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Abstract

In this work we design graph neural network architectures that capture optimal
approximation algorithms for a large class of combinatorial optimization prob-
lems, using powerful algorithmic tools from semidefinite programming (SDP).
Concretely, we prove that polynomial-sized message-passing GNN’s can learn the
most powerful polynomial time algorithms for Max Constraint Satisfaction Prob-
lems assuming the Unique Games Conjecture. We leverage this result to construct
efficient graph neural network architectures, OptGNN, that obtain high-quality
approximate solutions on landmark combinatorial optimization problems such
as Max-Cut, Min-Vertex-Cover, and Max-3-SAT. Our approach achieves strong
empirical results across a wide range of real-world and synthetic datasets against
solvers and neural baselines. Finally, we take advantage of OptGNN’s ability to
capture convex relaxations to design an algorithm for producing bounds on the
optimal solution from the learned embeddings of OptGNN.

1 Introduction

Combinatorial Optimization (CO) is the class of problems that optimize functions subject to con-
straints over discrete search spaces. They are often NP-hard to solve and to approximate, owing to
their typically exponential search spaces over nonconvex domains. Nevertheless, their important
applications in science and engineering (Gardiner et al., 2000; Zaki et al., 1997; Smith et al., 2004;
Du et al., 2017) has engendered a long history of study rooted in the following simple insight. In
practice, CO instances are endowed with domain-specific structure that can be exploited by special-
ized algorithms (Hespe et al., 2020; Walteros & Buchanan, 2019; Ganesh & Vardi, 2020). In this
context, neural networks are natural candidates for learning and then exploiting patterns in the data
distribution over CO instances.

The emerging field at the intersection of machine learning (ML) and combinatorial optimization (CO)
has led to novel algorithms with promising empirical results for several CO problems. However,
similar to classical approaches to CO, ML pipelines have to manage a tradeoff between efficiency
and optimality. Indeed, prominent works in this line of research forego optimality and focus on
parametrizing heuristics (Li et al., 2018; Khalil et al., 2017; Yolcu & Póczos, 2019; Chen & Tian,
2019) or by employing specialized models (Zhang et al., 2023; Nazari et al., 2018; Toenshoff et al.,
2019; Xu et al., 2021; Min et al., 2022) and task-specific loss functions (Amizadeh et al., 2018;
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Karalias & Loukas, 2020; Wang et al., 2022; Karalias et al., 2022; Sun et al., 2022). Exact ML solvers
that can guarantee optimality often leverage general techniques like branch and bound (Gasse et al.,
2019; Paulus et al., 2022) and constraint programming (Parjadis et al., 2021; Cappart et al., 2019),
which offer the additional benefit of providing approximate solutions together with a bound on the
distance to the optimal solution. The downside of those methods is their exponential worst-case time
complexity. Striking the right balance between efficiency and optimality is quite challenging, which
leads us to the central question of this paper:

Are there neural architectures for efficient combinatorial optimization that can learn to adapt to
a data distribution over instances yet capture algorithms with optimal worst-case approximation
guarantees?

OptGNN

Greedy Rounding

Minimize loss over 

training data

Training:

Inference:
OptGNN

Figure 1: Schematic representation of OptGNN. During train-
ing, OptGNN produces node embeddings v using message
passing updates on the graph G. These embeddings are used
to compute the penalized objective Lp(v;G). OptGNN is
trained by minimizing the average loss over the training set.
At inference time, the fractional solutions (embeddings) v
for an input graph G produced by OptGNN are rounded us-
ing randomized rounding.

To answer this question, we build on
the extensive literature on approxi-
mation algorithms and semidefinite
programming (SDP) which has led
to breakthrough results for NP-hard
combinatorial problems, such as the
Goemans-Williamson approximation
algorithm for Max-Cut (Goemans &
Williamson, 1995) and the use of
the Lovász theta function to find the
maximum independent set on perfect
graphs (Lovász, 1979; Grötschel et al.,
1981). For several problems, it is
known that if the Unique Games Con-
jecture (UGC) is true, then the approx-
imation guarantees obtained through
SDP relaxations are indeed the best
that can be achieved (Raghavendra,
2008; Barak & Steurer, 2014). The
key insight of our work is that a poly-
nomial time message-passing algo-
rithm (see Definition G) approximates
the solution of an SDP with the opti-

mal integrality gap for the class of Maximum Constraint Satisfaction Problems (Max-CSP), assuming
the UGC. This algorithm can be naturally parameterized to build a graph neural network, which we
call OptGNN.

Our contributions can be summarized as follows:

• We construct a polynomial-time message passing algorithm (see Definition G) for solving
the SDP of Raghavendra (2008) for the broad class of maximum constraint satisfaction
problems (including Max-Cut, Max-SAT, etc.), that is optimal barring the possibility of
significant breakthroughs in the field of approximation algorithms.

• We construct a graph neural network architecture which we call OptGNN, to capture this
message-passing algorithm. We show that OptGNN is PAC-learnable with polynomial
sample complexity.

• We describe how to generate optimality certificates from the learned representations of
OptGNN i.e., provable bounds on the optimal solution.

• Empirically, OptGNN is simple to implement (see pseudocode in Appendix 5) and we show
that it achieves competitive results on 3 landmark CO problems and several datasets against
classical heuristics, solvers and state-of-the-art neural baselines 3. Furthermore, we provide
out-of-distribution (OOD) evaluations and ablation studies for OptGNN that further validate
our parametrized message-passing approach.

3Code is available at: https://github.com/penlu/bespoke-gnn4do.
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2 Background and Related Work

Optimal Approximation Algorithms. Proving that an algorithm achieves the best approximation
guarantee for NP-hard problems is an enormous scientific challenge as it requires ruling out that
better algorithms exist (i.e., a hardness result). The Unique Games Conjecture (UGC) (Khot, 2002) is
a striking development in the theory of approximation algorithms because it addresses this obstacle.
If true, it implies approximation hardness results for a large number of hard combinatorial problems
that match the approximation guarantees of the best-known algorithms (Raghavendra & Steurer,
2009b; Raghavendra et al., 2012). For that reason, those algorithms are also sometimes referred
to as UGC-optimal. More importantly, the UGC implies that for all Max-CSPs there is a general
UGC-optimal algorithm based on semidefinite programming (Raghavendra, 2008). For a complete
exposition on the topic of UGC and approximation algorithms, we refer the reader to Barak & Steurer
(2014).

Neural approximation algorithms and their limitations. There has been important progress
in characterizing the combinatorial capabilities of modern deep learning architectures, including
bounds on the approximation guarantees achievable by GNNs on bounded degree graphs (Sato et al.,
2019, 2021) and conditional impossibility results for solving classic combinatorial problems such as
Max-Independent-Set and Min-Spanning-Tree (Loukas, 2019). It has been shown that a GNN can
implement a distributed local algorithm that straightforwardly obtains a 1/2-approximation for Max-
SAT (Liu et al., 2021), which is also achievable through a simple randomized algorithm (Johnson,
1973). Recent work proves there are barriers to the approximation power of GNNs for combinatorial
problems including Max-Cut and Min-Vertex-Cover (Gamarnik, 2023) for constant depth GNNs.
Other approaches to obtaining approximation guarantees propose avoiding the dependence of the
model on the size of the instance with a divide-and-conquer strategy; the problem is subdivided into
smaller problems which are then solved with a neural network (McCarty et al., 2021; Kahng et al.,
2023).

Convex Relaxations and Machine Learning. Convex relaxations are crucial in the design of
approximation algorithms. In this work, we show how SDP-based approximation algorithms can be
incorporated into the architecture of neural networks. We draw inspiration from the algorithms that are
used for solving low-rank SDPs (Burer & Monteiro, 2003; Wang et al., 2017; Wang & Kolter, 2019;
Boumal et al., 2020). Beyond approximation algorithms, there is work on designing differentiable
Max-SAT solvers via SDPs to facilitate symbolic reasoning in neural architectures (Wang et al.,
2019). This approach uses a fixed algorithm for solving a novel SDP relaxation for Max-SAT, and
aims to learn the structure of the SAT instance. In our case, the instance is given, but our algorithm is
learnable, and we seek to predict the solution. SDPs have found numerous applications in machine
learning including neural network verification (Brown et al., 2022), differentiable learning with
discrete functions (Karalias et al., 2022), kernel methods (Rudi et al., 2020; Jethava et al., 2013) and
quantum information tasks (Kriváchy et al., 2021). Convex relaxation are also instrumental in integer
programming where branch-and-bound tree search is guaranteed to terminate with optimal integral
solutions to Mixed Integer Linear Programs (MILP). Proposals for incorporating neural networks
into the MILP pipeline include providing a “warm start” (Benidis et al., 2023) to the solver, learning
branching heuristics (Gasse et al., 2019; Nair et al., 2020; Gupta et al., 2020; Paulus et al., 2022), and
learning cutting plane protocols (Paulus et al., 2022). A recent line of work studies the capabilities of
neural networks to solve linear programs (Chen et al., 2022; Qian et al., 2023). It is shown that GNNs
can represent LP solvers, which may in turn explain the success of learning branching heuristics
(Qian et al., 2023). In a similar line of work, neural nets are used to learn branching heuristics for
CDCL SAT solvers (Selsam & Bjørner, 2019; Kurin et al., 2020; Wang et al., 2021). Finally, convex
optimization has also found applications (Numeroso et al., 2023) in the neural algorithmic reasoning
paradigm (Veličković et al., 2022) where neural networks are trained to solve problems by learning to
emulate discrete algorithms in higher dimensional spaces.

Learning frameworks for CO. A common approach to neural CO is to use supervision either in the
form of execution traces of expert algorithms or labeled solutions (Li et al., 2018; Selsam et al., 2018;
Prates et al., 2019; Vinyals et al., 2015; Joshi et al., 2019, 2020; Gasse et al., 2019; Ibarz et al., 2022;
Georgiev et al., 2023). Obtaining labels for combinatorial problems can be computationally costly
which has led to the development of neural network pipelines that can be trained without access to
labels or partial solutions. This includes approaches based on Reinforcement Learning (Ahn et al.,
2020; Böther et al., 2022; Barrett et al., 2020, 2022; Bello et al., 2016; Khalil et al., 2017; Yolcu &
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Póczos, 2019; Chen & Tian, 2019), and other self-supervised methods (Brusca et al., 2023; Karalias
et al., 2022; Karalias & Loukas, 2020; Tönshoff et al., 2022; Schuetz et al., 2022a,b; Amizadeh et al.,
2019; Dai et al., 2020; Sun et al., 2022; Wang et al., 2022; Amizadeh et al., 2018; Gaile et al., 2022).
Our work falls into the latter category since only the problem instance is sufficient for training and
supervision signals are not required. For a complete overview of the field, we refer the reader to the
relevant survey papers (Cappart et al., 2023; Bengio et al., 2021).

3 Optimal Approximation Algorithms with Neural Networks

We begin by showing that solving the Max-Cut problem using a vector (low-rank SDP) relaxation
and a simple projected gradient descent scheme amounts to executing a message-passing algorithm
on the input graph. We then generalize this insight to the entire class of Max-CSPs. We reformulate
the UGC-optimal SDP for Max-CSP in SDP 1. Our main Theorem 3.1 exhibits a message passing
algorithm (Algorithm 1) for solving SDP 1. We then capture Algorithm 1 via a message passing
GNN with learnable weights (see Definition G for definition of Message Passing GNN). Thus, by
construction OptGNN captures algorithms with UGC-optimal approximation guarantees for Max-
CSP. Furthermore, we prove that OptGNN is efficiently PAC-learnable (see Lemma 3.1) as a step
towards explaining its empirical performance.

3.1 Solving Combinatorial Optimization Problems with Message Passing

In the Max-Cut problem, we are given a graph G = (V,E) with N vertices V and edges E. The goal
is to divide the vertices into two sets that maximize the number of edges going between them. This
corresponds to the quadratic integer program

max
x1,x2,...,xN

∑
(i,j)∈E

1

2
(1− xixj) subject to: x2i = 1 ∀i ∈ [N ].

The global optimum of the integer program is the Max-Cut. Noting that discrete variables are not
amenable to the tools of continuous optimization, a standard technique is to ’lift’ the quadratic integer
problem: replace the integer variables xi with vectors vi ∈ Rr and constrain vi to lie on the unit
sphere

min
v1,v2,...,vN

−
∑

(i,j)∈E

1

2
(1− ⟨vi, vj⟩) subject to: ∥vi∥ = 1 ∀i ∈ [N ] vi ∈ Rr. (1)

This nonconvex relaxation of the problem admits an efficient algorithm Burer & Monteiro (2003).
Furthermore, all local minima are approximately global minima (Ge et al., 2016) and variations of
stochastic gradient descent converge to its optimum (Bhojanapalli et al., 2018; Jin et al., 2017) under
a variety of smoothness and compactness assumptions. Specifically, for large enough r (Boumal
et al., 2020; O’Carroll et al., 2022), simple algorithms such as block coordinate descent (Erdogdu
et al., 2019) can find an approximate global optimum of the objective. Projected gradient descent is a
natural approach for solving the minimization problem in equation 1. In iteration t (for T iterations),
update vector vi as

vt+1
i = NORMALIZE

(
vti − η

∑
j∈N(i)

vtj

)
, (2)

where NORMALIZE enforces unit Euclidean norm, η ∈ R+ is an adjustable step size, and N(i) the
neighborhood of node i. The gradient updates to the vectors are local, each vector is updated by
aggregating information from its neighboring vectors (i.e., it is a message-passing algorithm).

OptGNN for Max-Cut. Our main contribution in this paper builds on the following observation.
We may generalize the dynamics described above by considering an overparametrized version of
the gradient descent updates in equations 2. Let M1,M2, ...,MT ∈ Rr×2r be a set of T learnable
matrices corresponding to T layers of a neural network. Then for layer t and embedding vi we define
a GNN update

vt+1
i := NORMALIZE

(
Mt

([
vti∑

j∈N(i) v
t
j

]))
. (3)

4
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More generally, we can write the dynamics as vt+1
i := NORMALIZE(Mt(AGG(vti , {vtj}j∈N(i))),

where AGG is a function of the node embedding and its neighboring embeddings. We will present
a message passing algorithm 1 that generalizes the dynamics of 2 to the entire class of Max-CSPs
(see example derivations in Appendix A and Appendix B), which provably converges in polynomial
iterations for a reformulation of the canonical SDP relaxation of Raghavendra (2008) (see SDP 1).
Parametrizing this general message-passing algorithm will lead to the definition of OptGNN (see
Definition 3.3).

3.2 Message Passing for Max-CSPs

Given a set of constraints over variables, Max-CSP asks to find a variable assignment that maximizes
the number of satisfied constraints. Formally, a Constraint Satisfaction Problem Λ = (V,P, q)
consists of a set of N variables V := {xi}i∈[N ] each taking values in an alphabet [q] and a set
of predicates P := {Pz}z⊂V where each predicate is a payoff function over k variables Xz =
{xi1 , xi2 , ..., xik}. Here we refer to k as the arity of the Max-k-CSP. We adopt the normalization that
each predicate Pz returns outputs in [0, 1]. We index each predicate Pz by its domain z. The goal of
Max-k-CSP is to maximize the payoff of the predicates.

OPT(Λ) := max
(x1,...,xN )∈[q]N

1

|P|
∑
Pz∈P

Pz(Xz), (4)

where we normalize by the number of constraints so that the total payoff is in [0, 1]. Therefore we can
unambiguously define an ϵ-approximate assignment as an assignment achieving a payoff of OPT− ϵ.
Since our result depends on a message-passing algorithm, we will need to define an appropriate graph
structure over which messages will be propagated. To that end, we will leverage the constraint graph
of the CSP instance: Given a Max-k-CSP instance Λ = (V,P, q) a constraint graph GΛ = (V,E) is
comprised of vertices V = {vϕ,ζ} for every subset of variables ϕ ⊆ z for every predicate Pz ∈ P
and every assignment ζ ∈ [q]|z| to the variables in z. The edges E are between any pair of vectors
vϕ,ζ and vϕ′,ζ′ such that the variables in ϕ and ϕ′ appear in a predicate together. For instance, for
a SAT clause (x1 ∨ x2) ∧ x1 ∧ x3 there are four nodes v1, v12, v3 and v∅ with a complete graph
between {v1, v12, v∅} and v3 an isolated node.

Let SDP(Λ) be the optimal value of the SDP 1 on instance Λ. The approximation ratio for the
Max-k-CSP problem achieved by the SDP 1 is minΛ∈Max-k-CSP

OPT(Λ)
SDP(Λ) , where the minimization is

taken over all instances Λ with arity k. There is no polynomial time algorithm that can achieve a
larger approximation ratio assuming the truth of the UGC Raghavendra (2008). We construct our
message passing algorithm as follows. First we introduce the definition of the vector form SDP and
its associated quadratically penalized Lagrangian.
Definition (Quadratically Penalized Lagrangian). Any standard form SDP Λ can be expressed as the
following vector form SDP for some matrix V = [v1, v2, . . . , vN ] ∈ RN×N .

min
V ∈RN×N

⟨C, V TV ⟩ subject to: ⟨Ai, V
TV ⟩ = bi ∀i ∈ [F ]. (5)

For any SDP in vector form we define the ρ quadratically penalized Lagrangian to be

Lρ(V ) := ⟨C, V TV ⟩+ ρ
∑
i∈F

(
⟨Ai, V

TV ⟩ − bi
)2
. (6)

We show that gradient descent on this Lagrangian Lρ(V ) for the Max-CSP SDP 1 takes the form of a
message-passing algorithm on the constraint graph that can provably converge to an approximate
global optimum for the SDP (see algorithm 1). We see that gradient descent on Lρ takes the form of
a simultaneous message passing update on the constraint graph. See equation 60 and algorithm 3 for
analytic form of the Max-CSP message passing update. See appendix A and B for analytic form of
Min-Vertex-Cover and Max-3-SAT message passing updates. Our main theorem is then following.
Theorem 3.1. [Informal] Given a Max-k-CSP instance Λ represented in space Φ = O(|P|qk), there
is a message passing Algorithm 3 on constraint graph GΛ with a per iteration update time of O(Φ)
that computes in O(ϵ−4Φ4) iterations an ϵ-approximate solution (solution satisfies constraints to
error ϵ achieving objective value within ϵ of optimum) to SDP 1. For the formal theorem and proof
see Theorem C.1.

