
Pure Message Passing Can Estimate
Common Neighbor for Link Prediction

Kaiwen Dong1,2 Zhichun Guo1,2 Nitesh V. Chawla1,2

1Computer Science and Engineering, University of Notre Dame
2Lucy Family Institute for Data and Society, University of Notre Dame

{kdong2, zguo5, nchawla}@nd.edu

Abstract

Message Passing Neural Networks (MPNNs) have emerged as the de facto standard
in graph representation learning. However, when it comes to link prediction, they
are not always superior to simple heuristics such as Common Neighbor (CN).
This discrepancy stems from a fundamental limitation: while MPNNs excel in
node-level representation, they stumble with encoding the joint structural features
essential to link prediction, like CN. To bridge this gap, we posit that, by harnessing
the orthogonality of input vectors, pure message-passing can indeed capture joint
structural features. Specifically, we study the proficiency of MPNNs in approxi-
mating CN heuristics. Based on our findings, we introduce the Message Passing
Link Predictor (MPLP), a novel link prediction model. MPLP taps into quasi-
orthogonal vectors to estimate link-level structural features, all while preserving
the node-level complexities. We conduct experiments on benchmark datasets from
various domains, where our method consistently outperforms the baseline methods,
establishing new state-of-the-arts.

1 Introduction

Link prediction is a cornerstone task in the field of graph machine learning, with broad-ranging
implications across numerous industrial applications. From identifying potential new acquaintances
on social networks [1] to predicting protein interactions [2], from enhancing recommendation
systems [3] to completing knowledge graphs [4], the impact of link prediction is felt across diverse
domains. Recently, with the advent of Graph Neural Networks (GNNs) [5] and more specifically,
Message-Passing Neural Networks (MPNNs) [6], these models have become the primary tools for
tackling link prediction tasks. Despite the resounding success of MPNNs in the realm of node and
graph classification tasks [5, 7–9], it is intriguing to note that their performance in link prediction
does not always surpass that of simpler heuristic methods [10].

Zhang et al. [11] highlights the limitations of GNNs/MPNNs for link prediction tasks arising from its
intrinsic property of permutation invariance. Owing to this property, isomorphic nodes invariably
receive identical representations. This poses a challenge when attempting to distinguish links whose
endpoints are isomorphic nodes. As illustrated in Figure 1a, nodes v1 and v3 share a Common
Neighbor v2, while nodes v1 and v5 do not. Ideally, due to their disparate local structures, these two
links (v1, v3) and (v1, v5) should receive distinct predictions. However, the permutation invariance
of MPNNs results in identical representations for nodes v3 and v5, leading to identical predictions
for the two links. As Zhang et al. [11] asserts, such node-level representation, even with the most
expressive MPNNs, cannot capture structural link representation such as Common Neighbors (CN),
a critical aspect of link prediction.

In this work, we posit that the pure Message Passing paradigm [6] can indeed capture structural
link representation by exploiting orthogonality within the vector space. We begin by presenting a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

73000 https://doi.org/10.52202/079017-2324

(a) (b)

Figure 1: (a) Isomorphic nodes result in identical MPNN node representation, making it impossible
to distinguish links such as (v1, v3) and (v1, v5) based on these representations. (b) MPNN counts
Common Neighbor through the inner product of neighboring nodes’ one-hot representation.

motivating example, considering a non-attributed graph as depicted in Figure 1a. In order to fulfill
the Message Passing’s requirement for node vectors as input, we assign a one-hot vector to each node
vi, such that the i-th dimension has a value of one, with the rest set to zero. These vectors, viewed
as signatures rather than mere permutation-invariant node representations, can illuminate pairwise
relationships. Subsequently, we execute a single iteration of message passing as shown in Figure 1b,
updating each node’s vector by summing the vector of its neighbors. This process enables us to
compute CN for any node pair by taking the inner product of the vectors of the two target nodes.

At its core, this naive method employs an orthonormal basis as the node signatures, thereby ensur-
ing that the inner product of distinct nodes’ signatures is consistently zero. While this approach
effectively computes CN, its scalability poses a significant challenge, given that its space complexity
is quadratically proportional to the size of the graph. To overcome this, we draw inspiration from
DotHash [12] and capitalize on the premise that the family of vectors almost orthogonal to each
other swells exponentially, even with just linearly scaled dimensions [13]. Instead of relying on the
orthogonal basis, we can propagate these quasi-orthogonal (QO) vectors and utilize the inner product
to estimate the joint structural information of any node pair.

In sum, our paper presents several pioneering advances in the realm of GNNs for link prediction:

• We are the first, both empirically and theoretically, to delve into the proficiency of GNNs in
approximating heuristic predictors like CN for link prediction. This uncovers a previously
uncharted territory in GNN research.

• Drawing upon the insights gleaned from GNNs’ capabilities in counting CN, we introduce
MPLP, a novel link prediction model. Uniquely, MPLP discerns joint structures of links
and their associated substructures within a graph, setting a new paradigm in the field.

• Our empirical investigations provide compelling evidence of MPLP’s dominance. Bench-
mark tests reveal that MPLP not only holds its own but outstrips state-of-the-art models in
link prediction performance.

2 Preliminaries and Related Work

Notations. Consider an undirected graph G = (V,E,X), where V represents the set of nodes with
cardinality n, indexed as {1, . . . , n}, E ⊆ V × V denotes the observed set of edges, and Xi,: ∈ RFx

encapsulates the attributes associated with node i. Additionally, let Nv signify the neighborhood of
a node v, that is Nv = {u|SPD(u, v) = 1} where the function SPD(·, ·) measures the shortest path
distance between two nodes. Furthermore, the node degree of v is given by dv = |Nv|. To generalize,
we introduce the shortest path neighborhood N s

v , representing the set of nodes that are s hops away
from node v, defined as N s

v = {u|SPD(u, v) = s}.

Link predictions. Alongside the observed set of edges E, there exists an unobserved set of edges,
which we denote as Ec ⊆ V × V \ E. This unobserved set encompasses edges that are either
absent from the original observation or are anticipated to materialize in the future within the graph G.

2

73001https://doi.org/10.52202/079017-2324

Figure 2: GNNs estimate CN, AA and RA via MSE regression, using the mean value as a Baseline.
Lower values are better.
Consequently, we can formulate the link prediction task as discerning the unobserved set of edges
Ec. Heuristics link predictors include Common Neighbor (CN) [1], Adamic-Adar index (AA) [14],
and Resource Allocation (RA) [15]. CN is simply counting the cardinality of the common neighbors,
while AA and RA count them weighted to reflect their relative importance as a common neighbor.

CN(u, v) =
∑

k∈Nu
⋂

Nv

1; AA(u, v) =
∑

k∈Nu
⋂

Nv

1

log dk
; RA(u, v) =

∑
k∈Nu

⋂
Nv

1

dk
. (1)

Though heuristic link predictors are effective across various graph domains, their growing computa-
tional demands clash with the need for low latency. To mitigate this, approaches like ELPH [16] and
DotHash [12] propose using estimations rather than exact calculations for these predictors. Our study,
inspired by these works, seeks to further refine techniques for efficient link predictions. A detailed
comparison with related works and our method is in Appendix A.

GNNs for link prediction. The advent of graphs incorporating node attributes has caused a
significant shift in research focus toward methods grounded in GNNs. Most practical GNNs follow
the paradigm of the Message Passing [6]. It can be formulated as:

m(l)
v = AGGREGATE

(
{h(l)

v ,h(l)
u ,∀u ∈ Nv}

)
, h(l+1)

v = UPDATE
(
{h(l)

v ,m(l)
v }
)
, (2)

where h
(l)
v represents the vector of node v at layer l and h

(0)
v = Xv,:. For simplicity, we use hv

to represent the node vector at the last layer. The specific choice of the neighborhood aggregation
function, AGGREGATE(·), and the updating function, UPDATE(·), dictates the instantiation of the
GNN model, with different choices leading to variations of model architectures. In the context
of link prediction tasks, the GAE model [17] derives link representation, h(i, j), as a Hadamard
product of the target node pair representations, h(i,j) = hi ⊙ hj . Despite its seminal approach,
the SEAL model [18], which labels nodes based on proximity to target links and then performs
message-passing for each target link, is hindered by computational expense, limiting its scalability.
Efficient alternatives like ELPH [16] estimate node labels, while NCNC [19] directly learns edgewise
features by aggregating node representations of common neighbors.

3 Can Message Passing count Common Neighbor?

In this section, we delve deep into the potential of MPNNs for heuristic link predictor estimation. We
commence with an empirical evaluation to recognize the proficiency of MPNNs in approximating
link predictors. Following this, we unravel the intrinsic characteristics of 1-layer MPNNs, shedding
light on their propensity to act as biased estimators for heuristic link predictors and proposing an
unbiased alternative. Ultimately, we cast light on how successive rounds of message passing can
estimate the number of walks connecting a target node pair with other nodes in the graph. All proofs
are provided in Appendix G.

3.1 Estimation via Mean Squared Error Regression

To explore the capacity of MPNNs in capturing the overlap information inherent in heuristic link
predictors, such as CN, AA and RA, we conduct an empirical investigation, adopting the GAE

3

73002 https://doi.org/10.52202/079017-2324

framework [17] with GCN [5] and SAGE [7] as representative encoders. SEAL [18], known for its
proven proficiency in capturing heuristic link predictors, serves as a benchmark in our comparison.
Additionally, we select a non-informative baseline estimation, simply using the mean of the heuristic
link predictors on the training sets. The datasets comprise eight non-attributed graphs (more details
in Section 5). Given that GNN encoders require node features for initial representation, we have
to generate such features for our non-attributed graphs. We achieved this by sampling from a high-
dimensional Gaussian distribution with a mean of 0 and standard deviation of 1. Although one-hot
encoding is frequently employed for feature initialization on non-attributed graphs, we choose to
forgo this approach due to the associated time and space complexity.

To evaluate the ability of GNNs to estimate CN information, we adopt a training procedure analogous
to a conventional link prediction task. However, we reframe the task as a regression problem aimed
at predicting heuristic link predictors, rather than a binary classification problem predicting link
existence. This shift requires changing the objective function from cross-entropy to Mean Squared
Error (MSE). Such an approach allows us to directly observe GNNs’ capacity to approximate heuristic
link predictors.

Our experimental findings, depicted in Figure 2, reveal that GCN and SAGE both display an ability
to estimate heuristic link predictors, albeit to varying degrees, in contrast to the non-informative
baseline estimation. More specifically, GCN demonstrates a pronounced aptitude for estimating RA
and nearly matches the performance of SEAL on datasets such as C.ele, Yeast, and PB. Nonetheless,
both GCN and SAGE substantially lag behind SEAL in approximating CN and AA. In the subsequent
section, we delve deeper into the elements within the GNN models that facilitate this approximation
of link predictors while also identifying factors that impede their accuracy.

3.2 Estimation capabilities of GNNs for link predictors

GNNs exhibit the capability of estimating link predictors. In this section, we aim to uncover the
mechanisms behind these estimations, hoping to offer insights that could guide the development of
more precise and efficient methods for link prediction. We commence with the following theorem:
Theorem 3.1. Let G = (V,E) be a non-attributed graph and consider a 1-layer GCN/SAGE. Define
the input vectors X ∈ RN×F initialized randomly from a zero-mean distribution with standard
deviation σnode. Additionally, let the weight matrix W ∈ RF ′×F be initialized from a zero-mean
distribution with standard deviation σweight. After performing message passing, for any pair of
nodes {(u, v)|(u, v) ∈ V × V \ E}, the expected value of their inner product is given by:

GCN: E(hu · hv) =
C√
d̂ud̂v

∑
k∈Nu

⋂
Nv

1

d̂k
; SAGE: E(hu · hv) =

C√
dudv

∑
k∈Nu

⋂
Nv

1,

where d̂v = dv + 1 and C = σ2
nodeσ

2
weightFF ′.

