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Abstract

Protein optimization is a fundamental biological task aimed at enhancing the
performance of proteins by modifying their sequences. Computational methods
primarily rely on evolutionary information (EI) encoded by protein language
models (PLMs) to predict fitness landscape for optimization. However, these
methods suffer from a few limitations. (1) Evolutionary processes involve the
simultaneous consideration of multiple functional properties, often overshadowing
the specific property of interest. (2) Measurements of these properties tend to be
tailored to experimental conditions, leading to reduced generalizability of trained
models to novel proteins. To address these limitations, we introduce Denoising
Protein Language Models (DePLM), a novel approach that refines the evolutionary
information embodied in PLMs for improved protein optimization. Specifically, we
conceptualize EI as comprising both property-relevant and irrelevant information,
with the latter acting as “noise” for the optimization task at hand. Our approach
involves denoising this EI in PLMs through a diffusion process conducted in the
rank space of property values, thereby enhancing model generalization and ensuring
dataset-agnostic learning. Extensive experimental results have demonstrated that
DePLM not only surpasses the state-of-the-art in mutation effect prediction but
also exhibits strong generalization capabilities for novel proteins.

1 Introduction

Proteins play vital roles in numerous biological processes, shaping their structure and function
over billions of years of evolution. This evolutionary diversity presents significant opportunities
for advancing fields such as drug discovery and materials science [24, 60]. However, the inherent
properties of existing proteins, such as thermostability, often fall short of practical requirements in
various scenarios. Consequently, researchers have dedicated themselves to optimizing proteins to
enhance their properties of interest. Protein optimization is the task that involves modifying protein
sequences and efficiently identifying well-performing proteins.

Traditional deep mutational scans (DMS) and directed evolution (DE) rely on expensive wet-lab
experiments [15, 6, 58]. Recently, computational approaches that accurately model the relationship
between proteins and their property fitness, often termed a “fitness landscape” [51], have become
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Figure 1: Comparison of fitness landscape prediction methods. WT: wildtype sequence. MTs: mutant
sequences. A2B: Amino acid A in wildtype mutates to B. GT.: groundtruth. Corr.: Correlation.

crucial for efficient protein optimization. These approaches, powered by machine learning, enable
rapid evaluation of mutation effects and are pivotal for efficient protein optimization.

One widely explored avenue involves leveraging the “Evolutionary Information” (EI), which can be
instantiated by the likelihood of an amino acid appearing at a certain position of protein sequences,
to infer the mutational effects [41, 49, 16]. This stems from the observation that as organisms
evolve through natural selection, mutations that improve functional properties become more prevalent.
Therefore, the likelihood of a mutation occurring is directly linked to its impact on biological
function [20]. To compute the informative likelihoods of mutating one amino acid to another,
the predominant methods involve protein language models (PLMs) trained on millions of protein
sequences, which capture the EI in a self-supervised manner [50, 43, 39]. Thanks to their strong
generalization capabilities, PLMs have been utilized to guide the artificial selection of beneficial
mutations with notable efficacy [24].

With the advent of high-throughput experimentation, large-scale and diverse annotated datasets for
DMS are becoming increasingly accessible [44]. Consequently, researchers have extended the use
of self-supervised EI into supervised prediction settings [18, 17, 23, 21, 11, 65]. Specifically, they
usually fine-tune PLMs on experimentally annotated datasets, with the objective of minimizing the
disparities between predicted and experimental fitness values [8, 2, 46]. However, two critical aspects
are often overlooked. Firstly, it fails to account for the removal of irrelevant EI. Evolution optimizes
multiple properties simultaneously to meet survival needs, often overshadowing the optimization
target of interest [35]. Therefore, conventional fine-tuning methods using the whole evolutionary
information are suboptimal. Secondly, the prevalent learning objective incorporates dataset-specific
information that is often overfitted to the training data at hand, hindering the model’s ability to
generalize toward new proteins. This limitation is significant since DMS experimental techniques
often encounter constraints regarding their applicability across a wide range of proteins [58].

In this work, we introduce a novel Denoising Protein Language Model (DePLM) tailored for
protein fitness prediction. The central concept revolves around perceiving the EI captured by
PLMs as a blend of property-relevant and irrelevant information, with the latter akin to “noise”
for the targeted property, necessitating its elimination. To achieve this, drawing inspiration from
denoising diffusion models that refine noisy inputs to generate desired outputs [55, 10, 29], we
devise a rank-based forward process to extend the diffusion model for denoising EI, as illustrated
in Figure 1. Specifically, we refine the likelihood of mutations provided by PLMs. To parameterize
this framework, we initially extract protein representations considering both primary and tertiary
structures. Subsequently, we utilize this representation to guide the denoising process. In pursuit of
dataset-agnostic learning and robust model generalization, we conduct the diffusion process in the
rank space of property values and replace the conventional objective of minimizing numerical errors
with maximizing rank correlation. Extensive experiments have demonstrated that the introduced
rank-based denoising process significantly improves the protein fitness prediction performance, and
simultaneously maintains strong generalization ability for novel proteins. Our contributions can be
summarized as follows:

• We introduce DePLM, a novel approach for refining evolutionary information captured
by protein language models to predict mutation effects, effectively filtering out irrelevant
information to improve mutation effect predictions.
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• We design a rank-based forward process within the denoising diffusion framework, extending
the diffusion process to the rank space of mutation likelihoods.

• We shift the learning objective from minimizing numerical errors to maximizing rank
correlation, fostering dataset-agnostic learning and ensuring robust generalization.

• DePLM significantly outperforms state-of-the-art models for mutational effect prediction
and demonstrates strong potential for optimizing unseen proteins.