5
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3.3 OptGNN for Max-CSP

Next we define OptGNN for Max-CSP. See A and B for OptGNN for Vertex Cover and 3-SAT.
Definition (OptGNN for Max-CSP). Let Λ be a Max-CSP instance on a constraint graph GΛ with N
nodes. Let U be an input matrix of dimension r ×N for N nodes with embedding dimension r. Let
Lρ be the penalized lagrangian loss defined as in equation 6 associated with the Max-CSP instance Λ.
Let M be the OptGNN weights which are a set of matrices M := {M1,M2, ...,MT } ∈ Rr×2r. Let
LAYERMi

: Rr×N → Rr×N be the function LAYERMi
(U) =Mi(AGG(U)), where

AGG : Rr×N → R2r×N is the aggregation function AGG(U) := [U,∇Lρ(U)]. We define
OptGNN(M,Λ) : Rr×N → R to be the function

OptGNN(M,Λ)(U) = Lρ ◦ LAYERMT
◦ · · · ◦ ◦LAYERM1

(U). (7)

The per iteration update time of OptGNN is O(Φrω) where ω is the matrix multiplication exponent.
We update the parameters of OptGNN by inputting the output of the final layer LAYERMT

into the
Lagrangian Lρ and backpropagate its derivatives. We emphasize the data is the instance Λ and not
the collection of vectors U which can be chosen entirely at random. The form of the gradient ∇Lρ is
a message passing algorithm over the nodes of the constraint graph GΛ. Therefore, OptGNN is a
message passing GNN over GΛ (see Definition G). This point is of practical importance as it is what
informs out implementation of the OptGNN architecture. We then arrive at the following corollary.
Corollary 1 (Informal). Given a Max-k-CSP instance Λ represented in space Φ = O(|P|qk), there
is an OptGNN(M,Λ) with T = O(ϵ−4Φ4) layers, and embeddings of dimension Φ such that there is
an instantiation of learnable parameters M = {Mt}t∈[T ] that outputs a set of vectors V satisfying
the constraints of SDP 1 and approximating its optimum to error ϵ. See formal statement 2

Moving on from our result on representing approximation algorithms, we ask whether OptGNN is
learnable. That is to say, does OptGNN approximate the value of SDP 1 when given a polynomial
amount of data? We provide a perturbation analysis to establish the polynomial sample complexity
of PAC-learning OptGNN. The key idea is to bound the smoothness of the polynomial circuit AGG
used in the OptGNN layer which is a cubic polynomial analogous to linear attention. We state the
informal version below. For the formal version see Lemma E.5.
Lemma 3.1 (PAC learning). Let Q be a dataset of Max-k-CSP instances over an alphabet of size [q]
with each instance represented in space Φ. Here the dataset D := Λ1,Λ2, ...,ΛΓ ∼ D is drawn i.i.d
from a distribution over instances D. Let M be a set of parameters M = {M1,M2, ...,MT } in a
parameter space Θ. Then for T = O(ϵ−4Φ4), for Γ = O(ϵ−4Φ6 log4(δ−1)), let M̂ be the empirical
loss minimizing weights for arbitrary choice of initial embeddings U in a bounded norm ball. Then
we have that OptGNN is (Γ, ϵ, δ)-PAC learnable. That is to say the empirical loss minimizer EMP(Q)
is within ϵ from the distributional loss with probability greater than 1− δ:

Pr
[∣∣∣EMP(Q)− EΛ∼D[OptGNN

(M̂,Λ)
(U)]

∣∣∣ ≤ ϵ] ≥ 1− δ.

We note that this style of perturbation analysis is akin to the VC theory on neural networks adapted to
our unsupervised setting. Although it’s insufficient to explain the empirical success of backprop, we
believe our analysis sheds light on how architectures that capture gradient iterations can successfully
generalize.

OptGNN in practice. Figure 1 summarizes the OptGNN pipeline for solving CO problems. OptGNN
computes node embeddings V ∈ RN×r as per equation 7 which feeds into the loss Lρ. For
pseudocode, please refer to the appendix (Max-Cut: algorithm 4 and general SDPs: algorithm 5). We
use Adam (Kingma & Ba, 2014) to update the parameter matrices M . Given a training distribution
D, the network is trained in a completely unsupervised fashion by minimizing EG∼D[L(v;G)] with
a standard automatic differentiation package like PyTorch (Paszke et al., 2019). A practical benefit of
our approach is that users do not need to reimplement the network to handle each new problem. Users
need only implement the appropriate loss, and our implementation uses automatic differentiation to
compute the messages in the forward pass. At inference time, the output embeddings must be rounded
to a discrete solution. To do this, we select a random hyperplane vector y ∈ Rr, and for each node
with embedding vector vi, we calculate its discrete assignment xi ∈ {−1, 1} as xi = sign(v⊤i y). We
use multiple hyperplanes and pick the best resulting solution.

6
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SDP 1 SDP for Max-k-CSP (Equivalent to UGC-optimal)

SDP Vector Formulation Λ = (V,P, {0, 1}).
Multilinear formulation of objective.

min
V

∑
Pz∈P

∑
s⊆z

ws

C(s)
∑

g,g′⊆s:ζ(g,g′)=s

⟨vg, vg′⟩ (8)

subject to: ∥vs∥2 = 1 ∀s ⊆ S(P ), ∀P ∈ P (9)

⟨vg, vg′⟩ = ⟨vh, vh′⟩ ∀ζ(g, g′) = ζ(h, h′) s.t

g ∪ g′ ⊆ S(P ), ∀P ∈ P
(10)

Notation: For a Max-CSP instance Λ, there is a canoni-
cal boolean polynomial representing the objective denoted
P (x1, ..., xN ) =

∑
Pz∈P Pz(X) where Pz is the canonical

polynomial associated to the predicate over the variables z. Con-
versely, for each predicate P ∈ P we let S(P ) denote the
variables in the domain of P . We write out the polynomial Pz

with coefficients {ws}s⊆z as follows Pz =
∑

s⊆z ws

∏
i∈s xi.

We introduce the set notation ζ(A,B) := A ∪ B/A ∩ B and
use C(s) to denote the size of the set {g, g′ ⊆ s : ζ(g, g′) = s}.

Algorithm 1 Message Passing for Max-CSP (informal).
Input: Max-CSP Instance Λ with constraint graph GΛ

v0 ← Uniform(Sn−1) {Initialization on the unit sphere}
for t = 1, 2, . . . , T do

for vti ∈ vt {message passing on the constraint graph} do

vt+1
i ← vti − η

∑
e,e′∈E(i)

∂Yρ(e
t, e′t)

∂vti

end for
end for
Output: vector solution vt for SDP 1
Notation: Lρ(V ) can be written as the sum of functions
across pairs of edges in the constraint graph GΛ i.e Lρ(V ) =∑

i∈V

∑
e,e′∈E(i) Yρ(e, e

′) where E(i) is the set of edges in-
volving vertex i, and e denotes the vector embeddings of its two
corresponding vertices. For analytic form of the messages see
algorithm 3

Obtaining neural certificates. We
construct dual certificates of optimal-
ity from the output embeddings of
OptGNN. The certificates provide a
bound on the optimal solution of the
SDP. The key idea is to estimate
the dual variables of SDP 1. Since
we use a quadratic penalty for con-
straints, the natural dual estimate is
one step of the augmented method of
Lagrange multipliers on the SDP solu-
tion which can be obtained straightfor-
wardly from the primal problem vari-
ables V . We then analytically bound
the error in satisfying the KKT condi-
tions of SDP 1. See C.1 for deriva-
tions and extended discussion, and
Figure 3 for an experimental demon-
stration.

Adaptation to Data vs. Theoreti-
cal Result. The theory result con-
cerns worst case optimality where the
embedding dimension is as large as
N . In practice we deploy OptGNN
with varying choices of the embed-
ding dimension to obtain the best per-
formance. For low dimensional em-
beddings, the corresponding low rank
SDP objective is NP-hard to optimize.
As such, training OptGNN is like
training any other GNN for CO in that
the weights adapt to the data. This is
highlighted in our experiments where
OptGNN generally outperforms SDP
solvers.

4 Experiments

First, we provide a comprehensive
experimental evaluation of the Opt-
GNN pipeline on several problems
and datasets and compare it against

heuristics, solvers, and neural baselines. We then describe a model ablation study, an out-of-
distribution performance (OOD) study, and an experiment with our neural certification scheme. We
empirically test the performance of OptGNN on NP-Hard combinatorial optimization problems:
Maximum Cut, Minimum Vertex Cover, and Maximum 3-SAT. We obtain results for several datasets
and compare against greedy algorithms, local search, a state-of-the-art MIP solver (Gurobi), and
various neural baselines. For Max-3-SAT and Min-Vertex-Cover we adopt the quadratically penalized
Lagrangian loss of their respective SDP relaxations. For details of the setup see Appendix D.

Min-Vertex-Cover experiments. We evaluated OptGNN on forced RB instances, which are hard
vertex cover instances from the RB random CSP model that contain hidden optimal solutions (Xu
et al., 2007). We use two distributions specified in prior work (Wang & Li, 2023), RB200 and RB500.
The results are in Figure 2b, which also includes the performance of several neural and classical
baselines as reported in (Wang & Li, 2023; Brusca et al., 2023). OptGNN consistently outperforms
state-of-the-art unsupervised baselines on this task and is able to match the performance of Gurobi
with a 0.5s time limit.
Max-3-SAT experiment and ablation. The purpose of this experiment is twofold: to demonstrate the
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Table 1: Performance of OptGNN, Greedy, and Gurobi 0.1s, 1s, and 8s on Maximum Cut. For each
approach and dataset, we report the average cut size measured on the test slice. Here, higher score is
better. In parentheses, we include the average runtime in milliseconds for OptGNN.

Dataset OptGNN Greedy Gurobi Gurobi
0.1s 1.0s

BAa (400,500) 2197.99 (66) 1255.22 2208.11 2208.11
ERa (400,500) 16387.46 (225) 8622.34 16476.72 16491.60
HKa (400,500) 2159.90 (61) 1230.98 2169.46 2169.46
WCa (400,500) 1166.47 (78) 690.19 1173.45 1175.97

ENZYMESb 81.37 (14) 48.53 81.45 81.45
COLLABb 2622.41 (22) 1345.70 2624.32 2624.57

REDDIT-M-12Kc 568.00 (89) 358.40 567.71 568.91
REDDIT-M-5Kc 786.09 (133) 495.02 785.44 787.48

Table 2: Average number of unsatisfied clauses for Max-3-SAT on random instances with N = 100
variables and clause ratios r = 4.00, 4.15, 4.30. Standard deviation of the ratio over the test set is
reported in superscript. In parentheses, we report the average time per instance on the test set in
seconds.

Dataset r = 4.00 r = 4.15 r = 4.30

ErdősGNN 5.46±1.91 (0.01) 6.14±2.01 (0.01) 6.79±2.03 (0.01)

Walksat (100 restarts) 0.14±0.36 (0.12) 0.36±0.52 (0.25) 0.68±0.65 (0.40)
Walksat (1 restart) 0.94±0.92 (0.01) 1.46±1.11 (0.01) 1.97±1.28 (0.01)
Survey Propagation 3.32±0.81 (0.001) 3.87±0.79 (0.001) 3.94 ±0.93 (0.001)

OptGNN 4.46±1.68 (0.01) 5.15±1.76 (0.01) 5.84±2.18 (0.01)

Autograd SDP 6.85±2.33 (6.80) 7.52±2.38 (6.75) 8.32±2.50 (6.77)
Low-Rank SDP ((Wang & Kolter, 2019)) 12.38±1.06(0.66) 13.32±1.09 (0.67) 14.27±1.08 (0.69)

viability of OptGNN on the Max-3-SAT problem and to examine the role of overparameterization in
OptGNN. We generate 3-SAT formulae on the fly with 100 variables and a random number of clauses
in the [400, 430] interval, and train OptGNN for 100,000 iterations. We then test on instances with
100 variables and {400, 415, 430} clauses. The results are Table 2. We compare with WalkSAT, a
classic local search algorithm for SAT, a low-rank SDP solver (Wang et al., 2019), Survey Propagation
(Braunstein et al., 2005), and ErdosGNN Karalias & Loukas (2020), a neural baseline trained in the
same way. We also compare with a simple baseline reported as “Autograd” that directly employs
gradient descent on the penalized Lagrangian using the autograd functionality of Pytorch. For details
see D.2. OptGNN is able to outperform ErdősGNN consistently and improves significantly over
Autograd, which supports the overparameterized message passing of OptGNN. OptGNN performs
better than the low-rank SDP solver, though does not beat WalkSAT/Survey Prop. It is worth noting
that the performance of OptGNN could likely be further improved without significant computational
cost by applying a local search post-processing step to its solutions but we did not pursue this further
in order to emphasize the simplicity of our approach.

Max-Cut experiments. Table 1 presents a comparison between OptGNN, a greedy algorithm, and
Gurobi for Max-Cut. OptGNN clearly outperforms greedy on all datasets and is competitive with
Gurobi when Gurobi is restricted to a similar runtime. For results on more datasets see subsection D.3.
Following the experimental setup of ANYCSP Tönshoff et al. (2022), we also tested OptGNN on
the GSET benchmark instances (Benlic & Hao, 2013). We trained an OptGNN for 20k iterations
on generated Erdős-Renyi graphs Gn,p for n ∈ [400, 500] and p = 0.15. Figure 2a shows the results.
We have included an additional low-rank SDP baseline to the results, while the rest of the baselines
are reproduced as they appear in the original ANYCSP paper. These include state-of-the-art neural
baselines, the Goemans-Williamson algorithm, and a greedy heuristic. We can see that OptGNN
outperforms the SDP algorithms and the greedy algorithm, while also being competitive with the
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0 100 200 300 400 500 600 700 800
Mean deviation from known optimal (number of edges; lower is better)

Greedy

SDP

Low-Rank SDP

RUNCSP

ECO-DQN

ECORD

ANYCSP

OptGNN
N = 800
N = 1000
N = 2000 (NA shown as 0)
N 3000 (NA shown as 0)

(a) Comparison on GSET Max-Cut instances against state-of-the-art neural baselines. Numbers
reported are the mean (over the graphs in the test set) deviations from the best-known Max-Cut values,
reported in Benlic & Hao (2013).

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14
Approximation ratio (values closer to 1 are better)

CMP

Erd sGNN

Meta-EGN

RUN-CSP

Greedy MVC

Gurobi (0.5s)

Gurobi (1s)

Gurobi (5s)

OptGNN
RB200
RB500

(b) Average approximation ratio and standard deviation over the test set for vertex covers on forced
RB instances. A ratio of 1.000 represents finding the minimum vertex cover.

Figure 2: Results for Max-Cut and Minimum Vertex Cover.

neural baselines. However, OptGNN does not manage to outperform ANYCSP, which to the best of
our knowledge achieves the current state-of-the-art results for neural networks.

Out of distribution generalization. We test OptGNN’s ability to perform on data distributions
(for the same optimization problem) that it’s not trained on. The results can be seen in table 7 and
subsection D.6. The results show that the model is capable of performing well even on datasets it has
not been trained on.
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Figure 3: Experimental comparison of SDP versus
OptGNN Dual Certificates on random graphs of
100 nodes for the Max-Cut problem. Our OptGNN
certificates track closely with the SDP certificates
while taking considerably less time to generate.

Model ablation. We train modern GNN archi-
tectures from the literature with the same loss
function and compare them against OptGNN.
Please see Appendix D.4 for more details and
results on multiple datasets for two different
problems. Overall, OptGNN is the best perform-
ing model on both problems across all datasets.

Experimental demonstration of neural cer-
tificates. Next, we provide a simple experi-
mental example of our neural certificate scheme
on small synthetic instances. Deploying this
scheme on Max-Cut on random graphs, we find
this dual certificate to be remarkably tight. fig-
ure 3 shows an example. For 100 node graphs
with 1000 edges our certificates deviate from the
SDP certificate by about 20 nodes but are dra-
matically faster to produce. The runtime is dom-
inated by the feedforward of OptGNN which
is 0.02 seconds vs. the SDP solve time which
is 0.5 seconds on cvxpy. See C.1 for extensive
discussion and additional results.

5 Conclusion

We presented OptGNN, a GNN that can capture provably optimal message passing algorithms for a
large class of combinatorial optimization problems. OptGNN achieves the appealing combination of
obtaining approximation guarantees while also being able to adapt to the data to achieve improved
results. Empirically, we observed that the OptGNN architecture achieves strong performance on a
wide range of datasets and on multiple problems. OptGNN opens up several directions for future
exploration, such as the design of powerful rounding procedures that can secure approximation
guarantees, the construction of neural certificates that improve upon the ones we described in
Appendix C.1, and the design of neural SDP-based branch and bound solvers.
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A Min-Vertex-Cover OptGNN

Min-Vertex-Cover can be written as the following integer program

Minimize:
∑
i∈[N ]

1 + xi
2

(11)

Subject to: (1− xi)(1− xj) = 0 ∀(i, j) ∈ E (12)

x2i = 1 ∀i ∈ [N ] (13)

To deal with the constraint on the edges (1 − xi)(1 − xj) = 0, we add a quadratic penalty to the
objective with a penalty parameter ρ > 0 yielding

Minimize:
∑
i∈[N ]

1 + xi
2

+ ρ
∑

(i,j)∈E

(1− xi − xj + xixj)
2 (14)

Subject to: x2i = 1 ∀i ∈ [N ] (15)

Analogously to Max-Cut, we adopt a natural low rank vector formulation for vectors v = {vi}i∈[N ]

in r dimensions.

