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Abstract

Hierarchical Bayesian bandit refers to the multi-task bandit problem in which
bandit tasks are assumed to be drawn from the same distribution. In this work,
we provide improved Bayes regret bounds for hierarchical Bayesian bandit algo-
rithms in the multi-task linear bandit and semi-bandit settings. For the multi-task
linear bandit, we first analyze the preexisting hierarchical Thompson sampling
(HierTS) algorithm, and improve its gap-independent Bayes regret bound from
O(m~/nlognlog (mn)) to O(m+/nlogn) in the case of infinite action set, with
m being the number of tasks and n the number of iterations per task. In the case
of finite action set, we propose a novel hierarchical Bayesian bandit algorithm,
named hierarchical BayesUCB (HierBayesUCB), that achieves the logarithmic but
gap-dependent regret bound O(m log (mn)logn) under mild assumptions. All
of the above regret bounds hold in many variants of hierarchical Bayesian linear
bandit problem, including when the tasks are solved sequentially or concurrently.
Furthermore, we extend the aforementioned HierTS and HierBayesUCB algorithms
to the multi-task combinatorial semi-bandit setting. Concretely, our combinatorial
HierTS algorithm attains comparable Bayes regret bound O(m+/nlogn) with
respect to the latest one. Moreover, our combinatorial HierBayesUCB yields a
sharper Bayes regret bound O(m log (mn) log n). Experiments are conducted to
validate the soundness of our theoretical results for multi-task bandit algorithms.

1 Introduction

A stochastic bandit [26} 16} 27] is a sequential decision-making problem where at each round, an agent
has to choose an action, and receives a stochastic reward without knowing its expected value. The gap
between the cumulative reward of optimal actions in hindsight and the cumulative reward of agent
is defined as regret. The goal is to minimize regret, through a combination of exploring different
actions and exploiting those with high rewards in the past. Typical applications of bandit algorithms
include news article recommendation [28]], computational advertisement [20], and dynamic pricing
[24]). For example, in news article recommendation, the agent must choose a news article for a user.
The actions in this bandit setting are articles and the reward could be an indicator of a click from user.

When the agent has to solve multiple bandit tasks, many machine learning researchers resort to
multi-task learning/meta-learning paradigm [8, 34] to benefit task adaptation. The existing works
focused on the multi-task bandit problem can be categorized into three main groups: (1) The first
group attempts to learn a low-dimensional representation shared by different bandit tasks, to derive a
sharper cumulative regret bound than that derived by learning each task independently [[19}10]. (2)
The second group leverages the similarity of contexts (e.g. the feature of actions) in bandit tasks
to improve agent’s ability to predict rewards in a new task [14}36]. (3) The third group chooses to
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maintain a meta-distribution over the hyper-parameters of within-task bandit algorithms (like Tsallis-
INF [23]], OFUL [9]], and Thompson sampling [25} 7, [17]), and draws informative hyper-parameters
from the meta-distribution for efficient regret minimization. Our work falls into the third group and
formulates the problem of learning similar bandit tasks in a hierarchical Bayesian bandit model [17].

Specifically, in hierarchical Bayesian bandit setting, each bandit task is characterized by a task pa-
rameter. Different bandit task parameters are assumed to be independently and identically distributed
according to the same distribution. At each round, the learning agent interacts with one or several
bandit tasks, which correspond to the sequential and concurrent bandit settings respectively. Many ex-
isting works considered hierarchical Bayesian bandit problem, and proposed Thompson sampling [33]]
type algorithms to solve it [25,[7,136]. The latest work [17] proposed hierarchical Thompson sampling
(HierTS) algorithm and developed a gap-independent Bayes regret bound O(m/n logn log (mn))
in the Gaussian linear bandit setting, where m is the number of bandit tasks and n the number of
iterations per task. However, it is still unclear for us whether we can derive sharper regret bounds or
how to extend hierarchical Bayesian bandit algorithms to the more general multi-task bandit setting.

In this work, we attempt to tackle the above two issues, by providing improved Bayes regret bounds
for hierarchical Bayesian bandit algorithms in the multi-task Gaussian linear bandit and semi-bandit
setting. Firstly, in the linear bandit setting, we improve the multi-task Bayes regret bound of HierTS
to O(m+/nlogn) in the case of infinite action set, strengthening the latest bound in [17, Thm 3] by a
factor of O(4/log (mn)). In the case of finite action set, we propose a novel hierarchical Bayesian
bandit algorithm, named hierarchical BayesUCB (HierBayesUCB), that achieves the logarithmic but
gap-dependent regret bound O (m log (mn) log n) under mild assumptions. All of the above regret
bounds for linear bandit hold in both the sequential and concurrent setting. Secondly, we extend the
aforementioned HierTS and HierBayesUCB algorithms to the multi-task Gaussian combinatorial
semi-bandit setting. Concretely, our combinatorial HierTS algorithm attains comparable Bayes regret
bound O(m+/nlogn) with respect to the latest one in [7, Thm 6]. Moreover, our combinatorial
HierBayesUCB yields a sharper but gap-dependent regret bound O(m log (mn)logn). Extensive
experiments in the Gaussian linear bandit setting are conducted to support our theoretical results.

Overall, our theoretical contributions are four-fold: (1) In the case of infinite action set, we provide
a tighter Bayes regret bound O(m+/nlogn) for HierTS. This bound improves the latest result by
a factor of O(y/log (mn)). (2) In the case of finite action set, we propose a novel HierBayesUCB
algorithm, and provide gap-dependent logarithmic Bayes regret bound O(m log (mn) log n) for it.
(3) We generalize the above regret bounds for linear bandit from sequential setting to the more
challenging concurrent setting. (4) We extend both HierTS and HierBayesUCB algorithms to the
more general multi-task combinatorial semi-bandit setting and derive improved Bayes regret bounds.

2 Related Work

Frequentist Regret Bounds for Stochastic Linear Bandit. In the frequentist stochastic bandit
setting, we do not assume the bandit task parameter is sampled from a fixed distribution. The
frequentist regret is thus for any fixed task parameter, without taking expectation over the distribution
of task parameter. (1) In the case of finite action set: [S]] for the first time investigated the stochastic
linear bandit problem and proposed an algorithm with a frequentist regret of O (v/dn 10g3/ 2 n), where
d is the dimension of action space and n is the number of rounds. [29] developed a new algorithm
and improved the regret bound to O(y/dnlogn). [12] showed that the lower frequentist regret bound
in the finite action set is Q(\/%) (2) In the case of infinite action set: Both [[13] and [30] proposed

algorithms that achieve O(d\/n log?’/ 2 n) regret. The regret bound was further improved in [1}[13] to
O(d+/nlogn), by designing novel linear bandit algorithms or utilizing advanced martingale methods.

Bayes Regret Bounds for Bayesian Linear Bandit. In the Bayesian stochastic bandit setting, the
Bayes regret is the expected cumulative regret whose expectation is taken over the draw of task
parameter from a distribution. It is not difficult to see that the frequentist regret upper bound implies
a Bayes regret upper bound, because the former holds for any task parameter. (1) When the action set
is infinite: [30] showed that in the Gaussian linear bandit setting, the Bayes regret of any Bayesian
bandit algorithm is lower bounded by Q(y/n). [31] for the first time gave the Bayes regret bound
of O(dy/nlogn) for both Thompson sampling (TS) and BayesUCB [22] algorithms. Recently,
[21] provided an improved Bayes regret O(d+y/nlogn) for TS algorithm with a concise proof. (2)
When the action set is finite: [32] derived a tight regret bound of O(\/%) for TS algorithm with
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sub-Gaussian reward noise, via a novel information-theoretic approach. Recently, [3]] developed a
logarithmic Bayes regret bound O(d? log2 n) for BayesUCB algorithm in the Gaussian bandit setting.

Frequentist Regret Bounds for Multi-Task Linear Bandit Problems. Under the representation
learning paradigm, the frequentist regret bounds in [[19} [10] for multi-task linear bandits scales as
O(m\/%), where k is the dimension of low-dimensional representation. The expected frequentist
regret upper bound for multi-task adversarial linear bandit in [23] is O(my/nlog (1 + nV)), with V
being the similarity among multiple adversarial bandit tasks. Nevertheless, we should mention that all
of these frequentist regret bounds for multi-task linear bandit problem are not tighter than Q(m+/n).

Bayes Regret Bounds for Multi-Task Bayesian Linear Bandit/Semi-Bandit. The most related
works to ours are [25, 7} [17], which provided hierarchical-type Thompson sampling algorithms for
multi-task bandit and derived Bayes regret bounds in the Gaussian reward setting. We list these
Bayes regret bounds in Table [T for direct comparisons. Among them, the latest work [17] proposed
the HierTS algorithm and obtained its regret bound of O(m+/nlognlog (mn)), [7] derived the first
Bayes regret bound for multi-task hierarchical Bayesian semi-bandit algorithm. In this work, we
provide for HierTS improved Bayes regret bound of O(m+/nlogn) in Theorem We also propose
a novel HierBayesUCB algorithm that achieves logarithmic regret bound O(m lognlog (nm)). We
finally extend HierTS and HierBayesUCB to the semi-bandit setting and derive improved theoretical
results. Other works utilized action features or structure information to derive Bayes regret bounds
for multi-task bandit [36] [37], e.g. the Bayes regret bound in [36] is O(m+/nlogn + mlog® (mn)).

Hierarchical Bayesian Bandit Algorithms. Hierarchical Bayesian bandit algorithm was first pro-
posed by [25] to solve multi-task bandit problems. More hierarchical-type Thompson sampling
algorithms based on multi-task/meta learning frameworks were developed with improved theoretical
guarantees and empirical performance [[7} 17,136, [37]]. There also existed other works investigating
hierarchical Bayesian bandit algorithms within the single-task bandit setting. For example, [16] ex-
tended the two-level hierarchical Bayesian bandit framework to the deeper multiple-level hierarchial
Bayesian bandit framework. [2] generalized the single-effect-parameter HierTS algorithm (i.e. the
action parameter is centered at a single latent variable) to the mixed-effect bandit framework where
each action is associated with a parameter that depends upon one or multiple effect parameters.

3 Problem Setting

For any positive integer n, denote [n] = {1,2,...,n} for brevity. For any square matrix M € R?*4,
denote A1 (M), A\g(M) as its maximum and minimum eigenvalues respectively, denote k(M) =
A1 (M)/Aa(M) as its condition number. The action set A C B(0, B) C R? is assumed to be compact

for some positive constant B > 0, where B(0, B) is the closed ball centered at the origin. We use (, )
to denote the inner-product between vectors, use w(a) or w, to denote the a-th element of vector w.

Single-Task Bandit. A stochastic bandit problem is characterized by an unknown parameter 6
with an action set A. Each action a € A under the bandit instance 6 is associated with a reward
distribution P(-|a, ). The reward mean of action a under ¢ is denoted as r(a; 0) = Ey <p(.|a;0)[Y]
and the optimal action under 6 is denoted as A, = argmax,c 4 7(a;6). In the stochastic linear
bandit setting, the mean reward of action a € A is r(a, ) = a' 0. In Bayesian bandit problem, we
further assume that the task parameter 6 is independently and identically distributed (i.i.d.) according
to a task parameter distribution IP(+|u. ), which is characterized by an unknown hyper-parameter /..

Single-Task Semi-Bandit. In the semi-bandit setting, the action set A = [K] is a set of finite items.
o/ ={A C A:|A| < L} is afamily of subsets of A with up to L items, where L < K. w € R¥ is
a weight vector. The weight of a set A € <7 is defined as ) |, . ;w(a). We assume that the weights w
are drawn i.i.d. from a distribution, and the mean weight is denoted as w=IE[w]|. Following previous
work [38]], we focus on the coherent case [39] which assumes that the agent knows a feature matrix
® € RE*4 such that w = 0, where @ is the task parameter drawn from P(-|s,.). The reward of a
subset A € .o/ under the bandit instance 6 is defined as r(A4;0) = > . ,(P0)(a) = >, 4(Pa,0),
where ®,, is the transpose of the a-th row of matrix ®. We further assume that ||®,|| < B,Va € A.