2 Background and Related Works

2.1 Task Formulation and Evaluation

Protein optimization seeks to elucidate the impacts of sequence mutations on protein properties.
Formally, given a widetype protein sequence xwt = [xwt

1 , · · · , xwt
n , · · · , xwt

N ] with N amino acids,
a mutation µ = {µn : xwt

n → xmt
n , n ∈ [[1, N ]]} refers to the substitution of the amino acid xwt

n at
certain positions n with another amino acid xmt

n . Note that a mutation can affect multiple positions
simultaneously. The task of protein optimization is mathematically formulated as learning a function
Fθ, parameterized by θ: Fθ(x

wt,µ) = y, where y denotes the impact of the mutation µ on the
wildtype sequence xwt, i.e., the property value of the mutated protein sequence. With numerous
(µ, y) pairs, one can approximate the fitness landscape of the protein xwt for the target property.

To evaluate the consistency between predicted and ground-truth fitness landscape, one often uses
Spearman’s rank correlation coefficient, which prioritizes relative rankings over absolute values [44].
Specifically, given the set of predictions Y = {y} and ground-truth Y ∗ = {y∗}, both sets are first
converted to their respective ranks R(Y ) and R(Y ∗), then the coefficient ρ is calculated as

ρ =
cov(R(Y ), R(Y ∗))

σR(Y )σR(Y ∗)
, (1)

where cov(·, ·) is the covariance of the ranked variables, σ is the standard deviations of these ranks.

2.2 Related Works

Self-supervised modeling of sequence mutation effects. Evolutionary information provides valu-
able insights into how sequence mutations affect biological functions [14]. A straightforward
approach to capture EI is through Multiple Sequence Alignments (MSAs). For example, the SIFT
model [41] predicted the mutation effect by performing position-specific statistical analysis of aligned
sequences. Riesselman et al. [49] and Frazer et al. [16] employed variational autoencoder trained on
protein-specific MSAs to detect patterns of interaction among positions, achieving higher prediction
performance. However, the MSA approach is limited by its protein-specific nature, rendering it less
effective for proteins, such as orphan proteins, that lack sufficient homologous sequences.

Instead, many studies [2, 40, 50, 39, 4, 37] explored PLMs trained on evolutionary-scale data to
capture EI, which can generalize beyond specific proteins. Further, several studies aim to merge PLMs
with MSAs to harness the benefits of both approaches. Rao et al. [48] proposed MSA Transformer to
apply language modeling to aligned sequences, and PoET [59] modeled the distribution over protein
families rather than sequences. Tan et al. [56] suggested that mutation effects are related to their
structural context, and Notin et al. [44] showed that the likelihood derived from structure-based
design models [28, 9] can be complementary to those generated by PLMs. Despite the utility of EI,
the information captured by PLMs is often entangled with multiple protein properties, leading to
suboptimal optimization of the target property when used directly.

Supervised modeling of fitness landscape. The utility of EI extends into supervised prediction
scenarios [18, 17, 23, 21]. Dallago et al. [8] demonstrated that straightforward fine-tuning of the
representations from PLMs holds the potential to predict fitness. Hie et al. [25] used PLMs to
predict the evolutionary trajectory of protein families. Yang et al. [65] advocated for using machine
learning tools for small datasets and neural networks for larger datasets. In response to sparse labels,
Elnaggar et al. [12] proposed a lightweight parametric model called ConvBERT to avoid overfitting.
ProteinNPT [46] leveraged a non-parametric Transformer that combines masked language modeling
and fitness prediction tasks, demonstrating excellence in low-resource scenarios. However, these
methods often lose the generalization capabilities of PLMs after dataset-specific fine-tuning. In
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Figure 2: The architecture overview of DePLM. Left: DePLM utilizes evolutionary likelihoods
derived from PLMs as input, and generates denoised likelihoods tailored to specific properties for
predicting the effects of mutations. Middle & Right: Denoising module utilizes a feature encoder to
derive representations of proteins, taking into account both primary and tertiary structures. These
representations are then employed to filter out noise from the likelihoods via denoising blocks.

this study, we show that combining EI with experimental data in a way that minimizes reliance on
dataset-specific information is crucial for enhancing performance while maintaining generalization.

Denoising diffusion models. Several diffusion models have been applied to protein research.
Diffusion processes in discrete token spaces have been promising for designing protein sequences [3,
1, 22]. Jing et al. [32] focused on torsion for generating conformations, while Corso et al. [7] studied
the product space R × SO(3) × SO(2)m for protein docking. Additionally, backbone generation
requires defining SE(3) diffusion process [66, 61, 30]. In contrast to these works, we operate the
diffusion process in the rank space of mutation likelihoods to predict the fitness landscape.

3 Method

3.1 Overall Framework
DePLM, as depicted in Figure 2, is designed to filter out irrelevant information from the noisy
evolutionary likelihoods produced by PLMs. Given a wildtype protein xwt, the evolutionary likelihood
produced by a PLM can be denoted as Π̃ = [π̃1, · · · , π̃n, · · · , π̃N ], where π̃n ∈ R20 denotes the
probability of 20 amino acids occurring at the position n. This likelihood can be decomposed into
the target property likelihood Π⋆ and additive noise Πϵ introduced by irrelevant properties, such
that Π̃ = Π⋆ +Πϵ. The DePLM takes the noisy likelihood Π̃ as input and refines it to isolate the
desired likelihood Π⋆ via a rank-based denoising diffusion process. A comprehensive explanation of
the symbols and operations utilized is available in Appendix A.

3.2 Rank-based Denosing Diffusion Process
Denoising diffusion models consist of two main processes: a forward corruption process and a
learned reverse denoising process. In the forward corruption process, small amounts of noise are
progressively added to the ground truth. The reverse denoising process then learns to recover the
ground truth by gradually eliminating the accumulated noise. When applying these models to denoise
the mutation likelihood Π̃ in protein optimization, however, there are two significant challenges. First,
the relationship between actual property values and experimental measurements frequently exhibits
nonlinearity, stemming from the diversity of experimental approaches [44]. Consequently, reliance
on minimizing discrepancies between predicted and observed values for denoising purposes risks
overfitting to the specific dataset utilized, thereby diminishing the model’s generalization capabilities.
Second, unlike those conventional denoising diffusion models, our final noisy state Π̃ is deterministic,
requiring the accumulated noise to converge [36].
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Figure 3: The training process of DePLM. Left: The training of DePLM involves two main steps:
rank-based controlled forward corruption and learned denoising backward processes. In the corruption
step, we use sorting algorithms to generate trajectories, shifting from the rank of property-specific
likelihood to that of the evolutionary likelihood. DePLM is trained to model the backward process.
Right: We illustrate the alteration of the Spearman coefficient during the transformation from
evolutionary likelihood to property-specific likelihood via the sorting algorithm.