Minimize:
∑
i∈[N ]

1 + ⟨vi, v∅⟩
2

+ ρ
∑

(i,j)∈E

(1− ⟨vi, v∅⟩ − ⟨vj , v∅⟩+ ⟨vi, vj⟩)2 (16)

Subject to: ∥vi∥ = 1 vi ∈ Rr ∀i ∈ [N ] (17)

Now we can design a simple projected gradient descent scheme as follows. For iteration t in max
iterations T , and for vector vi in v we perform the following update.

v̂t+1
i := vti − η

(
v∅ + 2ρ

∑
j∈N(i)

(1− ⟨vti , v∅⟩ − ⟨vtj , v∅⟩+ ⟨vti , vtj⟩)(−v∅ + vtj)
)

(18)

vt+1
i :=

v̂t+1
i

∥v̂t+1
i ∥

(19)

We can then define a OptGNN(M,G) analogously with learnable matrices M = {Mt}t∈[T ] ∈ Rr×2r

which are each sets of T learnable matrices corresponding to T layers of neural network. Let the
message from node vj to node vi be

MESSAGE[vj → vi] := 2ρ(1− ⟨vti , v∅⟩ − ⟨vtj , v∅⟩+ ⟨vti , vtj⟩)(−v∅ + vtj)
)

Let the aggregation function AGG be defined as

AGG({vtj}j∈N(i)) :=

[
vti∑

j∈N(i) MESSAGE[vj → vi]

]
Then for layer t in max iterations T , for vi in v, we have

v̂t+1
i :=M

(
AGG(vti)

)
(20)

vt+1
i :=

v̂t+1
i

∥v̂t+1
i ∥

(21)

This approach can be straightforwardly adopted to compute the maximum clique and the maximum
independent set.
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B Max-3-SAT OptGNN

Our formulation for Max 3-SAT directly translates the OptGNN architecture from Definition 3.3. Let
Λ be a 3-SAT instance with a set of clauses P over a set of binary literals V = {x1, x2, ..., xN} ∈
{−1, 1}. Here −1 corresponds to assigning the literal to False whilst 1 corresponds to True. Each
clause Pz ∈ P can be specified by three literals (xi, xj , xk) and a set of three ’tokens’ (τi, τj , τk) ∈
{−1, 1}3 which correspond to whether the variable xi, xj , xk are negated in the clause. For instance
the clause (x1 ∨ ¬x2 ∨ x3) is translated into three literals (x1, x2, x3) and tokens (1,−1, 1).
The 3-SAT problem on instance Λ is equivalent to maximizing the following polynomial∑

(xi,xj ,xk,τi,τj ,τk)∈P

(
1− 1

8
(1 + τixi)(1 + τjxj)(1 + τkxk)

)
(22)

Subject to the constraint x1, x2, ..., xN ∈ {1,−1}. Now we’re reading to define the OptGNN for
3-SAT

Objective: First we define the set of vector embeddings. For every literal xi we associate an
embedding vi ∈ Rr. For every pair of literals that appear in a clause (xi, xj) we associate a variable
vij ∈ Rr. Finally we associate a vector v∅ to represent 1. Then the unconstrained objective SAT is
defined as

SAT(Λ) :=
∑

(xi,xj ,xk,τi,τj ,τk)∈P

1

8

(
− τiτjτk

1

3
[⟨vi, vjk⟩+ ⟨vj , vik⟩+ ⟨vk, vij⟩]

− τiτj
1

2
[⟨vi, vj⟩+ ⟨vij , v∅⟩]− τiτk

1

2
[⟨vi, vk⟩+ ⟨vik, v∅⟩]− τjτk

1

2
[⟨vj , vk⟩+ ⟨vjk, v∅⟩]

− τi⟨vi, v∅⟩ − τj⟨vj , v∅⟩ − τk⟨vk, v∅⟩+ 7

)
(23)

Constraints: The constraints are then as follows. For every clause involving variables (xi, xj , xk)
we impose the following constraints on vi, vj , vk, vij , vik, vjk and v∅. Note that these constraints
are exactly the ones listed in algorithm 2 which we organize here for convenience. The naming
convention is the degree of the polynomial on the left to the degree of the polynomial on the right.

1. pair-to-pair
⟨vi, vj⟩ = ⟨vij , v∅⟩ (24)
⟨vi, vk⟩ = ⟨vik, v∅⟩ (25)
⟨vj , vk⟩ = ⟨vjk, v∅⟩ (26)

2. triplets-to-triplet
⟨vij , vk⟩ = ⟨vik, vj⟩ = ⟨vjk, vi⟩ (27)

3. triplet-to-single
⟨vi, vij⟩ = ⟨vj , v∅⟩ (28)
⟨vj , vij⟩ = ⟨vi, v∅⟩ (29)
⟨vj , vjk⟩ = ⟨vk, v∅⟩ (30)
⟨vk, vjk⟩ = ⟨vj , v∅⟩ (31)
⟨vi, vik⟩ = ⟨vk, v∅⟩ (32)
⟨vk, vik⟩ = ⟨vi, v∅⟩ (33)

(34)
4. quad-to-pair

⟨vij , vjk⟩ = ⟨vi, vk⟩ (35)
⟨vij , vik⟩ = ⟨vj , vk⟩ (36)
⟨vik, vjk⟩ = ⟨vi, vj⟩ (37)

(38)
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5. unit norm

∥vi∥ = ∥vj∥ = ∥vk∥ = ∥vij∥ = ∥vik∥ = ∥vjk∥ = ∥v∅∥ = 1 (39)

Then for completeness we write out the full penalized objective. We perform this exercise in such
great detail to inform the reader of how this could be set up for other Max-CSP’s.
Definition (OptGNN for 3-SAT). Let Λ be a 3-SAT instance. Let Lρ be defined as

Lρ(V ) :=
∑

(xi,xj ,xk,τi,τj ,τk)∈P

[
− 1

8

(
− τiτjτk

1

3
[⟨vi, vjk⟩+ ⟨vj , vik⟩+ ⟨vk, vij⟩]

− τiτj
1

2
[⟨vi, vj⟩+ ⟨vij , v∅⟩]− τiτk

1

2
[⟨vi, vk⟩+ ⟨vik, v∅⟩]− τjτk

1

2
[⟨vj , vk⟩+ ⟨vjk, v∅⟩]

− τi⟨vi, v∅⟩ − τj⟨vj , v∅⟩ − τk⟨vk, v∅⟩+ 7

)
+ ρ

[
(⟨vi, vj⟩ − ⟨vij , v∅⟩)2 + (⟨vi, vk⟩ − ⟨vik, v∅⟩)2 + (⟨vj , vk⟩ − ⟨vjk, v∅⟩)2

]
+ ρ

[
(⟨vij , vk⟩ − ⟨vik, vj⟩)2 + (⟨vik, vj⟩ − ⟨vjk, vi⟩)2 + (⟨vjk, vi⟩ − ⟨vij , vk⟩)2

]
+ ρ

[
(⟨vij , vjk⟩ − ⟨vi, vk⟩)2 + (⟨vij , vik⟩ − ⟨vj , vk⟩)2 + (⟨vik, vjk⟩ − ⟨vi, vj⟩)2

]
ρ
[
(⟨vi, vij⟩ − ⟨vj , v∅⟩)2 + (⟨vj , vij⟩ − ⟨vi, v∅⟩)2 + (⟨vj , vjk⟩ − ⟨vk, v∅⟩)2 + (⟨vk, vjk⟩ − ⟨vj , v∅⟩)2

+ (⟨vi, vik⟩ − ⟨vk, v∅⟩)2 + (⟨vk, vik⟩ − ⟨vi, v∅⟩)2
]

+ρ
[
(∥vi∥ − 1)2 + (∥vj∥ − 1)2 + (∥vk∥ − 1)2 + (∥vij∥ − 1)2 + (∥vik∥ − 1)2 + (∥vjk∥ − 1)2 + (∥v∅∥ − 1)2

]]
(40)

Then taking the gradient of L gives us the precise form of the message passing. We list the forms of
the messages from adjacent nodes in the constraint graph GΛ.

Message: Pair to Singles for Single in Pair. This is the message MESSAGE[vij → vi] for each
pair node vij to a single vi node.

MESSAGE[vij → vi] = |{c ∈ P : xi, xj ∈ c}|2ρ(⟨vi, vij⟩ − ⟨vj , v∅⟩)vij (41)

Message: Pair to Singles for Single not in Pair. This is the message MESSAGE[vij → vk] for
each pair node vij to a single vk node.

MESSAGE[vij → vk] =
∑

c∈P:(xi,xj ,xk)∈c

[
− 1

8

(
− τiτjτk

1

3
vij

)

+ 2ρ [(⟨vk, vij⟩ − ⟨vi, vjk⟩)vij + (⟨vi, vjk⟩ − ⟨vk, vij⟩)(−vij)]

]
(42)

Message: Single to Pair for Single in Pair. This is the message MESSAGE[vi → vij ] for each
single node vi to a pair vk

MESSAGE[vi → vij ] = |{c ∈ P : xi, xj ∈ c}|2ρ(⟨vi, vij⟩ − ⟨vj , v∅⟩)vi (43)

Message: Single to Pair for Single not in Pair. This is the message MESSAGE[vij → vk] for
each pair node vij to a single vk node.

MESSAGE[vij → vk] =
∑

c∈P:(xi,xj ,xk)∈c

[
− 1

8

(
− τiτjτk

1

3
vk

)
(44)

+2ρ [(⟨vk, vij⟩ − ⟨vi, vjk⟩)vk + (⟨vk, vij⟩ − ⟨vj , vik⟩)vk]

]
(45)
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Message: Single to Single This is the message MESSAGE[vi → vj ] for each single node vi to a
single vj node.

MESSAGE[vi → vj ] =
∑

c∈P:(xi,xj ,xk)∈c

[
− 1

8

(
− τiτj

1

2
vi

)
(46)

+2ρ [(⟨vi, vj⟩ − ⟨vij , v∅⟩)vi + (⟨vik, vjk⟩ − ⟨vi, vj⟩)(−vi)]

]
(47)

Message: Pair to Pair This is the message MESSAGE[vij → vjk] for each pair node vij to a pair
vjk node.

MESSAGE[vij → vjk] = |{c ∈ P : xi, xj , xk ∈ c}|2ρ [(⟨vij , vjk⟩ − ⟨vi, vk⟩)vij ] (48)
Then the OptGNN(M,GΛ) is defined with the following functions UPDATE, AGGREGATE, and
NONLINEAR. For any node v, the OptGNN update is

AGGREGATE({vζ}ζ∈N(v)) :=
∑

vζ∈N(v)

MESSAGE[vζ → v] (49)

UPDATE(v) =M

([
v

AGGREGATE({vζ}ζ∈N(v))

])
(50)

NONLINEAR(v) =
v

∥v∥
(51)

Finally, we note that many of the signs in the forms of messages could have been chosen differently
i.e ⟨vi, vj⟩ − ⟨vij , v∅⟩ produces different gradients from ⟨vij , v∅⟩ − ⟨vi, vj⟩. We leave small choices
like this to the reader.

C Optimality of Message Passing for Max-CSP

Our primary theoretical result is that a polynomial time message passing algorithm on an appropriately
defined constraint graph computes the approximate optimum of SDP 2 which is notable for being an
SDP that achieves the Unique Games optimal integrality gap.

Our proof roadmap is simple. First, we design an SDP relaxation SDP 2 for Max-k-CSP that
is provably equivalent to the SDP of Raghavendra (2008) and therefore inherits its complexity
theoretic optimality. Finally, we design a message passing algorithm to approximately solve SDP 2
in polynomial time to polynomial precision. Our message passing algorithm has the advantage of
being formulated on an appropriately defined constraint graph. For a Max-k-CSP instance Λ with N
variables, |P| predicates, over an alphabet of size q, it takes |P|qk space to represent the Max-CSP.
To declutter notation, we let Φ be the size of the Max-CSP which is equal to |P|qk . Our message
passing algorithm achieves an additive ϵ approximation in time poly(ϵ−1,Φ, log(δ−1)) which is then
polynomial in the size of the CSP and inverse polynomial in the precision.

Here we briefly reiterate the definition of Max-k-CSP. A Max-k-CSP instance Λ = (V,P, q) con-
sists of a set of N variables V := {xi}i∈[N ] each taking values in an alphabet [q] and a set of
predicates P := {Pz}z⊂V where each predicate is a payoff function over k variables denoted
z = {xi1 , xi2 , ..., xik}. Here we refer to k as the arity of the Max-k-CSP, and we adopt the normal-
ization that each predicate Pz returns outputs in [0, 1]. We index each predicate Pz by its domain z
and we will use the notation S(P ) to denote the domain of a predicate P . The goal of Max-k-CSP is
to maximize the payoff of the predicates.

max
(x1,...,xN )∈[q]N

1

|P|
∑
Pz∈P

Pz(Xz) (52)

Where Xz denotes the assignment of variables {xi}i∈z .

There is an SDP relaxation of equation 52 that is the "qualitatively most powerful assuming the
Unique Games conjecture" Raghavendra (2008). More specifically, the integrality gap of the SDP
achieves the Unique Games optimal approximation ratio. Furthermore, there exists a rounding that
achieves its integrality gap.
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SDP Reformulation: Next we will introduce the SDP formulation we adopt in this paper. For
the sake of exposition and notational simplicity, we will work with binary Max-k-CSP’s where
q = {0, 1}. The extension to general q is straightforward and detailed in the appendix.

We will adopt the standard pseudoexpectation and pseudodistribution formalism in describing our
SDP. Let Ẽµ[x] be a matrix in dimension R(N+1)d/2×(N+1)d/2 of optimization variables defined as
follows

Ẽµ[x] := Ẽµ[(1, x1, x2, ..., xN )⊗d/2
(
(1, x1, x2, ..., xN )⊗d/2

)T
] (53)

Where we use ⊗ to denote tensor product. It is convenient to think of Ẽµ[x] as a matrix of variables
denoting the up to d multilinear moments of a distribution µ over the variables V . A multilinear
polynomial is a polynomial of the form Xϕ :=

∏
i∈ϕ xi for some subset of the variables ϕ ⊆ V . We

index the variables of the matrix Ẽµ[x] by the multilinear moment that it represents. Notice that this
creates repeat copies as their are multiple entries representing the same monomial. This is dealt with
by constraining the repeated copies to be equal with linear equality constraints.

Specifically, let z be a subset of the CSP variables z ⊂ {xi}i∈[N ] of size k. Let Xz denote the
multilinear moment Xz :=

∏
i∈z xi. Then Ẽµ[Xz] denotes the SDP variable corresponding to

the multilinear moment Eµ[Xz]. Of course optimizing over the space of distributions µ over V is
intractable, and so we opt for optimizing over the space of low degree pseudodistributions and their
associated pseudoexpecation functionals. See Barak & Steurer (2014) for references therein.

In particular, for any subset of variables Xz := {xi1 , ..., xik} ∈ V we let Ẽµ[x]
∣∣
z,d

denote the matrix
of the up to degree up to d multilinear moments of the variables in z.

Ẽµ[x]
∣∣
z,d

:= Ẽµ[(1, xi1 , xi2 , ..., xik)
⊗d/2

(
(1, xi1 , xi2 , ..., xik)

⊗d/2
)T

] (54)

We refer to the above matrix as a degree d pseudoexpectation funcitonal over Xz . Subsequently, we
describe a pseudoexpectation formulation of our SDP followed by a vector formulation.

Multilinear Formulation: A predicate for a boolean Max-k-CSP Pz(Xz) can be written as a
multilinear polynomial

Pz(Xz) :=
∑

τ=(τ1,...,τk)∈{−1,1}k

wz,τ

∏
xi∈z

1 + τixi
2

:=
∑
s⊆z

ysXs (55)

For some real valued weights wz,τ and ys which are simply the fourier coefficients of the function
Pz . Then the pseudoexpectation formulation of our SDP is as follows

max
Ẽµ[x]

1

|P|
∑
Pz∈P

Ẽµ[Pz(Xz)] (56)

subject to the following constraints

1. Unit: Ẽµ[1] = 1, Ẽµ[x
2
i ] = 1 for all xi ∈ V , and Ẽµ[

∏
i∈s x

2
i

∏
j∈s′ xj ] = Ẽµ[

∏
j∈s′ xj ]

for all s, s′ ⊆ S(P ) for every predicate P ∈ P such that 2s+ s′ ≤ k. In expectation, the
squares of all multilinear polynomials are equal to 1.

2. Positive Semidefinite: Ẽµ[x]|V,2 ⪰ 0 i.e the degree two pseudoexpectation is positive
semidefinite. Ẽµ[x]

∣∣
z,2k
⪰ 0 for all z = S(P ) for all P ∈ P . The moment matrix for the

multilinear polynomials corresponding to every predicate is positive semidefinite.

Equivalently we can view the SDP in terms of the vectors in the cholesky decomposition of Ẽµ[x].
We rewrite the above SDP accordingly. For this purpose it is useful to introduce the notation
ζ(A,B) := A ∪ B/A ∩ B. It is also useful to introduce the notation C(s) for the size of the set
{g, g′ ⊆ s : ζ(g, g′) = s}.
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SDP 2 SDP for Max-k-CSP (Equivalent to UGC-optimal)

SDP Vector Formulation Λ = (V,P, {0, 1}). Multilinear formulation of objective.

min
1

|P|
∑

Pz⊂P
Ẽµ[−Pz(Xz)] :=

∑
Pz∈P

∑
s⊆z

ws
1

|C(s)|
∑

g,g′⊆s:ζ(g,g′)=s

⟨vg, vg′⟩ (57)

subject to: ∥vs∥2 = 1 ∀s ⊆ S(P ), ∀P ∈ P (58)

Ẽµ[Xζ(g,g′)] := ⟨vg, vg′⟩
= ⟨vh, vh′⟩ ∀ζ(g, g′) = ζ(h, h′) s.t g ∪ g′ ⊆ S(P ), ∀P ∈ P (59)

First constraint is the square of multilinear polynomials are unit.
Second constraint are degree 2k SoS constraints for products of multilinear polynomials.

Lemma C.1. For Max-k-CSP instance Λ, The SDP of SDP 2 is at least as tight as the SDP of
Raghavendra (2008).

Proof. The SDP of Raghavendra (2008) is a degree 2 SoS SDP augmented with k-local distributions
for every predicate P ∈ P . By using the vectors of the cholesky decomposition and constraining
them to be unit vectors we automatically capture degree 2 SoS. To capture k local distributions we
simply enforce degree 2k SoS on the boolean hypercube for the domain of every predicate. This
can be done with the standard vector formulation written in SDP 2. See Barak & Steurer (2014) for
background and references.

Moving forward, the goal of Algorithm 3 is to minimize the loss Lρ(v) which is a function of the
Max-CSP instance Λ.

