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Abstract

Tensor Train (TT) decomposition is widely used in the machine learning and quan-
tum physics communities as a popular tool to efficiently compress high-dimensional
tensor data. In this paper, we propose an efficient algorithm to accelerate comput-
ing the TT decomposition with the Alternating Least Squares (ALS) algorithm
relying on exact leverage scores sampling. For this purpose, we propose a data
structure that allows us to efficiently sample from the tensor with time complexity
logarithmic in the tensor size. Our contribution specifically leverages the canonical
form of the TT decomposition. By maintaining the canonical form through each
iteration of ALS, we can efficiently compute (and sample from) the leverage scores,
thus achieving significant speed-up in solving each sketched least-square problem.
Experiments on synthetic and real data on dense and sparse tensors demonstrate
that our method outperforms SVD-based and ALS-based algorithms.

1 Introduction

Tensor decomposition methods have recently found numerous applications in machine learning. Their
ability to perform operations efficiently on very high-dimensional tensors makes them suitable for
data science and machine learning problems. For example, they have been used for neuro-imaging,
and signal processing [Zhou et al.| |2013| |Sidiropoulos et al.,|2017, |Cichocki and Phan} 2009], super-
vised learning [Novikov et al.,|2016} [Stoudenmire and Schwab, [2016]], feature extraction [Bengua
et al.,|2015] and scaling up Gaussian processes [Izmailov et al.,|2018|]. The most popular decom-
positions are the CANDECOMP/PARAFAC (CP), Tucker [Hitchcock, 1927, Tucker, [1966]], Tensor
Train (TT) |Oseledets| [2011]] and Tensor Ring (TR) Zhao et al.|[2016] decompositions. However,
finding a rank-r CP decomposition is NP-hard [Kolda and Bader, |2009, Hillar and Liml| 2013]] and in
the Tucker decomposition, the number of parameters grows exponentially with the order of the tensor.
While the number of parameters is linear in the tensor’s order for both TT and TR decompositions,
TR is known to have numerical stability issues. The TT decomposition, in contrast, can be used to
represent a tensor in a compressed format where the number of parameters scales linearly with the
order of a tensor. Additionally, finding a good approximation to the best rank-r TT decomposition is
feasible which lets the user perform various linear algebra operations efficiently and compute the TT
decomposition with stable algorithms.

Due to the high-dimensional nature of tensors, designing efficient algorithms for computing the
TT decomposition is crucial. A popular method for computing the TT decomposition of an V-
dimensional tensor &’ is the TT-SVD algorithm [Oseledets, |2011] which uses a sequence of singular
values decompositions on the tensor unfoldings to produce the TT representation in a single pass.
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Since TT-SVD requires performing SVDs of unfoldings of X', its cost is exponential in /N. Alternating
Least Square (ALS) is another popular approach [Holtz et al., 2012] to find the TT approximation.
Starting with a crude guess, each iteration of ALS involves solving a sequence of least squares
problems. While ALS is the workhorse algorithm in many tensor decomposition problems, the
computational cost is still exponential in the order of a tensor (/V), since each iteration requires
solving least squares problems involving unfoldings of X. These issues have led to the search
for alternatives based on randomization and sampling techniques. A cheaper alternative to the
TT-SVD with strong accuracy guarantees can be implemented by replacing the exact singular value
decomposition (SVD) with a well-studied randomized counterpart [Halko et al., 2011, |Huber et al.,
2017]]. Randomized variants of the TT-ALS approach have received little attention. In|Chen et al.
[2023]], the authors propose a randomized ALS algorithm that uses TensorSketch [Pham and Paghl,
2013 in each iteration. In this work, we also propose a novel randomized variant of the TT-ALS
algorithm that relies on exact leverage score sampling. Notably, the sketch size in TensorSketch
TT-ALS |Chen et al.[[2023]] has an exponential dependence on the tensor dimension I whereas our
algorithm avoids any dependence of the sketch size on I.

Our Contributions. In this paper, we propose a new sampling-based ALS approach to compute the
TT decomposition: rTT-ALS. By using exact leverage score sampling, we are able to significantly
reduce the size of each ALS least squares problem while providing strong guarantees on the approxi-
mation error. At the core of rITT-ALS, we leverage the TT canonical form to efficiently compute the
exact leverage scores and speed up the solutions of least square problems in each iteration of ALS.
To the best of our knowledge, rTT-ALS is the first efficient TT decomposition by the ALS algorithm
which relies on leverage scores sampling. We provide experiments on synthetic and real massive
sparse and dense tensors showing that rTT-ALS can achieve up to 26 x speed-up compared to its
non-randomized counterpart with little to no loss in accuracy.

Our core contribution is the following theorem, which shows that we can efficiently compute a
subspace embedding of a left-orthogonal chain of TT tensor cores by efficiently sampling according
to their squared row norms (for technical definitions and details see subsection [3.1).

Theorem 1.1 (Row-norm-squared sampling for 3D core chains). Let Ay, ..., A; be a sequence of
3D tensors, Aj, € REtk—1x1x X_Rk (with Ry = 1). Assume that the left-matricization of each core is
orthogonal. Let A< be the fle I}, x R; matrix obtained by unfolding the contraction of the tensor
chain Ay, ..., A;. Then there exists a data structure to randomly sample rows from A< according to

the distribution of its squared row norms with the following properties:

1. The data structure has construction time O (Z] Ian_lRfL). When R=R, =.. =

n=1

Rjand I = I = ... = I;, the runtime is O(jIR3). The space overhead of the data
structure is linear in the sizes of the input cores.

2. The data structure produces a single row sample from A<; according to the distribution of
its squared row norms in time O ( £=1 log (I Ri—1/Rk) R%) When all ranks Ry, and
physical dimensions I, are equal, this complexity is O(jR? log I).

We highlight that the runtime required to construct the data structure is asymptotically identical to the
runtime required to compute the canonical form of the tensor train subchain, i.e., A<, by successive
QR decompositions. This implies that the data structure construction and subsequent updates of the
data structure do not increase the asymptotic complexity of our method.