Hierarchical Bayesian Multi-Task Bandit/Semi-Bandit. In this setting, the agent interacts with
m tasks sequentially or concurrently. First, sample the hyper-parameter y., from a hyper-prior ().
Then, for each task s € [m], sample the task parameter 0, . independently from distribution P(-|g..).
The learning process can be detailed as follows. At round ¢ > 1, the agent interacts with a set
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of tasks S; C [m], takes a series of actions A; = (A :)ses,. and receives a series of rewards
Y; = (Ys,1)ses,- In the bandit setting, Y5 4 ~ P(:| As +; 05 . ) is a stochastic reward obtained by taking
action Ay ; in task s € S;; in the semi-bandit setting, Y s = {W, ¢(a)}aca, , is a series of stochastic
rewards, where W s = W + 1,4, Ws = PO ., and 7, ; is a K-dimensional random noise. The full
hierarchical Bayesian bandit/semi-bandit model in the m-task learning setting is exhibited as follow:

(1) M ™~ Q7 (2) 95,*|,U* ~ ]P(|u*),‘75 S [m]; (3) }/;,t|As,ta 05,* ~ P("As,t; 93,*)7Vt Z ]-a ERS St~

Therefore, the goal of the agent in hierarchical Bayesian multi-task bandit/semi-bandit setting is to
interact with m tasks efficiently and minimize the following cumulative multi-task Bayes regret:

BR(m,n) Z Z s Os0) — 7(As 13 054)] (D
t>1 s€Sy

where A, = argmax,c 4 7(a;0s ) is the optimal action for task s € [m] in the bandit setting,
and A . € argmaxac 7(A; 0, .) is the optimal subset for task s € [m] in the semi-bandit setting.
The expectation is taken over /i, all task parameters (65 «)se[m]» all actions (A)s>1, all stochastic
rewards (Y;);>1. We further assume that the action set A is the same across different tasks for ease of
exposition, and assume that the learning agent interacts with any task s € [m] for at most n rounds for
convenient comparison with exiting regret upper bounds for multi-task bandit/semi-bandit problem.

4 Algorithm

Denote Hy ;1 =((As.¢, Ys.0))e<t.ses, as the history of all interactions of agent with task s € [m], and
Hy=(H, t)se[m) as the whole interaction history up to round . We next introduce the specific form of
Hierarchical Thompson Sampling (HierTS) and Hierarchical BayesUCB (HierBayesUCB) algorithms
in the multi-task Bayesian linear bandit and semi-bandit settings, and instantiate these two algorithms
to the multi-task Gaussian linear bandit (Algorithm[I)) and semi-bandit (Algorithm 2)) problems.

4.1 Hierarchical Thompson Sampling and Hierarchical BayesUCB

At round ¢, hierarchical Bayesian bandit algorithm samples a hyper-parameter y; from the hyper-
posterior Q; defined as Q; (1) = P(u. = p|H;), and then interacts with tasks S; C [m]. Next, we
give details of bandit algorithms, and details of semi-bandit algorithms are deferred to Section[5.4]

Hierarchical Thompson Sampling. For any task s € S;, HierTS samples task parameter 6, ;
from the distribution Py ,(0]y;) £ P(0s. = O|ux = , Hsy) and takes the action Ay, =
arg max,e 4 aTGS’t, where P, ;(0|u¢) is only conditioned on H,,; due to the independence be-
tween task parameter ¢, , and other task histories. This process clearly samples bandit instance
6.+ from the true posterior P(6; . = 0| H;), which is equivalent to the form: [P(6, . = 0, . =
plH)dp = [P 1(0]1) Q¢ (10 )du, where P +(0|p) o« Ls4(0 ) (0|pe) is the posterior probability,
Lt (0)=I1(4,)e H, P(yla; 0) is the likelihood function, P(9| () is the prior probability by Bayes rule.

Hierarchical BayesUCB. For any task s € S; in round ¢, HierBayesUCB computes the upper
confidence bound Uy 5 o = =afis,+ \/2log 3 ||aHE for any a € A, where /is; and IR + are the
expectation and covariance of the distribution (i.e. IP’(Q s« = 0|Hy)) of 85 . conditioned on the history
H;, and then takes action with the highest upper confidence bound : A, ; < arg max,c 4 Uy s q.
4.2 Multi-Task Gaussian Linear Bandit and Semi-Bandit

The hierarchical Gaussian environment is generated as follow. In the multi-task linear ban-
dit setting: (1) ps ~ N(pg,2q)s (2) Os |t ~ N(ps,20),Vs € [m], B) Y i|Asi, 05 ~
N (A;tﬁs,*, 02),Vt > 1,s € &;; In the semi-bandit setting, the only difference lies in step (3)
where Y5 4 o] As 1,05 ~ N (g, 05.4), o?) for any a € A ;. Here, Lqs P, U5 « are d-dimensional
vectors; g, X € R%4 gre positive semi-definite covariance matrices. In the above two settings, the

reward noise can be regarded as NV (0, o2). In the following theoretical analysis sections, we assume
that all of p4, 3y, X0 and o are known by the agent to guarantee an analytically tractable posterior.

Concretely, using some basic algebraic computations in hierarchical Gaussian model (e.g. see [25,
Appendix D]), we can obtain the closed-form hyper-posterior in round ¢ as Q; (1) = N (p; fir, X¢),
where the expectation fi; and the covariance matrix >, of Q¢(x) have the following explicit forms:

Ae=5(Sg + D S0+ G TIGIIBy), St =814 Y (Se+ G @

s€[m)] s€[m)]
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Algorithm 1 Hierarchical Bayesian Algorithms Algorithm 2 Hierarchical Bayesian Algorithms

for Multi-Task Linear Bandit Setting for Multi-Task Combinatorial Semi-Bandit Setting
1: Input: Hyper-prior @ 1: Input: Hyper-prior Q, features ® € R¥*4
2: Initialize Q; + Q 2: Initialize Q1 < @
3: fort=1,2,... do 3: fort=1,2,... do
4:  Sample hyper-parameter zi; ~ Q; 4:  Sample hyper-parameter pi; ~ Q;
5. Observe tasks S; C [m] 5:  Observe tasks S; C [m]
6: forse S;do 6: forseS;do
7: Option I (HierTS): 7: Option I (HierTS):
Compute Pé‘f(e ‘ ,Uf,) o £5f(9)IP(9 ‘ ,Ut) Compute Ps7f(9 ‘ /I,f) X Csf(Q)IP(G ‘ ,“’1‘,)
Sample task parameter 05 ;~P; (- | 1) Sample task parameter 0 ; ~ Py (- | 1¢)
Take action Ay ; + argmax,c 4 a' s Compute A; ;:=ORACLE(A, <7, 90 +)
Option II (HierBayesUCB): Option II (HierBayesUCB):
Set Upsa=0a"jios + \/2log talls,_ Compute Ur(4) = Dacalefne +
forany a € A 1/210g%||a||2“),forallA642{
Take action A, ; < argmax,c 4 Ut s.q Compute A ; = argmax ey Uy s(A)
8: Observe reward Y ; 8: Chooose A ;and observe{Ww, ;(a)}aea, ,
9: end for 9: end for -
10:  Update Q41 10:  Update Q41
11: end for 11: end for

Here, in the bandit setting G, = 072>, ,1{s € S@}AS’gAIZ and B,y = 072>, ,1{s €
S} As ¢Ys 5 in the semi-bandit setting Gy = 072>, , 1{s € Sg}(EaeAM ®,®/)and By, =
o2y, 1{se Sﬁ}(zaeAS,z O, W (a)). After the hyper-parameter y; is sampled from Q,(u),
we sample task parameter 0 ; ~ N (0; fis ¢, is’t) for task s, where fis ; = is,t(Eglut + B,,) is the
posterior mean, i;,} =3, 1y G+ the posterior covariance matrix. Such posterior of a linear model
is obtained with a Gaussian prior NV (j¢, ¥¢) and Gaussian observations (Y ¢)¢<¢ scs, by Bayes rule.

On the other hand, we also need to handle P(f, ., = 6|H;). It is not difficult to see that, in the
multi-task Gaussian linear bandit/semi-bandit setting, 6 .| H; is Gaussian and denoted as P(6; ., =

O|Hy)=N(0; jis ¢, is,t). According to Lemma , fis,t and f]at have the following explicit forms:
fis,t Zisgt(zalﬂt‘f'Bs,t), 2s,zt = is,t + is,tzalitzalis,t- 3)

S Bayes Regret Bounds

In this section, we provide improved regret bounds of hierarchical Bayesian bandit algorithms for
multi-task Gaussian linear bandit/semi-bandit problem. Concretely, we provide improved analysis
for HierTS in the sequential linear bandit setting (Sections , propose a novel HierBayesUCB
bandit algorithm with logarithmic regret guarantee (Section , develop regret bounds for these
two algorithms in the concurrent linear bandit setting (Section , and finally extend these two
algorithms to the semi-bandit setting (Section [5.4) with improved regret bounds. In the proof for
our theoretical results, the most important step is to give an upper bound on the so-called posterior
variance Vy, ,,, which in the multi-task linear bandit setting is defined and upper bounded as follow:

Vi 2E[ 3 3 llAs )

t>1 se8Sy
Although the above bound on V,, ,, achieves the same order (w.r.t. m,n and d) as that in the latest
bound of [17, Sect B], our bound has a smaller multiplicative factor (see more details in TableE[). In the
. . . . . . . A 2
multi-task semi-bandit setting, the posterior variance is Vin = E 32,51 > ics, 2oaea, [Pa Hzt

;t} < O(mdlog(g) +dlog (%))

and can be bounded in a similar way. To finish the whole proof, our strategy consists of two main
steps: (1) The first step is to transform the multi-task Bayes regret BR(m, n) into an intermediate
regret upper bound that involves the posterior variance Vp, ,, as the dominant term. (2) The second
step is to bound V,, ,, with Eq. (4). Combining the results in steps (1) and (2) yields Bayes regret
bound for multi-task hierarchical Bayesian bandit/semi-bandit algorithms. Detailed comparisons
between our regret bounds and others in the bandit setting are shown in Table[T} Next, we define
c1=02+B%\(20), c2 = 024+B2\1(S0) + B2A\1(34)#(Z0) to be used through the whole Section|5]
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Table 1: Different Bayes regret bounds for multi-task d-dimensional linear (or K-armed) bandit
problem in the sequential setting. m is the number of tasks, n the number of iterations per task, A is
the action set. Bayes Regret Bound =Bound I + Bound II + Negligible Terms, where Bound I is
the regret bound for solving m tasks, Bound II the regret bound for learning hyper-parameter ...

Bayes Regret Bound |A| Bound I Bound II
[25] Theorem 3] Finite O(my/Knlogn) O(n?K+/mlog (n)log (K))
[7] Theorem 5] Finite | O(my/dn(logn)log (n?A])) | O(y/dmn(logm)log (n|A|))

[17] Theorem 3] Infinite | O(md,/nlog (%)log (mn)) | O(dy/mnlog(m)log(mn))

Our Theorem 5.1 Infinite O(md,/nlog (%)) O(d+/mnlog ()

Our Theorem 5.2 Finite O(mdlog (%) log (mn)) O(dlog () log (mn))

5.1 Improved Regret Bound for HierTS in the Sequential Bandit Setting

In the sequential bandit setting, |S;| = 1. Then, conditioned on Hy, it is not difficult to see that in
Bayes regret, each term E[0] A, — 0., A |Hy] = E[(0s, — fis;¢) " As«|Hy], and we use a novel
Cauchy-Schwartz type inequality from [21, Prop 2] to bound E [(9&* — fist) " As |Ht} , leading

to BR(m,n) <E {thl > ses, \/dE[((GM - ﬂs,t)TAs,t)2|HtH . Expand the expression in the

right hand side of the above inequality, we then have BR(m,n) < E Zt,sest 1/ dAItZA]&tAS,t <

\/dmnV,, ,, reducing the Bayes regret bound to the posterior variance bound problem. Recalling
Eq. @) achieves our first improved Bayes regret upper bound in the sequential linear bandit setting.