Lρ(v) =
1

|P|

[ ∑
Pz∈P

∑
s⊆z

ys
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

s.t ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2

+
∑
vs∈v

(∥vs∥2 − 1)2

]]
(60)

The loss Lρ has gradient of the form

∂Lρ(v)

∂vw
=

1

|P|

[ ∑
Pz∈P

s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

vw′

+ 2ρ

[ ∑
Pz∈P

s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

(
⟨vw, vw′⟩ − ⟨vh, vh′⟩

)
v′w

+ (∥vw∥2 − 1)vw

]]
(61)

Noticing that the form of the gradient depends only on the vectors in the neighborhood of the
constraint graph GΛ we arrive at our message passing algorithm. The key to our proof is bounding
the number of iterations required to optimize equation 60 to sufficient accuracy to be an approximate
global optimum of SDP 2.
Theorem C.1. Algorithm 3 computes in O(ϵ−4Φ4 log(δ−1)) iterations a set of vectors v := {v̂s}
for all s ⊆ S(P ) for all P ∈ P that satisfy the constraints of SDP 2 to error ϵ and approximates the
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Algorithm 3 Message Passing for Max-CSP

1: Inputs: Max-CSP instance Λ
2: n← Φ log(δ−1)
3: η, ψ, σ ← n−2 {Initialize step size, noise threshold, and noise

variance}
4: v0 = {vs}s⊆z:Pz∈P ← Uniform(Sn−1) {Initialize vectors to uniform on the unit sphere}
5: for t ∈ [O(ϵ−4Φ4 log(δ−1))] do
6: for vtw ∈ vt {Iterate over vectors and update each vector with neighboring vectors in constraint

graph} do
7:

vt+1
w ← vtw − η

1

|P|

[ ∑
Pz∈P

s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

vtw′ (62)

+ 2ρ

[ ∑
Pz∈P

s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

(
⟨vtw, vtw′⟩ − ⟨vth, vth′⟩

)
v′tw + (∥vtw∥2 − 1)vtw

]]

8: if ∥vt+1
w − vtw∥ ≤ ψ then

9: ζ ← N(0, σI)
10: else
11: ζ ← 0
12: end if
13: vt+1

w ← vt+1
w + ζ

14: end for
15: end for
16: return vt

17: Output: vectors corresponding to solution to SDP 2

optimum of SDP 2 to error ϵ with probability 1− δ∣∣ ∑
Pz∈P

Ẽµ̂[Pz(Xz)]− SDP(Λ)
∣∣ ≤ ϵ

where SDP(Λ) is the optimum of SDP 2.

Proof. We begin by writing down the objective penalized by a quadratic on the constraints.

Lρ(v) :=
1

|P|

[ ∑
Pz∈P

Ẽµ[Pz(Xz)]

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

s.t ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2
+
∑
vs∈v

(∥vs∥2 − 1)2

]]
(63)

For any monomial Xs =
∏

i∈s xi in Pz(Xz) we write

Ẽµ[Xs] :=
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩ (64)

Where C(s) is the size of the set {g, g′ ⊆ s : ζ(g, g′) = s}. In a small abuse of notation, we regard
this as the definition of Ẽµ[Xs] but realize that we’re referring to the iterates of the algorithm before
they’ve converged to a pseudoexpectation. Now recall equation 55, we can expand the polynomial
Pz(Xz) along its standard monomial basis
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Pz(Xz) =
∑
s⊆z

ysXs (65)

where we have defined coefficients ys for every monomial in Pz(Xz). Plugging equation 64 and
equation 65 into equation 63 we obtain

Lρ(v) =
1

|P|

[ ∑
Pz∈P

∑
s⊆z

ys
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

s.t ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2

+
∑
vs∈v

(∥vs∥2 − 1)2

]]
(66)

Taking the derivative with respect to any vw ∈ v we obtain

∂Lρ(v)

∂vw
=

1

|P|

[ ∑
Pz∈P

s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

vw′

+ 2ρ

[ ∑
Pz∈P

s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

(
⟨vw, vw′⟩ − ⟨vh, vh′⟩

)
v′w

+ (∥vw∥2 − 1)vw

]]
(67)

The gradient update is then what is detailed in Algorithm 3

vt+1
w = vtw − η

∂Lρ(v)

∂vw
(68)

Thus far we have established the form of the gradient. To prove the gradient iteration converges we
reference the literature on convergence of perturbed gradient descent (Jin et al., 2017) which we
rewrite in Theorem F.1. First we note that the SDP 2 has ℓ smooth gradient for ℓ ≤ poly(ρ,B) and
has γ lipschitz Hessian for γ = poly(ρ,B) which we arrive at in Lemma E.2 and Lemma F.1. The
proofs of Lemma E.2 and Lemma F.1 are technically involved and form the core hurdle in arriving at
our proof.

Then by Theorem F.1 the iteration converges to an (ϵ′, γ2)-SOSP Definition F.1 in no more than
Õ( 1

ϵ′2 ) iterations with probability 1− δ. Now that we’ve established that the basic gradient iteration
converges to approximate SOSP, we need to then prove that the approximate SOSP are approximate
global optimum. We achieve this by using the result of Bhojanapalli et al. (2018) lemma 3 which we
restate in Lemma C.2 for convenience.

The subsequent presentation adapts the proof of Lemma C.2 to our setting. To show that (ϵ′, γ2)-
SOSP are approximately global optimum, we have to work with the original SDP loss as opposed to
the nonconvex vector loss. For subsequent analysis we need to define the penalized loss which we
denoteHρ(Ẽ[x]) in terms of the SDP moment matrix Ẽ[x].

Hρ(Ẽ[x]) :=
1

|P|

[ ∑
Pz∈P

Ẽµ̂[Pz(Xz)]

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

s.t ζ(g,g′)=ζ(h,h′)

(
Ẽµ̂[Xζ(g,g′)]− Ẽµ̂[Xζ(h,h′)]

)2
+

∑
Xs s.t s⊂S(P )
|s|≤k,∀P∈P

(Ẽµ̂[X
2
s ]− 1)2

]]
(69)
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Here we use the notation Ẽµ̂[Xζ(g,g′)] and Ẽµ̂[Xζ(h,h′)] to denote ⟨vg, v′g⟩ and ⟨vh, v′h⟩ respectively.
Note that although by definitionHρ(Ẽ[x]) = Lρ(v) , their gradients and hessians are distinct because
Lρ(v) is overparameterized. This is the key point. It is straightforward to argue that SOSP of a
convex optimization are approximately global, but we are trying to make this argument for SOSP of
the overparameterized loss Lρ(v).

Let the global optimum of SDP 2 be denoted Ẽµ̃[x̃] with a cholesky decomposition ṽ. Let v̂ be the
set of vectors outputted by Algorithm 3 with associated pseudoexpectation Ẽµ̂[x̂]. Then, we can
bound

Lρ(v̂)− Lρ(ṽ) = Hρ(Ẽ[x̂])−Hρ(Ẽ[x̃]) ≤
〈
∇Hρ(Ẽ[x̂]), Ẽ[x̂]− Ẽ[x̃]

〉
(70)

Here the first equality is by definition, and the inequality is by the convexity ofHρ. Moving on, we
use the fact that the min eigenvalue of the hessian of overparameterized loss ∇2Lρ(v̂) ⪰ −γ

√
ϵ′

implies the min eigenvalue of the gradient of the convex loss λmin(∇Hρ(Ẽ[x̂])) ≥ −γ
√
ϵ′. This

fact is invoked in Bhojanapalli et al. (2018) lemma 3 which we adapt to our setting in Lemma C.2.
Subsequently, we adapt the lines of their argument in Lemma C.2 most relevant to our analysis which
we detail here for the sake of completeness.

70 ≤ −λmin(∇Hρ(Ẽ[x̂])) Tr(Ẽ[x̂])−
〈
∇Hρ(Ẽ[x̂]), Ẽ[x̃]

〉
≤ −λmin(∇Hρ(Ẽ[x̂])) Tr(Ẽ[x̂]) + ∥∇Hρ(Ẽ[x̂])∥F ∥Ẽ[x̃]∥F

≤ γ
√
ϵ′ Tr(Ẽ[x]) + ϵ′∥ṽ∥F ≤ γ

√
ϵ′Φ+ ϵ′Φ ≤ ϵ

(71)
Here the first inequality follows by a standard inequality of frobenius inner product, the second
inequality follows by Cauchy-Schwarz, the third inequality follows by the (ϵ′, γ2)-SOSP conditions
on both the min eigenvalue of the hessian and the norm of the gradient, the final two inequalities
follow from knowing the main diagonal of Ẽ[x̂] is the identity and that every vector in ṽ is a unit
vector up to inverse polynomial error poly(ρ−1, 2k). For this last point see the proof in Lemma E.1.
Therefore if we set ϵ′ = poly(ϵ, 2−k) we arrive at any ϵ error. Therefore we have established
our estimate v̂ is approximates the global optimum of the quadratically penalized objective i.e
Hρ(Ẽ[x̂])−Hρ(Ẽ[x̃]) ≤ ϵ. To finish our proof, we have to bound the distance between the global
optimum of the quadratically penalized objectiveHρ(Ẽ[x̃]) and SDP(Λ) the optimum of SDP 2. This
is established for ρ a sufficiently large poly(ϵ−1, 2k) in Lemma E.1. This concludes our proof that
the iterates of Algorithm 3 converge to the solution of SDP 2.

In our proof above, the bound on approximate SOSP being approximate global optimum is built on
the result of Bhojanapalli et al. (2018) which we rephrase for our setting below.
Lemma C.2. [Bhojanapalli et al. (2018) lemma 3 rephrased] Let Lρ(·) be defined as in equation 63
and letHρ(·) be defined as in equation 69. Let U ∈ RΦ×Φ be an (ϵ, γ)-SOSP of Lρ(·), then

λmin(∇Hρ(Ẽ[x̂])) ≥ −γ
√
ϵ

Furthermore, the global optimum X̃ obeys the optimality gap

Hρ(UU
T )−Hρ(X̃) ≤ γ

√
ϵTr(X̃) +

1

2
ϵ∥U∥F

The following Lemma E.1 establishes that for a sufficiently large penalty parameter ρ = poly(ϵ−1, 2k)
the optimum of the penalized problem and the exact solution to SDP 2 are close.
Lemma C.3. Let Λ be a Max-k-CSP instance, and let SDP(Λ) be the optimum of SDP 2. Let Lρ(v)
be the quadratically penalized objective

Lρ(v) :=
1

|P|

[ ∑
Pz∈P

∑
s⊆z

ys
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩+ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩−⟨vh, vh′⟩

)2

+
∑
vs∈v

(∥vs∥2 − 1)2

]]
(72)
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Let ṽ be the argmin of the unconstrained minimization

ṽ := argmin
v∈R|P|2(22k)

Lρ(v)

Then we have
Lρ(ṽ)− SDP(Λ) ≤ ϵ

for ρ = poly(ϵ−1, 2k)

Proof. We begin the analysis with the generic equality constrained semidefinite program of the form

Minimize: ⟨C,X⟩ (73)
Subject to: ⟨Ai, X⟩ = bi ∀i ∈ F (74)

X ⪰ 0 (75)

X ∈ Rd×d (76)

For an objective matrix C and constraint matrices {Ai}i∈F in some constraint set F . We will invoke
specific properties of SDP 2 to enable our analysis. First we define the penalized objective in this
generic form

Hρ(X) := ⟨C,X⟩+ ρ
∑
i∈F

(⟨Ai, X⟩ − bi)2

Let X̃ be the minimizer of the penalized problem.

X̃ := argmin
X∈Rd×d

Lρ(X)

Let X∗ be the minimizer of the constrained problem equation 87. Let τi be the error X̃ has in
satisfying constraint ⟨Ai, X̃⟩ = bi.

τi := |⟨Ai, X̃⟩ − bi|

We will show that τi scales inversely with ρ. That is, τi ≤ poly(k, ρ−1). Notice that the quadratic
penalty on the violated constraints must be smaller than the decrease in the objective for having
violated the constraints. So long as the objective is not too sensitive i.e ’robust’ to perturbations in the
constraint violations the quadratic penalty should overwhelm the decrease in the objective. To carry
out this intuition, we begin with the fact that the constrained minimum is larger than the penalized
minimum.

Hρ(X
∗)−Hρ(X̃) ≤ 0 (77)

Applying the definitions ofHρ(X
∗) andHρ(X̃) we obtain

⟨C,X∗⟩ − (⟨C, X̃⟩+ ρ
∑
i∈F

τ2i ) ≤ 0 (78)

Rearranging LHS and RHS and dividing by |F| we obtain

ρ
1

|F|
∑
i∈F

τ2i ≤
1

|F|
⟨C, X̃ −X∗⟩ (79)

We upper bound the RHS using the robustness theorem of Raghavendra & Steurer (2009a) restated in
the appendix Theorem F.2 which states that an SDP solution that violates the constraints by a small
perturbation changes the objective by a small amount. Thus we obtain,

RHS ≤
( 1

|F|
∑
i∈F

τi

)1/2
poly(k) (80)

Therefore combining equation 79 with equation 80 we obtain

ρ
1

|F|
∑
i

τ2i ≤
( 1

|F|
∑
i

τi

)1/2
poly(k)
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Taking Cauchy-Schwarz on the RHS we obtain

ρ
1

|F|
∑
i

τ2i ≤
( 1

|F|
∑
i

τ2i

)1/4
poly(k)

Noticing that 1
|F|
∑

i τ
2
i appears in both LHS and RHS we rearrange to obtain

1

|F|
∑
i

τ2i ≤
poly(k)

ρ4/3
≤ ϵ

Where for ρ = poly(k)
ϵ3/4

we have the average squared error of the constraints is upper bounded by ϵ.
Then via Markov’s no more than

√
ϵ fraction of the constraints can be violated by more than squared

error
√
ϵ. We label these ’grossly’ violated constraints. The clauses involved in these grossly violated

constraints contributes no more than poly(k)
√
ϵ to the objective. On the other hand, the constraints

that are violated by no more than squared error
√
ϵ contributed no more than poly(k)ϵ1/8 to the

objective which follows from the robustness theorem Theorem F.2. Taken together we conclude that

Lρ(ṽ)− SDP(Λ) ≤ ϵ

For ρ = poly(k, ϵ−1) as desired.

Finally we show it’s not hard to generalize our algorithm to alphabets of size [q].

Notation for General Alphabet. For any predicate P ∈ P , let D(P ) be the set of all variable
assignment tuples indexed by a set of variables s ⊆ S(P ) and an assignment τ ∈ [q]|s|. Let x(i,a)
denote an assignment of value a ∈ [q] to variable xi.

SDP 3 SDP Vector Formulation for Max-k-CSP General Alphabet (Equivalent to UGC optimal)

SDP Vector Formulation General Alphabet Λ = (V,P, q).
Pseudoexpectation formulation of the objective.

min
x1,x2,...,xN

∑
Pz⊂P

Ẽµ[−Pz(Xz)] (81)

subject to: Ẽµ[(x
2
(i,a) − x(i,a))

∏
(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀a ∈ [q], ∀ϕ ⊆ D(P ), ∀P ∈ P

(82)

Ẽµ[(
∑
a∈[q]

xia − 1)
∏

(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀ϕ ⊆ D(P ), ∀P ∈ P, (83)

Ẽµ[x(i,a)x(i,a′)

∏
(j,b)∈ϕ

x(j,b)] = 0 ∀i ∈ V , ∀a ̸= a′ ∈ [q], ∀ϕ ⊆ D(P ), ∀P ∈ P,

(84)

Ẽ[SoS2kq(Xϕ)] ≥ 0 ∀ϕ ⊆ D(P ), ∀P ∈ P, (85)

Ẽ[SoS2(x)] ≥ 0. (86)

First constraint corresponds to booleanity of each value in the alphabet.
Second constraint corresponds to a variable taking on only one value in the alphabet.
Third constraint corresponds to a variable taking on only one value in the alphabet.
Fourth constraint corresponds to local distribution on the variables in each predicate.
Fifth constraint corresponds to the positivity of every degree two sum of squares of polynomials.

Lemma C.4. There exists a message passing algorithm that computes in poly(ϵ−1,Φ, log(δ−1))
iterations a set of vectors v := {v̂(i,a)} for all (i, a) ∈ ϕ, for all ϕ ⊆ D(P ), for all P ∈ P that satisfy
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the constraints of Algorithm 3 to error ϵ and approximates the optimum of Algorithm 3 to error ϵ
with probability 1− δ ∣∣ ∑

Pz∈P
Ẽµ̂[Pz(Xz)]− SDP(Λ)

∣∣ ≤ ϵ
where SDP(Λ) is the optimum of Algorithm 3.

Proof. The proof is entirely parallel to the proof of Theorem C.1. We can write Algorithm 3 entirely
in terms of the vector of its cholesky decomposition where once again we take advantage of the
fact that SoS degree 2kq distributions are actual distributions over subsets of kq variables over each
predicate. Given the overparameterized vector formulation, we observe that once again we are faced
with equality constraints that can be added to the objective with a quadratic penalty. Perturbed
gradient descent induces a message passing algorithm over the constraint graph GΛ, and in no more
than poly(ϵ−1Φ) iterations reaches an (ϵ, γ)-SOSP. The analysis of optimality goes along the same
lines as Lemma E.1. For sufficiently large penalty ρ = poly(ϵ−1, qk) the error in satisfying the
constraints is ϵ and the objective is robust to small perturbations in satisfying the constraint. That
concludes our discussion of generalizing to general alphabets.

C.1 Neural Certification Scheme

An intriguing aspect of OptGNN is that the embeddings can be interpreted as the solution to a low
rank SDP which leaves open the possibility that the embeddings can be used to generate a dual
certificate i.e a lower bound on a convex relaxation. First, we define the primal problem

Minimize: ⟨C,X⟩ (87)
Subject to: ⟨Ai, X⟩ = bi ∀i ∈ [F ] (88)

X ⪰ 0 (89)

Lemma C.5. Let OPT be the minimizer of the SDP equation 87. Then for any X̃ ∈ RN×N ⪰ 0 and
any λ∗ ∈ R|F|, we define Fλ∗(X) to be

Fλ∗(X̃) := ⟨C, X̃⟩+
∑
i∈F

λ∗i

(
⟨Ai, X̃⟩ − bi

)
We require SDP to satisfy a bound on its trace Tr(X) ≤ Y for some Y ∈ R+. Then the following is
a lower bound on OPT.