2 Related work

Randomized algorithms and leverage score sampling-based methods [Mahoney et al., 2011, Woodruff
et al., 2014, Drineas et al.,|2006a] have been used widely in a large body of research particularly
in tensor decomposition problems over the past two decades [Malik and Becker, 2021} |Larsen and
Koldal [2022} |[Fahrbach et al., 2022]] just to name a few.

[Cheng et al., 2016] propose SPALS, the first ALS-based algorithm relying on leverage score sampling
for the CP decomposition. Their proposed method reduces the size of the least squares problem
in each iteration of ALS with a sub-linear cost per iteration in the number of entries of the input
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tensor. |Larsen and Koldal [2022] extends this method by combining repeated sampled rows in a
deterministic and random sampling fashion. However, both of these methods use leverage score
approximations and therefore require a number of samples which is exponential in the number of
tensor modes in order to achieve relative-error performance guarantees. Malik| [2022]] proposes a
method which avoids this exponential dependency on the number of tensor modes by using higher-
quality leverage score estimates for the CP decomposition. The method is further improved by
[Malik et al., |2022]] to use exact rather than approximate leverage scores which is applicable for
arbitrary tensor decompositions. Recently, [Bharadwaj et al., | 2023|| provided a novel data structure to
efficiently sample from the exact distribution of the factor matrices’ leverage scores in the Khatri-Rao
product with time complexity logarithmic in the tensor size, leading to further improvements on the
work in [Malik et al.|[2022]. Moreover, [Malik and Becker, |2021]] proposed an ALS-based algorithm
for finding the TR decomposition using leverage scores approximation. However, the runtime of
their method has an exponential dependency on the order of a tensor. The sampler we propose in
this paper is built on the work by Bharadwaj et al.|[2023]], extending it to the TT decomposition and
leveraging the canonical form for further speed-up.

There are also a variety of non-ALS-based randomized algorithms for computing the TT decomposi-
tion. [Huber et al., 2017] leverages randomized SVD for the TT decomposition which accelerates
the classical TT-SVD algorithm proposed by [Oseledets}, 2011]]. To handle situations where the
exact TT rank is unknown, [Che and Wei, |2019]] propose an adaptive randomized algorithm that can
achieve near optimal TT approximation. [Yu et al.l2023|] present a method leveraging randomized
block Krylov subspace iteration for computing TT approximations. Most of the algorithms for TT
decomposition are based on the randomized SVD for matrices introduced by [Halko et al.||2011]]. In
the quantum physics community, the ALS algorithm is widely used for finding TT decomposition
and often yields more accurate results than TT-SVD. The randomized TT-SVD method struggles
to scale for high-order tensors as it requires generating a random Gaussian matrix at each step that
can only handle small-order tensors. More closely related to our work are those using sketching
and sampling in each iteration of ALS to approximate the TT decomposition. Recently, [Chen et al.,
2023]] introduced an algorithm that employs TensorSketch [Pham and Pagh, [2013] in each iteration
of a regularized ALS approach for TT decomposition. However, the sketch size has an exponential
dependency to a tensor dimension. By contrast, our proposed algorithm requires the sketch size with
no dependence on the tensor dimension and it depends only on the column size of the design matrix
and ¢ and § parameters.

3 Preliminaries

We use capital letters A to denote matrices and script characters A to denote multidimensional arrays.
We use Matlab notation for slices of matrices and tensors. We use the tuple notation to indicate
the position of entries of arrays. For example, A(i1, i, 43) indicates the (i1, 2, 3)-th element of A.
Ali,:] and A [:, 9] refer to the i-th row and column of A, respectively; for a three-dimensional tensor
A € RF1 XX Bz the matrix A [:,4,:] € RF1*Ez is the i-th lateral slice of .A. For a positive integer
n, we use [n] to denote the set of integers from 1 to n. For iy € [I1],...,iny € [In], the notation
iy 1+ EnNzl(in -1) H;V:_ll I; will be helpful for tensor unfoldings. We use ® and © to
denote the Kronecker and Khatri-Rao products, respectively (see definitions in Appendix [A). We use
1, to denote the d x d identity matrix, AT for the transpose of A, AT for the pseudo-inverse of A,
||-||  for the Frobenius norm and ||-||,, for the Euclidean norm of a vector. We use O to indicate the
presence of multiplicative terms polylogarithmic in R and 1/4.

3.1 Tensor Train Decomposition
Let ¥ € RI1*XIN be an N-dimensional array. A rank (Ry,..., Ry_1) tensor train (TT) de-

composition of a tensor X € RI1* >IN factorizes it into the product of N third-order tensors
A, € REn—1XInxEBn for n € [N] (with Ry = Ry = 1):

N
X(il,"' ,iN): Z HAH(Tn—lvinyTn)a
To

,oo, TN n=1
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foralléy € [I1],--- ,in € [In], where each r,, ranges from 1 to R,,. A tensor network representation
of aTT decomposmon is shown in Figure [T} We call A;, Az, - -, Ay core tensors and we use
TT((A,)N_,) to denote a TT tensor with factors A;, - - - , A,,.

1 35

Figure 1: Tensor Train decomposition of a 5-dimensional tensor in tensor network notation.

Definition 3.1. The mode-n unfolding of a tensor X € R > *IN s the matrix X € RIn*ILizn 1
defined element-wise by X(n) (i,,,, 11 fn—1%nt1 - ) def X, ,in).

As a special case, we denote the left (resp. right) matricization of a 3-dimensional tensor A €
R11><12><I3 by AL — (A)(3) c R11[2X13 and AR A(l) c Rllezfg.