To navigate these challenges, we propose a rank-based denoising diffusion process that focuses on
maximizing rank correlation (see Figure 3). Let r0 = R(Π⋆) ∈ N20×N

+ be the rank of ground-truth
likelihood of the target property, rT = R(Π̃) ∈ N20×N

+ be the rank of noising evolutionary likelihood.
Intermediate rank variables, rt ∈ N+20×N for t = 1, . . . , T − 1, are generated along this sequence.

Forward process. The forward process operates in the rank space, gradually transitioning from
the initial rank r0 through increasingly chaotic states rt, culminating in the final state rT after T
steps. Unlike traditional models where corruption can be random, the corruption process here must
carefully manage the progression because the initial state r0 and the final state rT are pre-defined.

To manage this transition, we leverage the QuickSort algorithm [26] to create a feasible space for
sampling intermediate rank variables rt. At each time step t, we apply the sort algorithm to generate
sorting trajectories from the variable rt−1 towards the end variable rT . The rank variable rt chosen
along these trajectories ensures a progressive decrease in rank correlation from the initial to the
intermediate states, and converse increase towards the final state. This approach ensures a controlled
and meaningful progression through the rank space, as detailed in Appendix B.1. The forward process
can be conceptualized as a Markov chain:

q(r1:T−1|r0, rT ) =
T−1∏
t=1

q(rt|rt−1, rT ). (2)

Backward process. Given that the rank variables are non-differential, the backward process
operates in the likelihood space rather than the rank space. This process constructs the likelihood Π0

from the noisy evolutionary likelihood ΠT = Π̃, ensuring that R(Π0) equals R(Π⋆). Importantly,
while Π0 and Π⋆ are aligned in rank, they do not need to be identical in value. The key focus is on
the rank variables, as the relative rankings are more critical for optimizing protein performance than
the exact numerical values of the likelihoods. To facilitate this process, we employ the protein xwt as
a guiding signal, and model it as a conditional Markov chain with learned transitions:

pθ(R(Π0:T−1)|xwt,ΠT ) ≃ pθ(Π0:T−1|xwt,ΠT ) =

T∏
t=1

pθ(Πt−1|xwt,Πt), (3)

where pθ(Πt−1|xwt,Πt) is the learnable transition kernel, θ denotes its parameters, and Πt is the
intermediate likelihood variables during the backward process, with rt = R(Πt).

Learning objective function The forward process introduces noise in rank space, while the reverse
process denoises in likelihood space. To effectively link these two processes, we leverage Spearman’s
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rank correlation ρ defined in Eq. (1). Building upon this, we modify the variational Evidence Lower
BOund (ELBO) as our learning objective function:

E[log pθ(r0|xwt)] = E
[
logEq(r1:T−1|R(Π⋆),R(Π̃))

pθ(r0:T |xwt)

q(r1:T−1|R(Π⋆), R(Π̃))

]

≥ −Eq

[
T∑

t=1

(
1− ρ

(
q(rt−1|R(Π0), R(Πt))||pθ(R(Πt−1)|xwt,Πt)

))]
. (4)

Detailed derivations are provided in the Appendix B.2. Overall, given a protein xwt, its property
likelihood Π⋆ is generated by first drawing evolutionary likelihood Π̃ from PLMs, and then iteratively
refined through pθ(Πt−1|xwt,Πt). We predict y according to Eq. 10 in Appendix C.1.

3.3 Implementation of Denoising Markov Kernel

To parameterize the transition kernel pθ(Πt−1|xwt,Πt), as shown in the Denoising Module of
Figure 2, DePLM first learns a protein representation (Feature Encoder of Figure 2), and then utilizes
it to guide the process of discerning and eliminating noise (Denoising Block of Figure 2).

Feature encoder. We encode features from both sequences and structures because they complemen-
tarily describe the impact of mutations. Sequence information is derived from representations he and
attention weights M ∈ RN×N×m generated by PLMs, where m is the head number. Meanwhile,
structural information is obtained through trained structure encoders like ESM-IF [28], which process
the protein backbone to produce structural representations hs. We merge the two sets of representa-
tion using Multi-Layer Perceptrons (MLPs), yielding a unified representation h in RN×d, where d
represents the hidden dimension.

The feature encoder leverages multiple stacked layers to update h and M . Let’s denote the output
feature vectors of representations and attention weights in layer l as hl and M l, respectively.
Initially, h0 equals h and M0 equals M . We update the representations using the standard attention
mechanism, incorporating a bias derived from the attention weights:

hl+1 = ResidualMLP(Softmax(
ql(kl)T +Bl

M√
d

)vl), (5)

where ql, kl, and vl are the linear projection of hl and Bl
M is the linear projection of M l. Then, the

attention weights are updated by communicating with the sequence representation through both an
outer product ⊗ and an outer difference ⊖:

Bl+1
h = (ql+1 ⊗ kl+1)||(ql+1 ⊖ kl+1), (6)

M l+1 = ResidualMLP(M l +Bl+1
h ), (7)

where || means the concatenation operation. The final layer output hL is used in the denoising block.