Theorem 5.1 (Near-Optimal Sequential Regret) Let |S¢| = 1 for any round t. Then in the multi-task
Gaussian linear bandit setting, the Bayes regret upper bound of HierTS is as follow:

mTr(2,21)

d )
Our explanations for the above sequential regret bound are three-fold: (1) The term
md\/ ney log (1 + n/d) represents the regret bound for solving m bandit tasks, whose parame-

ters 0 . are drawn i.i.d. from the prior distribution N (p,, X). Under this assumption, no task
provides information for any other task, and hence this bound is linear in 7. Similar observation was

also pointed out by [25] (7, [17]. (2) The term d \/ mncs log(l—i-mTr(Zqu_ b/ d) represents the regret

bound for learning the hyper-parameter p,.. Such bound is sublinear in m and is not a dominant
term when m is large. (3) For a large m, the averaged Bayes regret bound across m tasks is of
BR(m,n)/m = O(dy/nlogn), and strengthens the latest averaged bound O(d\/nlogn) in [17,
Thm 3] by a factor y/log n. Besides, since the lower Bayes regret bound for any Bayesian bandit
algorithm is Q(d+/n) [30], our task-averaged Bayes regret bound is within O(1/log n) of optimality
and hence is called ‘Near-Optimal’ sequential regret bound. We further make a detailed comparison
between our regret bound in Theorem 5.1|and the regret bound [17, Thm 3] in the following remark.

BR(m,n) < d\/Zmn\/m01 log (1 + g) +colog (1 +

Remark 5.1 (Improvements of Our Theorem5.1|over the Latest One) Our sequential regret bound
has two improvements over the latest one in [I7, Thm 3, shown in Table E]] (1) We remove the
additional +/log (mn) factor in both the regret bound for solving m bandit tasks and the regret bound
for learning the hyper-parameter [i.. (2) In the regret bound for learning hyper-parameter (i, [I7]
has a multiplicative factor k*(Xo), whereas our multiplicative factor is k(3g). Such improvement is
achieved by using technical matrix analysis proposed in Lemma[C.1| and explained in Remark[A.]]

5.2 Logarithmic Regret Bound for HierBayesUCB in the Sequential Bandit Setting

In this section, we attempt to provide further improved Bayes regret bounds for hierarchical bandit
algorithms in the sequential bandit setting. Because the task averaged Bayes regret bound in
Theorem [5.1]is near optimal, it is not easy to derive improved Bayes regret bounds under the same
assumptions. Therefore, we further assume that the action set A is finite, and propose a novel
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hierarchical Bayesian bandit algorithm, named Hierarchical BayesUCB (HierBayesUCB), for multi-
task linear bandit problem. The pseudo-code of our proposed algorithm is shown in Algorithm T}

. (AS,* - As,t)» As,min =

8,k

Next, we introduce some necessary notations. Let A;; = 0
minge a4, .} (04 Ass — 0).a), Amin = mingepn) Agmin. For any € > 0, let A%, =

max{e, Apin}. Define the event Es; = {Va € A : |a' (05, — fist)| < 1/2log %||a||is .}- Then,
analogous to [3]}, we decompose the Bayes regret BR(m,n) =E> .-, > 5, into three terms:
EY o1 ses, Dst[H{As > €, By} + 1{Ay < €, B¢} + 1{E,;}]. We can bound the last

two terms trivially with mn[e + 26 (max¢ ;|A,|) - |A[]. For the first term, we use the fact that

A, | Hy S A, «|Hy, as well as the Upper Confidence Bound (UCB) technique to reduce it to an
intermediate upper bound (37,5, s, [[4s¢]|2  log 5)/ming ¢|A, ;|. Combining the upper bound

over V,, , in Eq. (E]), HierBayesUCB can achieve the following logarithmic Bayes regret bound in
the sequential bandit setting (the logarithmic bound can be extended to the concurrent setting).

Theorem 5.2 (Logarithmic Sequential Regret of HierBayesUCB) Let |S;| = 1 for any round t, and
the action set A is finite with | A| < co. Then in the multi-task Gaussian linear bandit setting, for any
6 € (0,1), € > 0, the Bayes regret BR(m,n) of HierBayesUCB is upper bounded by

16dlog % mTr(Equl)
A, i)
We give more explanations for the above sequential regret in terms of the following five aspects:
@) If let 6 = 1/(mn), e = 1/(mn) and A, >> €, the above sequential regret bound is of
O(log (mn)(mdlog (%) + dlog (%))). The term O(mdlog (mn)log (%)) represents the regret
bound for solving m bandit tasks and is linear in m. Such bound is sharper than the corresponding
bound O(md,/nlog (%)) in our Theoremby a multiplicative factor O(/log (n/d)/nlog (mn)),
which is less than 1 especially when m < n. (2) The term O(dlog (mn)log (%)) represents
the regret bound for learning the hyper-parameter p., and its contribution to the Bayes regret
bound can be negligible. Besides, this bound is sharper than the bound O(d\/mnlog (m/d))
in our Theorem (3) The averaged Bayes regret bound across m tasks can be regarded as
BR(m,n)/m = O(dlog (mn) logn), which is logarithmic in n. Therefore, we call our regret bound
as ‘Logarithmic’ sequential regret bound. Moreover, if there exists a fixed positive integer :+ << n,

such that m < n', then our task-averaged Bayes regret BR (m,n) /m = O(dE[x+—] log” n) matches

min

the latest single-task Bayes regret bound in [3, Thm 5] and is remarkably similar to the frequentist
regret O(dA_1 log2 n) in [1}, Thm 5] . (4) We can obtain sharper bounds by setting J, € as different

values. For example, by setting § = 1/n, our regret bound becomes O([mmne + m] + k?ﬁ mlogn),

min

1
mn[e+4B(5}\f (20+2q)(d%+|mq\|i,1)|,4@ FE[ ] [mcl log (1+g)+02 log (1+

which is of order O(m log? n) if we set e = 1/(mn) and the gap A, >> € is large. (5) We
also need to point out that, the Bayes regret bound in Theorem scales with E[ﬁ] If the gap

Apmin < 1/(mn), then A . = 1/(mn) and this may cause a large Bayes regret upper bound.

5.3 Improved Regret Bounds of HierTS and HierBayesUCB in the Concurrent Bandit Setting

In the concurrent bandit setting, there exists a positive integer L < m, such that 1 < |S;| < L. The
concurrent bandit setting is thus more challenging than the sequential bandit setting, because the
agent in the concurrent setting needs to interact with multiple bandit tasks in parallel at each round
t > 1, and the hyper-posterior J; will not be updated until the end of round ¢. Therefore, we need to
make an additional assumption on the action space A as follow to facilitate our theoretical analysis.

Assumption 5.1 There exist actions {a; }¢_, C A, a constant 3> 0, such that )\d(Z?:l aaj)>B.

This assumption is also used in previous works [7, [17]] for hierarchical Bayesian linear bandit. It
indicates that Zle a;a; is a positive definite matrix, and does not weaken the generality of our
theoretical results. Actually, if R is not spanned by actions in .A, we can project A into a subspace
where the assumption holds. We also need to modify the HierTS algorithm to let the agent take the
basic actions {a; }¢_, for the first d interactions in any task s € [m]. This modification guarantees that
the agent explores all directions within the task. Such exploration is very similar to the initialization
method in UCB type K -arm bandit algorithms [[6, 4], which choose to pull each arm in the first K
rounds. Define ¢z = 1+ B%0~2k(30) [A1(X0) 4+ 02//3] that will be used throughout the concurrent
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Table 2: Different Bayes regret bounds for multi-task semi-bandit problem. Bayes Regret Bound
=Bound I + Bound II + Negligible Terms. m is the number of tasks, n the number of iterations per
task, K the size of action set, L the number of pulled actions at each round (1 < L < K). Bound I
is the regret bound for solving m tasks, Bound II the regret bound for learning hyper-parameter /..

Bayes Regret Bound | A Bound I Bound II

[7] Theorem 6] [K] | O(my/nKLlognlog(nK)) | O(y/mnKLlogmlog (nK))
Our Theorem 5.4 [K] | O(m+/nLlog (nL)log (nK)) | O(L?\/mnlogmlog(nkK))
Our Theorem|5.5 [K] | O(mLlog(nL)log (mnkK)) O(L?log (m)log (mnK))

setting. Then, analogous to the proof for Theorem we bound /mnV,, ,, with a more refined
analysis, achieving the following improved Bayes regret bound for HierTS in the concurrent setting.

Theorem 5.3 Under Assumption let 1 < |S¢| < L for any round t > 1. Then in the multi-task
Gaussian linear bandit setting, the Bayes regret BR(m,n) of HierTS is upper bounded by

Tr(E,%"
2Bmdy/ A1 (S0 + B,)(Vd + ||,uq||isi)+d\/mn\/2mcl log (1—&-%)—!—20203 log (1+W).

The concurrent regret bound in Theorem achieves almost the same order (w.r.t. m, n, d) as the
sequential regret bound in Theorem [5.1] but differs in two aspects: (1) The bound for learning m i.i.d.

bandit tasks has an additional term Bmd+/A1 (30 + %,)(Vd + H;Lqufi). This is due to the fact

that we take the basic actions {a;}¢_, first for each task s € [m] in the modified HierTS algorithm.
(2) The bound for learning the hyper-parameter p, has an additional multiplicative factor c3. This is
the price for deriving regret bounds in the concurrent setting. Nevertheless, when compared with the
latest concurrent regret bound in [17, Thm 4] for HierTS, our concurrent regret bound in Theorem @]
removes the \/log (mn) factor in both the regret bound for learning m bandit tasks and the regret
bound for learning hyper-parameter w.. Detailed comparisons between different concurrent regret
bounds for multi-task linear bandit setting are listed in Table [3] Furthermore, utilizing the proof
strategy to demonstrate the logarithmic sequential regret for HierBayesUCB in our Theorem[5.2] we
can analogously develop a logarithmic concurrent regret upper bound for HierBayesUCB algorithm,
which is deferred to our Theorem|[C.2]in Appendix [C]due to the limited space of the main paper.

5.4 Improved Regret Bounds for HierTS and HierBayesUCB in the Semi-Bandit Setting

In this section, we extend the HierTS and HierBayesUCB algorithms to the multi-task Gaussian com-
binatorial semi-bandit setting. The pseudo-code of them is shown in Algorithm[2] Algorithm[Z]is very
similar to Algorithm [I](i.e. the multi-task linear bandit algorithms), except that the combinatorial Hi-
erTS in Algorithm 2] uses the approximation/randomized algorithm ORACLE to solve combinatorial
problem A, € argmaxacy ), 4 W(a) and denotes the solution as A, = ORACLE(A, &/, w).
We adopt the ORACLE operator as in the seminal works [11[38] to guarantee the efficiency of com-
binatorial HierTS semi-bandit algorithm. In this section, we only consider the sequential semi-bandit
setting (i.e. |S:| = 1) for ease of presentation, and our results can be extended to the concurrent
semi-bandit setting. Then, define ¢4 = 02 + B2LA1(20) + B?A\1(2,)k(20), we first derive the
Bayes regret upper bound for combinatorial HierTS algorithm in the sequential semi-bandit setting.

Theorem 5.4 Let |S;| = 1 foranyt > 1. Let ¢ > /2In (%\/2%(20)) then in the multi-task

Gaussian semi-bandit setting, the Bayes regret upper bound of combinatorial HierTS is:

—1
BR(m,n) <m+ chnL\/chmlog (1+ %) + 2¢4Ldlog(1 + %).