Given a TT decomposition TT((A,,)2_,) and an index j, we will often use the left-chain A; €

RITizi 1eXRi-1 and right-chain A ; € RE T4 I unfoldings obtained by matricizing the
contraction of all cores on the left and on the right side of the j-th core. Formally,

J—1
Acj(icj,mj—1) g H.Ak Tk—1,%k,Tk) and As; (r5,0>;) E H Ap(Tr—1, 0k, k)
TOyeens rji—1 k=1 Tidlyeey rN k=j+1
) . . ; . . i def
where ic; = dy...ij_ 1 and is; = ij41...iy. We also use A% = A @ Al €

Rk 1 Bi-1Ri 4 denote the unfolding of the contraction of all cores except the j-th one.

We conclude by introducing the canonical form of the TT decomposition [Holtz et al.|[2012} [Evenbly,
2018l 2022]] which will be central to the design of our algorithm.

Definition 3.2. A TT decomposition TT((A WN_1) € REXXIN s in a canonical format with

n=1
respect to a fixed index j € [N] lfAL AL = [g, foralln < j, and AﬁAﬁT = Ip,_, forall
n > j (see Figure

Figure 2: Orthonormal TT decomposition. The cores at the left side of A3 are left-orthonormal and
the cores at the right are right-orthonormal.

Note that any TT decomposition can efficiently be converted to canonical form w.r.t. any index
j € [N] by performing a series of QR decompositions on the core tensors [Holtz et al., 2012} [Evenblyl,
2018].

3.2 Alternating Least Squares with Tensor Train Structure.

The TT decomposition problem consists in finding a low-rank approximation TT((A,))_,) of
a given tensor X: argminy, 4 [|X = TT(Aqs, ..., Ay)||p where X is the target tensor with
dimensions I; x --- x Iy. Since this is a non-convex optimization problem, the popular alternating
least-squares (ALS) approach can be used to find an approximate solution [Kolda and Bader} 2009].
Fixing all cores except the j-th one, the low rank approximation problem can be reformulated as a
linear least squares problem:

argmin 4, H (A<j @ AL)) (45)(5) — X(E)HF ' v

The ALS approach finds an approximate solution by keeping all cores fixed and solving for the
j-th one. Then repeat this procedure multiple times for each ;7 € [N] until some convergence
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criteria is met. While ALS is the workhorse algorithm in many tensor decomposition problems, the
computational cost is still O (I N ) for Iy = --- = Iy = I. In this work, to reduce this cost, we will
combine ALS with core orthogonalization to efficiently compute the exact leverage scores. This will
also lead to a stable algorithm for computing TT. To compute the orthogonalized TT approximation,
we start with a crude TT decomposition in canonical form (see Definition [3.2)) where all cores except
the first one are right-orthonormal. After optimizing the first core, a QR decomposition is performed
and the non-orthonormal part is merged into the next core. This procedure repeats until reaching the
right side of the decomposition. The same procedure is then repeated from the right until reaching the
left side (see the tensor network illustration in Appendix [A.T). Even after computing the canonical
form, which makes the design matrix orthonormal for each linear least squares problem, we still
need to multiply the matricized tensor by the chain of TT cores in canonical form. Given that the
tensor may have hundreds of millions of nonzeros, this multiplication is a significant computational
bottleneck: without sketching, the runtime for this matrix multiplication scales as O(nnz(X') N R?),
where nnz(X) is the number of nonzeros in the tensor. Sketching allows us to select only a subset
of rows from the design matrix and the corresponding subset of rows from the matricized tensor,
reducing the cost to O(N R?). This approach also leads to providing computational benefits for
computing the leverage scores and to an efficient sampling scheme which will be discussed in
Section[dl

3.3 Sketching and Leverage Score Sampling

There exists a vast literature on randomized algorithms [Mahoney et al., 2011, Woodruff et al.,[2014]]
to solve the over-determined least squares problem min, [[Ax — b|, where A € R'*", ] > R.
Regardless of the structure of both A and b, solving this least-squares problem costs O(IR?). To
reduce this cost, we can randomly select rows of A and b by proposing a sketching operator .S with
J < I. Therefore, instead of solving the original least squares problem, we consider solving the
downsampled version of the form min, [|SAz — Sb|| ., where S € R7*! and reduce the cost to
O(JR?). The goal is to find a “good” sketch S to approximate the solution of the least squares
problem at each step of the ALS algorithm. When each entry of S is selected according to the rows of
A leverage scores, strong guarantees can be obtained for the solution of the downsampled problem.

Definition 3.3. (Leverage scores) Suppose A € R E with I > R. The i-th leverage score of the
matrix A is defined as

Li(A) = Ali,:J(ATA)T A4, 2] " for i € [I). )
Definition 3.4. (Leverage score sampling) Let A € R and p € [0, 1)! be a probability distribution

vector with entries p; = ré;]({?}l) ; where rank(A) = ", 1;(A). Assume 51, ...,5; are drawn i.i.d

according to the probabilities p,, - - - ,pr. The random matrix S € R7*! defined element-wise by

S(j, i) = ﬁ if 3; = i and 0 otherwise is called a leverage score sampling matrix for A.

The following result is well-known and appeared in several works; see, e.g., [Drineas et al., 2006b],
[Drineas et al.,[2008], [Drineas et al.,2011]], [Larsen and Kolda} 2022]]. We borrow the form presented
in [Malik, [2022]].

Theorem 3.5. (Guarantees for Leverage Score Sampling) Suppose A € RT*E, Let S € R7*! pe
the leverage score sampling matrix defined in For any ¢,6 € (0,1), if J = O(R?/&6), then
Z* = min, ||SAx — Sb||, satisfies || Az* — b||, < (1 + €) ming ||Az — bl|, , with probability 1 — 6.

Computing leverage scores in Definition [3.3] requires computing the pseudo-inverse of A, which
costs O(IR?) and is as costly as directly solving the original least squares problem. In the following
section, we will show that the leverage scores can be computed much more efficiently when A is the
matrix appearing in the TT-ALS algorithm in canonical form..

4 Sampling-based Tensor Train Decomposition

In this section, we show how to efficiently sample rows of A77 = A_; ®A;r ; and X ;) in Equation (T))
according to the exact leverage scores distribution. In doing so, we will also present the sketch of the
proof of Theorem [I.T] (which closely mirrors that of[Bharadwaj et al.| [2023]] with key modifications
required to adapt the procedure to a tensor core chain).