Denosing block. Given the intermediate likelihood variable at the t step Πt, we employ a denoising
block to implement Eq. (3). The central premise is that hL should encapsulate only property-specific
protein information. By subtracting hL from the hidden representation of the noisy Πt, we isolate the
hidden representation of the noise. This hidden representation is then transformed into the likelihood
space using a PLM head (PLMHead),

Πt−1 = Πt − PLMHead(MLP(Πt)− hL). (8)
Here MLP(Πt) denotes a trainable MLP that maps Πt to the hidden representation space, while
PLMHead maps hidden presentations back to the likelihood space. It is important to use a frozen
PLMHead to ensure consistency between noise and noisy likelihoods in a unified space. This
approach effectively denoises Πt to obtain Πt−1.

4 Experiments

In this section, we extensively evaluate DePLM across various datasets and demonstrate its superior
performance and robust generalization capabilities. Specifically, we aim to address the following
key questions. Performance comparison (Q1): Can DePLM beat SOTA on protein fitness prediction
tasks? Generalization ability (Q2): Does DePLM maintain its generalization ability post-training?
Ablation study (Q3): What is the extent of improvement achievable for each component? Analysis
(Q4): Does the assumption that EI contains noise hold?
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Table 1: Model performance on protein engineering tasks. The best and suboptimal results are labeled
with bold and underline, respectively. ProteinGym results of OHE, ESM-MSA, Tranception, and
ProteinNPT are borrowed from Notin et al. [46]. Other results are obtained by our own experiments.

Model ProteinGym
β-lact. GB1 Fluo.

Stability Fitness Expression Binding Activity

CNN 0.788 0.588 0.627 0.599 0.573 0.781 0.502 0.682
ResNet 0.734 0.489 0.521 0.525 0.481 0.152 0.133 0.636
LSTM 0.745 0.413 0.477 0.496 0.408 0.139 -0.002 0.494
Transformer 0.560 0.149 0.156 0.172 0.155 0.261 0.271 0.643

OHE 0.718 0.545 0.573 0.562 0.555 0.823 0.533 0.657
ESM-1v 0.880 0.566 0.642 0.596 0.572 0.536 0.394 0.438
ESM-2 0.882 0.573 0.645 0.587 0.576 - - -
ESM-MSA 0.885 0.568 0.632 0.565 0.600 - - -
ProtSSN 0.877 0.692 0.718 0.757 0.678 - - -
SaProt 0.882 0.686 0.716 0.749 0.677 - - -
Tranception 0.871 0.632 0.704 0.671 0.623 - - -
ProteinNPT 0.904 0.668 0.736 0.706 0.680 - - -

DePLM (ESM1v) 0.887 0.704 0.738 0.773 0.688 0.900 0.676 0.662
DePLM (ESM2) 0.897 0.707 0.742 0.764 0.693 0.904 0.665 0.662

4.1 Experimental Setup

We begin by outlining the general experimental setups used in our evaluations. We use ESM-IF [28]
as the structure encoder and the structures are predicted by AlphaFold2 [33]. DePLM comprises 42.2
million trainable parameters and involves 3 diffusion steps. We set the learning rate at 0.0001, with
a weight decay of 0.005, utilizing AdamW as the optimizer. All models are trained on four Nvidia
V100 32G GPUs for up to 100 epochs by default.

4.2 Performance Comparison (Q1)

Datasets and Baselines. We conducted a thorough study across four benchmarks, including Prote-
inGym [44], β-Lactamase (Abbr., β-lact.) and Fluorescence (Abbr., Fluo.) from PEER [63], and GB1
(utilizing a 2-vs-rest split) from FLIP [8], where the latter two involve multiple mutants. We com-
pare DePLM with nine baselines, including 1) four protein sequence encoders trained from scratch
(CNN [53], ResNet [47], LSTM [47], and Transformer [47]) as naive baselines, 2) five extended
baselines that incorporate self-supervised models (OHE [27], fine-tuned versions of ESM-1v [39],
ESM-MSA [48], and Tranception [43], as well as ProteinNPT [46]). More details about datasets and
baselines can be found in Appendix C.1 and C.2.

Results. We present the evaluation results in Table 9. DePLM achieves better performance compared
to the baselines, affirming the advantage of integrating evolutionary information with experimental
data for protein engineering tasks. It is worth noting that ESM-MSA and Tranception exhibit
enhanced EI compared to ESM-1v due to the introduction of MSAs. By comparing their results, we
demonstrate that higher-quality EI significantly improves outcomes after fine-tuning. However, even
with these improvements, their performance still falls short of that achieved by DePLM. We attribute
this difference to the architecture employed by our model, which enables more efficient utilization
of experimental data. We also notice that DePLM yields better performance than ProteinNPT,
underscoring the efficacy of the proposed denoising training process.

4.3 Generalization Ability (Q2)

Datasets and Baselines. Computational techniques that can generalize across different proteins are
essential, given the limitations of DMS experimental methods in handling various proteins [58]. In
our study, we leverage ProteinGym to test this generalization capability. Specifically, ProteinGym
categorizes DMS datasets into five coarse categories based on the protein properties they measure:
stability, fitness, expression, binding, and activity. Given a testing dataset, we randomly select
an additional 40 datasets from the same category for training. Importantly, we ensure that the
sequence similarity between the datasets used for training and testing is kept below 50% to prevent
potential data leakage. In this experiment, we compare DePLM with four self-supervised baselines
(ESM-1v [39], ESM-2 [34], and TranceptEVE [45]), two structure-based baselines (ESM-IF [28]
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Table 2: Generalization ability evaluation. The best and suboptimal results are labeled with bold
and underline, respectively. The information (evolutionary, structural or experimental) involved in
each model is provided. Results of unsupervised methods are borrowed from Notin et al.[43]. Other
results are obtained by our own experiments. (FT=Fine-tuned version)

Model Information ProteinGym

Evo. Struct. Exp. Stability Fitness Expression Binding Activity

ESM1v ✓ 0.437 0.395 0.427 0.287 0.415
ESM2 ✓ 0.523 0.396 0.439 0.356 0.433
ProtSSN ✓ ✓ 0.560 0.408 0.435 0.362 0.458
TranceptEVE L ✓ 0.500 0.477 0.457 0.360 0.487

ESM-IF ✓ 0.624 0.346 0.436 0.380 0.412
ProteinMPNN ✓ 0.564 0.166 0.209 0.159 0.203

CNN ✓ 0.141 0.053 0.043 0.056 0.095
ESM1v (FT) ✓ ✓ 0.497 0.318 0.301 0.216 0.385
ESM2 (FT) ✓ ✓ 0.454 0.359 0.338 0.276 0.391
ProtSSN (FT.) ✓ ✓ ✓ 0.689 0.448 0.478 0.421 0.488
SaProt (FT.) ✓ ✓ ✓ 0.703 0.442 0.496 0.391 0.495

DePLM (ESM1v) ✓ ✓ ✓ 0.763 0.467 0.506 0.409 0.499
DePLM (ESM2) ✓ ✓ ✓ 0.773 0.480 0.510 0.441 0.518

Table 3: Ablation study of the modules in DePLM.