Detailed comparisons between different Bayes regret bounds for multi-task semi-bandit problem

are listed in Table[2| We can see that, in our Theorem - both the regret bound O(m+/n logn) for
mn logm logn

learning m tasks and the regret bound O( ) for learning hyper-parameter p, can
achieve the same order (w.r.t. m and n) when compared with the latest bound in [[7, Thm 6]. Besides,
our Bayes regret bound is logarithmic in the number K of items, whereas the Bayes regret bound in
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[7, Thm 6] is sublinear in K. Therefore, our regret bound becomes sharper when the size of action
set is very large, e.g. K >> L. Next, we derive a gap-dependent logarithmic multi-task Bayes regret
bound for our proposed combinatorial HierBayesUCB algorithm in the sequential semi-bandit setting.

Theorem 5.5 Let |S;| = 1 for any t > 1. Then for any ¢ > 0,6 € (0, 1), in the multi-task Gaussian
semi-bandit setting, the Bayes regret BR(m,n) of combinatorial HierBayesUCB is bounded by

8Llog % m Tr(zglzq))]
A, d '

min

In Theorem if we set 6 =1/(mnkK), e =1/(mn), and A, >> ¢, then the regret bound
0] (m log nlog (mn)) for learning m tasks is logarithmic in n. Such bound is sharper than the latest
one O(m+/nlogn) in [[7, Thm 6] for multi-task semi-bandit. The regret bound O(log m log (mn))
for learning hyper-parameter p, is also sharper than that of O(v/mnlogmlogn) in [Z, Thm 6].
Besides, since =1/(mnkK), the whole Bayes regret bound is also logarithmic in the number K of
items. Nevertheless, we should point out that our bounds hold for the multi-task semi-bandits with
linear generalization, but [7] focuses on the multi-task /K -arm semi-bandits without feature matrix ®.

1 1 L
mn[e+ALBIOA (So+) (2 +| g 5] +E ][2clm log (1—|—%)+QC4Ld log(1+

5.5 Technical Novelties for Deriving Improved Regret Bounds

In this section, we summarize our technical novelties in terms of the following three aspects:

(1) For the improved regret bound for HierTS in Theorem|5.1} our proof has three novelties: (i) We
apply a novel Cauchy-Schwartz type inequality in Lemma to bound E [(05’* —fist) T As |H t] <

\/dIE [((087* - [Ls,t)TAS’t) 2 |Ht] , leading to a sharper bound without /log (mn) factor:

BR(m,n) <E Z dAsT,tf)s,tA“,.’t < \/dmnV,, , < O(m+/nlogn).
t,s€St
(ii) We use a more technical positive semi-definite matrix decomposition analysis (i.e. our LemmalA.T)
to reduce the multiplicative factor x%(X) to x(X¢). (iii) Define a new matrix X, ; such that the

denominator in the regret is 0 + B2\ (Xg), not just o2, avoiding the case that the variance serves
alone as the denominator. Such technical novelties are also listed explicitly in Table [}

(2) For the improved regret bound for HierBayesUCB in Theorem [5.2]in the sequential bandit setting:
our novelty lies in decomposing the Bayes regret BR(m,n) =E) o, > s, As into three terms:

EZ Z Ast=E Z Agt[1{Ast > €, Eo i} + H{A s <€, B} + 1{E .},
t>1 s€S, t>1,5€8,

and bounding the first term with a new method as well as the property of BayesUCB algorithm as

Azt CtZGAt
EAStl{A t>€Est} EA 1{A t>€Est}<]E Ac . £ s

resulting in the final improved gap-dependent regret bound for HierBayesUCB as follows

( Z [ As I3, {log )/AmmSO(mlog(n)log%)

t>1,s€S;

S O (mlog (n) log (mn)).

(3) For the improved regret bounds for HierTS and HierBayesUCB in the concurrent setting and in
the semi-bandit setting: besides the aforementioned technical novelties in (1) and (2), the additional
technical novelty lies in leveraging more reﬁned analysis (e.g. using Woodbury matrix identity) to
bound the gap between matrices Zt 11 and Iy ! (more details is shown in Lemmaand Eq. (6]).

6 Experiments

In this section, we conduct experiments in the linear bandit setting to verify our theoretical results.
Specifically, we show the influence of hyper-parameters (e.g. m,n, L) to the multi-task Bayes regret
of HierTS and HierBayesUCB, to validate the consistency between their regret bounds and practical
performance. Besides, we compare the performance between our algorithms and other baselines, to
show the effectiveness of hierarchical Bayesian bandit algorithms in the multi-task bandit setting.
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Figure 1: Regrets of HierTS algorithm with respect to (w.r.t.) different hyper-parameters.

Experimental Setting. We follow the same experimental setting as that in [7,[17]. Concretely, we
conduct linear bandit experiments with Gaussian reward. The synthetic problem is defined as follows.
In most experiments, we set the number of total tasks as m = 10, the dimension of action space as
d = 4, the number of concurrent tasks as L = 5, the number of rounds as n = 200m /L. We focus
on the finite action space with |A| = 10, and each action is sampled uniformly from [—0.5,0.5]%. In
hierarchical Bayesian model, we set the hyper-prior as zero-mean isotropic Gaussian distribution
N(pg, Eq) = N(0,%,), where 4 = 0714; and set the task variance Xo = 0314. Unless otherwise

stated, we set o, = 1, 09 = 0.1, o2 = 0.5 for each task in most experiments. We exhibit the regret
performance of HierTS algorithm with respect to five hyper-parameters m, L, o4, 0¢, o in Figure
(a)-(e) respectively. The regret performance of HierBayesUCB is shown in Figure 2] of Appendix

Besides, we compare HierTS/HierBayesUCB with other two TS type algorithms that do not learn the
hyper-parameter p* in a hierarchical Bayesian model. The first baseline is the vanilla TS algorithm
that samples task parameter 6, . from the marginal prior N (114, ¥4 + Xo). The second baseline is an
idealized TS algorithm that knows i, exactly and uses the true prior A (1., 3g). We call the second
baseline as OracleTS, since this TS algorithm accesses more information of p., than HierTS and
vanilla TS algorithm. We show the regret performance of these four bandit algorithms in Figure [T (f).

Experimental Results. From Figure [I| we can observe that: (1) In plot (a), the multi-task regret
becomes larger with the increase of m and n, which is consistent with our regret upper bound in
Theorems (2) In plot (b), the regret increases with a higher dimension d. The number L of the
concurrent tasks seems do not have a large impact on regret. (3) In plots (c)-(e), the regret decreases
with a smaller variance (e.g. 04, 0¢ and o) in hierarchical Bayesian model, validating the provable
benefits of variance-reduction in regret minimization, which is revealed in our multi-task Bayes regret
upper bounds. (4) The task-averaged regret of HierTS is tighter than that of single-task TS algorithm,
empirically demonstrating the advantages of multi-task Bayesian bandit optimization paradigm over
single-task bandit learning. (5) Our proposed HierBayesUCB achieves lower regret than HierTS.

7 Conclusions

This paper provides improved Bayes regret bounds for hierarchical Bayesian bandit algorithms in the
multi-task Gaussian linear bandit and semi-bandit setting. For linear bandit problem: in the case of
infinite action set, we strengthen the preexisting regret bound O (m+/n log nlog (mn)) of HierTS
to O(m+/nlogn) by a factor of O(4/log (mn)); in the case of finite action set, we propose a novel
HierBayesUCB algorithm that achieves logarithmic regret bound O(m log (mn)logn) under mild
conditions. Our regret bounds in the bandit setting hold when the agent solves tasks sequentially or
concurrently. Then, we extend the above HierTS and HierBayesUCB algorithms to the multi-task
semi-bandit setting and derive improved regret bounds. The synthetic experiments further support our
theoretical results. Our future work aims to extend our bounds to the sub-exponential bandit setting.
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APPENDIX

A Proofs for Regret Bound of HierTS in the Sequential Bandit Setting

We first give the following proposition to bound the posterior variance E> 7~ >° | As ¢ ||

IIAstII

SES:

the sequential setting. We choose to give the worst-case upper bound on >, > s

Proposition A.1 Let c; = 02 + B2\ (), c2a = 02 + B*\1(Z0) + B?A\1(34)k(X0), then

m Tr (2612(1)

n
SN 145413, <2mdey log (1+ E) + 2dey log (1 + y ).
t>1 seS
Proof. Note that HAS*tH%” = Alt(is,t + is7t2512t25123,t)As,t, then we bound

D1 2ses, 1 4s,
(1) Bounding )°,, > s [|As, 2 - Note that Yot = (Eg' 4 Ge)~! < X, then we have
ALEMAM < B2\ (20) < B2A\1(20) + 2. Accordingly, we define a new matrix X, ; £ (35! +
B Te? Soeet s € Si}AseA],) 7", and notice that Xep 2850 = g+ 5>, s e
St}AS,gAIe)_l, and that X, ; = Y. Then recall ¢; = 02 + B2\, (%), we have

Z Z Altis,tAs,t

t>1 s€S,

S el y oIS :
223 _and Dis1 Yoses, Al D350 550 1 8, ¢ A ¢ respectively.

As tzs tAs ,t

_012 Z 02—|—B2/\1 20)

t>1 seS

ATtis tAS t
<20, log (1 + S—)
A:Srt,tis 7tASt7t
=2c1 ) log (1+ m)

t>1
U ATtis tAst
=2c 1{S; =stlog (1 + —2
1;; { t } g( 0'2+B2>\1(20))
" AT Xs tAst
<2c 1{S; = s}log (1 + 2220
1;; { t } g( 02+B2)\1(20))
.1 1
=2 1{S; = s}logdet (I + ———1 "=
C1 ;; { t 5} ogde ( o2 +B2)\1(EO) )
=2 iZus = s}[logdet (X, + Avide ) — logdet X ]
=2¢4 2.2 ¢ = s}[logdet (X, + —— B2, (50) ogdet X,

m

=2c; Z log det ( s anrl) log det Xs_ll]

s=1

m 1 N
:201 Zlogdet (I + m Z 1{8 S St}zg As,tA;:tE

s=1 t<mn

O l=

)

1 1
Tr (I + 0'2+321)\1(20) Ztgmn 1{8 € St}zg ASﬂfA;r,tzg)
d

m
<2dc; Z log

s=1
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m 1{s € S§;}A] %A,
=2dcq Zlog (1+ 2r<mn i} 44:To ’t)
d(0'2 + BQ)\l(Eo))
n
<2mdcy log (1 + E)’
where the first inequality holds because the basic inequality = < 2log (1 —1— x), Va € [0, 1]; the third

inequality holds due to the mean-value inequality (Hf 1N i < b = A for any A; > 0; the last
inequality holds due to the fact that the agent interacts with each task s € [ ] at most n times.

Before bounding the remaining > ,~, > Altis,tﬁlglit Eo_li]s,tAs,t, we introduce the follow-

ing lemma.

SES,

Lemma A.1 If the square matrices A > 0, B > 0, then A1 [((I + AB)(I + BA))_l} < ;;Ef‘).

Z

Proof. According to Theorem 7.6.1 in Page 485 of [[18]), there exists a non-singular matrix S, such that
A=SST,and B=S"TAS ! inwhichA > 0Oisa diagonal matrix. Then we have AB = SAS—1L,
BA = S~ TAST. Therefore, applying Weyl’s inequality we have

Xi((I+ AB)(I + BA))
=Xi((I+SAS (I + S TAST))
=X(SUI+A)ST'S (I +A)ST)

=Xa(STST +A)STISTT(I + A))
>Xa(STS)A (I+A LST(I+A))
=Aa(STS) (SIS TN+ A)?)
>)\d(STS)/)\1(SlsT)—)\d( Y/A(4). O

Remark A.1 (Smaller multiplicative factor than the latest one in [17|]) The improvement lies in

our sharper upper bound on \q (ZglisﬁtisiEal), and detailed explanations are two-fold:
(1) Previous work [17, Appendix B] directly used Weyl’s inequality to upper bound

M(Z5 'S80 1) < M (S5 AT (Es) < M (S5 AT (o) = £2(20).