73730 https://doi.org/10.52202/079017-2345



For each row 77 =iy ...i;_1ij41...ix of A7J, Equation () gives

Lizs (A;ﬁj) — AFJ [Z';ﬁj’ :}(A;ﬁjTA#j)+A¢j [Z';ﬁj’ :]T. 3)

Computing ® << (A7I T AP ) is the main computational bottleneck in finding the leverage scores
of A77.|Malik et al|[2022] proposed an algorithm to compute ® in time O(NIR? + R?). In this
paper, we leverage the fact that when the TT tensor is in canonical form w.r.t. mode j, A77 is
orthogonal, and thus ® = I2. Therefore, computing @ is free of cost. By maintaining the canonical
form of the TT tensor throughout the ALS algorithm, we can sketch the least square problems from
the leverage score distributions with almost no computational overhead. We now explain how to
efficiently sample rows of A7/ from the leverage scores distribution.

4.1 Efficient Core Chain Leverage Score Sampling

As discussed above, when the TT tensor is in canonical form, the leverage score of row 77 is given
by lizi (A79) = A7I[i79 ;) A7I:,i77] . Leveraging the Kronecker structure of A7/ = A_; ® A;-,
one can easily show that [+, (A7) = l;_,(A<;) - l;., (A;-). Sampling from the leverage scores
distributions thus boils down to sampling rows of A.; and AI ; With probability proportional to their
squared row norms (due to the orthogonality of A.; and A ; inherited from the canonical form).
Without loss of generality, we detail the sampling procedure for A<; (the difference between A<; and
A amounts to reindexing). The sampling procedure for A ; will be the same and straightforward.

Let §; € [I1],..., 8, € [I;] be random variables such that the multi-index §<; = §; ... §; follows the

leverage score distribution of A<;. Since TT((A,)?_,) is in canonical form w.r.t. j + 1, A<; is an

orthonormal matrix, hence 3; . .. §; is selected with probability proportional to the squared norm of
the corresponding row of A<;:

. - 1
p(Sl = 81,...,Sj = Sj) = Ri (Agj[sl ...Sj,i} . Agj[Sl ...Sj,Z]T) . (4)
J

Our sampling procedure will draw a lateral slice from each core starting from .A; and ending with A,
corresponding to a single row of A<;. Suppose we have drawn sj41, . .., s;, for some k < j. To sam-
ple the k-th index, we need to compute the conditional probability p(sk|sk+1,---,8;) = m
The following lemma shows that this can be done efficiently by leveraging the underlying TT structure.
Lemma 4.1 (Conditional distribution for 5). Consider the events 5; = s;,...,8;4+1 = Sk+1, Which
we abbreviate as S~ = Ss. Then

p(8k = 8k | S5k = s5k) x Tr {Hlk A 5 Sks :]T Ak [ 8k 7] ~H>k] ,
where Hujo = Api1 [t Skyr, 2] - - Aj 585, 1]

The proof is given in Appendix [B] Intuitively, H~j acts as a “history matrix" conditioning on
Sk, while the trace operation corresponds to marginalization over s.;. Unfortunately, updating
H-, through matrix multiplication as each index is selected still requires time O(R?) (assuming
Ry = ... = R; = R). In order to further improve the runtime and reach the quadratic complexity in

R claimed in Theorem 1.1} we make the following observation: let ¢ € RILi<i T pe the probability
vector for the leverage score distribution of A<;. Then Equation @) can be rewritten in vector

form as ¢ := R% (Agj 1% + .+ A ls, Rj]z) . Here, the square of each column vector is an

elementwise operation. Observe that each A< [:, r]2 is a probability vector (positive entries summing
to one) due to the orthonormality of A<;. Hence g is a mixture distribution. To sample from g, it thus
suffices to select a single column 7 of A<; uniformly at random and restrict the sampling procedure

to A<; [, 7). More formally, let 7 be uniformly distributed over [R,] and let ¢y, ..., ; follow the
conditional distributions defined by

(e =th | tha1 = tigr, .. by =tj, 7 =1) = | Ak [1, te, ] - hail?, (5)

where hsp = Agt1 [ ey, o] - oo - Aj |5, 5, 7). We have the following result.

https://doi.org/10.52202/079017-2345 73731



Lemma 4.2. For any choice of sj, ..., sk, fix s; = 5,81 = t;_1, ..., Sp = ty. After marginalizing
over 7, the conditional distribution of ty, satisfies p(ty =ty |tsp = tsp) = p(8x = sk | S5k = 551)-

As a consequence, the joint random variable (1, ‘..71?]') follows the desired squared row-norm
distribution of A< after marginalizing over 7. The proof appears in Appendix Notice that the
“history matrix" H~j, has been replaced by a vector h~. This vector can be updated by matrix-vector
multiplication, yielding a reduced sampling complexity with only a quadratic dependency on R.

Our final improvement is to show that each sample from the distribution in Equation (3)) can be
drawn in time sublinear in the dimension I}, (after appropriate preprocessing). Letting A,% be the left
unfolding of A, one can check that

Ri_1—1
. . . , 2
p(tk =1 | tsk =k, 7 = T) = (Aé [thk—l + 1, Z] . h>k) . (6)

The probability of selecting the slice sj, is thus the sum of R,_; consecutive entries from the
probability vector (Aﬁ - h>x)?. As aresult, we can sample f;, by first sampling an index in the range
[I;. Ri—1] given by (AL -h- )2, then performing integer division by Rj_1 to obtain the corresponding
slice index f;. The advantage here lies in an efficient data structure for sampling from the weight
vector (Af - hy)?, given by the following lemma:

Lemma 4.3 (Bharadwaj et al. [2023], Adapted). Given a matrix A € R'*E, there exists a data
structure with construction time O(IR?) and space usage O(IR) such that, given any vector

h € RE, a single sample from the un-normalized distribution of weights (A - h)? can be drawn in
time O(R?log(I/R)).