Method ProteinGym (Valid) GB1 Fluorescence Average

DePLM 0.690 0.665 0.662 0.672

w/o structural information 0.683 0.672 0.659 0.671
w/o feature encoder 0.682 0.659 0.661 0.667
w/o denoising block 0.656 0.644 0.655 0.652
w/o rank objective 0.322 0.588 0.552 0.487

and ProteinMPNN [9]), and three supervised baselines (CNN [8], fine-tuned version of ESM-1v and
ESM-2). The choice of baselines is elaborated in Appendix C.1.

Results. As shown in Table 2, one can observe that DePLM consistently outperforms all baseline
models. This finding underscores the inadequacy of baselines that rely solely on unfiltered evolu-
tionary information, which often dilutes target properties due to concurrent optimization of multiple
objectives. By eliminating the influence of irrelevant factors, DePLM enhances its performance
significantly. In addition, the performance of baselines trained to minimize the disparity between
predicted and experimental scores (ESM1v (FT) and ESM2 (FT)) falls significantly short of that
achieved by our DePLM. This observation highlights that optimizing the model in a rank space
introduces less bias from specific datasets and yields superior generalization. Furthermore, we
observe that protein structure information contributes to the stability and binding properties, whereas
evolutionary information enhances fitness and activity attributes.

4.4 Ablation Study (Q3)

The ablation study aims to validate the efficacy of the modules devised for DePLM. These modules
include the use of structural information, the feature encoder, the denoising module, and the rank
objective. The results in Table 8 show the absence of any of these modules leads to a decline in
performance, indicating their collective significance. Additionally, we observe that the rank objective
has the largest impact on performance, highlighting the importance of reducing dataset-specific
information. Further ablation studies are detailed in Appendix C.4.

4.5 Analysis and Discussion (Q4)

Necessity of Filtering Property-Irrelevant Information in EI. To ascertain the importance
of filtering out property-irrelevant information, we analyzed the impact of training with datasets
targeting various optimization objectives. As illustrated in Figure 4 (left), we observe that using
training datasets with characteristics divergent from those of the test dataset leads to diminished
performance across stability, expression, and activity properties. This reduction in performance
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Figure 4: Visualization of the impact of optimization targets and size of training data on performance.

Figure 5: Visualization of the impact of denoising process on the evolutionary likelihood.

underscores the detrimental interference among different properties, emphasizing the need to mitigate
these adverse effects. Interestingly, we observed that training on datasets targeting alternative
properties can improve performance in the binding property. This improvement is likely due to
the scarce availability of datasets specifically focusing on the binding property within ProteinGym.
This observation suggests a beneficial cross-utilization of data, where leveraging information from
unrelated attributes can enhance inference for properties with limited data. In Figure 4 (right), we
illustrate the influence of dataset size on performance. We found that even with a minimal number
of datasets (K=2), DePLM significantly boosts performance, indicating its proficiency in filtering
out irrelevant information. Furthermore, as the number of training datasets increases, there is a
corresponding improvement in performance, showcasing the model’s capability to continuously
enhance its filtering efficacy with more data.

Differentiating the Noisy Evolutionary Likelihood from the Property-specific Likelihood. De-
noising the evolutionary likelihood is helpful in identifying protein sequences that manifest specific
properties. In Figure 5 (left), we utilize entropy to gauge the degree of conservation at each position
and illustrate the likelihood attributed to hydrophobic amino acids within the structure. Residues
with outward-facing side chains on alpha helices are associated with higher entropy, whereas inward-
facing positions exhibit lower entropy. Figure 5 (right) compares the evolutionary likelihood and the
property-specific likelihood and visualizes the differences. We notice that binding and active share
similar offsets. This suggests that the indole-3-glycerolphosphate synthase functions by attaching
to other molecules, which makes sense considering its role as an enzyme [54]. We also observe
that the property-specific likelihoods exhibit a more uniform entropy when compared to the noisy
evolutionary likelihood. We assume this may arise due to a bias towards inward-facing positions
across all properties, potentially overshadowing the evolutionary significance of outward-facing side
chains. This imbalance is addressed through the denoising process described in Section 3.2.
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5 Conclusion and Limitations

In this paper, we propose DePLM, a simple yet effective fine-tuning approach that leverages a feature
encoder to obtain expressive protein representations and then uses them to extract property-specific
likelihood from the noisy evolutionary likelihood for mutational effect prediction. Our experiments
demonstrate that DePLM not only surpasses state-of-the-art baselines but also shows exceptional
generalization capabilities. Additionally, our analysis confirms that utilizing sufficiently large datasets
or incorporating data from other relevant properties can significantly enhance performance.

Due to limited resources, our experiments are conducted using wild-type marginal probability. This
approach predicts the impacts of all mutations in a single forward pass, summing the effects of
individual mutations to estimate the consequences of multiple mutations simultaneously. However,
this method is not ideal, as it overlooks the complex interactions between mutations. Our method
can potentially achieve better performance in predicting the effects of multiple mutations, leveraging
more effective prediction techniques such as masked marginal probability.
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A Definitions of symbols

To ease reading and facilitate understanding of our DePLM, in Table 4, we summarize the symbols
and notations employed throughout the paper.