(2) Instead of directly using Weyl’s inequality, we first propose Lemma which uses positive
semi-definite matrix diagonalization technique to bound

M[((I+AB)(I+BA) '] <

Then we apply LemmalA.1|to upper bound
_1a & w _1a & we c s —1
A (201808050 = M(Tg 18626050 ) < M [((T+ 2026 ) (T +264%0)) ] < £(%0),

resulting in a smaller multiplicative factor than that in [|17)]. O
(2) Bounding Y-, > ., Altis,tEalitEo_lflsytAsyt. First recall that
i =S (57 g+ Y Bay = Gat(Sg0 + Got) ' Bay) = Se(S7 g + D (S0 + G1) TGl Bay),
s€[m)] s€[m]

—E + Z Gst st Eo +Gs,t)_1Gs,t = Eq_l + Z (ZO"’_thI)_l

s€[m] s€[m]
Therefore 3, < ¥,. Then applying Lemma and Weyl’s inequality, we have
Al S S0 S0 Ay < BPM(S6, 50 'S80 1 Sa) < BEA (D) S0 D6 B0 HAL(S)

A1(Zg)A1(Zo) 2 A1(Eg)A1(Z0)
ME) DT A

= B2\ [((T 4 Z0860) (I + £4,,%0)) " A (5) < B
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Meanwhile, we estimate the gap between matrix 3} +11 and matrix ;! as follow

S =S = (S04 (Gep+ 0 2AAL) )T = (S0 + Gt
=5 =SS+ o P ALAL) TS = (B0 - B0 S0 )
=55 e — (Sop 024 AL )T St
= Z0_125%,15 [I — (I + U_Qis%,tAs,tAsT,tijt)_l] is%,tz(;l
5 A ALSE,
1+072A],5, Ay
S0 S st AL s 50
o2+ Al S Ay
- IR YR IRV Y S
T 024 B2\ (Z0) + B2A1(Zg) M1 (Z0)/Aa(Z0)

))%Z, 550

= N5ISE[I— (- o2

&)

where the second equality holds due to the Woodbury matrix identity, and the fifth equality
holds due to the Sherman-Morrison formula. Then analogous to the proof for (1) Bounding
Zt21 ZseStHAsatH% L recall co = [02 + B2\ (o) + BQ)\l(Eq)H(Eo)] we have

Z Z Altis,tzalitzalis,w‘ls,t
t>1 seSs
A;’l—,tis,tzalitzalis,tAs,t

<
<200 2108 (4 G (5T B ()

_ 1 ~ ~ _ 1
DIED S SRV WV IR D Yo oY

=2 1 I
“ ;é 08 det (14 s BN, (%) + B (5 (%)

_ YIS A AT S, _
_ —1 0 s, t4ts,t4lg t s, 40 . 1
=220 2 [logdet (5 4 o e o (o)) 80 (5]

t>1 s€S;

<2¢ Z Z [log det (itjrll) — log det (it_l)]

t>1 s€Sy
<2c;[logdet (5,1 ,1) —logdet (£71)]

1
=2cylogdet (I+ Y 2 (So+ Gy ppyr) 'S

s€[m]

Tr (1) + Tr (X gepm =

Rl

)

1
(0 + G ns1) ' 55)

<2dcs log

Q| R

mTr (£5'%,) )
d b
where the second inequality holds due to Eq. (5). Combining (1) and (2) finishes the whole proof. [J

<2dey log (1 +

Remark A.2 Actually, we can replace the term Tr(Zy 1Eq) in the above regret bound with
O(nA1(Xy)), at the cost of a slightly larger regret upper bound, by bounding (3¢ + G;}nnﬂ)_l <

Gs,mn+1 in the last but one step in the above (2), instead of bounding (X, + G;;er)’l <yt
Specifically, we have the following estimation:

1 1
’I‘I'(I + Zse[m] E‘; (EO + G;71nn+1>_123)
log ( d )

1 1
Tr(I + Y2 Gy s 152
glog< ( Zse[m]dq ymnt1 q))
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TI'(O'_2 Zs m E mn 1[8 € Sé]AsT by AS,Z)
=log <1+ Elm] ~«t< ;1 L4 )
-2
<log (1 L mr:l)\l(zq))7

which is O(log (mn)), slightly larger than the regret bound of O(log (m)) in our Proposition

Then we can begin proving our first Bayes regret bound for HierTS in the multi-task Gaussian linear
bandit setting. We first give a lemma as follow, which is useful to prove our multi-task Bayes regret
bound in the sequential setting.

Lemma A.2 (Proposition 2 in [21|]) Let X1 and X5 be arbitrary i.i.d. R™ valued random variables
and f1, fo measurable maps such that fi, fo : R™ — RY with E||f1(X1)||3, E| f2(X1)]|3 < oo,

then [E[f1(X1) T fo(X1)] < VAE[(f1(X1) T f2(X2))?].

Theorem A.1 (Theorem in the main text). Let |St| = 1 for all rounds t > 1. Then in the
multi-task Gaussian linear bandit setting, the Bayes regret upper bound of HierTS is as follow:

Tr(2,25 "
BR(m,n) < W\/decl log (1 + g) + 2dco log (1 + mTe(5e5, )

¥ )
Proof. Recall that H, = (Hj ¢)¢<1,ses, is the history up to round ¢, then
BR(m,n) =E Z Z E[6), A, — GI*AS,t|Ht]:|
T t>1 sES: /
~E[S S E[0], A, - E[es,*|Ht}TE[AS,t\Ht]yHt]}
Tt>1 €Sy
=E Z Z ]E[(es,* - .as,t)TAs,*|Ht]:|
T t>1 sES:
B[S 3 V-[(On — o) Au)| ]
t>1 s€S;
=E[ S 3 \JAB[AT (e — o) (O — o) T As| Hi] |
t>1 s€S,
_ IE{Z 3 dE[AIti&tAS,tH
t>1 seS,
<Vmnd [EY Y (|42,
t>1 5€S; o

where both the second and the fifth equality hold due to the independence between A ; and 65 .
conditioned on Hy; the first inequality holds by applying Lemma with functions f1 (y1,y2) = y1,
f2(y1,y2) = yo forany yy, 9> € R%, and the random variable X1 = (6 . — fis 1, As )| Hy, Xo (with
the second element as A, ;) is the i.i.d. copy of X;; the second inequality holds due to Jensen’s

inequality. Plugging the upper bound over E> -, > " s [[As ”22 in Proposition into the
above result obtains the Bayes regret bound for HierTS. ’ (|

B Proofs for Regret Bound of HierBayesUCB in the Sequential Bandit
Setting

Lemma B.1 Let 0 | i ~ N(p,%0) and H = (x1,Y:)}—; be n observations generated as Y; |
0,20 ~ N (2] 0,0%). Let P(u | H) = N(u; 1, %), and G = 0=2 31| xyx) . Then

Elf | H) = (3" +G) (S A+ B), covld | H =(S3" +G) '+ (5" +G) 15 oxg (B + G)
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Proof. By definition, we have cov[d | u, H] = (X5' + G)~ L E[0 | p, H] = cov[f | p, H)(Sg 1t +
B) where B =0~ 2%"}" | 2;Y;. Hence cov|[f | u, H] does not depend on p. Then we have
E[9 | H] = E[B[6 | 1, H] | H) = cov[6 | 1, H)(S5 Bl | H) + B) = (S5 + G) (S5 + B).

On the other hand, because cov[d | u, H] does not depend on u, Elcov[f | u, H] | H] = cov[é |
1w, H]. In addition, since B is a constant conditioned on H, then according to [17, Lemma 2], we
have the following result:

cov[E[0 | p, H] | H] = cov]cov[f | p, H|Zg ' p | H] = (5 + G) 'S5 88 (2t + G) 1.0

Theorem B.1 ( Theorem in the main text). Suppose the action set A is finite with |A| < co. Let
|S¢| = 1 for all rounds t > 1. Then in the multi-task Gaussian linear bandit setting, the Bayes regret
upper bound of Hierarchical BayesUCB is as follow:

1
BR(m,n) <mne + 4B/ A1 (S0 + 3,) (1) d + ,/Sdlng + Huqu‘_i)mn\AM

T (55'%) )

8log %
Ae

min

+E|

] {2md01 log (1 + %) + 2dco log (1 4+

In Theorem in the main text, we replace 4/d + ,/8d ln% in the right hand side of the above

inequality with \/d for ease of exposition.
Proof. Define A, = G‘I*AS,* — QI*AS,t, the event B, = {Va € A : la® (05« — fist)] <

\/2log ¥ lallg, ,}.and Cy g0 = 1/2l0g %||a||2s .- Then we can rewrite the multi-task Bayes regret

BR(m,n) as the following equivalent form:
E[ZZAS’t] :ZZE[AS,tl{AS,t Z €, Es,t}} +ZZE [As,tl{As,t <€, Es,t}] +ZZE [As,tl{ES,t}] .
t>1s€S; t>15€8; t>15€5; t>15€85;

Then we will bound the three terms in the RHS of the above equality respectively.
(1) Bounding >,., > . E[A.:1{A,: > € FE;}]. Recall that Upsq = a'flss +

1/ 2log %Haﬂgs ,» then we have
Z Z E[Asi1{As: > €, Es1}]

t>1 s€Ss

As * GI*As,t)2

-3~y gpe A

l{As,t Z €, ES,t}|HtH

t>1seS; ’
QI*AS*_US <*+U5 t_e;r*AS ?
S I I T S R 1)
t>1 seS; o

T 2
Ut,e,AS t 93,*"43775)

<3 3 s =

A, > e By} |Hi]]

t>1 s€Ss )
2
< ]E 4Ct757As,t
<D D B[]
t>1s€eS; min

(81og D)l Asill3

=>_ > E[—%

t>1 seS, min

Slog 5 Tr (3513,
(&) {deq log (1 + %) + 2dey log (1 + W)}'

where the first inequality holds due to the fact that Uy s 4, , > Uy s 4, , in the BayesUCB algorithm;

s,t —

the second inequality holds because when event E, ; occurs, 91* Ag« < Uy, 4, , the third inequality
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holds due to the definition of Uy , ,; and the last inequality due to the result in Proposition [A.T}
(2) Bounding .., > .5 E (A 1{A,, < €, Es1}]. We trivially have

thl Zsest E[Asvtl{As’t < QEW}] < mne.
(3) Bounding 3", 3", s, E[A 1 1{E, ¢ }].

First we give an upper bound of A, ; = 91*(1457* — As,1). Using Schwartz’s inequality, we have

9;—,*(145,* - As’t> < ||98,*||i;§||As,* - As,t |i35,1

2B\ M Ee )00 gt < 2By M (S0) (06,0 = all st + lrtglls ).