OPT ≥ Fλ∗(X̃)− ⟨∇Fλ∗(X̃), X̃⟩+ λmin

(
∇Fλ∗(X̃)

)
Y

Proof. Next we introduce lagrange multipliers λ ∈ Rk and Q ⪰ 0 to form the lagrangian

L(λ,Q,X) = ⟨C,X⟩+
∑
i∈F

λi (⟨Ai, X⟩ − bi)− ⟨Q,X⟩

We lower bound the optimum of OPT defined to be the minimizer of equation 87

OPT := min
X⪰0

max
λ∈R,Q⪰0

L(λ,Q,X) ≥ min
V ∈RN×N

max
λ
⟨C, V V T ⟩+

∑
i∈F

λi
(
⟨Ai, V V

T ⟩ − bi
)

(90)

=max
λ

min
V ∈RN×N

⟨C, V V T ⟩+
∑
i∈F

λi
(
⟨Ai, V V

T ⟩ − bi
)

(91)

= min
V ∈RN×N

⟨C, V V T ⟩+
∑
i∈F

λ∗i
(
⟨Ai, V V

T ⟩ − bi
)
. (92)

Where in the first inequality we replaced X ⪰ 0 with V V T which is a lower bound as every psd
matrix admits a cholesky decomposition. In the second inequality we flipped the order of min and
max, and in the final inequality we chose a specific set of dual variables λ∗ ∈ R|F| which lower
bounds the maximization over dual variables. The key is to find a good setting for λ∗.
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Next we establish that for any choice of λ∗ we can compute a lower bound on inequality 92 as follows.
Let Fλ∗(V V T ) be defined as the funciton in the RHS of 92.

Fλ∗(V V T ) := ⟨C,X⟩+
∑
i∈F

λ∗i (⟨Ai, X⟩ − bi)

Then equation 92 can be rewritten as

OPT ≥ min
V ∈RN×N

Fλ∗(V V T ) := ⟨C,X⟩+
∑
i∈F

λ∗i (⟨Ai, X⟩ − bi)

Now let V ∗ be the minimizer of equation 92 and let X∗ = V ∗(V ∗)T . We have by convexity that

Fλ∗(X)− Fλ∗(X∗) ≤ ⟨∇Fλ∗(X), X −X∗⟩ = ⟨∇Fλ∗(X), X⟩+ ⟨−∇Fλ∗(X), X∗⟩ (93)
≤ ⟨∇Fλ∗(X), X⟩ − λmin (∇Fλ∗(X)) Tr(X∗) (94)

≤ ⟨∇Fλ∗(X), X⟩ − λmin(∇Fλ∗(X))N (95)

In the first inequality we apply the convexity of Fλ∗ . In the second inequality we apply a standard
inequality of frobenius inner product. In the last inequality we use the fact that Tr(X∗) = N .
Rearranging we obtain for any X

OPT ≥ Fλ(X
∗) ≥ Fλ∗(X)− ⟨∇Fλ∗(X), X⟩+ λmin (∇Fλ∗(X))N (96)

Therefore it suffices to upper bound the two terms above ⟨∇Fλ∗(X), X⟩ and λmin(∇Fλ∗(X)) which
is an expression that holds for any X . Given the output embeddings Ṽ of OptGNN (or indeed any set
of vectors Ṽ ) let X̃ = Ṽ Ṽ T . Then we have concluded

OPT ≥ Fλ(X
∗) ≥ Fλ∗(X̃)− ⟨∇Fλ∗(X̃), X̃⟩+ λmin(∇Fλ∗(X̃))N (97)

as desired.

Up to this point, every manipulation is formal proof. Subsequently we detail how to estimate the dual
variables λ∗. Although any estimate will produce a bound, it won’t produce a tight bound. To be
clear, solving for the optimal λ∗ would be the same as building an SDP solver which would bring us
back into the expensive primal dual procedures that are involved in solving SDP’s. We are designing
quick and cheap ways to output a dual certificate that may be somewhat looser. Our scheme is simply
to set λ∗ such that ∥∇Fλ∗(X̃)∥ is minimized, ideally equal to zero. The intuition is that if (X̃, λ∗)
were a primal dual pair, then the lagrangian would have a derivative with respect to X evaluated at X̃
would be equal to zero. Let Hλ(V ) be defined as follows

Hλ∗(Ṽ ) := ⟨C, Ṽ Ṽ T ⟩+
∑
i∈F

λ∗i

(
⟨Ai, Ṽ Ṽ

T ⟩ − bi
)

We know the gradient of Hλ(Ṽ )

∇Hλ(Ṽ ) = 2

(
C +

∑
i∈F

λ∗iAi

)
Ṽ = 2∇Fλ(Ṽ Ṽ

T )Ṽ

Therefore it suffices to find a setting of λ∗ such that ∥∇Fλ(X̃)Ṽ ∥ is small, ideally zero. This would
be a simple task, indeed a regression, if not for the unfortunate fact that OptGNN explicitly projects
the vectors in Ṽ to be unit vectors. This creates numerical problems such that minimizing the norm
of ∥∇Fλ(X̃)Ṽ ∥ does not produce a∇Fλ(X̃) with a large minimum eigenvalue.

To fix this issue, let Rη,ρ(V ) denote the penalized lagrangian with quadratic penalties for constraints
of the form ⟨Ai, X⟩ = bi and linear penalty ηi for constraints along the main diagonal of X of the
form ⟨eieTi , X⟩ = 1.

Rη,ρ(V ) := ⟨C, V V T ⟩+
∑
i∈J

ρ(⟨Ai, V V
T ⟩ − bi)2 +

N∑
i=1

ηi(⟨eieTi , V V T ⟩ − 1)
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Taking the gradient of Rη,ρ(V ) we obtain

∇Rη,ρ(V ) := 2CV +
∑
i∈J

2ρ(⟨Ai, V V
T ⟩ − bi)AiV +

N∑
i=1

2ηieie
T
i V

Our rule for setting dual variables δi for i ∈ J is

δi := 2ρ
(
⟨Ai, Ṽ Ṽ

T ⟩ − bi
)

our rule for setting dual variables ηj for j ∈ [N ] is

ηj :=
1

2

∥∥∥∥∥eTj
(
C +

∑
i∈F

2ρ(⟨Ai, V V
T ⟩ − bi)Ai

)
V

∥∥∥∥∥
Then our full set of dual variables λ∗ is simply the concatenation (δ, η). Writing out everything
explicitly we obtain the following matrix for∇Fλ∗(Ṽ Ṽ T )

∇Fλ(Ṽ Ṽ
T ) = C +

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai +

∑
j∈[N ]

1

2

∥∥∥∥∥eTj
(
C +

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai

)
Ṽ

∥∥∥∥∥ eieTi
Plugging this expression into Lemma C.5 the final bound we evaluate in our code is

OPT ≥ ⟨C, Ṽ Ṽ T ⟩+
∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)2

−

〈
C +

∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai +

∑
j∈[N ]

1

2

∥∥∥∥∥eTj
(
C +

∑
i∈F

2ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai

)
Ṽ

∥∥∥∥∥ eieTi , Ṽ Ṽ T

〉

+λmin

C +
∑
i∈F

ρ(⟨Ai, Ṽ Ṽ
T ⟩ − bi)Ai +

∑
j∈[N ]

1

2

∥∥∥∥∥eTj
(
C +

∑
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Which is entirely computed in terms of Ṽ the output embeddings of OptGNN. The resulting plot is
as follows.

Figure 4: N=50 p=0.1 SDP vs OptGNN Dual Certificate

Note: The reason for splitting the set of dual variables is because the projection operator onto the
unit ball is hard coded into the architecture of the lift network. Satisfying the constraint set via
projection is different from the soft quadratic penalties on the remaining constraints and require
separate handling.
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Max-Cut Certificate For Max-Cut our dual variables are particularly simple as there are no
constraints ⟨Ai, X⟩ = bi for bi ̸= 0. The dual variables for Max-Cut take on the form for all i ∈ [N ]

λ∗i =
1

2

∥∥∥∥∥∥
∑

j∈N(i)

wijvj

∥∥∥∥∥∥
It’s certainly possible to come up with tighter certification schemes which we leave to future work.

Intuition: Near global optimality one step of the augmented method of lagrange multipliers
ought to closely approximate the dual variables. After obtaining a estimate for the penalized
lagrange multipliers we estimate the lagrange multipliers for the norm constraint by approximating
∇Rλ(V ) = 0. The alternative would have been to solve the linear system for all the lagrange
multipliers at once but this runs into numerical issues and degeneracies.

Certificate Experiment: We run our certification procedure which we name OptGNN-cert and
compare it to the SDP certificate. Note, that mathematically we will always produce a larger (i.e
inferior) dual certificate in comparison to the SDP because we are bounding the distance to the
SDP optimum with error in the gradients and hessians of the output embeddings of OptGNN. Our
advantage is in the speed of the procedure. Without having to go through a primal dual solver, the
entire time of producing OptGNN-cert is in the time required to feedforward through OptGNN. In
this case we train an OptGNN-Max-Cut with 10 layers, on 1000 Erdos-Renyi graphs, with N = 100
nodes and edge density p = 0.1. We plot the OptGNN Max-Cut value (an actual integer cut) on the
x-axis and in the y-axis we plot the dual certificate value on the same graph where we compare the
SDP certificate with the OptGNN-cert. See 4 for the N = 50 graphs and 3 for the N = 100 graphs.

Note of course the dual certificate for any technique must be larger than the cut value outputted by
OptGNN so the scatter plot must be above the x = y axis of the plot. We see as is mathematically
necessary, the OptGNN-cert is not as tight as the SDP certificate but certainly competitive and more
importantly it is arrived at dramatically faster. Without any runtime optimizations, the OptGNN
feedforward and certification takes no more than 0.02 seconds whereas the SDP takes 0.5 seconds on
N = 100 node graphs.

D Experiment details

In this section we give further details on our experimental setup.

Datasets. Our experiments span a variety of randomly generated and real-world datasets. Our
randomly generated datasets contain graphs from several random graph models, in particular Erdős-
Rényi (with p = 0.15), Barabási–Albert (with m = 4), Holme-Kim (with m = 4 and p = 0.25),
Watts-Strogatz (with k = 4 and p = 0.25), and forced RB (with two sets of parameters, RB200
and RB500). Our real-world datasets are ENZYMES, PROTEINS, MUTAG, IMDB-BINARY,
COLLAB (which we will together call TU-small), and REDDIT-BINARY, REDDIT-MULTI-5K,
and REDDIT-MULTI-12K (which we will call TU-REDDIT).

We abbreviate the generated datasets using their initials and the range of vertex counts. For example,
by ER (50,100) we denote Erdős-Rényi random graphs with a vertex count drawn uniformly at
random from [50, 100]. In tables, we mark generated datasets with superscript a, TU-small with b,
and TU-REDDIT with c.

For Figure 2b, we display results for forced RB instances drawn from two different distributions.
For RB200, we select N uniformly in [6, 15] and K uniformly in [12, 21]. For RB500, we select N
uniformly in [20, 34] and K uniformly in [10, 29].

In Table 2, random 3-SAT instances are generated by drawing three random variables for each clause
and negating each variable with p = 0.5. We trained on instances with 100 variables and clause count
drawn uniformly from the interval [400, 430], and tested on instances with 100 variables and 400,
415, and 430 clauses respectively.

Baselines. We compare the performance of our approach against known classical algorithms. In
terms of classical baselines, we run Gurobi with varying timeouts and include SDP results on smaller
datasets.
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Parameter ER, BA, WS, HK RB200 RB500 3-SAT TU-small TU-REDDIT

Gradient steps 20,000 200,000 100,000 100,000 100,000 100,000
Validation freq 1,000 2,000 2,000 2,000 1,000 2,000
Batch size 16 32 32 32 16 16
Ranks 4, 8, 16, 32 32, 64 32, 64 32, 64 4, 8, 16, 32 4, 8, 16, 32
Layer counts 8, 16 16 16 16 8, 16 8, 16
Positional encodings RW none none none LE, RW RW

Run count 8 2 2 2 16 8

Figure 5: Hyperparameter range explored for each group of datasets. For each NN architecture, when
training on a dataset, we explored every listed hyperparameter combination in the corresponding
column.

We also include a greedy baseline, which is the function one_exchange (for Max-Cut) or
min_weighted_vertex_cover (for Min-Vertex-Cover) from networkx (Hagberg et al., 2008).

Validation and test splits. For each dataset we hold out a validation and test slice for evaluation. In
our generated graph experiments we set aside 1000 graphs each for validation and testing. Each step
of training ran on randomly generated graphs. For TU-small, we used a train/validation/test split of
0.8/0.1/0.1. For TU-REDDIT, we set aside 100 graphs each for validation and testing.

Scoring. To measure a model’s score on a graph, we first run the model on the graph with a random
initial vector assignment to generate an SDP output, and then round this output to an integral solution
using 1,000 random hyperplanes. For the graph, we retain the best score achieved by any hyperplane.

We ran validation periodically during each training run and retained the model that achieved the
highest validation score. Then for each model and dataset, we selected the hyperparameter setting
that achieved the highest validation score, and we report the average score measured on the test slice.
Please see D for further details on the hyperparameter ranges used.

In Figure 2b and Figure 2a, at test time, we use 100 random initial vector assignments instead of just
1, and retain the best score achieved by any hyperplane on any random initial vector assignment. We
use 1 random initial vector assignment for validation as in other cases.

Hardware. Our training runs used 20 cores of an Intel Xeon Gold 6248 (for data loading and random
graph generation) and a NVIDIA Tesla V100 GPU. Our Gurobi runs use 8 threads on a Intel Xeon
Platinum 8260. Our KaMIS runs use an Intel Core i9-13900H. Our LwD and DGL-TREESEARCH
runs use an Intel Core i9-13900H and an RTX 4060.

Hyperparameters. We ran each experiment on a range of hyperparameters. See Figure 5 for the
hyperparameter listing. For all training runs, we used the Adam optimizer Kingma & Ba (2014)
with a learning rate of 0.001. We used Laplacian eigenvector Dwivedi et al. (2020) (LE) or random
walk Dwivedi et al. (2021) (RW) positional encoding with dimensionality of half the rank, except for
rank 32 where we used 8 dimensions. For Max-3-SAT, we set the penalty term ρ = 0.003.

D.1 Max-Cut

Low-rank SDP.We have included an additional baseline that solves a low-rank SDP using coordinate
descent (Wang & Kolter, 2019) to the Max-Cut benchmark that originally appears in Any-CSP
(Tönshoff et al., 2022). We have used the publicly available implementation provided by the authors.
For each instance, the rank is automatically selected by the package to be ⌈

√
2N⌉.

D.2 Max-3-SAT

ErdősGNN. The ErdősGNN baseline accepts as input a clause-variable bipartite graph of the SAT
formula and the node degrees as input attributes. Each variable xi is set to TRUE with probability pi.
A graph neural network (GatedGCNN) is trained until convergence (∼50k iterations) with randomly
generated formulae with clause to variable ratiot in the range [4, 4.3]. The neural network is trained to
produce output probabilities pi by minimizing the expected number of unsatisfied clauses. The exact
closed form of the expectation can be found in (Karalias, 2023). At inference time, the probabilities
are rounded to binary assignments using the method of conditional expectation.
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Survey propagation. We report the results of survey propagation Braunstein et al. (2005). Typically,
algorithms like survey propagation are accompanied by a local search algorithm like WalkSAT. Here
we report the results obtained by the algorithm without running any local search on its output.

Low-rank SDP. This is identical to the baseline that we used for Max-3-SAT (see Max-Cut section
above).

WalkSAT. We use a publicly available python implementation of WalkSAT and we set the max
number of variable flips to 4×number of variables, for a total of 400 flips on the instances we tested.

Autograd. The autograd comparison measures the performance of autograd on the same loss as
OptGNN. Starting with some initial node embeddings for the instance, the Lagrangian is computed for
the problem and the node embeddings are updated by minimizing the Lagrangian using Adam. This
process is run for several iterations. After it is concluded, the vectors are rounded with hyperplane
rounding, yielding a binary assignment for the variables of the formula.

Autograd parameters. We use the Adam optimizer with learning rate 0.1 for 1000 epochs with
penalty 0.01 and round with 10,000 hyperplanes, which is 10 times as many as that used by OptGNN.

D.3 Additional Results

D.3.1 Comparisons with Gurobi and Greedy

Table 4 and Table 3 contain comparisons on additional datasets with Gurobi and Greedy.

Dataset OptGNN Greedy Gurobi Gurobi Gurobi
0.1s 1.0s 8.0s

BAa (50,100) 42.88 (27) 51.92 42.82 42.82 42.82
BAa (100,200) 83.43 (25) 101.42 83.19 83.19 83.19
BAa (400,500) 248.74 (27) 302.53 256.33 246.49 246.46

ERa (50,100) 55.25 (21) 68.85 55.06 54.67 54.67
ERa (100,200) 126.52 (18) 143.51 127.83 123.47 122.76
ERa (400,500) 420.70 (41) 442.84 423.07 423.07 415.52

HKa (50,100) 43.06 (25) 51.38 42.98 42.98 42.98
HKa (100,200) 84.38 (25) 100.87 84.07 84.07 84.07
HKa (400,500) 249.26 (27) 298.98 247.90 247.57 247.57

WCa (50,100) 46.38 (26) 72.55 45.74 45.74 45.74
WCa (100,200) 91.28 (21) 143.70 89.80 89.80 89.80
WCa (400,500) 274.21 (31) 434.52 269.58 269.39 269.39

MUTAGb 7.79 (18) 12.84 7.74 7.74 7.74
ENZYMESb 20.00 (24) 27.35 20.00 20.00 20.00
PROTEINSb 25.29 (18) 33.93 24.96 24.96 24.96
IMDB-BINb 16.78 (18) 17.24 16.76 16.76 16.76
COLLABb 67.50 (23) 71.74 67.47 67.46 67.46

REDDIT-BINc 82.85 (38) 117.16 82.81 82.81 82.81
REDDIT-M-12Kc 81.55 (25) 115.72 81.57 81.52 81.52
REDDIT-M-5Kc 107.36 (33) 153.24 108.73 107.32 107.32

Table 3: Performance of OptGNN, Greedy, and Gurobi 0.1s, 1s, and 8s on Min-Vertex-Cover. For
each approach and dataset, we report the average Vertex-Cover size measured on the test slice. Here,
lower score is better. In parentheses, we include the average runtime in milliseconds for OptGNN.