The adaptation of this lemma is given in Ap-
pendix [B.3] Lemma[d.3]|enables us to efficiently
draw samples according to the distribution in  1: for k = 1..N do
Equation[6} and therefore gives us a procedure ~ 2:  Zj := BuildSampler(Af)
to sample from the entire core chain. Construct-
ing the data structure above for each matrix A%, Algorithm 2 ChainSampleLeft(J, j)
1 < k < j, costs O(IRy_1R?) with a linear

space overhead in the input core sizes. Draw- 1+ for d =1..J do

ing a sample from the k-th data structure re- 2 7= Uniform-sample([1... R;])
quires time O(R2 log(I;Rr_1/Ry)). Summing 3 :=er

up this runtime over 1 < k < j gives the stated 4 fork =j..1do

complexity in Theorem[T_1} Algorithms[[jandQ] 2 t), := RowSample(Zx, h)// Ry
summarize the procedures to efficiently draw J 6 h=h-A; [37 ks 1]
7
8:

Algorithm 1 ConstructChainSampler(Ay, ..., Ax)

samples from a left-orthogonal core chain. The ta = (tr)r< j
construction procedure builds a set of data struc- returnty,....t;
tures Zj, of the form given by Lemma4.3|on the
left-matricization of each tensor core. For each
of J rows to draw, the sampling algorithm selects a column ¢ uniformly at random from the left
matricization. It then initializes the history vector h and successively samples indices fj,l, .
according to the conditional distribution, updating the history vector at each step. Appendix
provides a rigorous proof of the correctness of the procedure sketched in this section.

While our procedure shares similarities with the Khatri-Rao product leverage score sampler, signifi-
cant adaptations are required to sample from a tensor train core chain. The factors of a Khatri-Rao
product can be sampled in any order, since the Khatri-Rao product of several matrices is commutative
up to a permutation of its rows. By contrast, our sampling procedure requires us to sample from core
A; down to Ay, since Lemma4.T|exploits the left-orthogonality of the each core in its derivation.
Starting the sampling procedure at .4 leads to a “history matrix" to keep track of prior draws instead
of the vector that would arise starting from core .A;. Here, our second innovation of sampling a
column uniformly at random is required to bring down the overall sampling complexity. We can now
state the following guarantee for Randomized-TT-ALS (rTT-ALS) applying the data structure in
Theorem[I.1] The proof is given in Appendix [B.3]
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Corollary 4.4. (rTT-ALS) For any €,0 € (0, 1) the sampling procedure proposed above guarantees
that with J = O(R? /e6) samples per least-square problem, we have

)

HA?ﬁj(Aj)(TQ) . X(E)H <(1+¢) min
(Aj)(2)

’A#(Aj)& - XG)

with probability (1 — &), where fij is the solution of the sketched least-squares problem, for all
least-squares solve. The efficient sampling procedure of Theorem[I.1|brings the overall complexity to

O (%R‘l . Zj\;l Nlogl; + Ij) , where “#it" is the number of ALS iterations.

Algorithms [T]and [2] refer to procedures “BuildSampler” and “RowSample" that were first used to
sample from the Khatri-Rao product. The k-th BuildSampler data structure creates a full binary tree
that truncated to log[ I Rx—1/Rx | levels, each caching an Ry X Rj matrix containing information
from Af. To draw a sample, the RowSample procedure executes a random walk from the root
to the leaves requiring O(R%) work at each internal node. The sampler performs matrix-vector
multiplication with the cached data at each internal node and compares the output value to a threshold,
using the comparison to branch either left or right in the random walk. Assuming R; = ... = R;
and I = I = ... = I;, the storage cost of each sampler is O(I R?) (computed by multiplying the
matrix size stored at each node by the maximum node count). By multiplying the tree depth by the
matrix-vector multiplication cost at each node, we get runtime cost O(R? log I') to draw one sample
from Aﬁ. For the motivation behind the procedure, details of its correctness, and pseudocode, we
refer the reader to the original work [Bharadwayj et al., 2023]].

5 Experiments

All experiments were conducted on CPU nodes of the NERSC Perlmutter, an HPE Cray EX
supercomputer, and the Mila Quebec Al Institute compute cluster. Our code is available at
https://github.com/vbharadwaj-bk/ortho_tt_subspace_embedding. In this section, we
demonstrate the effectiveness of the proposed rTT-ALS on two types of tensors: (i) synthetic and
real dense datasets and (ii) real sparse datasets. We use the fit as evaluation metric (higher is better):
fit(X,X) =1 — ||X — X||rp/||X||F, where X is the TT approximation and X’ is the target tensor.
The goal of the dense tensor experiments is to show that rTT-ALS has a better time complexity than
TT-ALS and TT-SVD while matching rTT-SVD in terms of fit. The sparse tensor experiments show
that SVD-based decompositions cannot handle high-order (sparse) tensors. We compare rTT-ALS
with the classical TT-ALS. The runtime improvements are most significant for large sparse tensors.
Figure ] compares accuracy (y-axis, higher is better) against ALS iteration time, for rTT-ALS versus
non-randomized ALS. The speedup per iteration can be as high as 26x for lower ranks. Particularly,
for the NELL-2 tensor, the plot shows that accuracy within three significant figures of non-randomized
ALS was achieved roughly 3-4x faster than an optimized non-randomized ALS baseline.

5.1 Decomposition of Synthetic and Real Dense Datasets

We compare rTT-ALS to three other methods; TT-SVD [Oseledets| [2011]], Randomized TT-SVD
(rTT-SVD) [Huber et al.,[2017]] and TT-ALS [Holtz et al., 2012]]. We use TensorLy [Kossaifi et al.,
2019] for SVD-based methods and our own implementation for deterministic TT-ALS. For simplicity,
we set Ry = --- = Ry_1 = R for all experiments. For all algorithms, we illustrate the quality of
performance by fit and runtime.