Table 4: Definitions of symbols used in this paper.

Symbol Description

l,m, n, t the index number
xwt the sequence of a wildtype protein
N the number of amino acids in a protein sequence
d the hidden dimension of DePLM

he,hs,h the representations of wildtype protein sequence, structure and fusion of the two
M the attention weights produced by PLMs using the wildtype protein sequence as input

hl, M l the representations and attention weights produced by layer l
Π̃ the evolutionary likelihood produced by PLMs using the wildtype protein sequence as input
Π⋆ the likelihood corresponding to the property of interest
Πϵ the noise likelihood influenced by irrelevant properties
Π0:T the intermediate likelihood variables during the backward process
R(·) the rank function for fitness scores
T the number of diffusion steps

r0:T the rank variables during the forward process
q(rt−1|r0, rt) the forward process

pθ(Πt−1|xwt,Πt) the learnable transition kernel parameterized by θ during the reverse process
E the probability that denoising reaches the ground truth
R the real number space
N+ the positive integer space
ρ the Spearman’s rank correlation coefficient

B Method details

B.1 Constructing the Space of Rank Variables

We provide the pseudo codes as follows, to help readers easily understand how to construct the space
of rank variables in the forward process.

Algorithm 1 Constructing the Space of Rank Variables
Data: The ranks of likelihoods at time steps t1 and t2 (where t1 < t2), represented by rt1 and rt2 ;

the number of sampling trajectories η.
Result: The feasible space of rank variables Srt1:t2 between rt1 and rt2 .

Srt1:t2 ← ∅, ξ ← ∅, i← 0. // Variable initialization
Compute sorting index It1 so that rt1 [It1 ] is monotonically increasing and rt1 [It1 ][I

−1
t1 ] = rt1 .

rt1 ← rt1 [It1 ], rt2 ← rt2 [It1 ].
ξ ← ξ ∪ {[0, len(rt1)− 1]} // Set left index ϕ to 0 and right index ψ to len(rt1)− 1
while i < η do

while Stack ̸= ∅ do
τ ← ∅.
for [ϕ, ψ] ∈ ξ do
rt2 , φ = Sort(rt2 , ϕ, ψ) // No element in [ϕ, φ] is greater than any element in [φ,ψ].
τ ← τ ∪ {[ϕ, φ− 1]} if ϕ < φ− 1.
τ ← τ ∪ {[φ+ 1, ψ]} if ψ > φ+ 1.

end for
ξ ← τ
Srt1:t2 ← Srt1:t2 ∪ rt2 [I

−1
t1 ]

end while
i← i+ 1

end while
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B.2 Derivation of variational lower bound (ELBO) details

The ELBO can be calculated as follows:

E[log pθ(r0|xwt)] = E

[
logEq(r1:T−1|R(Π⋆),R(Π̃))

pθ(r0:T |xwt, Π̃)× p(Π̃)

q(r1:T−1|R(Π⋆), R(Π̃))

]

≥ Eq log
pθ(r0:T |xwt,ΠT )× p(ΠT )

q(r1:T−1|R(Π0), R(ΠT ))

= Eq

[
log p(ΠT )−

T∑
t=1

log
pθ(R(Πt−1)|xwt,Πt)

q(rt|R(Πt−1), R(ΠT ))

]

= Eq

[
log p(ΠT )− log

pθ(R(Π0)|xwt,Π1)

q(r1|R(Π0), R(ΠT ))

−
T∑

t=2

(
log

pθ(R(Πt−1)|xwt,Πt)

q(rt−1|R(Π0), R(Πt)
+ log

q(rt−1|R(Π0), R(ΠT ))

q(rt|R(Π0), R(ΠT ))

)]

= Eq

[
log

p(R(ΠT ))

q(rT |R(Π0), R(ΠT ))
− log pθ(R(Π0)|xwt,Π1)

−
T∑

t=2

log
pθ(R(Πt−1)|xwt,Πt)

q(rt−1|R(Π0), R(Πt))

]
= −Eq [(1− ρ(q(rT |R(Π0), R(ΠT ))||p(R(ΠT )))

− log pθ(R(Π0)|xwt,Π1))

+

T∑
t=2

(
1− ρ(q(rt−1|R(Π0), R(Πt))||pθ(R(Πt−1)|xwt,Πt))

)]

The first term, 1 − ρ(q(rT |R(Π0), R(ΠT ))||p(R(ΠT )), is a constant and can therefore be
omitted from the objective function. Following Xu et al. [64], we combine the second term,
log pθ(R(Π0)|xwt,Π1)), with the final term. This leads us to the expression for ELBO LELBO =∑T

t=1 (1− ρ(q(rt−1|R(Π0), R(Πt))||pθ(R(Πt−1)|xwt,Πt))) as in Eq. 4.

C Experimental details

C.1 Baseline details

C.1.1 Self-supervised methods

Self-supervised methods can decode the link between protein sequences and their function by
analyzing evolutionary-scale data. This is because protein properties influence the choice of se-
quences throughout evolution. Leveraging advancements from Natural Language Processing (NLP),
researchers have leveraged the Transformer architectures combined with the Masked Language
Modeling (MLM) learning objective to effectively capture the complexity of protein sequences.
During training, each input sequence x is altered by replacing some amino acids with a special mask
token. The network learns to predict these missing tokens from the modified sequence:

LMLM = Ex∼X

[
EM

[ ∑
m∈M

− log p(xm|x/M )

]]
, (9)

where M represents a set of masked positions and x/M denotes the masked protein sequence.
Specifically, MLM replaces 80% of these positions with the special “[MASK]” token, 10% with a
randomly chosen alternative amino acid token, and 10% remain as the original input tokens.