The theorem suggests that given proper initialization of input vectors and weight matrices, MPNN-
based models, such as GCN and SAGE, can adeptly approximate heuristic link predictors. This
makes them apt for encapsulating joint structural features of any node pair. Interestingly, SAGE
predominantly functions as a CN estimator, whereas the aggregation function in GCN grants it the
ability to weigh the count of common neighbors in a way similar to RA. This particular trait of GCN
is evidenced by its enhanced approximation of RA, as depicted in Figure 2.

Quasi-orthogonal vectors. The GNN’s capability to approximate heuristic link predictors is
primarily grounded in the properties of their input vectors in a linear space. When vectors are sampled
from a high-dimensional linear space, they tend to be quasi-orthogonal, implying that their inner
product is nearly 0 w.h.p. With message-passing, these QO vectors propagate through the graph,
yielding in a linear combination of QO vectors at each node. The inner product between pairs of QO
vector sets essentially echoes the norms of shared vectors while nullifying the rest. Such a trait enables
GNNs to estimate CN through message-passing. A key advantage of QO vectors, especially when
compared with orthonormal basis, is their computational efficiency. For a modest linear increment in
space dimensions, the number of QO vectors can grow exponentially, given an acceptable margin of
error [13]. An intriguing observation is that the orthogonality of QO vectors remains intact even after
GNNs undergo linear transformations post message-passing, attributed to the randomized weight
matrix initialization. This mirrors the dimension reduction observed in random projection [20].

Limitations. While GNNs manifest a marked ability in estimating heuristic link predictors, they
are not unbiased estimators and can be influenced by factors such as node pair degrees, thereby

4

73003https://doi.org/10.52202/079017-2324

compromising their accuracy. Another challenge when employing such MPNNs is their limited
generalization to unseen nodes. The neural networks, exposed to randomly generated vectors, may
struggle to transform newly added nodes in the graph with novel random vectors. This practice
also violates the permutation-invariance principle of GNNs when utilizing random vectors as node
representation. It could strengthen generalizability if we regard these randomly generated vectors as
signatures of the nodes, instead of their node features, and circumvent the use of MLPs for them.

Unbiased estimator. Addressing the biased element in Theorem 3.1, we propose the subsequent
instantiation for the message-passing functions:

h(l+1)
v =

∑
u∈Nv

h(l)
u . (3)

Such an implementation aligns with the SAGE model that employs sum aggregation devoid of self-
node propagation. This methodology also finds mention in DotHash [12], serving as a cornerstone for
our research. With this kind of message-passing design, the inner product of any node pair signatures
can estimate CN impartially:
Theorem 3.2. Let G = (V,E) be a graph, and let the vector dimension be given by F ∈ N+. Define
the input vectors X = (Xi,j), which are initialized from a random variable x having a mean of 0
and a standard deviation of 1√

F
. Using the 1-layer message-passing in Equation 3, for any pair of

nodes {(u, v)|(u, v) ∈ V × V }, the expected value and variance of their inner product are:

E(hu · hv) = CN(u, v);

Var(hu · hv) =
1

F

(
dudv + CN(u, v)2 − 2CN(u, v)

)
+ FVar

(
x2
)
CN(u, v).

Though this estimator provides an unbiased estimate for CN, its accuracy can be affected by its
variance. Specifically, DotHash recommends selecting a distribution for input vector sampling from
vertices of a hypercube with unit length, which curtails variance given that Var

(
x2
)
= 0. However,

the variance influenced by the graph structure isn’t adequately addressed, and this issue will be delved
into in Section 4.

Orthogonal node attributes. Both Theorem 3.1 and Theorem 3.2 underscore the significance of
quasi orthogonality in input vectors, enabling message-passing to efficiently count CN. Intriguingly,
in most attributed graphs, node attributes, often represented as bag-of-words [21], exhibit inherent
orthogonality. This brings forth a critical question: In the context of link prediction, do GNNs
primarily approximate neighborhood overlap, sidelining the intrinsic value of node attributes? We
earmark this pivotal question for in-depth empirical exploration in Appendix E, where we find that
random vectors as input to GNNs can catch up with or even outperform node attributes.

3.3 Multi-layer message passing

Theorem 3.2 elucidates the estimation of CN based on a single iteration of message passing. This
section explores the implications of multiple message-passing iterations and the properties inherent
to the iteratively updated node signatures. We begin with a theorem delineating the expected value of
the inner product for two nodes’ signatures derived from any iteration of message passing:

Theorem 3.3. Under the conditions defined in Theorem 3.2, let h(l)
u denote the vector for node u

after the l-th message-passing iteration. We have:

E
(
h(p)
u · h(q)

v

)
=
∑
k∈V

|walks(p)(k, u)||walks(q)(k, v)|,

where |walks(l)(u, v)| counts the number of length-l walks between nodes u and v.

This theorem posits that the message-passing procedure computes the number of walks between the
target node pair and all other nodes. In essence, each message-passing trajectory mirrors the path
of the corresponding walk. As such, h(l)

u aggregates the initial QO vectors originating from nodes
reachable by length-l walks from node u. In instances where multiple length-l walks connect node k

to u, the associated QO vector Xk,: is incorporated into the sum |walks(l)(k, u)| times.

5

73004 https://doi.org/10.52202/079017-2324

One might surmise a paradox, given that message-passing calculates the number of walks, not nodes.
However, in a simple graph devoid of self-loops, where at most one edge can connect any two
nodes, it is guaranteed that |walks(1)(u, v)| = 1 iff SPD(u, v) = 1. Consequently, the quantity of
length-1 walks to a target node pair equates to CN, a first-order heuristic. It’s essential to recognize,
however, that |walks(l)(u, v)| ≥ 1 only implies SPD(u, v) ≤ l. This understanding becomes vital
when employing message-passing for estimating the local structure of a target node pair in Section 4.

4 Method

In this section, we introduce our novel link prediction model, denoted as MPLP. Distinctively
designed, MPLP leverages the pure essence of the message-passing mechanism to adeptly learn joint
structural features of the target node pairs.

Figure 3: Representation of the target link
(u, v) within our model (MPLP), with nodes
color-coded based on their distance from the
target link.

Node representation. While MPLP is specifically
designed for its exceptional structural capture, it also
embraces the inherent attribute associations of graphs
that speak volumes about individual node characteris-
tics. To fuse the attributes (if they exist in the graph)
and structures, MPLP begins with a GNN, utilized
to encode node u’s representation: GNN(u) ∈ RFx .
This node representation will be integrated into the
structural features when constructing the QO vectors.
Importantly, this encoding remains flexible, permit-
ting the choice of any node-level GNN.

4.1 QO vectors construction

Probabilistic hypercube sampling. Though deter-
ministic avenues for QO vector construction are doc-
umented [22, 23], our preference leans toward prob-
abilistic techniques for their inherent simplicity. We
inherit the sampling paradigm from DotHash [12],
where each node k is assigned with a node signature h

(0)
k , acquired via random sampling from the

vertices of an F -dimensional hypercube with unit vector norms. Consequently, the sampling space
for h(0)

k becomes {−1/
√
F , 1/

√
F}F .

Harnessing One-hot hubs for variance reduction. The stochastic nature of our estimator brings
along an inevitable accompaniment: variance. Theorem 3.2 elucidates that a graph’s topology
can augment estimator variance, irrespective of the chosen QO vector distribution. At the heart
of this issue is the imperfectness of quasi-orthogonality. While a pair of vectors might approach
orthogonality, the same cannot be confidently said for the subspaces spanned by larger sets of QO
vectors.

Capitalizing on the empirical observation that real-world graphs predominantly obey the power-
law distribution [24], we propose a strategy to control variance. Leveraging the preva-
lence of high-degree nodes—or hubs—we designate unique one-hot vectors for the foremost
hubs. Consider the graph’s top-b hubs; while other nodes draw their QO vectors from a hy-
percube {−1/

√
F − b, 1/

√
F − b}F−b×{0}b, these hubs are assigned one-hot vectors from

{0}F−b×{0, 1}b, reserving a distinct subspace of the linear space to safeguard orthogonality. Note
that when new nodes are added, their QO vectors are sampled the same way as the non-hub nodes,
which can ensure a tractable computation complexity.

Norm rescaling to facilitate weighted counts. Theorem 3.1 alludes to an intriguing proposition:
the estimator’s potential to encapsulate not just CN, but also RA. Essentially, RA and AA are nuanced
heuristics translating to weighted enumerations of shared neighbors, based on their node degrees. In
Theorem 3.2, such counts are anchored by vector norms during dot products. MPLP enhances this
count methodology by rescaling node vector norms, drawing inspiration from previous works [12, 25].

6

73005https://doi.org/10.52202/079017-2324

This rescaling is determined by the node’s representation, GNN(u), and its degree du. The rescaled
vector is formally expressed as:

h̃
(0)
k = f(GNN(k)||[dk]) · h(0)

k , (4)

where f : RFx+1 → R is an MLP mapping the node representation and degree to a scalar, enabling
the flexible weighted count paradigm.

4.2 Structural feature estimations

Node label estimation. The estimator in Theorem 3.2 can effectively quantify CN. Nonetheless,
solely relying on CN fails to encompass diverse topological structures embedded within the local
neighborhood. To offer a richer representation, we turn to Distance Encoding (DE) [26]. DE acts as
an adept labeling tool [11], demarcating nodes based on their shortest-path distances relative to a
target node pair. For a given pair (u, v), a node k belongs to a node set DE(p, q) iff SPD(u, k) = p
and SPD(v, k) = q. Unlike its usage as node labels, we opt to enumerate these labels, producing
a link feature defined by #(p, q) = |DE(p, q)|. Our model adopts a philosophy akin to ELPH [16],
albeit with a distinct node-estimation mechanism.

Returning to Theorem 3.3, we recall that message-passing as in Equation 3 essentially corresponds
to walks. Our ambition to enumerate nodes necessitates a single-layer message-passing alteration,
reformulating Equation 3 to:

η(s)
v =

∑
k∈N s

v

h̃
(0)
k . (5)

Here, N s
v pinpoints v’s shortest-path neighborhoods distanced by the shortest-path s. This method

sidesteps the duplication dilemma highlighted in Theorem 3.3, ensuring that η(s)
v aggregates at most

one QO vector per node. Similar strategies are explored in [27, 28].

For a tractable computation, we limit the largest shortest-path distance as r ≥ max(p, q). Conse-
quently, to capture the varied proximities of nodes to the target pair (u, v), we can deduce:

#(p, q) =



E
(
η(p)
u · η(q)

v

)
, r ≥ p, q ≥ 1

|N q
v | −

∑
1≤s≤r

#(s, q), p = 0

|N p
u | −

∑
1≤s≤r

#(p, s), q = 0

(6)

Concatenating the resulting estimates yields the expressive structural features of MPLP.

Shortcut removal. The intricately designed structural features improve the expressiveness of MPLP.
However, this augmented expressiveness introduces susceptibility to distribution shifts during link
prediction tasks [29]. Consider a scenario wherein the neighborhood of a target node pair contains a
node k. Node k resides a single hop away from one of the target nodes but requires multiple steps to
connect with the other. When such a target node pair embodies a positive instance in the training
data (indicative of an existing link), node k can exploit both the closer target node and the link
between the target nodes as a shortcut to the farther one. This dynamic ensures that for training-set
positive instances, the maximum shortest-path distance from any neighboring node to the target pair is
constrained to the smaller distance increased by one. This can engender a discrepancy in distributions
between training and testing phases, potentially diminishing the model’s generalization capability.