Synthetic Data Experiments. For the synthetic data experiment, we generate random tensors of
size I x I x I for I € {100, ...,500} and of TT rank R = 20 (by drawing each core’s components
i.i.d. from a standard normal distribution). A small Gaussian noise with mean zero and standard
deviation of 107% is added to each entry of the resulting tensor. We then run the four methods to
find a rank R = 5 approximation of the target tensor. ALS-based methods are initialized using
their SVD-based counterpart (TT-ALS with the output of TT-SVD and rTT-ALS with the output of
rTT-SVD) and are run for 15 iterations. The sample count for rTT-ALS is fixed to J = 5000 for
all values of I. The average fit over 5 trials for all four algorithms are reported as a function of the
dimension in Figure[3] rTT-ALS is about 2x faster than TT-ALS and 3x faster than TT-SVD for
I = 500. Although rTT-SVD is the fastest method, it achieves poor performance in terms of fit.
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Figure 3: Fit (left) for J = 5000 and running time (right) averaged over 5 trials for the synthetic data
experiment.

Table 1: Decomposition results for real datasets with .J = 2000 and the target rank R = 5. Time is in
seconds.

Pavia Uni. Tabby Cat MNIST DC Mall
Method Fit Time Fit Time Fit Time Fit  Time
TT-ALS 0.61 416 0.65 44570 046 829 0.59 21.86
rTT-ALS (proposal) 0.60 0.82  0.65 7.360  0.45 220 059 281
TT-SVD 0.61 6.6 065 136.189 046 17.19 0.59 41.45
rTT-SVD 0.61 0.33 0.65 4285 046 0.65 0.59  0.46

Real Data Experiments. For the real data experiment, we consider four real images and video
datasets (more details about datasets are given in Appendix [C): (i) Pavia University is a hyper-spectral
image dataset of size (610 x 340 x 103), (ii) DC Mall is also a dataset of hyper-spectral images of
size (1280 x 307 x 191). Both datasets are three-dimensional tensors where the first two dimensions
are the image height and width, and the third dimension is the number of spectral bands, (iii) the
MNIST dataset is of size (60000 x 28 x 28), and iv) Tabby Cat is the three-dimensional tensor of
size (720 x 1280 x 286) which contains grayscale videos of a man sitting on a park bench and a
cat, respectively. The first two dimensions are frame height and width, and the third dimension is
the number of frames. For all datasets, the preprocessing step is done by tensorizing data tensors
into higher-dimensional tensors. Table illustrates the results for a single trial when R = 5. For all
datasets we keep the sample count fixed to J = 2000. Similarly to the synthetic data experiments,
rTT-ALS is faster than TT-ALS and TT-SVD (up to 10x faster than TT-ALS).

5.2 Approximate Sparse Tensor Train Decomposition

We next apply rTT-ALS to three large sparse tensors from FROSTT [Smith et al., 2017]. Table
[2) gives the fits achieved by our method to decompose these tensors. The largest of these tensors,
NELL-2, has around 77 million nonzero entries with mode sizes in the tens of thousands. Fits for
sparse tensor decomposition are typically low, but the factors of the resulting decomposition have

Uber Enron NELL-2
0.18 0.07 0.030

0.164 -

0.06 | et 0.025
0.14
0.05
0.12+ 0.020 4
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0.084 7 = 0034

0.06 1 0.010

0.02

0.04 1/
g —— Exact
—— Random LSS

— Fxact 0.01] — Exact 0.005 1 ////
—— Random LSS —— Random LSS /

0.00 0.00 0.000 2=
o 1 2 3 4 5 6 100 200 300 400 25 50 75 100 125 150

Time (s) Time (s) Time (s)

Figure 4: Fit as a function of time for three FROSTT tensors, R = 6, J = 216 for rTT-ALS. Thick
lines are averages of 5 fit-time traces, shown by thin dotted lines.

0.024/
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Table 2: Average fits and speedup, J = 26 for randomized algorithms, 40 ALS iterations. The
speedup is the average per-iteration runtime for a single exact ALS sweep divided by the average
time for a single randomized sweep.

Uber Enron NELL-2

R | i”TT-ALS TT-ALS Speedup | rTT-ALS TT-ALS Speedup | rTT-ALS TT-ALS  Speedup
4 0.1332 0.1334 4.0x 0.0498 0.0507 17.8x 0.0213 0.0214 26.0x
6 0.1505 0.1510 3.5x 0.0594 0.0611 12.4x 0.0265 0.0269 22.8x
8 0.1646 0.1654 3.0x 0.0669 0.0711 10.5x 0.0311 0.0317 22.2x
10 | 0.1747 0.1760 2.4x 0.0728 0.0771 8.5x 0.0350 0.0359 20.5x
12 0.1828 0.1846 1.5x 0.0810 0.0856 7.4x 0.0382 0.0394 15.8x

i 0.0268 i
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Figure 5: Final fit of sparse tensor decomposition for varying sample counts. Each boxplot reports
statistics for 5 trials. The blue dashed lines show the fit for non-randomized ALS.

successfully been mined for patterns [Larsen and Kolda, |2022]. For these experiments, we chose all
decomposition ranks equal with 1 = ... = Ry = R and tested over a range of values for R.

The fits produced by rTT-ALS match those produced by the non-randomized ALS method up to
variation in the third significant figure for Uber and NELL-2, with slightly higher errors on the Enron
tensor. We kept the sample count for our randomized algorithms fixed at J = 2'6 throughout this
experiment. As a result, the gap between the fit of the randomized and exact methods grows as the
target rank increases, which our theory predicts.

Table2]also reports the average speedup per ALS sweep of rTT-ALS over the exact algorithm. On the
NELL-2 sparse tensor with target rank 12, the non-randomized ALS algorithm requires an average of
29.4 seconds per ALS sweep, while rTT-ALS requires only 1.87 seconds. Figure ] shows that our
method makes faster progress than its non-randomized counterpart across all three tensors. Because
we could not find a well-documented, high-performance library for sparse tensor train decomposition,
we wrote a fast multithreaded implementation in C++, which serves as the baseline method in these
figures and tables (the code will be made publicly available).