With the MLM learning objective, PLMs can output the likelihood of each amino acid occurring at
masked positions given the context of unmasked amino acids. This can be directly applied to the
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prediction of mutational effects by comparing the likelihood of the mutant sequence to the wildtype
sequence [39]. Specifically, one uses the amino acid in the wildtype protein as a reference state:

y ≃
∑
m∈M

log p(xm = xmt
m|xwt

/M )− log p(xm = xwt
m|xwt

/M ). (10)

The probability p in Eq. 10 is actually implemented as Π∗ with our DePLM framework. Note that
although the property y (e.g., thermostability) has its own physical concepts and units, which are
usually different from the likelihood on the right-hand side of Eq. 10, one usually cares the relative
ranks of property values. Hence the above equivalence holds.

C.1.2 Supervised methods

Supervised methods use experimental data to fit neural networks for predicting protein fitness
landscapes. Most existing methods treat fitness landscape prediction as a regression problem. The
process begins by transforming the wildtype sequence xwt and its mutations (µ1, . . . , µn) into mutant
sequences (xmt

1 , . . . ,x
mt
n ). These sequences are then input into a protein encoder to extract features.

A predictor is subsequently employed to estimate the property value y, optimized using mean squared
error (MSE) loss.

C.1.3 Baselines

Performance Comparison. We adopt nine supervised baselines to compare with DePLM. Following
Xu et al. [63], we use four well-known protein sequences encoders: shallow CNN and ResNet,
which focus on short-range interactions, and LSTM and Transformer, which focus on long-range
interactions. Subsequently, we utilize ridge regression to forecast fitness using features extracted by
the aforementioned models. We summarize each model in Table 5

Table 5: Baseline model descriptions. Abbr., Params.: parameters; dim.: dimension.

Model Input Layer Hidden Layers #Params.

shallow CNN 21-dim. one-hot residue type 1× 1D conv. layers (hidden dim.: 1024;
kernel size 7; stride: 1; padding: 3) 2.7M

ResNet 21-dim. one-hot residue type 8 × residual blocks (hidden dim.: 512;
kernel size 3; stride: 1; padding: 1) 11.0M

LSTM 21-dim. one-hot residue type 3× bidirectional LSTM layers
(hidden dim.: 640) 26.7M

Transformer 21-dim. one-hot residue type 3× Transformer blocks (hidden dim.: 512;
#attn heads: 8; activation: GELU 21.3M

We also compare DePLM with five extended baselines that incorporate self-supervised models.
Specifically, we investigate OHE [27], which utilizes ridge regression supplemented with protein
likelihood from DeepSequence [49]. We also assess fine-tuned versions of ESM-1v [39], ESM-
MSA [48], and Tranception [43], which predicts the fitness score by inputting their representations
and likelihoods as features into an trainable MLPs. Furthermore, our approach is compared against
ProteinNPT [46], a state-of-the-art baseline equipped with a non-parametric transformer specifically
designed for label-scarce settings. To ensure fair comparisons, we keep the parameters of these
unsupervised models frozen.

Generalization ability. We conduct a comprehensive comparison of model generalization capa-
bilities, including three types of models. 1) Self-supervised models trained on sequence variations.
Among these, ESM-1v [39] and ESM-2 [34] are leading PLMs based on MLM objective, which form
the foundation of DePLM. ProtSSN [56] integrates both evolutionary and structural features, enhanc-
ing the model’s ability to capture complex protein characteristics. We also assess TranceptEVE [45],
the current state-of-the-art in unsupervised ProteinGym benchmarking. 2) Inverse Folding models.
Since the function on proteins is dependent on its shape, amino acid likelihoods derived based on back-
bone can be used to infer mutation effects. Therefore, we employ ESM-IF [28] and ProteinMPNN [9]
as baseline models. 3) Supervised models. We also emply three supervised baselines, including
CNN, which has previously been acknowledged as the best naive baseline. Due to computational
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resource limitations, we excluded MSA-based methods (ESM-MSA [48], Tranception [43], and
ProteinNPT [46]), leaving the fine-tuned version ESM-1v and ESM-2.

C.2 Dataset details

ProteinGym is an extensive set of Deep Mutational Scaning (DMS) assays, containing 217 datasets.
Due to the length limitations of PLMs, we excluded datasets involving wildtype proteins longer than
1024, leaving us with 201 DMS datasets. ProteinGym categorizes DMS into five coarse categories:
66 for stability, 69 for fitness, 16 for expression, 12 for binding, and 38 for activity.

Performance Comparison. We implemented the Random cross-validation method recommended by
[46]. In this approach, each mutation in the dataset is randomly assigned to one of five folds. The
model’s performance is then evaluated by averaging the results across these five folds.

Generalization ability. Given a testing dataset, we randomly select up to 40 datasets consistent with
its optimization target (e.g., thermostability) as training data. We ensure that the sequence similarity
between the training protein and the test protein is less that 50% to avoid data leakage.

Ablation. Following Notin et al. [46], we select 8 datasets for ablation study:

• BLAT_ECOLX_Jacquier_2013 [31]
• CALM1_HUMAN_Weile_2017 [62]
• DLG4_RAT_McLaughlin_2012 [38]
• DYR_ECOLI_Thompson_2019 [57]
• P53_HUMAN_Giacomelli_2018 [19]
• REV_HV1H2_Fernandes_2016 [13]
• RL40A_YEAST_Roscoe_2013 [52]
• TAT_HV1BR_Fernandes_2016 [13]

Detailed DMS-level performance on random cross-validation scheme and generalization setting is
reported in Figure 7 and Figure 8. The error bars for the random cross-validation scheme are also
reported in Table 9.

Table 6: Comparison of the computational costs of DePLM and ProteinNPT, using A4GRB6_PSEAI
as an example. This protein has 267 residues and 5001 mutants. (All results were obtained using the
ptflops package.) The training computational cost = (one forward computational cost) × (number
of mutants / number of predicted mutants per forward) × (number of epochs.). The total number
of parameters = non-trainable parameters + trainable parameters. For DePLM, 180.56 GMACs is
the computational cost of the sequence encoder, and 77.55 GMACs is the computational cost for
extracting structural information.