To circumvent this pitfall, we adopt an approach similar to preceding works [18, 30, 19, 31]. Specifi-
cally, we exclude target links from the original graph during each training batch, as shown by the dash
line in Figure 3. This maneuver ensures these links are not utilized as shortcuts, thereby preserving
the fidelity of link feature construction.

Feature integration for link prediction. Having procured the structural features, we proceed to
formulate the encompassing link representation for a target node pair (u, v) as:

h(u,v) = (GNN(u)⊙ GNN(v))||[#(1, 1), . . . , #(r, r)],

which can be fed into a classifier for a link prediction between nodes (u, v).

7

73006 https://doi.org/10.52202/079017-2324

Table 1: Link prediction results on non-attributed benchmarks. The format is average score ± standard
deviation. The top three models are colored by First, Second, Third.

USAir NS PB Yeast C.ele Power Router E.coli
Metric Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50

CN 80.52±4.07 74.00±1.98 37.22±3.52 72.60±3.85 47.67±10.87 11.57±0.55 9.38±1.05 51.74±2.70

AA 85.51±2.25 74.00±1.98 39.48±3.53 73.62±1.01 58.34±2.88 11.57±0.55 9.38±1.05 68.13±1.61

RA 85.95±1.83 74.00±1.98 38.94±3.54 73.62±1.01 61.47±4.59 11.57±0.55 9.38±1.05 74.45±0.55

GCN 73.29±4.70 78.32±2.57 37.32±4.69 73.15±2.41 40.68±5.45 15.40±2.90 24.42±4.59 61.02±11.91

SAGE 83.81±3.09 56.62±9.41 47.26±2.53 71.06±5.12 58.97±4.77 6.89±0.95 42.25±4.32 75.60±2.40

SEAL 90.47±3.00 86.59±3.03 44.47±2.86 83.92±1.17 64.80±4.23 31.46±3.25 61.00±10.10 83.42±1.01

Neo-GNN 86.07±1.96 83.54±3.92 44.04±1.89 83.14±0.73 63.22±4.32 21.98±4.62 42.81±4.13 73.76±1.94

ELPH 87.60±1.49 88.49±2.14 46.91±2.21 82.74±1.19 64.45±3.91 26.61±1.73 61.07±3.06 75.25±1.44

NCNC 86.16±1.77 83.18±3.17 46.85±3.18 82.00±0.97 60.49±5.09 23.28±1.55 52.45±8.77 83.94±1.57

MPLP 92.12±2.21 90.02±2.04 52.55±2.90 85.36±0.72 74.28±2.09 32.66±3.58 64.68±3.14 86.11±0.83

MPLP+ 91.24±2.11 88.91±2.04 51.81±2.39 84.95±0.66 72.73±2.99 31.86±2.59 60.94±2.51 87.07±0.89

Table 2: Link prediction results on attributed benchmarks. The format is average score ± standard
deviation. The top three models are colored by First, Second, Third.

CS Physics Computers Photo Collab PPA Citation2
Metric Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@100 MRR

CN 51.04±15.56 61.46±6.12 21.95±2.00 29.33±2.74 61.37±0.00 27.65±0.00 51.47±0.00

AA 68.26±1.28 70.98±1.96 26.96±2.08 37.35±2.65 64.35±0.00 32.45±0.00 51.89±0.00

RA 68.25±1.29 72.29±1.69 28.05±1.59 40.77±3.41 64.00±0.00 49.33±0.00 51.98±0.00

GCN 66.00±2.90 73.71±2.28 22.95±10.58 28.14±7.81 35.53±2.39 18.67±0.00 84.74±0.21

SAGE 57.79±18.23 74.10±2.51 33.79±3.11 46.01±1.83 36.82±7.41 16.55±0.00 82.60±0.36

SEAL 68.50±0.76 74.27±2.58 30.43±2.07 46.08±3.27 64.74±0.43 48.80±3.16 87.67±0.32

Neo-GNN 71.13±1.69 72.28±2.33 22.76±3.07 44.83±3.23 57.52±0.37 49.13±0.60 87.26±0.84

ELPH1 72.26±2.58 65.80±2.26 29.01±2.66 43.51±2.37 65.94±0.58 49.85±0.20 87.56±0.11

NCNC 74.65±1.23 75.96±1.73 36.48±4.16 47.98±2.36 66.61±0.71 61.42±0.73 89.12±0.40

MPLP 76.40±1.44 76.46±1.95 43.47±3.61 58.08±3.68 67.05±0.51 OOM OOM
MPLP+ 75.55±1.46 76.36±1.40 42.21±3.56 57.76±2.75 66.99±0.40 65.24±1.50 90.72±0.12

4.3 More scalable estimation

MPLP estimates the cardinality of the distinct node sets with different distances relative to target
node pairs in Equation 6. However, this operation requires a preprocessing step to construct the
shortest-path neighborhoods N s

v for s ≤ r, which can cause computational overhead on large-scale
graph benchmarks. To overcome this issue, we simplify the structural feature estimations as:

#(p, q) = E
(
h̃(p)
u · h̃(q)

v

)
, (7)

where h̃(l+1)
v =

∑
u∈Nv

h̃
(l)
u follows the message-passing defined in Equation 3. Similar to common

GNNs, such a message-passing only requires the one-hop neighborhood Nv , which is provided in a
format of adjacency matrices/lists by most graph datasets. Therefore, we can substitute the structural
features of MPLP with the estimation in Equation 7. We denote such a model with walk-level features
as MPLP+.

4.4 Triangular substructure estimation

Our method, primarily designed to encapsulate the local structure of a target node pair, unexpectedly
exhibits the capacity for estimating the count of triangles linked to individual nodes. This capability,
traditionally considered beyond the reach of GNNs, marks a significant advancement in the field [32].
Although triangle counting is less directly relevant in the context of link prediction, the implications
of this capability are noteworthy. To maintain focus, we relegate the detailed discussion on pure
message-passing for effective triangle counting to Appendix C.

8

73007https://doi.org/10.52202/079017-2324

Table 3: Link prediction results on OGB datasets under HeaRT [33]. The top three models are colored
by First, Second, Third.

Models Collab PPA Citation2
MRR Hits@20 MRR Hits@20 MRR Hits@20

CN 4.20 16.46 25.70 68.25 17.11 41.73
AA 5.07 19.59 26.85 70.22 17.83 43.12
RA 6.29 24.29 28.34 71.50 17.79 43.34

GCN 6.09 22.48 26.94 68.38 19.98 51.72
SAGE 5.53 21.26 27.27 69.49 22.05 53.13
SEAL 6.43 21.57 29.71 76.77 20.60 48.62

Neo-GNN 5.23 21.03 21.68 64.81 16.12 43.17
BUDDY 5.67 23.35 27.70 71.50 19.17 47.81
NCNC 4.73 20.49 33.52 82.24 19.61 51.69

MPLP+ 6.79 25.10 41.40 84.88 23.11 55.51

5 Experiments

Datasets, baselines and experimental setup We conduct evaluations across a diverse spectrum of
15 graph benchmark datasets, which include 8 non-attributed and 7 attributed graphs 2. It also includes
three datasets from OGB [10] with predefined train/test splits. In the absence of predefined splits,
links are partitioned into train, validation, and test sets using a 70-10-20 percent split. Our comparison
spans three categories of link prediction models: (1) heuristic-based methods encompassing CN, AA,
and RA; (2) node-level models like GCN and SAGE; and (3) link-level models, including SEAL,
Neo-GNN [25], ELPH [16], and NCNC [19]. Each experiment is conducted 10 times, with the
average score and standard deviations reported. The evaluation metrics are aligned with the standard
metrics for OGB datasets, and we utilize Hits@50 for the remaining datasets. We limit the number
of hops r = 2, which results in a good balance of performance and efficiency. A comprehensive
description of the experimental setup is available in Appendix D.

Figure 4: Evaluation of inference time on large-scale OGB datasets. The inference time encompasses
the entire cycle within a full-batch inference.

Results Performance metrics are shown in Tables 1 and 2. Our methods, MPLP and MPLP+,
demonstrate superior performance, surpassing baseline models across all evaluated benchmarks by a
significant margin. Notably, MPLP tends to outperform MPLP+ in various benchmarks, suggesting
that node-level structural features (Equation 6) might be more valuable for link prediction tasks than
the walk-level features (Equation 7). In large-scale graph benchmarks such as PPA and Citation2,
MPLP+ sets new benchmarks, establishing state-of-the-art results. For other datasets, our methods

1On OGB dataset Collab, PPA, and Citation2, we report the performance of BUDDY [16], a more streamlined
version of ELPH. For the rest of the datasets, we report the performance of ELPH, which is empirically better
when the computation budget is allowed.

2Our code is publicly available at https://github.com/Barcavin/efficient-node-labelling.

9

73008 https://doi.org/10.52202/079017-2324

https://github.com/Barcavin/efficient-node-labelling

show a substantial performance uplift, with improvements in Hits@50 ranging from 2% to 10%
compared to the closest competitors.

We extend our evaluation of MPLP+ to assess its performance on large-scale datasets under the
challenging HeaRT setting proposed by Li et al. [33]. HeaRT introduces a more rigorous and realistic
set of negative samples during evaluation, typically resulting in a notable decline in performance
across link prediction methods. As detailed in Table 3, MPLP+ consistently outperform all other
methods across three OGB graph benchmarks in this demanding context. This underscores the
robustness of MPLP+, affirming its ability to maintain superior performance across a variety of graph
benchmarks and evaluation settings.

Time efficiency We conduct an analysis of the time efficiency of our methods, MPLP and MPLP+,
against established baselines using three large-scale OGB datasets. The results, illustrated in Figure 4,
demonstrate that our approaches not only deliver superior performance across the graph benchmarks
but also set a new benchmark for state-of-the-art time efficiency in full-batch inference. In particular,
the primary component underlying our methods is the message-passing operation, which allows their
inference speeds to rival that of the baseline GCN. Additionally, the structural feature estimations
enhance the models’ expressiveness, enabling more accurate representation of graph structures,
particularly in the context of link prediction tasks. More details can be found in Appendix D.3.

Figure 5: MSE of estimation for #(1, 1), #(1, 2) and #(1, 0) on Collab. Lower values are better.

Estimation accuracy We investigate the precision of MPLP in estimating #(p, q), which denotes
the count of node labels, using the Collab dataset. The outcomes of this examination are illustrated
in Figure 5. Although ELPH possesses the capability to approximate these counts utilizing techniques
like MinHash and Hyperloglog, our method exhibits superior accuracy. Moreover, ELPH runs out of
memory when the dimension is larger than 3000. Remarkably, deploying a one-hot encoding strategy
for the hubs further bolsters the accuracy of MPLP, concurrently diminishing the variance introduced
by inherent graph structures. An exhaustive analysis, including time efficiency considerations, is
provided in Appendix F.1.

Extended ablation studies Further ablation studies have been carried out to understand the indi-
vidual contributions within MPLP. These include: (1) an exploration of the distinct components of
MPLP in Appendix F.2; (2) an analysis of the performance contributions from different structural
estimations in Appendix F.3; and (3) an examination of parameter sensitivity in Appendix F.4.

6 Conclusion

We study the potential of message-passing GNNs to encapsulate link structural features. Based on
this, we introduce a novel link prediction paradigm that consistently outperforms state-of-the-art
baselines across various graph benchmarks. The inherent capability to adeptly capture structures
enhances the expressivity of GNNs, all while maintaining their computational efficiency. Our findings
hint at a promising avenue for elevating the expressiveness of GNNs through probabilistic approaches.

10

73009https://doi.org/10.52202/079017-2324

7 Acknowledgements

We would like to thank the anonymous reviewers for their insightful comments and helpful discussions.
This research was supported in part by the University of Notre Dame’s Lucy Family Institute for
Data and Society and the NSF Center for Computer-Assisted Synthesis (C-CAS), under grant number
CHE-2202693.