Figure 5| shows the impact of varying the sample count on the final fit. We find modest increases in
accuracy for both Uber and NELL-2 as the sample count increases by a factor of 5 (starting from
J = 21%). Increasing .J has a smaller impact for the Enron tensor, which is generally more difficult to
decompose beginning with i.i.d. random factor initialization [Larsen and Koldal, 2022].

6 Conclusion

We proposed a sampling-based ALS method leveraging an efficient data structure to sample from
the exact leverage scores. More precisely, we show that by exploiting the canonical form of the TT
decomposition, leverage scores can be computed efficiently for all the least squares problems of ALS.
We provide strong theoretical guarantees for the proposed data structure. Experiments on massive
dense and sparse tensors confirm the theoretical results. The sampling algorithm we proposed could
be extended to more general tree-based tensor network structures, leveraging canonical forms in a
similar spirit to rTT-ALS.
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7 NeurlPS paper checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are supported by theoretical results and experiments.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:|[NA]

Justification: We did not find any particular limitation of our approach that we thought was
relevant to discuss in the paper.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The main theorems and lemmas are in section 4 with proofs in appendix.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the experiment section we addressed all details about the datasets and the
metrics to evaluate our method.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

The GitHub repository link is provided in the experiments section.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details all in the experiment section.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We reported all the results for several runs in plots and tables in the experiment
section. However, we did not report the error bars as they are too small to report.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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10.

11.

12.

13.

14.

15.

Justification: We reported the time each algorithms takes in the experiment section. Details
are given in appendix.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on theoretical aspects. We did not feel relevant to dis-
cuss the potential positive and negative societal impacts of democratizing access to tensor
decomposition methods.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA] .

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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A Additional Notation

Definition A.1. Let A € R™*" and B € RP*? then the Kronecker product, A ® B € R™P*"4 g

defined by
auB alzB N alnB
0,213 CLQQB e CLQnB
A®B = . . . .
am1B  ameB ... amnB

Definition A.2. Let A € R™*E and B € R"*F then the Khatri-Rao product, A® B € R ¥R jg
defined by

AOB=|a1®b; a2®by ... ar®bg

where ay,...,ar € R™ are the columns of A, by,...,bgr € R"™ are the columns of B and the
columns of A ® B is the subset of the Kronecker product. In the corresponding tensor network
diagram, the copy tensor captures the fact that the second indices are the same.

A.1 Details about Orthogonalization of the TT Decomposition

Figure [§] illustrates the single-site TT-ALS method, which begins with a TT decomposition in
canonical form initialized by a crude guess. Core .4; of the decomposition is non-orthogonal; in
sweeps from left-to-right and right-to-left, the algorithm holds all but one core constant and solves
for the optimal value for the remaining core. After updating each core, by a QR decomposition the
non-orthonormal part is merged to the left or right (depending on the direction of the sweep), a step
which is called core orthogonalization.

?—?—?—H /.‘/, ! /H step: 1

Figure 6: Half-sweep of TT-ALS. In each non-QR step the fully colored core is optimized and in
each QR step the non-orthogonal component (depicted by black circle) is absorbed to the next core.
This procedure repeats until reaching the right side of the decomposition then the same procedure is
repeated from right until reaching to the left side (not demonstrated in this figure.)
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B Proofs

B.1 Proof of Lemma
Noting that A<;[s1 ... s;,:] is a row vector, we write
P8k = Sk | S5k = 55k)

= Z p(§1 :31/\~~~/\§j :Sj)

815438k —1

= 2 %<A§j[u’:]”4§j[uﬁf>

= RLTr [Aéj[u#]T'Aéj[u’:ﬂ

S1semsSho1 (N
1
=& Z Tr [.Aj [:,Sj,:]T-...~A1 [s1,:]) - Ap L S1,) e Ay [:,sj,:]}

A l: 85, :]—r e (Z Aq [, 81, :]—r - A [5 81, }) ce Al sy, ]]

= — Z Tr [.Aj [, 55, :]T s Aa [y 2, ] T Ay [z, s2,:) - Aj L s, ]} )

82538k —1

In the expressions above, the summation over each variable s;, 1 < ¢t < k, is taken over the range [I;].
The first step follows by marginalizing over random variables 31, ..., 5;_1. The second step follows
from Equation ({@). The third step rewrites an inner product of two vectors as the trace of their outer
product. The fourth step follows from the definition of A< ;. The fifth step follows from the linearity
of the trace by moving the summation over s; into the product expression. The last step follows
from the definition of the left-orthonormality property on Aj; thatis, > . A [1, s1, T AL sy, =
AFT AL = I. By successively moving summation operators into the product expression to repeat the
last step (exploiting the left-orthonormality of each core in the process), we find

P(Sk = Sk | S5k = 55k)

1 T
= [A [sint] o Arlsen ] Ar s ] e A [ sy ] ©
1
ﬁTr |:H>k Ak[ Sk-,.] Ak[ Sk,.] H>k:| s
where the last line follows from the definition of H~ . O
B.2 Proof of Lemma
We write
. . 1
P(8k = sk | S5k = 851) = 7 I {H; A s ] T AR [ s 'H>k}
3
R;
R—Z( A [ sk,:]T-Ak [, sk,:]-H>k-er>
R; ©)
FZ( Lo Ap sk, ] - Ag [ s, h>k)

=

1 . .

= E ;p(tk = fk | t>k = t>k,7" = r).