Besides, we also have 0 . — 1y = 054 — fu + s — p1g ~ N(0, 0 + £,) = N(0,31), then
A1
E[[16s, — uq||§71] < \/]EHESf (0s.« — p1q)||3 = V/d. According to [35] Exp 2.11], we have with

probability 1 — ¢, ||6s,« — uq||ij <y/d+/8dIn % Therefore, with probability 1 — ¢ over the

draw of {0 . } sc[m], We have

> Y E[AA{E. )]

t>1 seSy
=3 Y E[E[AA{E | H]]
t>1 seS,
T _
<28 B0+ B ()i ) 3 BB, D]
¢ © i>1 ses,
I _
2050+ S s+ s ) Y ()
C > t>1 s€S

1
SAB M (S0 + ) (1 d + 800 + gy Jmn| Al

where the last inequality holds because P(Es,t |H t) < 26. Combining (1), (2) and (3), we achieve
the final Bayes regret bound for any § € (0,1),¢ > 0, ¢ € (0,1):

1
BR(m,n) < mne+ 4B/ A1 (30 + 3q) (1/d + 4 /8dlng + ||,uq||ifi)mn|A\5

3 Tr (35'S
+E[8Alfg 2] {2mdey log (1+ %) + 2de; log (1 + W)}. O

C Proofs for Regret Bounds of HierTS and HierBayesUCB in the
Concurrent Bandit Setting

LetC; = {s € S; : \a(Gs+) > B/0?} be the set of sufficiently-explored tasks at round ¢. We first
give the following proposition to bound the posterior variance E> 7, >~ s, 1{s € C¢}[|As 4 |22

in the concurrent setting. Analogous to the proof for Proposition[A.T] we choose to give the worst-case
upper bound on 37, 35 s, 1{s € C}[|As4[|Z  as follow.
= s,t

Proposition Ca Letc = o2 + BQ)\l(Zo), Cy = o2 + BQ)\l(Zo) + BQ)\l(Zq)KZ(Eo), c3 =1+
B?072k(30) [M(20) 4 02/ 8], then we have

mTr (S5'5,)

SN s € CH Al < 2mdeylog (1 + g) + 2deses log (1 + - ).

t>1 seS,
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Proof. Note that we have

Z Z 1{8 S Ct}HA , = Z Z 1{5 S Ct}A;r,t (is,t + is,tzo_litxo_lis,t)As,t

t>1 s€S; L t>1s€S:

On event {s € C;}, the modified HierTS samples from the posterior and actually behaves the same as
the original HierTS algorithm in Algorithm[I] Then we bound the two terms in the right hand side of
the above equality respectively .

(1) Bounding ", Y, s, 1{s € C:}A] 5,1 Ay s

Similar to the proof for Theorem we have A], %, A, < B?\(%o) + 0? and X, =
(3ot + W S s e St}AS’gAIZ)_l > ¥, ;. Then we can analogously obtain

Z Z 1{s € Ct}A;r,tis}tAs,t

t>1 s€S;
AlL>, A
< 2 2 s,ts,t41s,t
<2[0? + B*\1 (X)) ;; s eCitlog (14 73— B%(EO))
=2[0? + B*\1(Zo)] Z Z 1{s € C;}[log det (XMl + LAL) — logdetXfl]
o t>1 SESt t >t 02+ B2\ (%) >t
<2 B2\ (Z) C:}logd Aoy log det X}
[0’ + 1 0 ;;1{56 t}[Og et( St+02—|—T)\1(20))—0g et s,t]
2 - - As Al -
[U + B )\1 ZO ZZ 1{8 c St [logdet (Xs,t + m) — 1OgdetXS’t}

s=1t>1
=2 [cr + B2)\1 Eo Z IOgdet s, mn+1) — log det XS_»ll]
s=1

Zt>1 1{s € St}As 1 20As, t)
(02 +B2A1(Eo))

<2d[0” + B?A1(Zo)] > _log (1
s=1

<2md[o* + B*\1(Z0)] log (1 + E) = 2mdc; log (1 + g),

where the second inequality holds due to the fact that, if square matrix A > B > 0, then det (A) >

det (B), and |S¢| < m; the last inequality holds because the agent interact with each task at most n
times.

(2) Bounding }°,-; >, cs, 1{s € C.} AL, (8150 5455 ' Sar) Ay

Analysis. The real difference of the proof for the concurrent regret from the sequential regret lies in
bounding Zt21 Zsest 1{s e Ct}AIt (Es,tzalitﬁalis’t)Asm because |S;| > 1 and the result in
Eq. . 5) (which only holds for the case |S¢| = 1) does not hold. To tackle this difference, we reduce the
concurrent setting to the sequential settlng Let S, = {Itj}‘ *! and define St = {1y }3 1- Then at
round t, let s = I; and define E;% £5; + EzESt N 71(20 + G;%H) T2 em\Siay (B0 +
G;%) , we estimate the gap between E it fand X as follow:

SN e MGl - (Bt 6oh)

2€St 1:i—1
‘AszA;r 1. -~
= Z |:(EO + (GZJ + T’t) 1) 1 _ (EO + GZ’%)
2€8¢,1:i-1
~ A, AT .
= D T'Sa 8,
2E€S8t,1:i-1 g +Az,tzz tAz,t

Thus we can bound \; (Z;tl — ;) and tackle 2;} instead of 3, ! to reduce the concurrent setting
to the sequential setting. We first give a useful lemma as follow.
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Lemma C.1 For any fixedt > 1 and i € [L], suppose \a(Gs1) > B/o? and let s = I, ;. Then

BQ)\l(EQ) 0’2

ngd(ZO) [/\1(20) + 7]

Al(i;tlit) <1+ 3

Proof. Applying Weyl’s inequality, we have

M(E = B8+ 1) = M (S (B - 0% +1)
P - (ST - B
<TH+HME =S OME) =1+ L
= 1( ,t t ) 1( t) )\d(zt—l)
We first lower bound A\y(X; ). According to Weyl’s inequality, we have
_ 1
Ma(S7H > aa(Eoh + A((Zo+Go )™ > a(Sh) +
a(X) > (X)) Zez[;l] a((Zo D7) =Mz zez[n:@] M (E0) + M (G
“Ma(Z+ Y - > M(E7Y) + e
BRSO vi ey S O AT

where the last inequality holds because the tasks Sy 1.,—1 have been sufficiently explored. On the
other hand, using our Lemmawe can bound \; (is_tl — ;1) as follow

A AL B2 \1(S0)

MES-E) < Y M AL(Eg ' BB ) < (i — 1)

2€S8¢t,1:i-1 o? + A;tizvtAZﬂf o? ACl(EO) '
Combining the above results, we have
; 2 A1(Zo)
=13 (i-1)% AI(E ) B2 \i(Zo) o2
MESFS) 1+ —op T2 <14 = NE)+ D] O
)t )\d(qu)+m o2 )\d(zo)[ B]

Then, recall 3 = 1 + B?0?k(Z0)[M1(20) + 0°/8], we can bound 3,5, > s 1{s €
Ci}A], (S50 15450 15,4) As ¢ as follows:

DD s € CIA] (SeaS S0 Bar) Asy
t>1 seS,

—3 S s € CIAL DS S (55507 ) 58 50 S A
t>1 s€S
- _1_ __ 1 ~ _ _ 1 ~
< Z Z s € CM (557 B8, 2 )AL 1680 82,52, 50 S e At
t>1 seS,
<{1 372)\1(20)
- o2 Xa(Xo)
<2cscs[logdet () 1) —logdet (£71)]
mTr (2512(1)
#%

where the second inequality holds due to Lemma|C.1] the third and the fourth inequality hold in the
same way as that in the proof of Bounding (2) in Proposition Combining the results in (1) and

2 ~ _ ~
[\ (Do) + %] }]EZ S s € CYAL S5 8,50 S A

t>1 s€S;

<2dczcolog (1 4+

(2) finishes the whole proof. g
Remark C.1 In the last step of proof for Lemma[C.1} we bound
o i—1 B2 A\1(20) i—1 B2 Mi(%0)
M(EIE) <1+ ( - o2 M) <4 (ke o) ){i 2a(Bo)
Aa(Ba) + xorere NS0 +o7P
Thus our upper bound is independent of the number L of the concurrent tasks. Actually, Vi € [L]:
Bij )\1(20) ij )\1(20)
Al(i:}it) <1+ _ o2 Xia(Xo) <1+ - 2 Xa(Zo) 7
o Ad(zq ) _|_ 1 )‘d(zq ) _|_ 1
(i—1) A1 (Zo)+02/B L M (Z0)+o2/B
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5’722 A1 (Z0)
W 24 (o) is L-dependent. If
1
. = 0275 ) ) o
influence of L to the regret may be large; otherwise, the influence of L to the regret may be negligible.

>\al(E Y

the sharper bound 1 + << the

1
A1(Xo)+0?/B’

Next, we prove the concurrent regret bound for HierTS and HierBayesUCB.

Theorem C.1 (Theoremin the main text). Let |S;| < L < m for all rounds t > 1. Then in the
multi-task Gaussian linear bandit setting, the Bayes regret bound of HierTS is as follow:

BR(m,n) <2Bmd\/ i (2o + B,)(Vd + l1qll=1) +mdy [2ncy log (1 + d)

mTr (35'S,)
d )

+ and\/2d(:2c?, log (1 +

Proof. Recall that C; = {s € S; : \y(Gs¢) > 3/0?} is the set of sufficiently-explored tasks at round
t. Then, due to the modification of HierTS algorithm, we decompose Bayes regret BR(m, n) into
two terms and bound them respectively:

=EY Y 1{s ¢C}0] (A — As)) +ED D 1{s € Ci}0] (A — Asy)

t>1 seS; t>1seS;

(1) Bounding E> ., >° s 1{s ¢ Ce}0, (As — Asy). Similar to the proof for Theorem @
(3), we have -

Og(Ass = Ast) < 0ssllg-1 A = Asells,, < 2¢ )\1(538,1)(\\98,* — fallsoy + Huquﬁ)»

1
and E|||6,. ,uq||E <\/EHZS 2(0s.« — 114)]|3="/d. Recalling the independence between 0 ..
and actions A, ; ylelds

ES S 1{s ¢ CJ01, (s — Asr)

t>1 seS,

<28\ M (S0 + )RS 3 145 ¢ CHE (16,0 — uallss + gl )

t>1 s€Se

< 2B/ M (S0 + B¢) (VA + [l1glls-1)md

The last inequality holds because in the modified HierTS, event {s ¢ C;} occurs at most d times for
any task s € [m].

(2)Bounding E> " o, > s, 1{s € Ci}[|As+ ||§:t It suffices to apply the upper bound in Proposi-
tion

Combining the upper bounds in steps (1) and (2) obtains the final Bayes regret bound for HierTS in
the concurrent setting. (]

Theorem C.2 (Logarithmic Regret Bound for HierBayesUCB in the Concurrent Bandit Setting).
Suppose the action set A is finite with | A| < co. Let |S;| < L < m for all rounds t > 1. Then in the
multi-task Gaussian linear bandit setting, the Bayes regret bound of HierTS is as follow:

BR(m,n) < mne+ 4B/ 1 (X0 + Eq)(“d—i— A /8dln R + ||/qu||Z )mn|A|5
m Tr (zglzq))}.

log +
+ 2B/ 21 (S0 + £) (VA + [agll - )derE[Ag‘;]{2mdcllog(1+%)+2d630210g(1+ d

min

Proof. Similar to the proof of Theorem we decompose the Bayes regret as BR(m,n) =
]Ezt21 Dses, Hs ¢ Ct}GI*(AM —As) + EZtZl D oses, s € Ct}GI*(AM — As ). Then

72984 https://doi.org/10.52202/079017-2323



Table 3: Different Bayes regret bounds for multi-task d-dimensional linear bandit problem in the
concurrent setting. m is the number of tasks, n is the number of iterations per task, A is the action
set. Bayes Regret Bound =Bound I + Bound II + Negligible Terms, where Bound 1 is the regret
bound for solving m tasks, Bound II the regret bound for learning hyper-parameter ji..

Bayes Regret Bound | Al Bound I Bound IT

[T7] Theorem 4] Infinite | O(mdy/nlog (%)log (mn)) | O(dy/mnlog(m)log (mn))

Our Theorem 5.3 Infinite O(mdy/nlog (%)) O(dy/mnlog (%))

Our Theorem|C.2 Finite O(mdlog (%) log (mn)) O(dlog () log (mn))

we bound the first term with the proof for Theorem [C.1] (1), bound the second term with the proof for
our Theorem- Then with probability 1 — ¢ over the draw of {6, *}QE [m]

BR(m,n) < 2B/ M (Lo + ) (Ve + [l - )md+1E[8Alog5 IS E[1{s € A, ]

min- ¢>1 seS;

+ mne + 4B/ A1(So + o) ( az+,/8dlnc+m\|E 1 )mn|A|d.

Plugging the upper bound on 35,, 3 s, E[1{s € C;}[[As4[|IZ ] in Propositioninto the right
hand side of the above inequality finishes the whole proof. 7 |

D Proofs for Regret Bounds of HierTS and HierBayesUCB in the
Semi-Bandit Setting

We also choose to give the worst-case upper bound on > ;o1 > cs, D aca. , D3, 1D, as follow.