Method Training (MACs) Inference (MACs) Parameter (#)

ProteinNPT 5.85B = 11724.82 × 5001 × 100 58.5M = 11724.82 × 5001 100M + 119M
DePLM 9.16K = 180.56 + 77.55 + 89.05 × 100 347.16 = 180.56 + 77.55 + 89.05 792M + 42.2M

C.3 License details

In this paper, we utilized several advanced protein language models: ESM-1v [39] [MIT License],
ESM-2 [34] [MIT License], and ProteinNPT [46] [MIT License]. For our datasets, we employed
ProteinGym [44] [MIT License], PEER [63] [Apache-2.0 license], FLIP [8] [AFL-3.0 license].

C.4 Supplementary Ablation Study

Computational cost DePLM utilizes the QuickSort algorithm, which has a time complexity of
O(n log n). Given the sparsity of labels, sorting the assay with the most labels in ProteinGym ( 500k
mutants) takes only 1.45 seconds on 2.8GHz Quad-Core Intel Core i7, while sorting the assay with
the median number of labels ( 5k mutants) takes just 0.0056 seconds.
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By leveraging wildtype marginal probability, our method can predict the fitness scores of all possible
single mutants in a single forward pass. In contrast, the state-of-the-art model ProteinNPT requires
(D/B) forward passes to predict the fitness landscape of an assay, where D is the number of data points
and B is the batch size. For predicting the A4GRB6_PSEAI_Chen_2020 assay’s fitness landscape,
ProteinNPT requires 58.5M GMACs with 219M parameters, while our DePLM only requires
347.16 GMACs with 834M parameters (792M non-trainable and 42.2M trainable). The detailed
calculation process is described in Table 7.
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Figure 6: DePLM with varying diffusion steps.
Star: the best of performance across different steps.

Diffusion steps We investigate how the perfor-
mance changes with the number of diffusion
steps T . As illustrated in Figure 6, when T = 0,
substituting the proposed denoising module with
MLPs consistently led to lower performance, in-
dicating the advantage of the denoising mod-
ule. Interestingly, we observe that although
our model can effectively learn how to denoise
through the rank-based diffusion framework, the
performance does not always improve with in-
creasing T . The few diffusion steps in DePLM
can be attributed to the following reasons: Well-
informative Initialization: Standard diffusion
models transform uninformative Gaussian noise
into a complex target distribution, requiring nu-
merous steps to capture the transformation accu-
rately. In contrast, DePLM starts with an initial
distribution that represents an informative protein evolutionary likelihood. This initial distribution
needs only minor adjustments to reach a property-specific likelihood. Thus, DePLM requires fewer
diffusion steps compared to those in standard diffusion models. Efficient Noise Sampling: In standard
diffusion models, Gaussian noise is injected independently into each data. However, in DePLM, noise
sampling considers the overall difference between the current and target distribution. A quick sorting
algorithm is employed to generate a sampling pool from which we draw noises. This approach allows
each step to transform the distribution more efficiently, thereby reducing the number of steps needed.

Increasing the number of diffusion steps leads to a deterioration in model performance. This decline
occurs because a higher number of diffusion steps enhances the model’s fitting capability, which
increases the risk of overfitting to the training data as reported in [42, 5]. To further elucidate this
point, we present the performance metrics of the model on both the training and test datasets in the
Table 7.

Table 7: Performance of the training set and test set at different diffusion steps.

Diffusion Step 1 2 3 4 5 6 7 8

Training Spearman 0.849 0.864 0.866 0.881 0.882 0.883 0.884 0.886
Testing Spearman 0.694 0.712 0.716 0.685 0.587 0.575 0.576 0.567

Structural information When considering label-rich GB1 and Fluorescence datasets, DePLM only
shows a slight improvement by incorporating the structural data. To further investigate the role of
structural information, we conducted additional evaluations using the label-sparse ProteinGym assays.
The results are presented in Table 8, which demonstrates a consistent enhancement in the Spearman
correlation coefficient of approximately 2.7% when incorporating structures.

Table 8: Ablation study of the structural information (SI).

Method A0A192B1T2 A0A247D711 A0A2Z5U3Z0 A4 A4D664 AACC1 ACE2

DePLM w/ SI 0.806 0.565 0.538 0.741 0.810 0.654 0.712
DePLM w/o SI 0.777 0.544 0.494 0.740 0.799 0.636 0.707
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Figure 7: Results random cross-validation scheme. We report the DMS-level performance (mea-
sured by the Spearman’s rank correlation ρ between model scores and experimental measurements)
of DePLM and other baselines

Table 9: Model performance on protein engineering tasks. We report mean ± standard deviation
performance over random splits. The best results are labeled with bold.

Model ProteinGym

Stability Fitness Expression Binding Activity

ProteinNPT 0.904 ± 0.015 0.668 ± 0.035 0.736 ± 0.023 0.706 ± 0.060 0.680 ± 0.026

DePLM (ESM2) 0.897 ± 0.013 0.707 ± 0.027 0.742 ± 0.027 0.764 ± 0.041 0.693 ± 0.024
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Figure 8: Results of generalization ability. We report the DMS-level performance (measured by the
Spearman’s rank correlation ρ between model scores and experimental measurements) of DePLM
and other baselines
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Section 1, we point out this paper aims to solve property optimization
problems, and our contribution lies in proposing a novel approach that refines EI.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5, we discuss the limitations of this method and directions for
further improvements.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In Appendix B, we provide a derivation process for the optimization objective.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: In Section 3 and Appendix B, we fully describe the methods employed in our
paper. In Section 4 and Appendix C, we detail different experimental settings. We also
provide supplementary material (including code and data) to ensure the reproducibility of
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The script file in the supplemental material contains sufficient information to
faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4 and Appendix C, we specify all the details about training and test.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

75325https://doi.org/10.52202/079017-2397

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 3, we report all models are trained on four Nvidia V100 32G GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Appendix C.3, we have explicitly mentioned and properly respected all the
creators or original owners of assets used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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