model with different number of total agents (clients) to show the linear speedup effect. (c) Train
ResNet-18 model with different sampling strategies among 10 agents with participation ratio 0.4.

G.2 Image Classification Task

In this part, we perform the image classification task through a 5-layer neural network, where the
CIFAR10 dataset [44] with 50k image data is evenly distributed to 10 agents. Each agent possesses
5k images, which are further divided into 200 batches, each batch with 25 images.

The Convolutional Neural Network (CNN) model used in this simulation encompasses:

» Two convolutional layers (i.e., nn.Conv2d(3, 6, 5) and nn.Conv2d(6, 16, 5)), each followed by
ReLU activation functions to introduce non-linearity and max pooling (i.e., nn.MaxPool2d(2,
2)) to reduce spatial dimensions.

* Three fully connected (linear) layers, concluding with a softmax output to handle the
multi-class classification problem.

Similar to the simulation setup in Section ] among the 10 participating agents, five have unrestricted
access to their respective data allocations, enabling them to utilize the shuffling method to iterate
through their batches. The other five agents are designed to simulate limited data access scenarios.
Their data access is structured using five distinct graph topologies extracted from the SNAP dataset
collection [49], each graph simulating a unique communication pattern among the batches (nodes) of
data. Within these topologies, agents adopt one of three random walk strategies — SRW, NBRW, and
SRRW, all with importance reweighting — to sample the batches for training.

Local model training is conducted for five epochs at each agent before aggregating the updates at a
central server — a process repeated for a total of 200 communication rounds. Each epoch consists of a
full traversal of the local dataset of agents in the first group, or 200 batches sampled for training in the
second group of agents. To mimic realistic conditions, we also introduce partial agent participation
where only 40% of agents are selected randomly to transmit their updates in each round, reflecting
the intermittent communication in real-world FL deployments. Lastly, the selection of the step size
By, for SRRW iterates (90) is a critical aspect of our experiments. In this simulation, we experiment
with various values of b € {0.501,0.6,0.7,0.8,0.9} to determine the most advantageous setting for
maximizing the benefits of the SRRW strategy. Based on our findings, the best choice for the SRRW
step size is b = 0.501, in other words, 3,, = (n + 1)70-59%,

The simulation result is quantified by averaging the training loss across ten repeated trials for each
configuration. As depicted in Figure[3(a)] the training results are consistent with our previous findings
in Figure in the context of the FL framework and the training of neural networks: the use of a
more effective sampling approach, even for a portion of the agents, results in significant enhancements
in the overall training of the model, and this improvement is further enhanced through the highly
efficient sampling strategy SRRW.

In Figure[3(b)|and we perform image classification experiments in the FL setting with partial
client participation. Only 4 random agents will participate in the training process at each aggregation
phase. In Figure 3(b)] we fix the sampling strategy (shuffling, SRRW with a = 10) and test
the linear speedup effect for the 5-layer CNN model by duplicating 10 agents to [V agents with
N € {10,20, 30,40}, keeping the same participation ratio 0.4. As can be seen from the plot, the
training loss is inversely proportional to the number of agents, i.e., at 200 rounds, the training loss
is 0.52 for 10 agents, 0.23 for 20 agents, 0.18 for 30 agents, and 0.12 for 40 agents. In Figure[3(c)}
we extend the current simulation from 5-layer CNN model to ResNet-18 model [34] in order to
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numerically test the performance of different sampling strategies in a more complex neural network
training task. By fixing the shuffling in the first group of agents, we observe that improving Markovian
sampling from SRW to NBRW, then to SRRW, gives accelerated training process with smaller training
loss.

H Limitations

Our study provides crucial insights into the identification of nuanced agents’ sampling behaviors in
UD-SGD, where improving each agent’s sampling strategy speeds up overall system performance
without additional computational burden except the additional storage for the visit counts used for
sampling their datasets. Our UD-SGD is scalable in terms of larger datasets as the sampling strategy
(i.e., random walk) utilized by each agent leverages only local information for its dataset. However,
our work has two limitations that should be acknowledged.

1. Assumptionposits that the parameter trajectory {6, } is almost surely bounded, which is
a strong assumption. This is crucial for guaranteeing the well-defined nature of all related
quantities. Some mechanisms such as projections onto a compact subset [45, Chapter 5.1],
or truncation-based method with expanding compact subsets can do the trick to ensure that
the iteration is always bounded [3]. As mentioned in our discussion after Assumption
only recently the stability of SGD under Markovian sampling has been guaranteed to hold
for some class of objective function f [9]], while the discussion on stability issue under
multi-agent scenario with Markovian sampling remains an open problem and we do not
pursue to remove this stability assumption in this paper.

2. Asymptotic analysis: The main results of our work, i.e., almost sure convergence and
central limit theorem in distributed optimization, are based on asymptotic analysis and
might not accurately represent the finite-sample performance of each contributing agent
in the system. The state-of-the-art finite-sample analysis in the literature only focuses on
the worst-performing agent that cannot capture the nuanced differences between agents’
sampling strategies, with the explanation detailed in Footnote [2] Thus, a finite-sample error
bound that distinguish every agent’s dynamics is still unknown and regarded as a future
direction.
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Answer: [Yes]
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Answer: [Yes]
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Answer: [Yes]
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Answer: [NA]
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