Proposition D.1 Let c1 = 0'2 + BQAl(EO), Cqy = O'2 + BQL)\l(Eo) + BQ)\l(Eq)Ii(Eo), then
- L Tr(Sy 'S

S5 Y 818, < 2emlog (1+ %) + 2¢4Ldlog(1 + W).

t>1 s€S; a€As ¢
Proof. Recall that Gy = 0723, 1{s € S} (Xoca,, ®a®Ps), Bsy = 025, 1{s €
SHXuea,, Paws(a)), St =50"4G ., S = Eq_l:i—zse[m](zo—i—G;tl)_l. Then, analogous
to the proof for Proposition we introduce the matrix X 2 (3" + grxrmmyrer 2oew: 1{s €
Se}(Daen., <I>a<I>I))71. We next bound thl > ees, DoacA, @Iisﬁtfba and
thl ZSESt ZaeAsyt (I)(—lrisvtxalitzalis»t(b“'

() Bounding 371 3 ,cs, Yoca, , Pa st Pa

Te
20 D Tt
t>1 s€ES; a€As ¢

m

CI) » P,
) s,t
=[0? + B*\1(Z0) Zzl{& = s} Z 02 B2X\ (%)

t>1 s=1

.
<2[0” + B*X\1 (o)) ZZ 1S = s} Z log (1 + %>

t>1 s=1 a€As ¢
m i% o (I)Ti%
<2[6? + B2\ (T 1{S, = log det(] + 2t a7t
= [0 + 1( 0)];; {St S}ae; 0og e( +0'2+BZ)\1( ))
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- P Pl -
_ -1 a*aq —1
>E GEA 1{St = S} [log det(XS’t + m) - IOgdet(Xs’t )]
= s,t

=2[0? + B2\ (%0)]

Ms

1

V)
Il

:2[02 + Bz)\l(zo)]

NE

[logdet (X}, 11) — logdet(X, )]

Il
—

S

NE

1 A L ~ L
_ 2 2 . T
=2[0% + B>\ (%0)] Y logdet (I + ST BN (5 Y USi=s} Y EZ0,0,%2,)

t<mn a€As ¢

Tr (I + 0'2-‘1-B+A1(20) Ztgmn l{St = S} ZaeAs,t izt@a@;i;t>

s=1

:2[02 + Bz)\l(zo)] ilog

s=1 !
s D icmn St =5} aca g 5s1Pa
=2[0? + B>\ (¥ log (1 = ORI
[0° 4+ B\ ( 0)]2 og (1 + d(o? + B2A1(X0)) )

s=1

nL L
<2[0? + B*\(X0)mlog (1 + 7) = 2cymlog (14 %)

(2) Bounding >, > s, Y aca., DI i 305 SR ST I
Vt> 1,5 €8, Va € Ay, wehave @)%, Ng 1&2 13 1®4 < B M (2g)R(Z0) + LB2A (X0) +
o2. Meanwhile, define the matrix M £ (E;tq)al , ES Doy 25 Qa4 ”> € R¥I4s.tl we have

> aea., ifytcbaqﬂif = MM ". Using the Wely’s inequality, we further have

MI+02M ™M) <MD+ (e ?2MMT) <1407 Y A $2,0,0]5%,) =1+02 K IR OAT
a€A, ¢ a€As ¢

Then we can estimate the gap between matrix 3, +11 and ©; " as follow:

—(So+ Gy 02 Y 8,00 = (So+ 60

=St =S (S G o D 2,0 ) IS — [50 — 50N (S0 + Gan) TS
a€A; ¢

I—(I+02MMT)"1]S2 55"
o 2M(I + 0 2M T M) M), 55

|
M ™
Sl <
M
& vl

Do @ e
- o~
S S S =

Q

oM (T + 0 2M T M)~ MT]52 55!
1
M+ o 2MTM)

v
1

|
Yl

-
|
N

~ 1
MMT)82, 550

|
™
|
—
M
@
s

~ 1
MMT)8z 55t

_EElis,t(ZaeAs,t ,0) )%, Tyt
o? + ZaGAS . q);—i&tq)a
S0 et (Taca,, Pa®d) S5
70'2 + BQLAl(Zo) + BQ)\l (ZQ)K(E()) ’

(6)
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where the second and the sixth equality hold due to the Woodbury matrix identity. The proof for Eq.
is similar to the proof for Eq. (), but requ1res more refined analy51s (i.e. the first inequality in Eq. (6))

to estimate the lower bound of ¥}, — &;!. Then recall ¢; = 02 + BQLAl(EO) + B2\ (24)k(30)
for brevity, we can bound Y-~ Y cs, Yoaea., Pa Y10 188 1, 1D, as follow:

DD DD DR IR i 3 e S

t>1 s€S; a€As ¢

DI S 39 Spt) ST
<2 log (1 + a Z5,t0 0 2st%a
425625, a;, s UQJFBQL)‘l(EO)+32/\1(Eq)ﬂ(20))

SINCIS, 3,078, NN
=2 log det(I e
2 2 2 losdetll )+ B (3, ()

=2¢c Z Z Z [10 det(f}‘l + Ealis,t@aq);ris,tzal )7 lo det(i_l)]
4 SN T BN (S0) + BIA (B)R(De)) oo

t>1 s€S; a€A, ¢

§204LZ Z [log det(i;rll) — log det(i}t_l)}

t>1 s€S;
=2c4L[log det(S mn+1) logdet(__l)]
=2c4L[logdet(I + Z 22 (Yo + Gy mn—i—l)_lzq%)]
s€[m]
1 1
Tr('[ + Zse[m} E‘ZQ (EO + Gs mn+1) 12‘12)

§264Ld[ log ] ]

mTr(25'%,) )
d )
where the second inequality holds due to Eq. (6). g

<2c4Ldlog(1 +

Lemma D.1 If a Gaussian random variable X ~ N(u,0?), then E[X1{X > 0}] = p[l —
B (—)] + &= exp{— L} If further j < 0, then B[X1{X > 0}] = 2 exp{— £ }.

Theorem D.1 (Theorem[5.4]in the main text, Regret Bound of HierTS in the Semi-Bandit Setting).
Let |Si| = 1foranyt > 1. Let ¢ > 4/2In (%2;(2”)), 1 = 024+ BX\ (%), ¢4 = 0% +

B2L)\1 (o) + B*\1(24)k(X0), then in the multi-task Gaussian semi-bandit setting, the Bayes regret
bound of combinatorial HierTS is:

mTr(X5'%,)

+ @) + 2¢4Ldlog(1 + 7 ).

BR(m,n) < m+chnL\/2clmlog(1 g

Proof. Note that w, = @0 ., then define g(A,0) = > . 4 (P4, 0) for brevity, we have the following

result:
n)=E> > [ > wia)— Y wila)]

t>1s€S; a€A; . a€A, ¢

:EZ Z [ Z <@a,957*> — Z <(I)a703,*>]
t>1 s€S; a€As . a€A; ¢

_EZ Z A, *, *g(As,hos,*)]'
t>1 seSy

Define upper confidence bound U; (A) = > . 4 [<(I>a, fst)+ey/ @ ﬁ]s,t@a] , where c is a constant
iid.

to be specified. Notice that A, .|H; ~ A, H; and U, 4(-) is a deterministic function, thus
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E[Uy s(As «)|Hi]) = E[Us,s(As )| Hy]. Then we can decompose Bayes regret BR(m, n) as follow:

]EZ Z 9 w0 ) - Ut,s(As,*) + Ut,s(As,t) - g(As,ta 99,*)|Ht]
t>1 seS,
—]EZZ s*; Uts s* +EZZ Uts st (Ashe )]
t>1 seS, t>1 seSe

(1) Bounding E}", -, > s, [9(Asx,05) — Uy s(As 1))
Foranyt > 1,s € S;, a € A, define random variable X, ; o = (Pg, 05 4 — fis¢) — c\/éjis,t@a,
then we have X, s ,|Hy ~ N (—cy/ <I>1237t<1>a, @If]s,tfba) since E[0, , — fis¢|H;] = 0. Then

EZ Z 5*7 _Us,t(As,*)]

t>1 se€Se

=E> D D Xia

t>1 sES; a€A, .

SEZ Z Z Xt,s,a]-{Xt,s,a Z O}

t>1 s€ES; a€ A, .

SEZ Z Z Xt7s7a1{Xt,s,a Z O}

t>1 €S ac[K)

=E> Y ) E[Xi.al{Xica > 0}H]

t>1 €S a€[K)

sy ys 3o VR

t>1 s€S; a€[K]

wy Yy Pt p{—%

t>1 s€S; a€[K]

2
SanL(EO) exp{,i}.
V2 2

If let anB)‘l?éf“) exp{fg} <m,thenc > ,/2In (%\/2%(20))

(2)Bounding B>, 3" s [Urs(Asi) — g(Ast, 0s4)].

EZZ Uts st (Astae )]

t>1 seS,

—EZ Z Z av//ést > + C\/ q);ris,tq)a

t>1 s€S; a€As
_EZ Z Z E a€As ¢ Ht]EK a>ﬂs,t_93,*>‘Ht]+CEZZ Z \/(I)ITSJ(I)G

t>1 s€St a€[K] t>1 s€S; a€A, ¢

=cEY > > eI,

t>1 s€S a€A ¢

<omil B S S a78, 8,

t>1 s€S  a€A, ¢

where the second equality holds because of the mutual independence between A ;| H; and 0, .| H,
and E[is ; — 05 .|H;] = 0; the last inequality holds due to the Jensen inequality. Then applying
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Propositionto bound E3 -,y D cs, Duela, ®]3, ,®,, we can obtain

L Tr(, 'S
EZ Z [Ut,s(Asyt) — g(Asy,05.)] < C\/an\/2clmlog (1+ %) + 2¢4Ldlog(1 4+ W).
t>1 seS,
Combining the above results finishes the whole proof. ]

Theorem D.2 (Theorem[5.3]in the main text, Regret Bound of HierBayesUCB in the Semi-Bandit

Setting). Let |S;| = 1 for all rounds t > 1. Let ¢ = 02 + B?\1(30), ¢4 = 0% + B2L)\(X0) +

B2\ (24)k(20), Then for any e > 0,4 € (0,1), ¢ € (0,1), in the multi-task Gaussian semi-bandit

setting, the Bayes regret upper bound of combinatorial HierBayesUCB is as follow:

8L log %
AE

min

1
+4LBy/ A1 (S0 + Z¢) (1/d + /8dlnE + ||,uq||271)mnK§.
In Theorem in the main text, we replace \/d + ,/8d ln% in the right hand side of the above

inequality with \/d for ease of exposition.

mTr(Eglzq)

BR(m,n) <E[ 7

)] + mne

L
| [2ermlog (1 + %) + 2¢4Ldlog(1 +

Proof. Define the event E, ; = {Va € A: |®] (0. — fis)| < (/210g §[®alls_,}, and the upper

confidence bound Uy s(A) = >, c 4(Pa, fls,t) + 1/210g %H(I)LLHZ - Let Ay = g(Ag i, 0s,4) —
g(As 1, 05.+), then we decompose the Bayes regret into three parts as follow:

EY D A

t>1 seS;
:Z Z E[As,tl{As,t 2 €, Es,t}} + Z Z E[As,tl{As,t <e¢, Es,t}] + Z Z ]E[As,t]-{Es,t}] .
t>1 seS; t>1 seS, t>1 seSy

(1) Bounding ", 3", 5, E[A1{A, > €, E. 1}

N ST E[AL{AL > 6 Byl

t>1 seSy
As*vGS* - AS 705* ’
=y ZE[(Q( — )A W) WA 2 € By}l
t>1 s€S, -
2
<30 3 ol ) 2 Ualihoe) £ Uso) Z0anslod)) 5o s, )
t>1 seS; o
U S AS - AS ’95 * ’
. E[( t,s(As,t) Ag( 1:0s.)) 1{A,; > €, E,}]
t>1 seSt o
S, (Parfiss = 0c) +/2l0g §[19alls )*
_ E[( €A, ¢ . 0 Eé’t) 1{A;; > € B}
t>1 seS, -
S 24/2log L@l )’
< E[( A5 x 0 Esyt) I{As,t > €7Es,t}]
t>1 seS -
Yaea., 8108 3) (Taca, , [%al?
g E[( €A;, 6)A( €4, ¢ Es’t) 1{As,t Z 6,E5$t}:|
t>1 seS, !
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8L log %

A 22 2 el T,

min. 4>1 58, a€Aq

<E[

where the first and the second inequality hold due to the definition of the upper confidence bound
Ut,s(As,t), the fourth inequality holds due to the Cauchy-Schwartz inequality. Utilizing the upper

boundon ) o1 > cs Doaca. l®a H; in Propositioncompletes the proof for the first part.
= S s,t

(2) Bounding 3°,-; Y5, E[Ac1{A,; < ¢, B 4}
We trivially have Y7, > 5, E (A 1{As ¢ <€, Egi}] < mne.