References
[1] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In

Proceedings of the twelfth international conference on Information and knowledge management,
CIKM ’03, pages 556–559, New York, NY, USA, November 2003. Association for Computing
Machinery. ISBN 978-1-58113-723-1. doi: 10.1145/956863.956972. URL http://doi.org/
10.1145/956863.956972.

[2] Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime
Huerta-Cepas, Milan Simonovic, Nadezhda T. Doncheva, John H. Morris, Peer Bork, Lars J.
Jensen, and Christian von Mering. STRING v11: protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide experimental datasets.
Nucleic Acids Research, 47(D1):D607–D613, January 2019. ISSN 1362-4962. doi: 10.1093/
nar/gky1131.

[3] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009. Publisher: IEEE.

[4] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34, 2021.

[5] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. arXiv:1609.02907 [cs, stat], February 2017. URL http://arxiv.org/abs/1609.
02907. arXiv: 1609.02907.

[6] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural Message Passing for Quantum Chemistry. CoRR, abs/1704.01212, 2017. URL http:
//arxiv.org/abs/1704.01212. arXiv: 1704.01212.

[7] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. arXiv:1706.02216 [cs, stat], September 2018. URL http://arxiv.org/abs/
1706.02216. arXiv: 1706.02216.

[8] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. arXiv:1710.10903 [cs, stat], February 2018. URL
http://arxiv.org/abs/1710.10903. arXiv: 1710.10903.

[9] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.00826.
arXiv: 1810.00826.

[10] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs.
arXiv:2005.00687 [cs, stat], February 2021. URL http://arxiv.org/abs/2005.00687.
arXiv: 2005.00687.

[11] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling Trick: A The-
ory of Using Graph Neural Networks for Multi-Node Representation Learning. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, volume 34, pages 9061–9073. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
4be49c79f233b4f4070794825c323733-Paper.pdf.

11

73010 https://doi.org/10.52202/079017-2324

http://doi.org/10.1145/956863.956972
http://doi.org/10.1145/956863.956972
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/2005.00687
https://proceedings.neurips.cc/paper/2021/file/4be49c79f233b4f4070794825c323733-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4be49c79f233b4f4070794825c323733-Paper.pdf

[12] Igor Nunes, Mike Heddes, Pere Vergés, Danny Abraham, Alexander Veidenbaum, Alexandru
Nicolau, and Tony Givargis. DotHash: Estimating Set Similarity Metrics for Link Predic-
tion and Document Deduplication, May 2023. URL http://arxiv.org/abs/2305.17310.
arXiv:2305.17310 [cs].

[13] Paul C. Kainen and Vĕra Kůrková. Quasiorthogonal dimension of euclidean spaces. Ap-
plied Mathematics Letters, 6(3):7–10, May 1993. ISSN 0893-9659. doi: 10.1016/
0893-9659(93)90023-G. URL https://www.sciencedirect.com/science/article/
pii/089396599390023G.

[14] Lada A. Adamic and Eytan Adar. Friends and neighbors on the Web. Social Networks, 25(3):
211–230, 2003. ISSN 0378-8733. doi: https://doi.org/10.1016/S0378-8733(03)00009-1. URL
https://www.sciencedirect.com/science/article/pii/S0378873303000091.

[15] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information.
The European Physical Journal B, 71(4):623–630, 2009. Publisher: Springer.

[16] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M. Bronstein, and Max Hansmire. Graph
Neural Networks for Link Prediction with Subgraph Sketching. September 2022. URL
https://openreview.net/forum?id=m1oqEOAozQU.

[17] Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders, 2016. _eprint:
1611.07308.

[18] Muhan Zhang and Yixin Chen. Link Prediction Based on Graph Neural Networks.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf.

[19] Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural Common Neighbor with Com-
pletion for Link Prediction, February 2023. URL http://arxiv.org/abs/2302.00890.
arXiv:2302.00890 [cs].

[20] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert
space. Contemporary Mathematics, 26:189–206, January 1984. ISSN 9780821850305. doi:
10.1090/conm/026/737400.

[21] Skye Purchase, Yiren Zhao, and Robert D. Mullins. Revisiting Embeddings for Graph Neural
Networks. November 2022. URL https://openreview.net/forum?id=Ri2dzVt_a1h.

[22] Paul C Kainen. Orthogonal dimension and tolerance. Unpublished report, Washington DC:
Industrial Math, 1992.

[23] Paul C Kainen and Věra Kurkova. Quasiorthogonal dimension. In Beyond traditional proba-
bilistic data processing techniques: Interval, fuzzy etc. Methods and their applications, pages
615–629. Springer, 2020.

[24] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Net-
works. Science, 286(5439):509–512, 1999. doi: 10.1126/science.286.5439.509.
URL https://www.science.org/doi/abs/10.1126/science.286.5439.509. _eprint:
https://www.science.org/doi/pdf/10.1126/science.286.5439.509.

[25] Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J. Kim. Neo-GNNs:
Neighborhood Overlap-aware Graph Neural Networks for Link Prediction. November 2021.
URL https://openreview.net/forum?id=Ic9vRN3VpZ.

[26] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance Encoding: De-
sign Provably More Powerful Neural Networks for Graph Representation Learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 4465–4478. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
2f73168bf3656f697507752ec592c437-Paper.pdf.

12

73011https://doi.org/10.52202/079017-2324

http://arxiv.org/abs/2305.17310
https://www.sciencedirect.com/science/article/pii/089396599390023G
https://www.sciencedirect.com/science/article/pii/089396599390023G
https://www.sciencedirect.com/science/article/pii/S0378873303000091
https://openreview.net/forum?id=m1oqEOAozQU
https://proceedings.neurips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
http://arxiv.org/abs/2302.00890
https://openreview.net/forum?id=Ri2dzVt_a1h
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://openreview.net/forum?id=Ic9vRN3VpZ
https://proceedings.neurips.cc/paper/2020/file/2f73168bf3656f697507752ec592c437-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2f73168bf3656f697507752ec592c437-Paper.pdf

[27] Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest Path Networks for
Graph Property Prediction. November 2022. URL https://openreview.net/forum?id=
mWzWvMxuFg1.

[28] Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How Powerful are
K-hop Message Passing Graph Neural Networks. May 2022. URL https://openreview.
net/forum?id=nN3aVRQsxGd.

[29] Kaiwen Dong, Yijun Tian, Zhichun Guo, Yang Yang, and Nitesh Chawla. FakeEdge: Alleviate
Dataset Shift in Link Prediction. December 2022. URL https://openreview.net/forum?
id=QDN0jSXuvtX.

[30] Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. Algorithm and System
Co-design for Efficient Subgraph-based Graph Representation Learning. Proceedings of the
VLDB Endowment, 15(11):2788–2796, July 2022. ISSN 2150-8097. doi: 10.14778/3551793.
3551831. URL http://arxiv.org/abs/2202.13538. arXiv:2202.13538 [cs].

[31] Jiarui Jin, Yangkun Wang, Weinan Zhang, Quan Gan, Xiang Song, Yong Yu, Zheng Zhang, and
David Wipf. Refined Edge Usage of Graph Neural Networks for Edge Prediction. December
2022. doi: 10.48550/arXiv.2212.12970. URL https://arxiv.org/abs/2212.12970v1.

[32] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can Graph Neural Networks Count
Substructures? arXiv:2002.04025 [cs, stat], October 2020. URL http://arxiv.org/abs/
2002.04025. arXiv: 2002.04025.

[33] Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and
Dawei Yin. Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls and New
Benchmarking, July 2023. URL http://arxiv.org/abs/2306.10453. arXiv:2306.10453
[cs].

[34] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43,
March 1953. ISSN 1860-0980. doi: 10.1007/BF02289026. URL https://doi.org/10.
1007/BF02289026.

[35] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., USA, 1986. ISBN 0-07-054484-0.

[36] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks, 30:107–117, 1998. URL http://www-db.stanford.edu/
~backrub/google.html.

[37] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph Neural
Networks, November 2021. URL http://arxiv.org/abs/1810.02244. arXiv:1810.02244
[cs, stat].

[38] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful
Graph Networks. arXiv:1905.11136 [cs, stat], June 2020. URL http://arxiv.org/abs/
1905.11136. arXiv: 1905.11136.

[39] Muhan Zhang and Pan Li. Nested Graph Neural Networks, 2021. URL https://arxiv.org/
abs/2110.13197.

[40] Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding
and Extending Subgraph GNNs by Rethinking Their Symmetries, June 2022. URL http:
//arxiv.org/abs/2206.11140. arXiv:2206.11140 [cs].

[41] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random Features Strengthen Graph
Neural Networks, 2021. _eprint: 2002.03155.

[42] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The Surprising
Power of Graph Neural Networks with Random Node Initialization, 2021. _eprint: 2010.01179.

13

73012 https://doi.org/10.52202/079017-2324

https://openreview.net/forum?id=mWzWvMxuFg1
https://openreview.net/forum?id=mWzWvMxuFg1
https://openreview.net/forum?id=nN3aVRQsxGd
https://openreview.net/forum?id=nN3aVRQsxGd
https://openreview.net/forum?id=QDN0jSXuvtX
https://openreview.net/forum?id=QDN0jSXuvtX
http://arxiv.org/abs/2202.13538
https://arxiv.org/abs/2212.12970v1
http://arxiv.org/abs/2002.04025
http://arxiv.org/abs/2002.04025
http://arxiv.org/abs/2306.10453
https://doi.org/10.1007/BF02289026
https://doi.org/10.1007/BF02289026
http://www-db.stanford.edu/~backrub/google.html
http://www-db.stanford.edu/~backrub/google.html
http://arxiv.org/abs/1810.02244
http://arxiv.org/abs/1905.11136
http://arxiv.org/abs/1905.11136
https://arxiv.org/abs/2110.13197
https://arxiv.org/abs/2110.13197
http://arxiv.org/abs/2206.11140
http://arxiv.org/abs/2206.11140

[43] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. DropGNN: Random
Dropouts Increase the Expressiveness of Graph Neural Networks, November 2021. URL
http://arxiv.org/abs/2111.06283. arXiv:2111.06283 [cs].

[44] Vladimir Batagelj and Andrej Mrvar. Pajek datasets website, 2006. URL http://vlado.fmf.
uni-lj.si/pub/networks/data/.

[45] Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical review E, 74(3):036104, 2006. Publisher: APS.

[46] Robert Ackland and others. Mapping the US political blogosphere: Are conservative bloggers
more prominent? In BlogTalk Downunder 2005 Conference, Sydney, 2005.

[47] Christian Von Mering, Roland Krause, Berend Snel, Michael Cornell, Stephen G Oliver, Stanley
Fields, and Peer Bork. Comparative assessment of large-scale data sets of protein–protein
interactions. Nature, 417(6887):399–403, 2002. Publisher: Nature Publishing Group.

[48] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440–442, 1998. URL https://api.semanticscholar.org/CorpusID:3034643.

[49] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies with Rocketfuel.
ACM SIGCOMM Computer Communication Review, 32(4):133–145, 2002. Publisher: ACM
New York, NY, USA.

[50] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link prediction: Predicting
hyperlinks in adjacency space. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[51] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of Graph Neural Network Evaluation, June 2019. URL http://arxiv.org/abs/
1811.05868. arXiv:1811.05868 [cs, stat].