D.3.2 Ratio tables

In Figure 6 and Figure 7 we supply the performance of OptGNN as a ratio against the integral
value achieved by Gurobi running with a time limit of 8 seconds. These tables include the standard
deviation in the ratio. We note that for Maximum Cut, OptGNN comes within 1.1% of the Gurobi 8s
value, and for Min-Vertex-Cover, OptGNN comes within 3.1%.
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Dataset OptGNN Greedy Gurobi Gurobi Gurobi
0.1s 1.0s 8.0s

BAa (50,100) 351.49 (18) 200.10 351.87 352.12 352.12
BAa (100,200) 717.19 (20) 407.98 719.41 719.72 720.17
BAa (400,500) 2197.99 (66) 1255.22 2208.11 2208.11 2212.49

ERa (50,100) 528.95 (18) 298.55 529.93 530.03 530.16
ERa (100,200) 1995.05 (24) 1097.26 2002.88 2002.88 2002.93
ERa (400,500) 16387.46 (225) 8622.34 16476.72 16491.60 16495.31

HKa (50,100) 345.74 (18) 196.23 346.18 346.42 346.42
HKa (100,200) 709.39 (23) 402.54 711.68 712.26 712.88
HKa (400,500) 2159.90 (61) 1230.98 2169.46 2169.46 2173.88

WCa (50,100) 198.29 (18) 116.65 198.74 198.74 198.74
WCa (100,200) 389.83 (24) 229.43 390.96 392.07 392.07
WCa (400,500) 1166.47 (78) 690.19 1173.45 1175.97 1179.86

MUTAGb 27.95 (9) 16.95 27.95 27.95 27.95
ENZYMESb 81.37 (14) 48.53 81.45 81.45 81.45
PROTEINSb 102.15 (12) 60.74 102.28 102.36 102.36
IMDB-BINb 97.47 (11) 51.85 97.50 97.50 97.50
COLLABb 2622.41 (22) 1345.70 2624.32 2624.57 2624.62

REDDIT-BINc 693.33 (186) 439.79 693.02 694.10 694.14
REDDIT-M-12Kc 568.00 (89) 358.40 567.71 568.91 568.94
REDDIT-M-5Kc 786.09 (133) 495.02 785.44 787.48 787.92

Table 4: Performance of OptGNN, Greedy, and Gurobi 0.1s, 1s, and 8s on Maximum Cut. For each
approach and dataset, we report the average cut size measured on the test slice. Here, higher score is
better. In parentheses, we include the average runtime in milliseconds for OptGNN.

Dataset OptGNN

BAa (50,100) 0.998 ± 0.002
BAa (100,200) 0.996 ± 0.003
BAa (400,500) 0.993 ± 0.003

ERa (50,100) 0.998 ± 0.002
ERa (100,200) 0.996 ± 0.002
ERa (400,500) 0.993 ± 0.001

HKa (50,100) 0.998 ± 0.002
HKa (100,200) 0.995 ± 0.003
HKa (400,500) 0.994 ± 0.003

WCa (50,100) 0.998 ± 0.003

Dataset OptGNN

WCa (100,200) 0.995 ± 0.003
WCa (400,500) 0.989 ± 0.003

MUTAGb 1.000 ± 0.000
ENZYMESb 0.999 ± 0.003
PROTEINSb 1.000 ± 0.002
IMDB-BINb 1.000 ± 0.001
COLLABb 0.999 ± 0.002

REDDIT-BINc 1.000 ± 0.001
REDDIT-M-12Kc 0.999 ± 0.002
REDDIT-M-5Kc 0.999 ± 0.002

Figure 6: Performance of OptGNN on Max-Cut compared to Gurobi running under an 8 second
time limit, expressed as a ratio. For each dataset, we take the ratio of the integral values achieved by
OptGNN and Gurobi 8s on each of the graphs in the test slice. We present the average and standard
deviation of these ratios. Here, higher is better. This table demonstrates that OptGNN achieves nearly
the same performance, missing on average 1.1% of the cut value in the worst measured case.
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Dataset OptGNN

BAa (50,100) 1.001 ± 0.005
BAa (100,200) 1.003 ± 0.005
BAa (400,500) 1.008 ± 0.011

ERa (50,100) 1.010 ± 0.015
ERa (100,200) 1.031 ± 0.012
ERa (400,500) 1.013 ± 0.006

HKa (50,100) 1.002 ± 0.007
HKa (100,200) 1.004 ± 0.013
HKa (400,500) 1.007 ± 0.011

WCa (50,100) 1.014 ± 0.016

Dataset OptGNN

WCa (100,200) 1.016 ± 0.013
WCa (400,500) 1.018 ± 0.007

MUTAGb 1.009 ± 0.027
ENZYMESb 1.000 ± 0.000
PROTEINSb 1.010 ± 0.021
IMDB-BINb 1.002 ± 0.016
COLLABb 1.001 ± 0.003

REDDIT-BINc 1.000 ± 0.002
REDDIT-M-12Kc 1.000 ± 0.001
REDDIT-M-5Kc 1.000 ± 0.001

Figure 7: Performance of OptGNN on Min-Vertex-Cover compared to Gurobi running under an 8
second time limit, expressed as a ratio. For each dataset, we take the ratio of the integral values
achieved by OptGNN and Gurobi 8s on each of the graphs in the test slice. We present the average
and standard deviation of these ratios. Here, lower is better. This table demonstrates that OptGNN
achieves nearly the same performance, producing a cover on average 3.1% larger than Gurobi 8s in
the worst measured case.

D.4 Model ablation study

Here we provide the evaluations of several models that were trained on the same loss as OptGNN.
We see that OptGNN consistently achieves the best performance among different neural architectures.
Note that while OptGNN was consistently the best model, other models were able to perform relatively
well; for instance, GatedGCNN achieves average cut values within a few percent of OptGNN on
nearly all the datasets (excluding COLLAB). This points to the overall viability of training using an
SDP relaxation for the loss function.

Dataset GAT GCNN GIN GatedGCNN OptGNN

ERa (50,100) 525.92 (25) 500.94 (17) 498.82 (14) 526.78 (14) 528.95 (18)
ERa (100,200) 1979.45 (20) 1890.10 (26) 1893.23 (23) 1978.78 (21) 1995.05 (24)
ERa (400,500) 16317.69 (208) 15692.12 (233) 15818.42 (212) 16188.85 (210) 16387.46 (225)

MUTAGb 27.84 (19) 27.11 (12) 27.16 (13) 27.95 (14) 27.95 (9)
ENZYMESb 80.73 (17) 74.03 (12) 73.85 (16) 81.35 (9) 81.37 (14)
PROTEINSb 100.94 (14) 92.01 (19) 92.62 (17) 101.68 (10) 102.15 (12)
IMDB-BINb 81.89 (18) 70.56 (21) 81.50 (10) 97.11 (9) 97.47 (11)
COLLABb 2611.83 (22) 2109.81 (21) 2430.20 (23) 2318.19 (18) 2622.41 (22)

Table 5: Performance of various model architectures for selected datasets on Maximum Cut. Here,
higher is better. GAT is the Graph Attention network (Veličković et al., 2018), GIN is the Graph
Isomorphism Network (Xu et al., 2019), GCNN is the Graph Convolutional Neural Network (Morris
et al., 2019), and GatedGCNN is the gated version (Li et al., 2015).

Table 6 presents the performance of alternative neural network architectures on Min-Vertex-Cover.

Dataset GAT GCNN GIN GatedGCNN OptGNN

ERa (50,100) 58.78 (20) 64.42 (23) 64.18 (20) 56.17 (14) 55.25 (21)
ERa (100,200) 129.47 (20) 141.94 (17) 140.06 (20) 130.32 (20) 126.52 (18)
ERa (400,500) 443.93 (43) 444.12 (33) 442.11 (31) 440.90 (28) 420.70 (41)

MUTAGb 7.79 (19) 8.11 (16) 7.95 (20) 7.79 (17) 7.79 (18)
ENZYMESb 21.93 (24) 25.42 (18) 25.80 (28) 20.28 (14) 20.00 (24)
PROTEINSb 28.19 (23) 31.07 (19) 32.28 (21) 25.25 (19) 25.29 (18)
IMDB-BINb 17.62 (21) 19.22 (19) 19.03 (23) 16.79 (15) 16.78 (18)
COLLABb 68.23 (23) 73.32 (17) 73.82 (26) 72.92 (13) 67.50 (23)

Table 6: Performance of various model architectures compared to OptGNN for selected datasets on
Min-Vertex-Cover. Here, lower is better.
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(a) On TU-small datasets.

(b) On generated datasets.

Figure 8: Trends in model performance on Min-Vertex-Cover with respect to the number of layers,
hidden size, and positional encoding of the models.

D.5 Effects of hyperparameters on performance

Figure 8 and Figure 9 present overall trends in model performance across hyperparameters.
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(a) On TU-small datasets.

(b) On generated datasets.

Figure 9: Trends in model performance on Max-Cut with respect to the number of layers, hidden
size, and positional encoding of the models.

D.6 Out of distribution testing

OptGNN trained on one dataset performed quite well on other datasets without any finetuning,
suggesting that the model can generalize to examples outside its training distribution. For each
dataset in our collection, we train a model and then test the trained model on a subset of datasets
in the collection. The results are shown in Table 7. It is apparent from the results that the model
performance generalizes well to different datasets. Interestingly, we frequently observe that the
model reaches its peak performance on a given test dataset even when trained on a different one.
This suggests that the model indeed is capturing elements of a more general process instead of just
overfitting the training data.
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Train Dataset MUTAG ENZYMES PROTEINS IMDB-BIN COLLAB

BA (50,100) 7.74 20.12 27.66 17.57 74.15
BA (100,200) 7.74 20.35 26.03 16.86 69.29
BA (400,500) 8.05 21.00 26.54 17.34 70.17

ER (50,100) 7.74 20.37 28.17 16.86 69.07
ER (100,200) 8.05 21.52 27.72 16.89 68.83
ER (400,500) 7.79 21.55 28.60 16.78 68.74

HK (50,100) 7.74 20.42 25.60 17.05 69.17
HK (100,200) 7.84 20.43 27.30 17.01 70.20
HK (400,500) 7.95 20.63 26.30 17.15 69.91

WC (50,100) 7.89 20.13 25.46 17.38 70.14
WC (100,200) 7.79 20.30 25.45 17.91 71.16
WC (400,500) 8.05 20.48 25.79 17.12 70.16

MUTAG 7.74 20.83 26.76 16.92 70.09
ENZYMES 7.74 20.60 28.29 16.79 68.40
PROTEINS 7.89 20.22 25.29 16.77 70.26
IMDB-BIN 7.95 20.97 27.06 16.76 68.03
COLLAB 7.89 20.35 26.13 16.76 67.52

Table 7: Models for Min-Vertex-Cover trained on "dataset" were tested on a selection of the TU
datasets (ENZYMES, PROTEINS, MUTAG, IMDB-BINARY, and COLLAB). We observe that the
performance of the models generalizes well even when they are taken out of their training context.

D.7 Pseudocode for OptGNN training and inference

In algorithm 4, we present pseudocode for OptGNN in the Max-Cut case and in algorithm 5 pseu-
docode for the forward pass of a general SDP.

Algorithm 4 OptGNN pseudocode for Max-Cut forward pass

Require: graph G
1: v0 = {v1, v2, . . . , vN} (random initial feature vectors and/or positional encodings)
2: for t = 1, 2, 3, . . . , T do
3: for vti ∈ vt do
4: vt+1

i ← vti +
∑

j∈N(i) v
t
j

5: v̂t+1
i ← Linear( vt+1

i

|vt+1
i | )

6: end for
7: end for

Algorithm 5 OptGNN pseudocode for implementing a general SDP forward pass

Require: graph G
1: v0 = {v1, v2, . . . , vN} (random initial feature vectors and/or positional encodings)
2: for t = 1, 2, 3, . . . , T do
3: for vti ∈ vt do
4: vt+1

i ← vti + Autograd(L(vt
i ;G))

5: v̂t+1
i ← Linear( vt+1

i

|vt+1
i | )

6: end for
7: end for
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E Generalization Analysis

In this section we produce a generalization bound for OptGNN. First we restate our result that a
penalized loss approximates the optimum of SDP 2. Our analysis follows from a standard perturbation
argument where the key is to bound the lipschitzness of the OptGNN aggregation function. Here
we will have to be more precise with the exact polynomial dependence of the lipschitzness of the
gradient∇Lρ and the smoothness of the hessian∇2Lρ.

Notation: For the convenience of the proofs in this section, with a slight abuse of notation, we will
define loss functions Lρ(V ) that take matrix arguments V instead of collections of vectors v where
V is simply the vectors in v concatenated row by row. We will also refer to rows of V by indexing
them with set notation vi ∈ V where vi denotes the i’th row of V . Furthermore, let every vector be
bounded in norm by some absolute constant B.

We begin by recomputing precisely the number of iterations required for algorithm 3 to approximate
the global optimum of SDP 2. Note that this was done in the proof of Theorem C.1 but we do it here
with explicit polynomial dependence.

Lemma E.1 (gradient descent lemma restated). Algorithm 3 computes in O(Φ4ϵ−4 log4(δ−1))
iterations a set of vectors v := {v̂s} for all s ⊆ S(P ) for all P ∈ P that satisfy the constraints of
SDP 2 to average error ϵ and approximates the optimum of SDP 2 to error ϵ with probability 1− δ∣∣ ∑

Pz∈P
Ẽµ̂[Pz(Xz)]− SDP(Λ)

∣∣ ≤ ϵ
where SDP(Λ) is the optimum of SDP 2.

Proof. To apply the gradient descent lemma of Jin et al. (2017) Theorem F.1 we need a bound on
the lipschitzness of the gradient and the smoothness of the hessian of the loss equation 72. By the
lipschitz gradient Lemma E.2 we have that the loss is ℓ := poly(B)ρ lipschitz, and by the smooth
hessian Lemma F.1 we have the loss is γ := poly(B)ρ smooth. Then we have by Theorem F.1 that
perturbed gradient descent in

O

(
(f(X0)− f∗)ℓ

ϵ′2
log4

(
dℓ∆f

ϵ′2δ

))
iterations can achieve a (γ2, ϵ′)−SOSP. In our setting |f(X0)−f∗| ≤ 1 because the loss is normalized
between [0, 1]. Our desired accuracy ϵ′ is poly(B−1, ρ−1)Φ−2 = poly(B−1, ϵ−1)Φ−2 where we
take ρ = poly(2k, ϵ−1) as in Lemma E.1. For these settings we achieve an ϵ approximation in
Õ(Φ4ϵ−4 log4(δ−1)) iterations.

Next we move on to prove the lipschitzness of the Max-CSP gradient. This is important for two
reasons. First we need it to bound the number of iterations required in the proof of Lemma E.1.
Secondly, the lipschitzness of the hessian will be the key quantity

Lemma E.2 (Lipschitz Gradient Lemma Max-CSP). For a Max-CSP instance Λ, Let Lρ(v) be the
normalized loss defined in equation 72. Then the gradient satisfies

∥∇Lρ(V )−∇Lρ(V̂ )∥F ≤ O(B4ρ)∥V − V̂ ∥F

Proof. We begin with the form of the Max-CSP gradient.

∥∥∥∇Lρ(V )−∇Lρ(V̂ )
∥∥∥
F
=

√√√√∑
w∈F

∥∥∥∥∥∂Lρ(V )

∂vw
− ∂Lρ(V̂ )

∂v̂w

∥∥∥∥∥
2

F

(99)
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Where recall

∂Lρ(v)

∂vw
=

1

|P|

[ ∑
Pz∈P

s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

vw′

+ 2ρ

[ ∑
Pz∈P

s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

(
⟨vw, vw′⟩ − ⟨vh, vh′⟩

)
v′w

+ (∥vw∥2 − 1)vw

]]
(100)

We break the gradient ∇Lρ(V ) up into three terms T1(V ), T2(V ), and T3(V ) such that
∂Lρ(V )/∂vw = T1(V )|w + T2(V )|w + T3(V )|w Where T1(V )|w, T2(V )|w, T3(V )|w are defined as
follows

T1(V )|w :=
1

|P|

[ ∑
Pz∈P

s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

vw′

]
(101)

T2(V )|w =
2ρ

|P|

[ ∑
Pz∈P

s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

(
⟨vw, vw′⟩ − ⟨vh, vh′⟩

)
v′w

]
(102)

T3(V )|w :=
2ρ

|P|
(∥vw∥2 − 1)vw (103)

Such that by triangle inequality we have∥∥∥∇Lρ(V )−∇Lρ(V̂ )
∥∥∥
F
≤
∥∥∥T1(V )− T1(V̂ )

∥∥∥
F
+
∥∥∥T2(V )− T2(V̂ )

∥∥∥
F
+
∥∥∥T3(V )− T3(V̂ )

∥∥∥
F

(104)

Where the three terms in equation 104 are as follows.

∥∥∥T1(V )− T1(V̂ )
∥∥∥
F
=

1

|P|

√√√√√√√√∑
w∈F

∥∥∥∥∥∥∥∥
[ ∑

Pz∈P
s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

(vw′ − v̂w′)

]∥∥∥∥∥∥∥∥
2

(105)

∥∥∥T2(V )− T2(V̂ )
∥∥∥
F

(106)

:=
2ρ

|P|

√√√√√√√√∑
w∈F

∥∥∥∥∥∥∥∥
[ ∑

Pz∈P
s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

[(
⟨vw, vw′⟩ − ⟨vh, vh′⟩

)
v′w −

(
⟨v̂w, v̂w′⟩ − ⟨v̂h, v̂h′⟩

)
v̂′w

]]∥∥∥∥∥∥∥∥
2

(107)

∥∥∥T3(V )− T3(V̂ )
∥∥∥
F
:=

2ρ

|P|

√∑
w∈F

∥∥∥[(∥vw∥2 − 1)vw − (∥v̂w∥2 − 1)v̂w

]∥∥∥2 (108)

We bound the terms one by one. First we bound term 1.
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Term 1:

∥∥∥T1(V )− T1(V̂ )
∥∥∥
F
=

1

|P|

√√√√√√√√∑
w∈F

∥∥∥∥∥∥∥∥
[ ∑

Pz∈P
s.t w⊆z

∑
s⊆z

s.t w⊆s

ys
1

|C(s)|
∑
w′⊆s

s.t ζ(w,w′)=s

(vw′ − v̂w′)

]∥∥∥∥∥∥∥∥
2

(109)

We will need to define some matrices so that we can write the above expression as the frobenius
inner product of matrices. First we define GΛ to be the adjacency matrix of the constraint graph. In
particular we denote the (w,w′) entry of GΛ as GΛ|w,w′ defined as follows.

GΛ|w,w′ :=

{
1, if there exists Pz ∈ P s.t ζ(w,w′) ⊆ z
0, otherwise

Furthermore, we define Mys/C(s) to be a matrix comprised of a set of coefficients ys/|C(s)| cor-
responding to every edge in the consraint graph GΛ. The (w,w′) entry of Mys/C(s) is denoted
Mys/C(s)|w,w′ and defined as follows.