(3) Bounding Y, -, >" s, E[A 1 1{E i }].

. 1
Note that 0, . — 11g ~ N'(0,%51), and E[[|0,,. — ,uqufﬂ < \/EHZ“Z (5.« — p1q) |13 = V/d. Then

according to 35 Exp 2.11], we have with probability 1 — ¢, ||6s. — uq||§1 <y /d A+ /8dln%

Therefore, with probability 1 — ¢ over the draw of {6 .} se[n, We have
As,t :g(As,*7 08,*) - g(As,t7 08,*)

= > (®aba0) = > (Pa,ben)

a€A; « a€As ¢
< D0 1%l 185l > 1Rall - (165
a€A; « a€As ¢
<2LB|0; .|

1-¢ 1
<"2LB /A1 (3o + 3g) (1] d + 8dln 7 + lluglls;1)

where the first inequality holds due to the Schwartz inequality. Then we have with probability 1 — (:

> Y E[AA{E. )]

t>1 s€S;
= Z Z E[]E[As’tl{Es_’t}’Ht]]
t>1 seSy

1 _

< 2LB\/ M (S0 + Bq) ([ d + /8dIn = + lugll5-1) Y D E[1{E,}|Hi
¢ T >1 58S,
1 _

= 2LB\/ M (0 + ) (] d + /81 = + [luglls 1) D D P(Es| He)
¢ " i>1 seS,

< ALB\N (S0 + Sg)(1/d + + /Sdln% T ltgllg s ymn Ko,

Combining the results in (1) (2) and (3) finishes the whole proof. O

E Technical Overview and Limitations of this Work

In this section, we explain our technical novelties for deriving near-optimal sequential regret bound
for HierTS and logarithmic sequential regret bound for HierBayesUCB as follow, when compared
with the latest bound in [17] (More detailed explanations can be found in Table E]):

(1) The Technical Overview for Deriving Near-Optimal Regret Bound in Theorem [5.1] The
biggest novelty lies in bounding each term E[(6, . — fis,¢) " As . |H;| in Bayes regret BR(m, n).
Existing work [[17] chose Cauchy-Schwartz inequality to directly bound (0s . — fis¢) " As . <

05, — fis,tlls-11|As«|lg > used UCB technique to bound || . — ﬂs,tHg—} (which caused an
’ s,t s,t s,t

iid.

additional multiplicative factor log %), leveraged the fact that A, ,|H, ~ A, |H, to transform
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Yol Al , into Vi, , and obtained an intermediate regret upper bound \/mnVp, » log (1/9).
Instead of usini UCB technique, our Theorem [5.T]applies a novel Cauchy-Schwartz type inequality

(i.e. LemmalA.2) to bound E(f . — fis¢) " As s < \/dIE((GS,* — ﬂsyt)TAsyt)z ~ V|| As 4| £,

and finally achieves the regret bound /mnV,, ,, removing the /log (1/6) factor. Besides, when
bounding the posterior variance V,, ,, we use a different matrix analysis to prevent variance terms
(e.g. 02, \1(20)) solely appearing in the denominator of regret bound. Moreover, we employ a
matrix decomposition technique (in our Lemma to reduce the multiplicative factor £?(3) in
[17, Theorems 3-4] to (%) in our bounds (see more details in Table .

(2) The Technical Overview for Deriving Logarithmic Regret Bound in Theorem5.2] To obtain
sharper sequential regret bound than the near-optimal regret bound in Theorem[5.1} our Theorem[5.7]
chooses the Bayes regret decomposition strategy shown above Theorem [5.2] uses UCB technique
to bound the first term in the regret decomposition as Zt’s EA 1{A 1 >¢,Es 1} < V0 log %,
and finally combines the upper bound on posterior variance V,, , in Eq. (4) to achieve a logarithmic
Bayes regret upper bound of (log %)md log %.

Nevertheless, we also need to point out the limitations of our Bayes regret bounds:

The Limitations of the Multi-Task Bayes Regret Bounds. Honestly speaking, our regret bounds
have two main limitations, because they are: (i) Not advantageous when compared with single-task
regret bound. This is because our Bayes regret bounds (e.g. O(m+/nlogn) in Theorem for
hierarchical Bayesian bandit problem are almost the same as the summation of regret bounds of
learning m Bayesian bandit task independently. This is also the limitation of existing bounds in
this field (see [25, [7, [17]). (ii) Unable to shed more light on the advantages of multi-task bandit
optimization. The existing regret bound O(1m+/nk) for multi-task representation which demonstrated
that multi-task regret bound can be smaller for learning a low-dimensional representation (i.e.
k << d) than the regret bound of O(m+/nd) for learning each task independently, and the existing
regret bound O(m+/nlog (1 + nV')) for multi-task adversarial linear bandit which proved that the
regret bound decreases with more similarity (i.e. smaller V') among bandit tasks. Our hierarchical
Bayesian bandit model has assumed that different bandit instances are sampled the same meta-
distribution, and hence fails to reveal the influence of task similarity to the multi-task Bayes regret.

Remark E.1 (The Underlying Causes for the Limitation of Multi-Task Bayes Regret Bound.)
The underlying causes for the shortcoming of the multi-task Bayes regret bound is that the upper bound

on the posterior variance Vi n = E) o1 > cs, ||As,t||22 may be not tight enough. Detailed
= 2 st

explanations lie in the following three aspects:

(1) Recall that in the proof for our Theorem[5.1] we can upper bound the multi-task Bayes regret as
BR(m,n) < vmnd\/Vp n. Then in Propositionwe use a purely algebraic technique to bound
the posterior-variance Vp, , < O(mlogn), resulting in the final Bayes regret bound of

vmndy/Vi,.n = O(Vmndy/mlogn) = O(my/nlogn),

which is almost the same as the summation of the regret bounds for learning m bandit tasks indepen-
dently. Therefore, if we can upper bound the posterior-variance V., , with a bound that is sublinear
with respect to m and logarithmic w.r.t. n (e.g. a bound of O(\/mlogn)), then the final Bayes regret
bound will be much sharper. The upper bounds on the posterior-variance V,, ,, in existing works (e.g.
see [251[7\ [I7] in our Table[l|in the main text) are also obtained via purely algebraic techniques and
are not sharp either (or even worse).

(2) In the proof for Proposition [AI} we only give the worst-case upper bound on
D ois1 2oses, 1 Asitl 22 via purely algebraic technique (thus leading to a worst-case upper bound
- s,t

on the posterior variance EY ;>

ses, ”As’t”%s.t)' Such worst-case upper bound is obtained

via purely algebraic techniques, ignoring the expectation over the randomness of As; and X ;.
Therefore, we may achieve sharper regret bound by considering the expectation over the randomness
in the posterior variance.

(3) To derive a sharper and meaningful upper bound on the posterior-variance Vp,
E> 512 ces, HAS’t”%s » we need to consider other bounding technique like concentration in-

equality, or more technical matrix analysis, to achieve an upper bound that is sublinear w.r.t. the
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number m of tasks and sublinear w.r.t. the number n of iterations per task. Only in this way can we
obtain a multi-task regret bound o(mn) that is sublinear w.r.t. m and sublinear w.r.t. n.

(4) On the other hand, we also consider finding the lower bound of posterior-variance Vy, ,, to
show that our upper bound on V., ,, is tight, or finding the lower bound of multi-task Bayes regret
BR(m,n) to show that our multi-task Bayes regret upper bound could not be improved. This serves
as one of our ongoing research directions.

F Additional Experiments and Computer Resources

Linear Bandit (d = 4, 0, = 1.0, L=1) Linear Bandit (m = 10, o, = 1.0) Linear Bandit (d = 4, m = 10, L=5)

- n=100
150 — =200
n=300

150 d=8
—Fd=4
d=2

— g,=2

— o1

0 2 4 6 8 10 2 4 6 8 10 0 100 200 300 400
Number of Tasks m Number of Concurrent Tasks L Round ¢
(a) Regrets w.r.t. different m (b) Regrets w.r.t. different L (c) Regrets w.r.t. different o
Linear Bandit (d = 4, m = 10, L=5) Linear Bandit (d = 4, m = 10, L=5) Linear Bandit (d = 4, 0, = 0.5)
300 B 400
< 09=0.5 1000 o0=10 OracleTS
— 50=04
00 _ 2o 750

70=0.1

0 100 200 300 400 0 100 200 300 400 ) 0 100 200 300 400
Round ¢ Round ¢ Round ¢
(d) Regrets w.r.t. different o (e) Regrets w.r.t. different o (f) Regrets of different algorithms

Figure 2: Regrets of HierBayesUCB algorithm with respect to (w.r.t.) different hyper-parameters.

Experimental Results. From Figure 2] we have the similar observations as that in Figure[T} (1) In
plot (a), the multi-task regret of HierBayesUCB becomes larger with the increase of m and n, which
is consistent with our regret upper bound in Theorems @ (2) In plot (b), the regret increases with
a higher dimension d, and increases with a larger number L of the concurrent tasks. (3) In plots
(c)-(e), the regret decreases with a smaller variance (e.g. o4, 0o and o) in hierarchical Bayesian
model, validating the provable benefits of variance-reduction in Bayes regret minimization. (4)
The task-averaged regret of our proposed HierBayesUCB is smaller than that of HierTS, and such
improvement becomes larger with the increase of o, (when compared with o, = 1.0 in Figure |I| ®).

Computer Resources. Our implementations are based on Python. We run all bandit algorithms on
a platform with 8§ NVIDIA RTX 6000 GPUs and 2 AMD EPYC 7543 Processors. Each GPU has
48G memory, and each CPU has 64 cores. The CUDA version is 12.1, the Python version 3.7.16,
the matplotlib version 3.5.3, and the tensorflow version 1.15. The source code for reproducing all
experimental results of HierTS and HierBayesUCB is provided in the supplementary material.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: see Section[3]
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: see Section[El
Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

o The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: see assumptions in Section[5] and see proof sketch in Section[E]

Guidelines:

e The answer NA means that the paper does not include theoretical results.
o All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

o All assumptions should be clearly stated or referenced in the statement of any theorems.
e The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: see implementation details in Section [6]and Section[F] and see the source code
in the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: see the source code in our supplementary material.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.
e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

o The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: see the implementation details in Section [6]
Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

o The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: see our Figures|[T}2]
Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

o It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

72996 https://doi.org/10.52202/079017-2323


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

e [t is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: see details in Section [l
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

o The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

o The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: this paper is a purely theoretical paper and has no negative social impact. Be-
sides, we release the source code to implement our proposed algorithms in the supplementary
material.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

https://doi.org/10.52202/079017-2323 72997


https://neurips.cc/public/EthicsGuidelines

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: the paper poses no such risks.
Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: the paper does not use existing assets.
Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or dataset.

o The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

o The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

o Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

e For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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