[52] Matthias Fey and Jan E. Lenssen. Fast Graph Representation Learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

14

73013https://doi.org/10.52202/079017-2324

http://arxiv.org/abs/2111.06283
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://api.semanticscholar.org/CorpusID:3034643
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868

Appendix

Table of Contents
A Related work 16

B Efficient inference at node-level complexity 16

C Estimate triangular substructures 16
C.1 Method . 17
C.2 Experiments . 17

D Experimental details 18
D.1 Benchmark datasets . 18
D.2 More details in baseline methods . 19
D.3 Evaluation Details: Inference Time . 19
D.4 Software and hardware details . 19
D.5 Time Complexity . 19
D.6 Hyperparameters . 20

E Exploring Bag-Of-Words Node Attributes 20
E.1 Node Attribute Orthogonality . 21
E.2 Role of Node Attribute Information . 21
E.3 Expanding QO Vector Dimensions . 22

F Additional experiments 22
F.1 Node label estimation accuracy and time . 22
F.2 Model enhancement ablation . 23
F.3 Structural features ablation . 24
F.4 Parameter sensitivity . 25

G Theoretical analysis 25
G.1 Proof for Theorem 3.1 . 25
G.2 Proof for Theorem 3.2 . 27
G.3 Proof for Theorem 3.3 . 29

H Limitations 29

I Broader Impact 30

15

73014 https://doi.org/10.52202/079017-2324

A Related work

Link prediction Link prediction, inherent to graph data analysis, has witnessed a paradigm shift
from its conventional heuristic-based methods to the contemporary, more sophisticated GNNs
approaches. Initial explorations in this domain primarily revolve around heuristic methods such
as CN, AA, RA, alongside seminal heuristics like the Katz Index [34], Jaccard Index [35], Page
Rank [36], and Preferential Attachment [24]. However, the emergence of graphs associated with
node attributes has shifted the research landscape towards GNN-based methods. Specifically, these
GNN-centric techniques bifurcate into node-level and link-level paradigms. Pioneers like Kipf and
Welling introduce the Graph Auto-Encoder (GAE) to ascertain node pair similarity through GNN-
generated node representation. On the other hand, link-level models, represented by SEAL [18], opt
for subgraph extractions centered on node pairs, even though this can present scalability challenges.

Amplifying GNN Expressiveness with Randomness The expressiveness of GNNs, particularly
those of the MPNNs, has been the subject of rigorous exploration [9]. A known limitation of MPNNs,
their equivalence to the 1-Weisfeiler-Lehman test, often results in indistinguishable representation
for non-isomorphic graphs. A suite of contributions has surfaced to boost GNN expressiveness, of
which [37–40] stand out. An elegant, yet effective paradigm involves symmetry-breaking through
stochasticity injection [41–43]. Although enhancing expressiveness, such random perturbations can
occasionally undermine generalizability. Diverging from these approaches, our methodology exploits
probabilistic orthogonality within random vectors, culminating in a robust structural feature estimator
that introduces minimal estimator variance.

Link-Level Link Prediction While node-level models like GAE offer enviable efficiency, they
occasionally fall short in performance when compared with rudimentary heuristics [16]. Efforts to
build scalable link-level alternatives have culminated in innovative methods such as Neo-GNN [25],
which distills structural features from adjacency matrices for link prediction. Elsewhere, ELPH [16]
harnesses hashing mechanisms for structural feature representation, while NCNC [19] adeptly
aggregates common neighbors’ node representation. Notably, DotHash [12], which profoundly
influenced our approach, employs quasi-orthogonal random vectors for set similarity computations,
applying these in link prediction tasks.

Distinctively, our proposition builds upon, yet diversifies from, the frameworks of ELPH and DotHash.
While resonating with ELPH’s architectural spirit, we utilize a streamlined, efficacious hashing
technique over MinHash for set similarity computations. Moreover, we resolve ELPH’s limitations
through strategic implementations like shortcut removal and norm rescaling. When paralleled with
DotHash, our approach magnifies its potential, integrating it with GNNs for link predictions and
extrapolating its applicability to multi-hop scenarios. It also judiciously optimizes variance induced
by the structural feature estimator in sync with graph data. We further explore the potential of
achieving higher expressiveness with linear computational complexity by estimating the substructure
counting [32].

B Efficient inference at node-level complexity

In addition to its superior performance, MPLP stands out for its practical advantages in industrial
applications due to its node-level inference complexity. This design is akin to employing an MLP
as the predictor. Our method facilitates offline preprocessing, allowing for the caching of node
signatures or representations. Consequently, during online inference in a production setting, MPLP
merely requires fetching the relevant node signatures or representations and processing them through
an MLP. This approach significantly streamlines the online inference process, necessitating only
node-level space complexity and ensuring constant time complexity for predictions. This efficiency
in both space and time makes MPLP particularly suitable for real-world applications where rapid,
on-the-fly predictions are crucial.

C Estimate triangular substructures

Not only does MPLP encapsulate the local structure of the target node pair by assessing node counts
based on varying shortest-path distances, but it also pioneers in estimating the count of triangles

16

73015https://doi.org/10.52202/079017-2324

Table 4: Performance of different GNNs on learning
the counts of triangles, measured by MSE divided by
variance of the ground truth counts. Shown here are the
median (i.e., third-best) performances of each model
over five runs with different random seeds.

Dataset Erdos-Renyi Random Regular
GCN 8.27E-1 2.05
GIN 1.25E-1 4.74E-1
SAGE 1.48E-1 5.21E-1
sGNN 1.13E-1 4.43E-1
2-IGN 9.85E-1 5.96E-1
PPGN 2.51E-7 3.71E-5
LRP-1-3 2.49E-4 3.83E-4
Deep LRP-1-3 4.77E-5 5.16E-6

MPLP 1.61E-4 3.70E-4

Figure 6: Representation of the target link
(u, v) of MPLP after including the triangular
estimation component.

linked to any of the nodes— an ability traditionally deemed unattainable for GNNs [32]. In this
section, we discuss a straightforward implementation of the triangle estimation.

C.1 Method

Constructing the structural feature with DE can provably enhance the expressiveness of the link
prediction model [26, 11]. However, there are still prominent cases where labelling trick also fails to
capture. Since labelling trick only considers the relationship between the neighbors and the target
node pair, it can sometimes miss the subtleties of intra-neighbor relationships. For example, the
nodes of DE(1, 1) in Figure 3 exhibit different local structures. Nevertheless, labelling trick like DE
tends to treat them equally, which makes the model overlook the triangle substructure shown in the
neighborhood. Chen et al. [32] discusses the challenge of counting such a substructure with a pure
message-passing framework. We next give an implementation of message-passing to approximate
triangle counts linked to a target node pair—equivalent in complexity to conventional MPNNs.

For a triangle to form, two nodes must connect with each other and the target node. Key to our
methodology is recognizing the obligatory presence of length-1 and length-2 walks to the target node.
Thus, according to Theorem 3.3, our estimation can formalize as:

#(△
u
) =

1

2
E
(
h̃(1)
u · h̃(2)

u

)
. (8)

Augmenting the structural features with triangle estimates gives rise to a more expressive structural
feature set of MPLP.

C.2 Experiments

Following the experiment in Section 6.1 of [32], we conduct an experiment to evaluate MPLP’s ability
to count triangular substructures. Similarly, we generate two synthetic graphs as the benchmarks: the
Erdos-Renyi graphs and the random regular graphs. We also present the performance of baseline
models reported in [32]. Please refer to [32] for details about the experimental settings and baseline
models. The results are shown in Table 4.

As the results show, the triangle estimation component of MPLP can estimate the number of triangles
in the graph with almost negligible error, similar to other more expressive models. Moreover, MPLP
achieves this with a much lower computational cost, which is comparable to 1-WL GNNs like GCN,
GIN, and SAGE. It demonstrates MPLP’s advantage of better efficiency over more complex GNNs
like 2-IGN and PPGN.

17

73016 https://doi.org/10.52202/079017-2324

Table 5: Statistics of benchmark datasets.

Dataset #Nodes #Edges Avg. node deg. Std. node deg. Max. node deg. Density Attr. Dimension
C.ele 297 4296 14.46 12.97 134 9.7734% -

Yeast 2375 23386 9.85 15.50 118 0.8295% -

Power 4941 13188 2.67 1.79 19 0.1081% -

Router 5022 12516 2.49 5.29 106 0.0993% -

USAir 332 4252 12.81 20.13 139 7.7385% -

E.coli 1805 29320 16.24 48.38 1030 1.8009% -

NS 1589 5484 3.45 3.47 34 0.4347% -

PB 1222 33428 27.36 38.42 351 4.4808% -

CS 18333 163788 8.93 9.11 136 0.0975% 6805

Physics 34493 495924 14.38 15.57 382 0.0834% 8415

Computers 13752 491722 35.76 70.31 2992 0.5201% 767

Photo 7650 238162 31.13 47.28 1434 0.8140% 745

Collab 235868 2358104 10.00 18.98 671 0.0085% 128

PPA 576289 30326273 52.62 99.73 3241 0.0256% 58

Citation2 2927963 30561187 10.44 42.81 10000 0.0014% 128

D Experimental details

D.1 Benchmark datasets

The statistics of each benchmark dataset are shown in Table 5. The benchmarks without attributes
are:

• USAir [44]: a graph of US airlines;
• NS [45]: a collaboration network of network science researchers;
• PB [46]: a graph of links between web pages on US political topics;
• Yeast [47]: a protein-protein interaction network in yeast;
• C.ele [48]: the neural network of Caenorhabditis elegans;
• Power [48]: the network of the western US’s electric grid;
• Router [49]: the Internet connection at the router-level;
• E.coli [50]: the reaction network of metabolites in Escherichia coli.

4 out of 7 benchmarks with node attributes come from [51], while Collab, PPA and Citation2 are
from Open Graph Benchmark [10]:

• CS: co-authorship graphs in the field of computer science, where nodes represent authors,
edges represent that two authors collaborated on a paper, and node features indicate the
keywords for each author’s papers;

• Physics: co-authorship graphs in the field of physics with the same node/edge/feature
definition as of CS;

• Computers: a segment of the Amazon co-purchase graph for computer-related equipment,
where nodes represent goods, edges represent that two goods are frequently purchased
together together, and node features represent the product reviews;

• Physics: a segment of the Amazon co-purchase graph for photo-related equipment with the
same node/edge/feature definition as of Computers;

• Collab: a large-scale collaboration network, showcasing a wide array of interdisciplinary
partnerships.

• PPA: a large-scale protein-protein association network, representing the biological interac-
tion between proteins.

18

73017https://doi.org/10.52202/079017-2324

• Citation2: a large-scale citation network, with papers as nodes and the citaitons as edges.

Since OGB datasets have a fixed split, no train test split is needed for it. For the other benchmarks, we
randomly split the edges into 70-10-20 as train, validation, and test sets. The validation and test sets
are not observed in the graph during the entire cycle of training and testing. They are only used for
evaluation purposes. For Collab, it is allowed to use the validation set in the graph when evaluating
on the test set.

We run the experiments 10 times on each dataset with different splits. For each run, we cache the
split edges and evaluate every model on the same split to ensure a fair comparison. The average score
and standard deviation are reported in Hits@100 for PPA, MMR for Citation2 and Hits@50 for the
remaining datasets.

D.2 More details in baseline methods

In our experiments, we explore advanced variants of the baseline models ELPH and NCNC. Specifi-
cally, for ELPH, Chamberlain et al. [16] propose BUDDY, a link prediction method that preprocesses
node representations to achieve better efficiency but compromises its expressiveness. NCNC [19]
builds upon its predecessor, NCN, by first estimating the complete graph structure and then perform-
ing inference. In our experiments, we select the most expressiveness variant to make sure it is a fair
comparison between different model architectures. Thus, we select ELPH over BUDDY, and NCNC
over NCN to establish robust baselines in our study. We conduct a thorough hyperparameter tuning
for ELPH and NCNC to select the best-performing models on each benchmark dataset. We follow
the hyperparameter guideline of ELPH and NCNC to search for the optimal structures. For ELPH,
we run through hyperparameters including dropout rates on different model components, learning
rate, batch size, and dimension of node embedding. For NCNC, we experiment on dropout rates
on different model components, learning rates on different model components, batch size, usage of
jumping knowledge, type of encoders, and other model-specific terms like alpha. For Neo-GNN and
SEAL, due to their relatively inferior efficiency, we only tune the common hyperparameters like
learning rate, size of hidden dimensions.