Mys/C(s)|w,w′ :=

{
ys/|C(s)|, if there exists Pz ∈ P s.t ζ(w,w′) = s ⊆ z
0, otherwise

Then rewriting equation 109

∥∥∥T1(V )− T1(V̂ )
∥∥∥
F
=

1

|P|

√√√√∑
w∈F

∥∥∥∥∥
[
eTwGΛ ⊙Mys/C(s)(V − V̂ )

]∥∥∥∥∥
2

(110)

=
1

|P|

√∥∥∥(GΛ ⊙Mys/C(s))(V − V̂ )
∥∥∥2
F

(111)

By Cauchy-Schwarz we obtain∥∥∥T1(V )− T1(V̂ )
∥∥∥
F
≤ 1

|P|
∥∥GΛ ⊙Mys/C(s)

∥∥∥∥∥V − V̂ ∥∥∥
F

(112)

Next we move on to bound term 2.

Term 2: ∥∥∥T2(V )− T2(V̂ )
∥∥∥
F
= (113)

2ρ

|P|

√√√√√√√√∑
w∈F

∥∥∥∥∥∥∥∥
[ ∑

Pz∈P
s.t w⊆z

∑
w′,h,h′⊆s

s.t ζ(w,w′)=ζ(h,h′)

[(
⟨vw, vw′⟩v′w − ⟨vh, vh′⟩v′w

)
−
(
⟨v̂w, v̂w′⟩v̂′w − ⟨v̂h, v̂h′⟩v̂′w

)]]∥∥∥∥∥∥∥∥
2

(114)

Let the vector δw′ = vw − vw′ and let the scalar δw,w′ = ⟨vw, vw′⟩ − ⟨v̂w, v̂w′⟩. Then we have by
plugging definitions that(

⟨vw, vw′⟩v′w − ⟨v̂w, v̂w′⟩v̂′w
)
=
(
⟨vw, vw′⟩v′w − ((⟨vw, vw′⟩+ δw,w′)(v′w + δw′))

)
(115)

Substituting equation 115 into equation 114 in the square root we obtain

=
2ρ

|P|

√√√√√√√∑
w∈F

∥∥∥∥∥∥∥∥
∑
Pz∈P

s.t w⊆z

∑
w′⊆s

−⟨vw, vw′⟩δw′ − δw,w′v′w + δw,w′δw′

∥∥∥∥∥∥∥∥
2

(116)
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Applying triangle inequality we obtain

≤ 16ρ

|P|

√√√√√√√∑
w∈F

∥∥∥∥∥∥∥∥
∑
Pz∈P

s.t w⊆z

∑
w′⊆s

−⟨vw, vw′⟩δw′

∥∥∥∥∥∥∥∥
2

+
∑
w∈F

∥∥∥∥∥∥∥∥
∑
Pz∈P

s.t w⊆z

∑
w′⊆s

−δw,w′v′w

∥∥∥∥∥∥∥∥
2

+
∑
w∈F

∥∥∥∥∥∥∥∥
∑
Pz∈P

s.t w⊆z

∑
w′⊆s

δw,w′δw′

∥∥∥∥∥∥∥∥
2

(117)

LetM⟨vw,vw′ ⟩ ∈ R|P|2k×|P|2k be the matrix whose w,w′ entry is ⟨vw, v′w⟩. LetMδw,w′ be the matrix
whose w,w′ entry is δw,w′ . Let ⊙ denote the entrywise product of two matrices.

=
16ρ

|P|

√∥∥∥GΛ ⊙M⟨vw,vw′ ⟩(V − V̂ )
∥∥∥2
F
+
∥∥∥GΛ ⊙Mδw,w′ (V − V̂ )

∥∥∥2
F
+
∥∥∥GΛ ⊙Mδw,w′ (V − V̂ )

∥∥∥2
F

(118)

Applying Cauchy-Schwarz we obtain

=
16ρ

|P|

√∥∥GΛ ⊙M⟨vw,vw′ ⟩
∥∥2
F

∥∥∥(V − V̂ )
∥∥∥2
F
+
∥∥∥GΛ ⊙Mδw,w′

∥∥∥2
F

∥∥∥(V − V̂ )
∥∥∥2
F
+
∥∥∥GΛ ⊙Mδw,w′

∥∥∥2
F

∥∥∥(V − V̂ )
∥∥∥2
F

(119)

We apply entrywise upper bound ⟨vw, vw′⟩ ≤ B2 which can be done because we’re taking a frobenius
norm so the sign of each entry does not matter. Likewise we apply a crude entrywise upper bound of
δw,w′ ≤ B2 again because the sign of each entry does not matter in the frobenius norm (for each row
this is euclidean norm).

=
16B4ρ

|P|

√
∥GΛ∥2F

∥∥∥V − V̂ ∥∥∥2
F
+ ∥GΛ∥2F

∥∥∥V − V̂ ∥∥∥2
F
+ ∥GΛ∥2F

∥∥∥V − V̂ ∥∥∥2
F

(120)

Using the fact that ∥Gλ∥F ≤ 2k
√
|P|

=
2kB4ρ√
|P|

∥∥∥V − V̂ ∥∥∥
F
≤ 2kB4ρ

∥∥∥V − V̂ ∥∥∥
F

(121)

Therefore we have established∥∥∥T2(V )− T2(V̂ )
∥∥∥
F
≤ 2kB4ρ

∥∥∥V − V̂ ∥∥∥
F

(122)

Finally we move on to bound term 3.

Term 3: ∥∥∥T3(V )− T3(V̂ )
∥∥∥
F
:=

2ρ

|P|

√∑
w∈F

∥∥∥[(∥vw∥2 − 1)vw − (∥v̂w∥2 − 1)v̂w

]∥∥∥2 (123)

=
2ρ

|P|

√∑
w∈F

∥∥∥[∥vw∥2vw − ∥v̂w∥2v̂w + v̂w − vw
]∥∥∥2 (124)

Applying triangle inequality we obtain

≤ 2ρ

|P|

√∑
w∈F

[ ∥∥∥∥vw∥2 vw − ∥v̂w∥2 v̂w∥∥∥2 ]+ 2ρ

|P|

√∑
w∈F

[
∥v̂w − vw∥2

]
(125)

Using the fact that
∑

w∈F

[
∥v̂w − vw∥2

]
= ∥V − V̂ ∥F

=
2ρ

|P|

√∑
w∈F

[ ∥∥∥∥vw∥2 vw − ∥v̂w∥2 v̂w∥∥∥2 ]+ 2ρ

|P|
∥V − V̂ ∥F (126)
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Let δvw := v′w − vw then substituting the definition we obtain

=
2ρ

|P|

√∑
w∈F

[ ∥∥∥∥vw∥2 vw − ∥vw + δvw∥
2
(vw + δvw)

∥∥∥2 ]+ 2ρ

|P|
∥V − V̂ ∥F (127)

expanding the expression in the square root we obtain

=
2ρ

|P|

√∑
w∈F

[ ∥∥∥−2⟨vw, δvw⟩vw − ∥δvw∥2 vw − ∥vw∥2 δvw − 2⟨vw, δvw⟩δvw − ∥δvw∥
2
δvw

∥∥∥2 ]
(128)

+
2ρ

|P|
∥V − V̂ ∥F

(129)

By triangle inequality we upper bound by

≤ 2ρ

|P|

√∑
w∈F

[
∥−2⟨vw, δvw⟩vw∥

2
]

+
2ρ

|P|

√∑
w∈F

[ ∥∥∥−∥δvw∥2 vw∥∥∥2 ]
+

2ρ

|P|

√∑
w∈F

[ ∥∥∥−∥vw∥2 δvw

∥∥∥2 ]
+

2ρ

|P|

√∑
w∈F

[
∥−2⟨vw, δvw⟩δvw∥

2
]

+
2ρ

|P|

√∑
w∈F

[ ∥∥∥−∥δvw
∥2 δvw

∥∥∥2 ]
+

2ρ

|P|
∥V − V̂ ∥F (130)

For the first term consider by Cauchy-Schwarz

∥−2⟨vw, δvw⟩vw∥
2
= 4⟨vw, δvw⟩2 ∥vw∥

2 ≤ 4B4∥δvw∥2

Consider the second term which we upper bound via the norm bound on ∥vw∥ ≤ B∥∥∥∥δvw∥2 vw∥∥∥ = ∥δvw∥
2
B2

Consider the third term which we upper bound via the norm bound on ∥vw∥ ≤ B∥∥∥−∥vw∥2 δvw∥∥∥2 = ∥vw∥2 ∥δvw∥
2 ≤ B2 ∥δvw∥

2

Consider the fourth term which we upper bound via Cauchy-Schwarz

∥−2⟨vw, δvw⟩δvw∥
2
= 4⟨vw, δvw⟩2 ∥δvw

∥2 ≤ 4B4 ∥δvw∥
2

Consider the fifth term. We apply a crude upper bound of ∥δvw∥
2 ≤ B2∥∥∥−∥δvw∥2 δvw∥∥∥2 = ∥δvw∥

2 ∥δvw∥
2 ≤ B2 ∥δvw∥

2

Therefore we conclude

130 ≤ 20B2ρ

|P|

√∑
w∈F
∥δvw∥

2
+

2ρ

|P|
∥V − V̂ ∥F (131)

=
20B2ρ

|P|

∥∥∥V − V̂ ∥∥∥
F
+

2ρ

|P|
∥V − V̂ ∥F (132)
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So we conclude our bound on term 3∥∥∥T3(V )− T3(V̂ )
∥∥∥
F
≤ 20B2ρ

∥∥∥V − V̂ ∥∥∥
F

(133)

as desired. Putting our bounds for terms 1, 2, and 3 into equation 104 we obtain∥∥∥∇Lρ(V )−∇Lρ(V̂ )
∥∥∥
F
≤ O(B2ρ)

∥∥∥V − V̂ ∥∥∥
F

(134)

as desired.

Lemma E.3 (Max-CSP gradient perturbation analysis). For any set of matrices M :=
{M1,M2, ...,MT } ∈ R2r×r a perturbation U := {U1, U2, ..., UT } ∈ R2r×r that satisfies
∥Ui∥1,1 ≤ ϵ for all i ∈ [T ]. Let M + U denote the elementwise addition of M and U as such
M+U := {M1+U1,M2+U2, ...,MT +UT }. Then for a matrix V ∈ Rr×N satisfying ∥V ∥F ≤

√
d

we define the aggregation function AGG : Rr×N → R2r×N as such

AGG(V ) :=

[
V

∇Lρ(V )

]
(135)

Furthermore, let LAYERMi
(V ) denote

LAYERMi
(V ) =Mi(AGG(V ))

Finally, let OptGNNM : Rr×N → R be defined as

OptGNNM (V ) = Lρ ◦ LAYERMT
◦ .... ◦ LAYERM2 ◦ LAYERM1(V )

Here we feed the output of the final layer LAYERT to the loss function L : Rr×N → R. Then∥∥OptGNNM (V )− OptGNNM+U (V )
∥∥
F
≤ O(ϵB2T ρ2T r2T )

Proof. We begin by analyzing how much the gradient perturbs the input to a single layer. First we
apply the definition of LAYER and AGG to obtain

∥LAYERM (V )− LAYERM+U (V )∥F (136)
≤ ∥(M + U)V −MV ∥F + ∥∇Lρ((M + U)V )−∇Lρ(MV )∥F (137)
= ∥UV ∥F + ∥∇Lρ((M + U)V )−∇Lρ(MV )∥F (138)
≤ ∥U∥F ∥V ∥F + ∥∇Lρ((M + U)V )−∇Lρ(MV )∥F (139)

≤ ϵr3/2 + ∥∇Lρ((M + U)V )−∇Lρ(MV )∥F (140)

Here the first inequality follows by triangle inequality. The second inequality follows by Cauchy-
Schwarz. Finally the frobenius norm of U is ϵr the frobenius norm of V is Then applying the
lipschitzness of the gradient Lemma E.2 we obtain.

≤ ϵr3/2 +O(B2ρ) ∥(M + U)V −MV ∥F = O(B2ρ) ∥UV ∥F (141)

≤ ϵr3/2 +O(B2ρ) ∥U∥F ∥V ∥F (142)

≤ ϵr3/2 +O(B2ρ)ϵd ∥V ∥F (143)

= O(B2ρ)ϵr3/2 (144)

To conclude, we’ve established that

∥LAYERM (V )− LAYERM+U (V )∥F = O(B2ρ)ϵr3/2 (145)

Next we upper bound the lipschitzness of the LAYER function by the frobenius norm of ∥M∥F ≤
O(r) multiplied by the lipschitzness of ∇Lρ which is O(B2ρ). Taken together we find the the
lipschitzness of LAYER is upper bounded by O(B2ρr).

Note that OptGNN is comprised of T layers of LAYER functions followed by the evaluation of
the loss L. The T layers contribute a geometric series of errors with the dominant term being
O(ϵr3/2B2ρ ∗ (B2ρr)T ) = O(ϵ(B2ρr)2T ). The smaller order terms contribute no more than an
additional multiplicative factor of T leading to an error ofO(Tϵ(B2ρr)2T ). At any rate, the dominant
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term is the exponential dependence on the number of layers. Finally, OptGNN’s final layer is the
evaluation of the loss Lρ. The lipschitzness of the loss Lρ can be computed as follows. For any pair
of matrices V and V̂ both in Rr×r we have

|Lρ(V )− Lρ(V̂ )| ≤ ρ2k

|P|

∥∥∥V − V̂ ∥∥∥2
F

(146)

where we used the fact that the loss is dominated by its quadratic penalty term ρ times the square of
the violations where each row in V can be counted in up to 2k constraints normalized by the number
of predicates |P|. Putting this together applying the LAYER function over T layers we obtain∥∥OptGNNM+U (V )− OptGNNM (V )

∥∥ ≤ O(ϵB2T ρ2T r2T ) (147)

At this point we restate some elementary theorems in the study of PAC learning adapted for the
unsupervised learning setting.
Lemma E.4 (Agnostic PAC learnability (folklore)). Let x1, x2, ..., xN ∼ D be data drawn from a
distribution D. LetH be any finite hypothesis class comprised of functions h ∈ H where the range
of h in bounded in [0, 1]. Let ĥ ∈ H be the empirical loss minimizer

argmin
h∈H

1

N

∑
i∈[N ]

h(xi)

Let δ be the failure probability and let ϵ be the approximation error. Then we sayH is (N, ϵ, δ)-PAC
learnable if

Pr[| 1
N

∑
i∈[N ]

ĥ(xi)− Ex∼D[h(x)]| ≥ ϵ] ≤ δ

Furthermore,H is (N, ϵ, δ)-PAC learnable so long as

N = O

(
log |H| log(1/δ)

ϵ2

)
The proof is a standard epsilon net union bound argument which the familiar reader should feel free
to skip.

Proof. For any fixed hypothesis h the difference between the distributional loss between [0, 1] and
the empirical loss can be bounded by Hoeffding.

Pr
x1,...,xN∼D

[
Ex∼D[h(x)]−

1

N

∑
i∈[N ]

h(xi) > ϵ
]
≤ exp(−Nϵ2)

Let ĥ ∈ H be the empirical risk minimizer within the hypothesis class H on data {x1, x2, .., xN}.
What is the probability that the empirical risk deviates from the distributional risk by greater than ϵ?
i.e we wish to upper bound the quantity

Pr
x1,...,xN∼D

[
Ex∼D[ĥ(x)]−

1

N

∑
i∈[N ]

ĥ(xi) > ϵ
]

Of course the biggest caveat is that ĥ depends on x1, ..., xN and thus Hoeffding does not apply.
Therefore we upper bound by the probability over draws x1, ..., xN ∼ D that there exists ANY
hypothesis inH that deviates from its distributional risk by more than ϵ.

Pr
x1,...,xN∼D

[
Ex∼D[ĥ(x)]−

1

N

∑
i∈[N ]

ĥ(xi) > ϵ
]
≤ Pr

x1,...,xN∼D

[ ⋃
h∈H

[
Ex∼D[h(x)]−

1

N

∑
i∈[N ]

h(xi) > ϵ
]]

(148)

This follows because the event that ĥ deviates substantially from its distributional loss is one of the
elements of the union on the right hand side.
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[
Ex∼D[ĥ(x)]−

1

N

∑
i∈[N ]

ĥ(xi) > ϵ
]
⊆
[ ⋃
h∈H

[
Ex∼D[h(x)]−

1

N

∑
i∈[N ]

h(xi) > ϵ
]]

Then we have via union bound that

Pr
x1,...,xN∼D

[
Ex∼D[ĥ(x)]−

1

N

∑
i∈[N ]

ĥ(xi) > ϵ
]
≤ Pr

x1,...,xN∼D

[ ⋃
h∈H

[
Ex∼D[h(x)]−

1

N

∑
i∈[N ]

h(xi) > ϵ
]]

≤
∑
h∈H

Pr
x1,...,xN∼D

[
Ex∼D[h(x)]−

1

N

∑
i∈[N ]

h(xi) > ϵ
]

≤
∑
h∈H

exp(−ϵ2N) = |H| exp(−ϵ2N) (149)

where the last line follows by Hoeffding. In particular if we want the failure probability to be δ then

|H| exp(−ϵ2N) ≤ δ (150)

which implies

N ≥ 1

ϵ2
ln(
|H|
δ

)

Suffices for the ĥ ∈ H to deviate from its empirical risk by less than ϵ.

Finally putting our perturbation analysis Lemma E.3 together with the agnostic PAC learnability
Lemma E.4
Lemma E.5. Let Λ1,Λ2, ...,ΛΓ ∼ D be Max-CSP instances drawn from a distribution over instances
D with no more than |P| predicates. Let M be a set of parameters M = {M1,M2, ...,MT } in a
parameter space Θ. Then for T = O(Φ4), for Γ = O( 1

ϵ4Φ
6 log4(δ−1)), let M̂ be the empirical loss

minimizer

M̂ := argmin
M∈Θ

1

Γ

∑
i∈[Γ]

OptGNN(M,Λi)
(V )

Then we have that OptGNN is (Γ, ϵ, δ)-PAC learnable

Pr

∣∣∣∣∣∣ 1Γ
∑
i∈[Γ]

OptGNN(M̂,Λi)
(V )− EΛ∼D

[
OptGNN(M̂,Λ)(U)

]∣∣∣∣∣∣ ≤ ϵ
 ≥ 1− δ

Proof. The result follows directly from the agnostic PAC learning Lemma E.4 and the perturbation
analysis Lemma E.3. We have that for a net of interval size ϵ

r2T
suffices for an ϵ approximation.