The first step follows from Lemmal4.1] The second step follows from the definition of the trace. The
third step follows from the definitions of h~; and H~j. The fourth step follows from the definition
of the variables #1, ..., ;. Now observe that p(# = r) = 1/R; for 1 <r < R;, so we can write
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R;
p(§k = Sk §>k = S>k) = Zp(fk =t ‘ £>k = t>ka72 = T)p(f = T) (10)
r=1
= p(tx

=1 ‘ £>k = t>k);
which completes the proof. O

B.3 Efficient Sampling Data Structure

Lemma[4.3]first appeared as Lemma 3.2 in the original work by Bharadwaj et al| [2023]]. We state a
condensed form of the original claim below:

Lemma B.1 (Bharadwaj et al. [2023], Original). Given U € RMXE Y ¢ REXE with Y p.s.d., there
exists a data structure parameterized by positive integer F that requires O(M R?) time to construct
and additional space space O(R*[M/F']). After construction, the data structure can draw a sample
from the distribution defined elementwise by

Gy [s]=C U s, ] (Y @ hh ") U[s,:]"

in time O(R%*log[M/F] + FR?). When Y is a rank-1 matrix, the runtime drops to
O(R?10g[M/F] + FR).

In the statement above, C' is an appropriate normalization constant. To prove our adapted lemma,
take Y = [1], a matrix of all ones that is rank-1, and set F' = R. Then

anuy [s)=C7 WU s,:] (k") Us,:]" = C7L(U [s,:] - h)?

This is the target probability distribution of Lemma [4.3] and the runtime to draw each sample is
O(R%log(M/R)+ R?) = O(R*log(M/R)). The choice F' = R also induces space usage O(M R),
linear in the size of the input. Our modified claim follows. O

B.4 Proof of Theorem (1.1

We provide a short end-to-end proof that shows that Algorithms[I|and 2] correctly draw samples from
A< (the matricization of the left-orthogonal core chain) according to the distribution of its squared
row norms while meeting the runtime and space guarantees of Theorem [I.1]

Construction Complexity: The cost of Algorithm [I|follows from@.3|with M = IRj,_;, the row
count of A,f for 1 < k < 5. Using this lemma, construction of each sampling data structure Zj
requires time O(I Ry_1 R2). The space required by sampler Zj, is O(I Rx—1 Ry); summing over
all indices k gives the construction claim in Theorem|1.1

Sampling Complexity: The complexity to draw samples in Algorithm 2]is dominated by calls to
the RowSample procedure, which as discussed in Section E]is O(R2 log(IRy—1/Ry)) Summing
the complexity over indices 1 < k < j yields the cost claimed by Theorem to draw a single
sample. The complexity of calling the RowSample procedure repeatedly dominates the complexity to

update the history vector h over all loop iterations, which is O (Zi:l Rk,le> for each sample.

Correctness: Our task is to show that Algorithmeach sample t4, 1 < d < J, is a multi-index that
follows the squared row norm distribution on the rows of A<;. To do this, we rely on lemmas proven
earlier. For each sample, the variable # is a uniform random draw from [R,], and h is initialized to the
corresponding basis vector. By Equation (6) and Lemma[4.3] Line 5 from Algorithm [2]draws each
index £}, correctly according to the probability distribution specified by Equation (). The history
vector is updated by Line 6 of the algorithm so that subsequent draws past iteration k of the loop
are also drawn correctly according to Equation (5). Lemma[4.2] (relying on Lemma[4.T)) shows that
the multi-index #; . . .fj drawn according to Equation (5) follows the same distribution as 31 .. . § s
which was defined to follow the squared norm distribution on the rows of A<;. This completes the
proof. O
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B.5  Proof of Corollary[4.4]

Since A%7 € Rtz s xRi-1B5 apg X3 € RITE% 4705 | we draw O(R?/<6) samples to achieve
the error bound (1 + €) with probability (1 — ) for each least squares solve in the down-sampled
problem (3.5). By Theorem[I.T} the complexity of drawing .J samples with our data structure is

> JlogIkR* | =0 [ > R*/(e6)log I
k#j k#j
where we suppose that R; = Rs
corresponding subset of X, i (
problem also costs O(.JR?I; ) 0

(1 R /(5)).
N
O|1/es (Z (Z R'log Iy, | + R'I;
J=1 \k#j

- = Ry_1and I} = --- = Iy. The cost of sampling a
JI = O (R?/(£6)1;). Solving the downsampled least squares
(€0)). Summing them all together for 1 < j < N gives

N
=0 | R"/e6- Y (N —1)logl; +I;
=1

N
=0 | R'/e6-Y NlogI; + I
j=1
where we wrote the last equation considering the fact that N dominates (N — 1).

C Details about Datasets & Experiments

C.1 Datasets

For the real dense datasets experiment, we truncated and reshaped the original data tensors in to the
fourth order tensors as follows.

* Pavia University dataset: The original has dimensions (610, 340, 103). We truncate it to
(600, 320, 100), permute the modes to dimensions (100, 320, 600) tensor and reshape it into
a tensor of dimensions (100, 320, 24, 25). It is available at

http://lesun.weebly.com/hyperspectral-data-set.html
» Tabby Cat dataset is permuted to (286, 720,1280) and reshaped to a tensor of size

(286, 720, 40, 32). The video is in color and converted to grayscale by averaging the three
color channels. It is available at

https://www.pexels.com/video/video-of-a-tabby-cat-854982/.

* The MNIST dataset was reshaped into a tensor of size (280, 600, 28, 10) and is available
athttps://www.kaggle.com/datasets/hojjatk/mnist-dataset

» The Washington DC Mall dataset was truncated to dimensions (1280, 306, 190) before
reshaping into a tensor of size (1280, 306, 10, 19). It is available at
https://engineering.purdue.edu/Eebiehl/MultiSpec/hyperspectral.html.

The sparse tensors Uber, Enron, and NELL-2 were downloaded from the FROSTT collection
[Smith et al., |2017]]. The dimensions of these tensors were unchanged from the versions available
online. Consistent with established practice [Larsen and Kolda, 2022]], we computed the logarithm
of the tensor values in the Enron and NELL-2 datasets before performing our experiments.

C.2 Computing Resources

The dense data experiments were conducted on MILA cluster nodes with 4 CPUs and 16GB of RAM
each. Sparse tensor decomposition experiments were conducted on NERSC Perlmutter nodes with 2
CPUs and 512 GB of RAM each.
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