D.3 Evaluation Details: Inference Time

In Figure 4, we assess the inference time across different models on the OGB datasets for a single
epoch of test links. Specifically, we clock the wall time taken by models to score the complete test
set. This encompasses preprocessing, message-passing, and the actual prediction. For the SEAL
model, we employ a dynamic subgraph generator during the preprocessing phase, which dynamically
computes the subgraph. We substitute ELPH with BUDDY from [16] in this evaluation, since
BUDDY exhibits better time efficiency compared to ELPH. For both BUDDY and our proposed
methods, we initially propagate the node features and signatures just once at the onset of inference.
These are then cached for subsequent scoring sessions.

D.4 Software and hardware details

We implement MPLP in Pytorch Geometric framework [52]. We run our experiments on a Linux
system equipped with an NVIDIA A100 GPU with 80GB of memory.

D.5 Time Complexity

The efficiency of MPLP stands out when it comes to link prediction inference. Let’s denote t as the
number of target links, d as the maximum node degree, r as the number of hops to compute, and F
as the dimension count of node signatures.

For preprocessing node signatures, MPLP involves two primary steps:

1. Initially, the algorithm computes all-pairs unweighted shortest paths across the input graph
to acquire the shortest-path neighborhood N s

v for each node. This can be achieved using a
BFS approach for each node, with a time complexity of O(|V ||E|).

2. Following this, MPLP propagates the QO vectors through the shortest-path neighborhood,
which has a complexity of O(tdrF), and then caches these vectors in memory.

19

73018 https://doi.org/10.52202/079017-2324

During online scoring, MPLP performs the inner product operation with a complexity of O(tF),
enabling the extraction of structural feature estimations.

However, during training, the graph’s structure might vary depending on the batch of target links due
to the shortcut removal operation. As such, MPLP proceeds in three primary steps:

1. Firstly, the algorithm extracts the r-hop induced subgraph corresponding to these t target
links. In essence, we deploy a BFS starting at each node of the target links to determine their
receptive fields. This process, conceptually similar to message-passing but in a reversed
message flow, has a time complexity of O(tdr). Note that, different from SEAL, we extract
one r-hop subgraph induced from a batch of target links.

2. To identify the shortest-path neighborhood N s
v , we simply apply sparse-sparse matrix

multiplications of the adjacency matrix to get the s-power adjacency matrix, where s =
1, 2, . . . , r. Due to the sparsity, this takes O(|V |dr).

3. Finally, the algorithm engages in message-passing to propagate the QO vectors along the
shortest-path neighborhoods, with a complexity of O(tdrF), followed by performing the
inner product at O(tF).

Summing up, the overall time complexity for MPLP in the training phase stands at O(tdr + |V |dr +
tdrF).

For MPLP+, it does not require the preprocessing step for the shortest-path neighborhood. Thus, the
time complexity is the same as any standard message-passing GNNs, O(tdrF).

D.6 Hyperparameters

We determine the optimal hyperparameters for our model through systematic exploration. The setting
with the best performance on the validation set is selected. The chosen hyperparameters are as
follows:

• Number of Hops (r): We set the maximum number of hops to r = 2. Empirical evaluation
suggests this provides an optimal trade-off between accuracy and computational efficiency.

• Node Signature Dimension (F): The dimension of node signatures, F , is fixed at 1024,
except for Citation2 with 512. This configuration ensures that MPLP is both efficient and
accurate across all benchmark datasets.

• The minimum degree of nodes to be considered as hubs (b): This parameter indicates the
minimum degree of the nodes which are considered as hubs to one-hot encode in the node
signatures. We experiment with values in the set [50, 100, 150].

• Batch Size (B): We vary the batch size depending on the graph type: For the 8 non-
attributed graphs, we explore batch sizes within [512, 1024]. For the 4 attributed graphs
coming from [51], we search within [2048, 4096]. For OGB datasets, we use 32768 for
Collab and PPA, and 261424 for Citation2.

More ablation study can be found in Appendix F.4.

E Exploring Bag-Of-Words Node Attributes

In Section 3, we delved into the capability of GNNs to discern joint structural features, particularly
when presented with Quasi-Orthogonal (QO) vectors. Notably, many graph benchmarks utilize text
data to construct node attributes, representing them as Bag-Of-Words (BOW). BOW is a method that
counts word occurrences, assigning these counts as dimensional values. With a large dictionary, these
BOW node attribute vectors often lean towards QO due to the sparse nature of word representations.
Consequently, many node attributes in graph benchmarks inherently possess the QO trait. Acknowl-
edging GNNs’ proficiency with QO vector input, we propose the question: Is it the QO property
or the information embedded within these attributes that significantly impacts link prediction in
benchmarks? This section is an empirical exploration of this inquiry.

20

73019https://doi.org/10.52202/079017-2324

Figure 7: Heatmap illustrating the inner product of node attributes across CS, Photo, and Collab
datasets.

Figure 8: Heatmap illustrating the inner product of node attributes, arranged by node labels, across
CS and Photo. The rightmost showcases the inner product of QO vectors.

E.1 Node Attribute Orthogonality

Our inquiry begins with the assessment of node attribute orthogonality across three attributed graphs:
CS, Photo, and Collab. CS possesses extensive BOW vocabulary, resulting in node attributes spanning
over 8000 dimensions. Contrarily, Photo has a comparatively minimal dictionary, encompassing just
745 dimensions. Collab, deriving node attributes from word embeddings, limits to 128 dimensions.

For our analysis, we sample 10000 nodes (7650 for Photo) and compute the inner product of their
attributes. The results are visualized in Figure 7. Our findings confirm that with a larger BOW
dimension, CS node attributes closely follow QO. However, this orthogonality isn’t as pronounced in
Photo and Collab—especially Collab, where word embeddings replace BOW. Given that increased
node signature dimensions can mitigate estimation variance (as elaborated in Theorem 3.2), one
could posit GNNs might offer enhanced performance on CS, due to its extensive BOW dimensions.
Empirical evidence from Table 2 supports this claim.

Further, in Figure 8, we showcase the inner product of node attributes in CS and Photo, but this
time, nodes are sequenced by class labels. This order reveals that nodes sharing labels tend to have
diminished orthogonality compared to random pairs—a potential variance amplifier in structural
feature estimation using node attributes.

E.2 Role of Node Attribute Information

To discern the role of embedded information within node attributes, we replace the original attributes
in CS, Photo, and Collab with random vectors—denoted as random feat. These vectors maintain the
original attribute dimensions, though each dimension gets randomly assigned values from {−1, 1}.
The subsequent findings are summarized in Table 6. Intriguingly, even with this “noise” as input,
performance remains largely unaltered. CS attributes appear to convey valuable insights for link
predictions, but the same isn’t evident for the other datasets. In fact, introducing random vectors
to Computers and Photo resulted in enhanced outcomes, perhaps due to their original attribute’s

21

73020 https://doi.org/10.52202/079017-2324

Table 6: Performance comparison of GNNs using node attributes versus random vectors (Hits@50).
For simplicity, all GNNs are configured with two layers.

CS Physics Computers Photo Collab
GCN 66.00±2.90 73.71±2.28 22.95±10.58 28.14±7.81 35.53±2.39

GCN(random feat) 51.67±2.70 69.55±2.45 35.86±3.17 46.84±2.53 17.25±1.15

SAGE 57.79±18.23 74.10±2.51 1.86±2.53 5.70±10.15 36.82±7.41

SAGE(random feat) 11.78±1.62 64.71±3.65 29.23±3.92 39.94±3.41 28.87±2.36

Random feat
GCN(F = 1000) 3.73±1.44 49.28±2.74 36.92±3.36 48.72±3.84 31.93±2.10

GCN(F = 2000) 24.97±2.67 49.13±4.64 40.24±3.04 53.49±3.50 40.16±1.70

GCN(F = 3000) 39.51±6.47 53.76±3.85 42.33±3.82 56.27±3.47 47.22±1.60

GCN(F = 4000) 43.23±3.37 61.86±4.10 42.85±3.60 56.87±3.59 50.40±1.28

GCN(F = 5000) 48.25±3.28 63.19±4.31 44.52±2.78 58.13±3.79 52.13±1.02

GCN(F = 6000) 51.44±1.50 65.10±4.11 44.90±2.74 58.10±3.35 53.78±0.84

GCN(F = 7000) 52.00±1.74 66.76±3.32 45.11±3.69 57.41±2.62 55.04±1.06

GCN(F = 8000) 54.21±3.47 69.27±2.94 44.47±4.11 58.67±3.90 55.36±1.15

GCN(F = 9000) 53.16±2.80 70.79±2.83 45.03±3.13 57.15±3.87 OOM
GCN(F = 10000) 55.91±2.63 71.88±3.29 45.26±1.94 58.12±2.54 OOM

insufficient orthogonality hampering effective structural feature capture. Collab shows a performance
drop with random vectors, implying that the original word embedding can contribute more to the link
prediction than structural feature estimation with merely 128 QO vectors.

E.3 Expanding QO Vector Dimensions

Lastly, we substitute node attributes with QO vectors of varied dimensions, utilizing GCN as the
encoder. The outcomes of this experiment are cataloged in Table 6. What’s striking is that GCNs,
when furnished with lengthier random vectors, often amplify link prediction results across datasets,
with the exception of CS. On Computers and Photo, a GCN even rivals our proposed model (Table 2),
potentially attributed to the enlarged vector dimensions. This suggests that when computational
resources permit, expanding our main experiment’s node signature dimensions (currently set at
1024) could elevate our model’s performance. On Collab. the performance increases significantly
compared to the experiments which are input with 128-dimensional vectors, indicating that the
structural features are more critical for Collab than the word embedding.

F Additional experiments

F.1 Node label estimation accuracy and time

In Figure 5, we assess the accuracy of node label count estimation. For ELPH, the node signature
dimension corresponds to the number of MinHash permutations. We employ a default hyperparameter
setting for Hyperloglog, with p = 8, a configuration that has demonstrated its adequacy in [16]. For
time efficiency evaluation, we initially propagate and cache node signatures, followed by performing
the estimation.

Furthermore, we evaluate the node label count estimation for #(2, 2) and #(2, 0). The outcomes are
detailed in Figure 9. While MPLP consistently surpasses ELPH in estimation accuracy, the gains
achieved via one-hot hubs diminish for #(2, 2) and #(2, 0) relative to node counts at a shortest-path
distance of 1. This diminishing performance gain can be attributed to our selection criteria for one-hot
encoding, which prioritizes nodes that function as hubs within a one-hop radius. However, one-hop
hubs don’t necessarily serve as two-hop hubs. While we haven’t identified a performance drop for
these two-hop node label counts, an intriguing avenue for future research would be to refine variance
reduction strategies for both one-hop and two-hop estimations simultaneously.

22

73021https://doi.org/10.52202/079017-2324

Figure 9: MSE of estimation for #(2, 2), #(2, 0) and estimation time on Collab. Lower values are
better.

Table 7: Ablation study on non-attributed benchmarks evaluated by Hits@50. The format is average
score ± standard deviation. The top three models are colored by First, Second, Third.