The cardinality of the net is then r2T /ϵ per parameter raised the power of the number of param-
eters required for OptGNN to represent an ϵ approximate solution to SDP(Λ). Each LAYER is
comprised of a matrix Mi of dimension r × 2r for r = Φ. By Lemma E.1 we need a total of
T = O(Φ4ϵ−4 log4(δ−1)) layers to represent an ϵ optimal solution with probability 1− δ. Then the
total number of parameters in the network is O(Φ6ϵ−4 log4(δ−1)) as desired.
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F Hessian Lemmas

This section is to prove the hessian ∇2Lρ is smooth. This is relevant for bounding the number of
iterations required for algorithm 3.
Lemma F.1 (Smooth Hessian Lemma). For a Max-CSP instance Λ, Let Lρ(v) be the normalized
loss defined in equation 72. Then the hessian satisfies∥∥∇2Lρ(v)−∇2Lρ(v̂)∥ ≤ 8Bρ∥V − V̂ ∥F .

In particular for ρ = poly(k, ϵ−1) we have that the hessian is poly(B, k, ϵ−1) smooth.

Proof. Next we verify this for the Max-CSP hessian. The form of its hessian is far more complex.
To simplify matters we first consider the hessian of polynomials of the form T (vi, vj , vk, vℓ) =
(⟨vi, vj⟩ − ⟨vk, vℓ⟩)2

∇2T (vi, vj , vk, vℓ) :=



∂
∂via∂vkb

T = −2vjavℓb, for a, b ∈ [r]
∂

∂via∂vℓb
T = −2vjavkb, for a, b ∈ [r]

∂
∂vja∂vkb

T = −2viavℓb, for a, b ∈ [r]
∂

∂vja∂vℓb
T = −2viavkb, for a, b ∈ [r]

∂
∂via∂vjb

T = 2vjavib, for a, b ∈ [r]
∂

∂vka∂vℓb
T = 2vℓavkb, for a, b ∈ [r]

∂
∂v2

ia
T = v2ja, for a ∈ [r]

∂
∂v2

ja
T = v2ia, for a ∈ [r]

∂
∂v2

ka
T = v2ℓa, for a ∈ [r]

∂
∂v2

ℓa
T = v2ka, for a ∈ [r]

0, otherwise

We can decompose the Hessian as a sum of 10 matrices corresponding to the cases enumerated above.

∇2T (v) = ∇2T (v)|(i,k) +∇2T (v)|(i,ℓ) +∇2T (v)|(j,k) +∇2T (v)|(j,ℓ)
+∇2T (v)|(i,j) +∇2T (v)|(k,ℓ)

+∇2T (v)|(i,i) +∇2T (v)|(j,j) +∇2T (v)|(k,k) +∇2T (v)|(ℓ,ℓ). (151)

Then we can compute

∥∇2T (v)−∇2T (v)∥F ≤
∥∇2T (v)|(i,k) −∇2T (v̂)|(i,k)∥F + ∥∇2T (v)|(i,ℓ) −∇2T (v̂)|(i,ℓ)∥F

+ ∥∇2T (v)|(j,k) −∇2T (v̂)|(j,k)∥F + ∥∇2T (v)|(i,k) −∇2T (v̂)|(j,ℓ)∥F
+ ∥∇2T (v)|(i,j) −∇2T (v̂)|(i,j)∥F + ∥∇2T (v)|(k,ℓ) −∇2T (v̂)|(k,ℓ)∥F
+ ∥∇2T (v)|(i,i) −∇2T (v̂)|(i,i)∥F + ∥∇2T (v)|(j,j) −∇2T (v̂)|(j,j)∥F

+ ∥∇2T (v)|(k,k) −∇2T (v̂)|(k,k)∥F + ∥∇2T (v)|(ℓ,ℓ) −∇2T (v̂)|(ℓ,ℓ)∥F . (152)

Noticing that the first four terms have the same upper bound, terms 5 and 6 have the same upper
bound, and terms 7 through 10 share the same upper bound we obtain

∥∇2T (v)−∇2T (v)∥F ≤ 4∥∇2T (v)|(i,k) −∇2T (v̂)|(i,k)∥F
+ 2∥∇2T (v)|(i,j) −∇2T (v̂)|(i,j)∥F

+ 4∥∇2T (v)|(i,i) −∇2T (v̂)|(i,i)∥F . (153)

Now consider the first term

∥∇2T (v)|(i,k) −∇2T (v̂)|(i,k)∥2F = 4
( ∑
a,b∈[r]

(vjavℓb − v̂jav̂ℓb)2
)

(154)
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Let δj = v̂j − vj and δℓ = v̂ℓ − vℓ. We expand equation 154 to obtain

= 2∥vjvTℓ − v̂j v̂Tℓ ∥F = 2∥vjvTℓ − (vj + δj)(vℓ + δℓ)
T ∥2F

= 2∥vjvTℓ − (vjv
T
ℓ + δjv

T
ℓ + vjδ

T
j + δjδ

T
ℓ )∥2F

= 2∥(δjvTℓ + vjδ
T
ℓ + δjδ

T
ℓ )∥2F

≤ 16
(
∥δj∥2∥vℓ∥2 + ∥vj∥2∥δj∥2 + ∥δj∥2∥δℓ∥2

)
≤ 16B2(∥δj∥2 + ∥δℓ∥2),

where we apply Cauchy-Schwarz as needed. The second term is bounded similarly. The last term can
be bounded

∥∇2T (v)|(i,i) −∇2T (v̂)|(i,i)∥F ≤ 2

√∑
a∈[r]

(v2ja − v̂2ja)2.

Upper bounding vja + v̂ja ≤ 2B which applies for all a ∈ [r] we obtain

= 2

√∑
a∈[r]

(vja − v̂ja)2(vja + v̂ja)2 ≤ 2

√
B2

∑
a∈[r]

(vja − v̂ja)2 ≤ 2
√
∥vj − v̂j∥2B2.

Putting the terms together we obtain the following bound for

∥∇2T (v)−∇2T (v)∥F ≤

16B2
[
(∥δj∥2 + ∥δℓ∥2) + (∥δj∥2 + ∥δk∥2) + (∥δi∥2 + ∥δℓ∥2) + (∥δi∥2 + ∥δℓ∥2)

+ (∥δi∥2 + ∥δj∥2) + (∥δk∥2 + ∥δℓ∥2)

+ (∥δi∥2 + ∥δj∥2 + ∥δk∥2 + ∥δℓ∥2)
]
. (155)

Now we can perform the analysis for the hessian of the entire Max-CSP loss

Lρ(v) :=
1

|P|

[ ∑
Pz∈P

∑
s⊆z

ys
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩

+ ρ

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2

+
∑
vs∈v

(∥vs∥2 − 1)2

]]
. (156)

We break the loss into three terms

W1(v) :=
1

|P|
∑
Pz∈P

∑
s⊆z

ys
1

|C(s)|
∑

g,g′⊆s
s.t ζ(g,g′)=s

⟨vg, vg′⟩,

W2(v) :=
ρ

|P|

[ ∑
Pz∈P

∑
g,g′,h,h′⊆z

ζ(g,g′)=ζ(h,h′)

(
⟨vg, vg′⟩ − ⟨vh, vh′⟩

)2]
,

W3(v) :=
ρ

|P|
∑
vs∈v

(∥vs∥2 − 1)2,

48

73171https://doi.org/10.52202/079017-2328



such that Lρ(v) :=W1(v) +W2(v) +W3(v). We break the hessian apart into three terms

∥∇2Lρ(v)−∇2Lρ(v̂)∥F ≤ ∥∇2W1(v)−∇2W1(v̂)∥F
+ ∥∇2W2(v)−∇2W2(v̂)∥+ ∥∇2W3(v)−∇2W3(v̂)∥. (157)

The first term is zero as its the hessian of a quadratic which is a constant. The difference is then zero.
We bound the second term as follows.

∥∇2W2(v)−∇2W2(v̂)∥ ≤
ρ

|P|
∥∥ ∑

Pz∈P

∑
g,g′,h,h′⊆z

ζ(g,g′)=ζ(h,h′)

(
∇2T(g,g′,h,h′)(v)−∇2T(g,g′,h,h′)(v̂)

)∥∥
F

≤ ρ

|P|

√√√√√∑
Pz∈P

∑
g,g′,h,h′⊆z

ζ(g,g′)=ζ(h,h′)

64B2
(
∥δg∥2 + ∥δg′∥2 + ∥δh∥2 + ∥δh′∥2

)
.

Noticing that each δg can be involved in no more than |P| sums by being variables in every single
predicate.

≤ 8Bρ

|P|

√
|P|∥V − V̂ ∥2F ≤

8Bρ√
|P|
∥V − V̂ ∥F .

Now we move on to boundW3

∥W3(v)−W3(v̂)∥F =
ρ

|P|
∥∥ ∑

vs∈v

(
∇2(∥vs∥2 − 1)2 −∇2(∥v̂s∥2 − 1)2

)∥∥
F

≤ ρB

|P|

√∑
vs∈v

∥vs − v̂s∥2 =
ρB

|P|
∥V − V̂ ∥F .

Putting all three terms together we obtain the smoothness of the hessian is dominated byW2.

∥∇2Lρ(v)−∇2Lρ(v̂)∥F ≤
( 8Bρ√
|P|

+
Bρ

|P|
)
∥V − V̂ ∥F ≤

8Bρ√
|P|
∥V − V̂ ∥F .

F.1 Miscellaneous Lemmas

Theorem F.1 (perturbed-gd Jin et al. (2017)). Let f be ℓ-smooth (that is, it’s gradient is ℓ-Lipschitz)
and have a γ-Lipschitz Hessian. There exists an absolute constant cmax such that for any δ ∈
(0, 1), ϵ ≤ ℓ2

γ ,∆f ≥ f(X0)− f∗, and constant c ≤ cmax, PGD(X0, ℓ, γ, ϵ, c, δ,∆f ) applied to the
cost function f outputs a (γ2, ϵ) SOSP with probability at least 1− δ in

O

(
(f(X0)− f∗)ℓ

ϵ2
log4

(
dℓ∆f

ϵ2δ

))
iterations.
Definition. [(γ, ϵ)-second order stationary point] A (γ, ϵ) second order stationary point of a function
f is a point x satisfying

∥∇f(x)∥ ≤ ϵ
λmin(∇2f(x)) ≥ −√γϵ.

Theorem F.2. (Robustness Theorem 4.6 (Raghavendra & Steurer, 2009a) rephrased) Let v be a set
of vectors satisfying the constraints of SDP 2 to additive error ϵ with objective OBJ(v), then

SDP(Λ) ≥ OBJ(v)−
√
ϵpoly(kq).

Corollary 2. Given a Max-k-CSP instance Λ, there is an OptGNNM,Λ(v) with T =
O(ϵ−4Φ4 log(δ−1)) layers, r = O(Φ) dimensional embeddings, with learnable parameters M =
{M1, ...,MT } that outputs a set of vectors V satisfying the constraints of SDP 2 and approximating
its objective, SDP(Λ), to error ϵ with probability 1− δ over random noise injections.
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Proof. The proof is by inspecting the definition of OptGNN in the context of Theorem 3.1.

Corollary 3. The OptGNN of Corollary 2 , which by construction is equivalent to Algorithm 3,
outputs a set of embeddings v such that the rounding of Raghavendra & Steurer (2009a) outputs an
integral assignment V with a Max-k-CSP objective OBJ(V) satisfying OBJ(V) ≥ SΛ(SDP(Λ)−
ϵ) − ϵ in time exp(exp(poly(kqϵ ))) which approximately dominates the Unique Games optimal
approximation ratio.

Proof. The proof follows from the robustness theorem of Raghavendra & Steurer (2009a) which
states that any solution to the SDP that satisfies the constraints approximately does not change the
objective substantially Theorem F.2.

G Definitions

In this section we introduce precise definitions for message passing, message passing GNN, and
SDP’s. First we begin with the SDP.

Definition (Standard Form SDP). An SDP instance Λ is comprised of objective matrix C ∈ RN×N

and constraint matrices {Ai}i∈F and constants {bi}i∈F over a constraint set F

Minimize: ⟨C,X⟩ (158)
Subject to: ⟨Ai, X⟩ = bi ∀i ∈ [F ] (159)

X ⪰ 0. (160)

For any standard form SDP, there is an equivalent vector form SDP with an identical optimum.

Definition (Vector Form SDP). Any standard form SDP Λ is equivalent to the following vector form
SDP.

Minimize: ⟨C, V TV ⟩ (161)

Subject to: ⟨Ai, V
TV ⟩ = bi ∀i ∈ [F ] (162)

V = [v1, v2, ..., vN ] ∈ RN×N . (163)

For the SDP’s corresponding to CSP’s, there is a natural graph upon which the CSP instance is
defined. Next we define what it means for a message passing algorithm on a graph to solve a SDP.

Definition (Message Passing). A T iteration message passing algorithm denoted MP is a uniform
circuit family that takes as input a graphG = (V,E) and initial embeddings U = {u0i }i∈[N ] ∈ Rr×N

and outputs MP(G,U0) ∈ Rr×N . The evaluation of MP involves the use of a uniform circuit family
defined for each iteration UPDATE = {UPDATEj}j∈[T ]. At iteration ℓ ∈ [T ], for each node i ∈ V ,
the function UPDATEℓ : Rr×(|N(i)|+1) → Rr takes the embeddings of nodes i and its neighbors at
iteration ℓ− 1, denoted {uℓ−1

j }j∈N(i)∪i ∈ Rr, and outputs embedding uℓi ∈ Rr.

We additionally require some mild restrictions on the UPDATE function to be polynomially smooth
in its inputs and computable in polynomial time. That is for any ∥U∥ ≤ B in the B norm ball we
have

UPDATEr(U − U ′) ≤ poly(B,N)∥U − U ′∥, (164)

and the UPDATEℓ circuit is polynomial time computable poly(|N(i)|, r).

We impose some mild restrictions on the form of the message passing algorithm to capture algorithms
that could reasonably be executed by a Message Passing GNN. In practice the UPDATE circuit for
OptGNN is a smooth cubic polynomial similar to linear attention and therefore of practical value.
Next we define Message Passing GNN.

Definition (Message Passing GNN). A T layer Message Passing GNN is a uniform circuit family
that takes as input a graph G = (V,E), a set of parameters M := {M1,M2, ...,MT }, and initial
embeddings U0 = {u0i }i∈V ∈ Rr×N and outputs GNN(G,M,U0) ∈ Rr×N . The GNN circuit is
evaluated as follows. For each node i ∈ V , each layer ℓ ∈ [T ], there is a uniform circuit family
AGGℓ : R|Mℓ| × Rr×|N(i)| → Rr that takes as input a set of parameters M ℓ ∈ M and a set of
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embeddings of node i and its neighbors at layer ℓ − 1 denoted {uℓ−1
j }j∈N(i)∪i, and outputs an

embedding uℓi . This update equation is represented as follows

uℓi := AGG(M ℓ, U ℓ) = UPD(uℓ−1
i ,MSG({uℓ−1

j }j∈N(i))). (165)

For some functions UPD and MSG parameterized by M ℓ. To capture meaningful models of GNNs,
we require AGG(M,U) to be polynomially lipschitz and computable in polynomial time. That is, for
weights M̂ and M ′ and for inputs Û and U ′ all in the B norm ball, we require

∥AGG(M̂, Û)− AGG(M ′, U ′)∥ ≤ poly(B,N)
(
∥M̂ −M ′∥+ ∥Û − U ′∥

)
, (166)

and we require AGG(M̂, Û) to be computable in poly(|N(i)|, r) time.

In practice the AGG circuit for OptGNN is a smooth cubic polynomial similar to linear attention
and therefore of practical value. In almost the same way, we define a message passing algorithm see
Definition G.
Definition (Output of GNN solves SDP). We say a GNN ϵ-approximately solves an SDP with
optimum OPT if its output embeddings U ℓ = {ui}i∈[N ] approximately optimize the vector form
SDP objective SDP({ui}i∈[N ]) ≥ OPT − ϵ and approximately satisfy the vector form constraints∣∣⟨Ai, V

TV ⟩ − bi
∣∣ ≤ ϵ.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main claims are message passing GNN for Max-CSP Theorem C.1 Corollary 1,
OptGNN experiments for Max Cut, Vertex-Cover, 3-SAT (Figure 2b, Table 1, Table 2) neural
certification experiment Figure 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We compare our results against a broad variety of neural and classical baselines
(WalkSAT, Survey Propagation, Gurobi, CVXPY, SDP’s, etc.), perform extensive ablations
on a host of datasets Tables 5,6 and Figures 5-9 and situate our theory within the existing
literature on approximation algorithms with SDP’s (see references in intro). Computational
efficiency of OptGNN and message passing algorithm are stated adjacent to their definitions.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Main theorem informally stated Theorem 3.1 is restated formally in body of
paper as Theorem C.1 with accompanying proof. Main PAC learning result is stated in paper
3.1 and restated in appendix and proven as E.5. Certification proof is provided in C.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a thorough description of the experimental details (see
Appendix D), as well as pseudocode for the proposed method (see Algorithm 5).
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Link to the code along with instructions is provided in the main text.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the experimental setup is thoroughly described in the Appendix D and in
the main experiments section of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports standard deviations for several experiments (e.g., Figure
3b, Table 2, Figure 6, Figure 7). In cases such as Figure 3a where the setup is identical to
previous published work, the deviations are not available because they were not provided in
the original paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The resource that were used are detailed in Appendix D. Execution time is
also discussed there but also explicitly provided in tables 1,2,3,4.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After reviewing the code of Ethics, the authors find that the paper does not
violate it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper provides a general theoretical result about graph neural network
architectures and experimental backup for its claims on general benchmark instances. There
are no immediate societal implications to this line of work. On the other hand, improving
aspects of neural networks such as their combinatorial problem-solving (which is the case
here) can open up avenues for their misuse. However, we believe that those consequences
are rather indirect and beyond the scope of our paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The released models and the data used do not have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper provides appropriate citations for packages and data that have been
used and their licenses are properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes we provide a detailed description of the code that is being provided with
the submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not include any such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper has no such research or experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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