USAir NS PB Yeast C.ele Power Router E.coli
w/o Shortcut removal 80.94±3.49 85.47±2.60 49.51±3.57 82.62±0.99 57.51±2.09 19.99±2.54 36.67±10.03 76.94±1.54

w/o One-hot hubs 84.04±4.53 89.45±2.60 51.49±2.63 85.11±0.62 66.85±3.04 29.54±1.79 50.81±3.74 79.07±2.47

w/o Norm rescaling 85.04±2.64 89.34±2.79 52.50±2.90 83.01±1.03 66.81±4.11 29.00±2.30 50.43±3.59 79.36±2.18

MPLP 85.19±4.59 89.58±2.60 52.84±3.39 85.11±0.62 67.97±2.96 29.54±1.79 51.04±4.03 79.35±2.35

Regarding the efficiency of estimation, MPLP consistently demonstrates superior computational effi-
ciency in contrast to ELPH. When we increase the node signature dimension to minimize estimation
variance, ELPH’s time complexity grows exponentially and becomes impractical. In contrast, MPLP
displays a sublinear surge in estimation duration.

It’s also worth noting that ELPH exhausts available memory when the node signature dimension
surpasses 3000. This constraint arises as ELPH, while estimating structural features, has to cache
node signatures for both MinHash and Hyperloglog. Conversely, MPLP maintains efficiency by
caching only one type of node signatures.

F.2 Model enhancement ablation

We investigate the individual performance contributions of three primary components in MPLP:
Shortcut removal, One-hot hubs, and Norm rescaling. To ensure a fair comparison, we maintain
consistent hyperparameters across benchmark datasets, modifying only the specific component under
evaluation. Moreover, node attributes are excluded from the model’s input for this analysis. The
outcomes of this investigation are detailed in Table 7 and Table 8.

Among the three components, Shortcut removal emerges as the most pivotal for MPLP. This highlights
the essential role of ensuring the structural distribution of positive links is aligned between the training
and testing datasets [29].

Regarding One-hot hubs, while they exhibited strong results in the estimation accuracy evaluations
presented in Figure 5 and Figure 9, their impact on the overall performance is relatively subdued. We

Table 8: Ablation study on attributed benchmarks evaluated by Hits@50. The format is average score
± standard deviation. The top three models are colored by First, Second, Third.

CS Physics Computers Photo Collab
w/o Shortcut removal 41.63±7.27 62.58±2.40 32.74±3.03 52.09±2.52 60.45±1.44

w/o One-hot hubs 65.49±4.28 71.58±2.28 36.09±4.08 55.63±2.48 65.07±0.47

w/o Norm rescaling 65.20±2.92 67.73±2.54 35.83±3.24 52.59±3.57 63.99±0.59

MPLP 65.70±3.86 71.03±3.55 37.56±3.57 55.63±2.48 66.07±0.47

23

73022 https://doi.org/10.52202/079017-2324

Table 9: The mapping between the configuration number and the used structural features in MPLP.

Configurations #(1, 1) #(1, 2) #(1, 0) #(2, 2) #(2, 0) #(△)

(1) ! - - - - -
(2) - ! ! - - -
(3) - - - ! ! -
(4) - - - - - !

(5) ! ! ! - - -
(6) ! - - ! ! -
(7) ! - - - - !

(8) - ! ! ! ! -
(9) - ! ! - - !

(10) - - - ! ! !

(11) ! ! ! ! ! -
(12) ! ! ! - - !

(13) ! - - ! ! !

(14) - ! ! ! ! !

(15) ! ! ! ! ! !

Table 10: Ablation analysis highlighting the impact of various structural features on link prediction.
Refer to Table 9 for detailed configurations of the structural features used.

Configurations USAir NS PB Yeast C.ele Power Router E.coli
(1) 76.64±26.74 75.26±2.79 37.48±13.30 58.70±30.50 46.22±24.84 14.40±1.40 17.29±3.96 60.10±30.80

(2) 82.54±4.61 84.76±3.63 41.84±15.51 80.56±0.65 56.22±20.39 21.38±1.46 48.97±3.34 67.78±23.83

(3) 67.76±23.65 70.05±2.35 44.81±2.63 67.02±2.53 36.53±19.68 25.24±4.07 21.32±2.66 56.59±1.78

(4) 37.18±37.57 25.13±1.99 12.35±10.75 7.42±10.80 30.75±18.69 5.47±1.13 30.47±3.10 34.90±36.63

(5) 86.24±2.70 84.91±2.80 48.35±3.76 84.42±0.56 66.69±3.60 22.25±1.39 49.68±3.79 80.94±1.62

(6) 77.41±5.27 80.00±2.39 46.05±2.76 74.70±1.45 46.88±5.79 27.74±3.23 22.37±2.06 71.41±2.47

(7) 71.11±25.51 76.72±2.37 43.57±3.70 73.08±1.23 54.99±20.14 14.50±1.64 31.26±2.87 80.22±2.09

(8) 80.16±4.82 88.67±2.72 52.16±2.25 82.52±0.85 63.82±4.02 28.41±2.00 50.97±3.57 77.26±1.31

(9) 75.13±26.51 87.28±3.33 48.10±3.43 80.84±0.97 60.63±4.54 23.85±1.37 49.78±3.56 76.13±1.81

(10) 76.82±4.28 77.04±3.70 45.42±2.77 67.34±3.20 41.66±13.47 26.95±1.47 28.31±2.76 70.14±0.77

(11) 82.82±5.52 88.91±2.90 52.57±3.05 84.61±0.67 67.11±2.52 28.98±1.73 50.63±3.72 80.16±2.20

(12) 87.29±1.08 88.08±2.59 48.86±3.42 84.59±0.69 66.06±3.74 23.79±1.87 50.06±3.66 79.57±2.46

(13) 78.21±2.74 88.08±3.27 46.00±2.31 74.88±2.49 54.64±4.99 28.82±1.29 26.24±2.18 74.67±3.96

(14) 80.75±5.02 89.14±2.38 51.63±2.67 82.68±0.67 63.01±3.21 29.41±1.44 51.08±4.12 76.88±1.86

(15) 81.06±6.62 89.73±2.12 53.49±2.66 85.06±0.69 66.41±3.02 28.86±2.40 50.63±3.79 78.91±2.58

hypothesize that, in the context of these sparse benchmark graphs, the estimation variance may not
be sufficiently influential on the model’s outcomes.

Finally, Norm rescaling stands out as a significant enhancement in MPLP. This is particularly evident
in its positive impact on datasets like Yeast, Physics, Photo, and Collab.

F.3 Structural features ablation

We further examine the contribution of various structural features to the link prediction task. These
features include: #(1, 1), #(1, 2), #(1, 0), #(2, 2), #(2, 0), and #(△). To ensure fair comparison, we
utilize only the structural features for link representation, excluding the node representations derived
from GNN(·). Given the combinatorial nature of these features, they are grouped into four categories:

24

73023https://doi.org/10.52202/079017-2324

Table 11: Ablation study of Batch Size (B) on non-attributed benchmarks evaluated by Hits@50.
The format is average score ± standard deviation. The top three models are colored by First, Second,
Third.

USAir NS PB Yeast C.ele Power Router E.coli
MPLP(B = 256) 90.31±1.32 88.98±2.48 51.14±2.44 84.07±0.69 71.59±2.83 28.92±1.67 56.15±3.80 85.12±1.00

MPLP(B = 512) 90.40±2.47 89.40±2.12 49.63±2.08 84.17±0.60 71.72±3.35 28.60±1.66 53.25±6.57 84.72±1.04

MPLP(B = 1024) 90.49±2.22 88.49±2.34 50.60±3.40 83.67±0.57 70.61±4.13 28.63±1.60 49.75±5.14 84.52±1.03

MPLP(B = 2048) 81.20±2.80 61.79±18.55 50.34±3.05 76.79±6.79 31.79±19.88 28.45±1.88 49.37±3.89 84.43±1.28

MPLP(B = 4096) 81.20±2.80 61.79±18.55 52.59±2.36 58.26±7.20 31.54±18.53 27.25±3.30 50.26±3.89 85.15±1.15

MPLP(B = 8192) 81.20±2.80 56.20±21.34 51.91±2.08 24.47±21.12 31.79±19.88 17.22±3.17 38.67±7.78 85.67±0.90

• #(1, 1);

• #(1, 2), #(1, 0);

• #(2, 2), #(2, 0);

• #(△).

The configuration of these structural features and their corresponding results are detailed in Table 9
and Table 10.

Our analysis reveals that distinct benchmark datasets have varied preferences for structural features,
reflecting their unique underlying distributions. For example, datasets PB and Power exhibit superior
performance with 2-hop structural features, whereas others predominantly favor 1-hop features.
Although #(1, 1), which counts Common Neighbors, is often considered pivotal for link prediction,
the two other 1-hop structural features, #(1, 2) and #(1, 0), demonstrate a more pronounced impact
on link prediction outcomes. Meanwhile, while the count of triangles, #(△), possesses theoretical
significance for model expressiveness, it seems less influential for link prediction when assessed in
isolation. However, its presence can bolster link prediction performance when combined with other
key structural features.

F.4 Parameter sensitivity

We perform an ablation study to assess the hyperparameter sensitivity of MPLP, focusing specifically
on two parameters: Batch Size (B) and Node Signature Dimension (F).

Our heightened attention to B stems from its role during training. Within each batch, MPLP executes
the shortcut removal. Ideally, if B = 1, only one target link would be removed, thereby preserving
the local structures of other links. However, this approach is computationally inefficient. Although
shortcut removal can markedly enhance performance and address the distribution shift issue (as
elaborated in Appendix F.2), it can also inadvertently modify the graph structure. Thus, striking a
balance between computational efficiency and minimal graph structure alteration is essential.

Our findings are delineated in Table 11, Table 12, Table 13, and Table 14. Concerning the batch
size, our results indicate that opting for a smaller batch size typically benefits performance. However,
if this size is increased past a certain benchmark threshold, there can be a noticeable performance
drop. This underscores the importance of pinpointing an optimal batch size for MPLP. Regarding the
node signature dimension, our data suggests that utilizing longer QO vectors consistently improves
accuracy by reducing variance. This implies that, where resources allow, selecting a more substantial
node signature dimension is consistently advantageous.

G Theoretical analysis

G.1 Proof for Theorem 3.1

We begin by restating Theorem 3.1 and then proceed with its proof:

Let G = (V,E) be a non-attributed graph and consider a 1-layer GCN/SAGE. Define the input
vectors X ∈ RN×F initialized randomly from a zero-mean distribution with standard deviation σnode.
Additionally, let the weight matrix W ∈ RF ′×F be initialized from a zero-mean distribution with
standard deviation σweight. After performing message passing, for any pair of nodes {(u, v)|(u, v) ∈
V × V \ E}, the expected value of their inner product is given by:

25

73024 https://doi.org/10.52202/079017-2324

Table 12: Ablation study of Batch Size (B) on attributed benchmarks evaluated by Hits@50. The
format is average score ± standard deviation. The top three models are colored by First, Second,
Third.

CS Physics Computers Photo
MPLP(B = 256) 74.96±1.87 76.06±1.47 43.38±2.83 57.58±2.92

MPLP(B = 512) 75.61±2.25 75.38±1.79 42.95±2.56 57.19±2.51

MPLP(B = 1024) 74.89±2.00 74.89±1.97 42.69±2.41 56.97±3.20

MPLP(B = 2048) 75.02±2.68 75.47±1.68 41.39±2.87 55.89±3.03

MPLP(B = 4096) 75.46±1.78 74.88±2.57 40.65±2.85 55.89±2.88

MPLP(B = 8192) 75.26±1.91 74.14±2.17 40.00±3.40 55.90±2.52

Table 13: Ablation study of Node Signature Dimension (F) on non-attributed benchmarks evaluated
by Hits@50. The format is average score ± standard deviation. The top three models are colored by
First, Second, Third.

USAir NS PB Yeast C.ele Power Router E.coli
MPLP(F = 256) 90.64±2.50 88.52±3.07 50.42±3.86 80.63±0.84 70.89±4.70 25.74±1.59 51.84±2.90 84.60±0.92

MPLP(F = 512) 90.49±1.95 89.18±2.35 51.48±2.63 82.41±1.10 70.91±4.68 27.58±1.80 51.98±4.38 84.70±1.33

MPLP(F = 1024) 90.16±1.61 89.40±2.12 50.60±3.40 83.87±1.06 70.61±4.13 28.88±2.24 53.92±2.88 84.81±0.85

MPLP(F = 2048) 90.14±2.24 89.36±1.92 51.26±1.67 84.20±1.02 72.24±3.31 29.27±1.92 54.50±4.52 84.58±1.42

MPLP(F = 4096) 89.95±1.48 89.54±2.22 51.07±2.87 84.89±0.64 71.91±3.52 29.26±1.51 54.71±5.07 84.67±0.61

For GCN:

E(hu · hv) =
C√
d̂ud̂v

∑
k∈Nu

⋂
Nv

1

d̂k
,

For SAGE:

E(hu · hv) =
C√
dudv

∑
k∈Nu

⋂
Nv

1,

where d̂v = dv + 1 and the constant C is defined as C = σ2
nodeσ

2
weightFF ′.

Proof. Define X as
(
X⊤

1 , . . . ,X⊤
N

)⊤
and W as (W1,W2, . . . ,WF).

Using GCN as the MPNN, the node representation is updated by:

hu = W
∑

k∈N (u)∪{u}

1√
d̂kd̂u

Xk,

where d̂v = dv + 1.

Table 14: Ablation study of Node Signature Dimension (F) on attributed benchmarks evaluated by
Hits@50. The format is average score ± standard deviation. The top three models are colored by
First, Second, Third.

CS Physics Computers Photo
MPLP(F = 256) 74.90±1.88 73.91±1.41 40.65±3.24 55.13±2.98

MPLP(F = 512) 74.67±2.63 74.49±2.05 39.36±2.28 55.93±3.31

MPLP(F = 1024) 75.02±2.68 75.27±2.95 42.27±3.96 55.89±3.03

MPLP(F = 2048) 75.30±2.14 75.82±2.15 41.98±3.21 57.11±2.56

MPLP(F = 4096) 76.04±1.57 76.17±2.04 43.33±2.93 58.55±2.47

26

73025https://doi.org/10.52202/079017-2324

For any two nodes (u, v) from {(u, v)|(u, v) ∈ V × V \ E}, we compute:

hu · hv = h⊤
u hv

=

W
∑

a∈N (u)∪{u}

1√
d̂ad̂u

Xa

⊤W
∑

b∈N (v)∪{v}

1√
d̂bd̂v

Xb


=

∑
a∈N (u)∪{u}

1√
d̂ad̂u

X⊤
a W⊤W

∑
b∈N (v)∪{v}

1√
d̂bd̂v

Xb

=
∑

a∈N (u)∪{u}

1√
d̂ad̂u

X⊤
a

W⊤
1 W1 · · · W⊤

1 WF

...
...

...
W⊤

F W1 · · · W⊤
F WF

 ∑
b∈N (v)∪{v}

1√
d̂bd̂v

Xb.

Given that

1. E
(
W⊤

i Wj

)
= σ2

weightF
′ when i = j,

2. E
(
W⊤

i Wj

)
= 0 when i ̸= j,

we obtain:

E(hu · hv) = σ2
weightF

′
∑

a∈N (u)∪{u}

1√
d̂ad̂u

X⊤
a

∑
b∈N (v)∪{v}

1√
d̂bd̂v

Xb.

Also the orthogonal of the random vectors guarantee that E
(
X⊤

a Xb

)
= 0 when a ̸= b. Then, we

have:

E(hu · hv) =
C√
d̂ud̂v

∑
k∈Nu

⋂
Nv

1

d̂k

where C = σ2
nodeσ

2
weightFF ′.

This completes the proof for the GCN variant. A similar approach, utilizing the probabilistic
orthogonality of the input vectors and weight matrix, can be employed to derive the expected value
for SAGE as the MPNN.

G.2 Proof for Theorem 3.2

We begin by restating Theorem 3.2 and then proceed with its proof:

Let G = (V,E) be a graph, and let the vector dimension be given by F ∈ N+. Define the input
vectors X = (Xi,j), which are initialized from a random variable x having a mean of 0 and a
standard deviation of 1√

F
. Using the message-passing as described by Equation 3, for any pair of

nodes {(u, v)|(u, v) ∈ V × V }, the expected value and variance of their inner product are:

E(hu · hv) = CN(u, v),

Var(hu · hv) =
1

F

(
dudv + CN(u, v)2 − 2CN(u, v)

)
+ FVar

(
x2
)
CN(u, v).

Proof. We follow the proof of the theorem in [12]. Based on the message-passing defined in Equa-
tion 3:

E(hu · hv) = E

((∑
ku∈Nu

Xku,:

)
·

(∑
kv∈Nv

Xkv,:

))

= E

(∑
ku∈Nu

∑
kv∈Nv

Xku,:Xkv,:

)
=

∑
ku∈Nu

∑
kv∈Nv

E(Xku,:Xkv,:).

27

73026 https://doi.org/10.52202/079017-2324

Since the sampling of each dimension is independent of each other, we get:

E(hu · hv) =
∑

ku∈Nu

∑
kv∈Nv

F∑
i=1

E(Xku,iXkv,i).

When ku = kv ,

E(Xku,iXkv,i) = E
(
x2
)
=

1

F
.

When ku ̸= kv ,

E(Xku,iXkv,i) = E(Xku,i)E(Xkv,i) = 0.

Thus:

E(hu · hv) =
∑

ku∈Nu

∑
kv∈Nv

F∑
i=1

1 (ku = kv)
1

F

=
∑

k∈Nu∩Nv

1 = CN(u, v).

For the variance, we separate the equal from the non-equal pairs of ku and kv. Note that there is no
covariance between the equal pairs and the non-equal pairs due to the independence:

Var(hu · hv) = Var

(∑
ku∈Nu

∑
kv∈Nv

F∑
i=1

Xku,iXkv,i

)

=

F∑
i=1

Var

(∑
ku∈Nu

∑
kv∈Nv

Xku,iXkv,i

)

=

F∑
i=1

Var

(∑
k∈Nu∩Nv

x2
)

+Var

 ∑
ku∈Nu

∑
kv∈Nv\{ku}

Xku,iXkv,i

 .

For the first term, we can obtain:

Var

(∑
k∈Nu∩Nv

x2
)

= Var
(
x2
)
CN(u, v).

For the second term, we further split the variance of linear combinations to the linear combinations
of variances and covariances:

Var

 ∑
ku∈Nu

∑
kv∈Nv\{ku}

Xku,iXkv,i

 =
∑

ku∈Nu

∑
kv∈Nv\{ku}

Var(Xku,iXkv,i)+∑
a∈Nu\{ku}

∑
b∈Nv\{kv,a}

Cov(Xku,iXkv,i, Xa,iXb,i).

Note that the Cov(Xku,iXkv,i, Xa,iXb,i) is Var(Xku,iXkv,i) = 1
F 2 when (ku, kv) = (b, a), and

otherwise 0.

Thus, we have:

Var

 ∑
ku∈Nu

∑
kv∈Nv\{ku}

Xku,iXkv,i

 =
1

F 2

(
dudv + CN(u, v)2 − 2CN(u, v)

)
,

and the variance is:

Var(hu · hv) =
1

F

(
dudv + CN(u, v)2 − 2CN(u, v)

)
+ FVar

(
x2
)
CN(u, v).

28

73027https://doi.org/10.52202/079017-2324

G.3 Proof for Theorem 3.3

We begin by restating Theorem 3.3 and then proceed with its proof:

Under the conditions defined in Theorem 3.2, let h(l)
u denote the vector for node u after the l-th

message-passing iteration. We have:

E
(
h(p)
u · h(q)

v

)
=
∑
k∈V

|walks(p)(k, u)||walks(q)(k, v)|,

where |walks(l)(u, v)| counts the number of length-l walks between nodes u and v.

Proof. Reinterpreting the message-passing described in Equation 3, we can equivalently express it
as:

ms(l+1)
v =

⋃
u∈Nv

ms(l)u ,h(l+1)
v =

∑
u∈ms(l+1)

v

h(0)
u , (9)

where ms(l)v refers to a multiset, a union of multisets from its neighbors. Initially, ms(0)v = {{v}}.
The node vector h(l)

v is derived by summing the initial QO vectors of the multiset’s elements.

We proceed by induction: Base Case (l = 1):

ms(1)v =
⋃

u∈Nv

ms(0)u =
⋃

u∈Nv

{{u}} = {{k|ω ∈ walks(1)(k, v)}}

Inductive Step (l ≥ 1): Let’s assume that ms(l)v = {{k|ω ∈ walks(l)(k, v)}} holds true for an
arbitrary l. Utilizing Equation 9 and the inductive hypothesis, we deduce:

ms(l+1)
v =

⋃
u∈Nv

{{k|ω ∈ walks(l)(k, u)}}.

If k initiates the l-length walks terminating at v and if v is adjacent to u, then k must similarly initiate
the l-length walks terminating at u. This consolidates our inductive premise.

With the induction established:

E
(
h(p)
u · h(q)

v

)
= E

 ∑
ku∈ms(p)u

h
(0)
ku

·
∑

kv∈ms(q)v

h
(0)
kv


The inherent independence among node vectors concludes the proof.

H Limitations

Despite the promising capabilities of MPLP, there are distinct limitations that warrant attention:

1. Training cost vs. inference cost: The computational cost during training significantly
outweighs that of inference. This arises from the necessity to remove shortcut edges for
positive links in the training phase, causing the graph structure to change across different
batches. This, in turn, mandates a repeated computation of the shortest-path neighborhood.
Even though MPLP+ can avoid the computation of the shortest-path neighborhood for
each batch, it shows suboptimal performance compared to MPLP. A potential remedy is to
consider only a subset of links in the graph as positive instances and mask them, enabling a
single round of preprocessing. Exploring this approach will be the focus of future work.

2. Estimation variance influenced by graph structure: The structure of the graph itself can
magnify the variance of our estimations. Specifically, in dense graphs or those with a high
concentration of hubs, the variance can become substantial, thereby compromising the
accuracy of structural feature estimation.

3. Optimality of estimating structural features: Our research demonstrates the feasibility
of using message-passing to derive structural features. However, its optimality remains
undetermined. Message-passing, by nature, involves sparse matrix multiplication operations,
which can pose challenges in terms of computational time and space, particularly for
exceedingly large graphs.

29

73028 https://doi.org/10.52202/079017-2324

I Broader Impact

Our study is centered on creating a more efficient and expressive method for link prediction, with the
goal of significantly advancing graph machine learning. The potential applications of our method are
diverse and impactful, extending to recommendation systems, social network analysis, and biological
interaction networks, among others. While we have not identified any inherent biases in our method,
we acknowledge the necessity of rigorous bias assessments, particularly when integrating our method
into industrial-scale applications.

30

73029https://doi.org/10.52202/079017-2324

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in abstract and introduction clearly reflect the contribution.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is discussed in Appendix H.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

31

73030 https://doi.org/10.52202/079017-2324

Justification: The proof is rigorously shown in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental details are extensively discussed in the main body and
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

32

73031https://doi.org/10.52202/079017-2324

Answer: [Yes]
Justification: The code and data are publicly available. The code is open source.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are discussed in the main body and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The error bars are clearly reported in the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

33

73032 https://doi.org/10.52202/079017-2324

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resource is discussed in Appendix D.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impact is discussed in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

34

73033https://doi.org/10.52202/079017-2324

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This study is not feasible for safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: It is all properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

35

73034 https://doi.org/10.52202/079017-2324

paperswithcode.com/datasets

Answer: [NA]
Justification: No new asset is introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects are used in
this study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human participants in this study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

73035https://doi.org/10.52202/079017-2324

