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Abstract

We develop a unifying framework for information-theoretic lower bound in
statistical estimation and interactive decision making. Classical lower bound
techniques—such as Fano’s method, Le Cam’s method, and Assouad’s lemma—
are central to the study of minimax risk in statistical estimation, yet are insufficient
to provide tight lower bounds for interactive decision making algorithms that col-
lect data interactively (e.g., algorithms for bandits and reinforcement learning).
Recent work of Foster et al. [40, 42] provides minimax lower bounds for inter-
active decision making using seemingly different analysis techniques from the
classical methods. These results—which are proven using a complexity mea-
sure known as the Decision-Estimation Coefficient (DEC)—capture difficulties
unique to interactive learning, yet do not recover the tightest known lower bounds
for passive estimation. We propose a unified view of these distinct methodolo-
gies through a new lower bound approach called interactive Fano method. As an
application, we introduce a novel complexity measure, the Fractional Covering
Number, which facilitates the new lower bounds for interactive decision making
that extend the DEC methodology by incorporating the complexity of estimation.
Using the fractional covering number, we (i) provide a unified characterization
of learnability for any stochastic bandit problem, (ii) close the remaining gap be-
tween the upper and lower bounds in Foster et al. [40, 42] (up to polynomial fac-
tors) for any interactive decision making problem in which the underlying model
class is convex.

1 Introduction
The minimax criterion is a standard approach to studying the intrinsic difficulty of problems in statis-
tics and machine learning. For an algorithm ALG that collects data (either passively or interactively)
from the model M , the minimax criterion (stated somewhat informally here) is

min
ALG

max
M∈M

Cost(ALG,M). (1)

The expression reflects the best cost that can be achieved by an algorithm ALG for a worst-case
problem instance in a collectionM, measured according to an appropriate cost function Cost. In
statistics, the minimax approach was pioneered by A. Wald [90], who made the connection to von
Neumann’s theory of games [84] and unified statistical estimation and hypothesis testing under the
umbrella of statistical decision theory. Minimax optimality and minimax rates of convergence of
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estimators have since become a central object in the modern non-asymptotic statistics [82, 89]; here,
for instance, ALG is an estimator of an unknown parameter based on noisy observations.

Upper bounds on the minimax value (1) are typically achieved by choosing a particular algorithm,
while lower bounds often require specialized techniques. In statistics, three such techniques are
widely used: Le Cam’s two-point method, Fano’s method, and Assouad’s method. These techniques
entail constructing “difficult” subsets of the classM. Le Cam’s method focuses on two hypotheses,
while Assouad’s method and Fano’s method involve multiple hypotheses. The relationships between
these methods are explored in Yu [96].

Classical statistical estimation is a purely passive task. A parallel line of research [57] considers
the task of interactive decision making, where ALG is a multi-round procedure that directly interacts
with the data generating process and iteratively makes decisions with the (often contradictory) aims
of minimizing cost and collecting information. Proving minimax lower bounds for interactive deci-
sion making problems presents unique challenges. The aforementioned lower bound techniques for
estimation require quantifying the amount of information that can be gained from passively acquired
data from a hard problem instance, but the amount information acquired by an interactive algorithm
is harder to quantify [4, 68, 69], since it depends on the decisions made by the algorithm itself over
multiple rounds.

In spite of the challenges, recent work of Foster et al. [40, 42] shows that a complexity measure
known as the Decision-Estimation Coefficient (DEC) leads to both lower and upper bounds on the
minimax rates for a general class of interactive decision making problems. Interestingly, the lower
bound techniques in Foster et al. [40] proceed in a seemingly different fashion from classical lower
bounds for statistical estimation; most notably, their techniques involve an algorithm-dependent (as
opposed to oblivious) choice of a hard-to-distinguish alternative problem instance.

Given the differences between the classical Assouad, Fano, and Le Cam methods, and the even
larger disparity between these methods and the interactive decision making techniques of Foster
et al. [40, 42], it is natural to ask whether there is a hope of unifying these lower bounds techniques.
Beyond the fundamental nature of this question, there is hope that a unified understanding might lead
to tighter lower bounds, or even inspire new algorithms and upper bounds; of particular interest is to
close the remaining (estimation-based) gaps between the upper and lower bounds on the minimax
rates for interactive decision making left open by Foster et al. [42].

Contributions. We present a new framework for information-theoretic lower bounds which allows
for a unifying presentation of classical lower bounds in statistical estimation (Assouad, Fano, and
Le Cam) and recent DEC-based lower bounds for interactive decision making [40, 42].

• Interactive lower bound framework (Section 3). Our main result is to introduce a new lower
bound technique, the interactive Fano method. The interactive Fano method generalizes the strin-
gent separation condition in the classical Fano inequality to a novel algorithm-dependent con-
dition by introducing the concept of “ghost data” generated from a reference distribution. This
technique recovers the Le Cam two-point method (and convex hull method), Assouad method, and
Fano method as special cases. By virtue of being algorithm-dependent in nature, the interactive
Fano method seamlessly recovers DEC-based lower bounds for interactive decision making as a
special case, and leads to refined quantile-based variants.

• Fractional covering number and bandit learnability (Section 4). As an application of the
interactive Fano method, we derive lower bounds for interactive decision making based on a new
complexity measure, the fractional covering number, which quantifies the difficulty of estimating
a near-optimal policy/decision, and complements the original DEC lower bounds (which reflect
difficulty of exploration as opposed to difficulty of estimation). As an application, the fractional
covering number provides both lower and upper bound for learning any structured bandit problem,
up to an exponential gap. In particular, finiteness of the fractional covering number is the first
necessary and sufficient condition for finite-time learnability of any structured bandit problem.
As a secondary result, we use the fractional covering number to close the remaining gap between
the upper and lower bounds in Foster et al. [40, 42] (up to polynomial factors) for any interactive
decision making problem in which the underlying model class is convex.

Related work. Due to space limitations, we discuss the related work in Appendix A.
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1.1 Preliminaries
Let P and Q be two distributions over a space Ω such that P is absolutely continuous with respect
to Q. Then, for a convex function f : [0,+∞)→ (−∞,+∞] such that f(x) is finite for all x > 0,
f(1) = 0, and f(0) = limx→0+ f(x), the f -divergence of between P and Q is defined as

Df (P,Q) :=

∫
Ω

f

(
dP

dQ

)
dQ.

Concretely, we make use of three well-known f -divergences: the KL-divergence DKL, the squared
Hellinger distance D2

H, and the total variation distance DTV, for which the function f(x) is chosen
to be x log x, 1

2 (
√
x − 1)2, and 1

2 |x − 1| respectively. For a pair of random variables (X,Y ) with
joint distribution PX,Y , the mutual information is defined as

I(X;Y ) = EX

[
DKL

(
PY |X ∥PY

)]
,

where PY |X is the conditional distribution of Y |X and PY is the marginal distribution of Y .

2 Statistical Estimation and Interactive Decision Making
We work in a general framework we refer to as Interactive Statistical Decision Making (ISDM).
We adopt this framework as a convenient formalism which encompasses statistical estimation and
interactive decision making in a unified fashion. We first introduce the framework and show how
it subsumes statistical estimation (Section 2.1) and interactive decision making (Section 2.2), then
give brief background on existing lower bound techniques and gaps in understanding (Appendix A).

Interactive Statistical Decision Making. An ISDM problem is specified by (X ,M,D, L), where
X is the space of outcomes, M is a model class (parameter space), D is the space of algorithms,
and L is a non-negative risk function. For an algorithm ALG ∈ D chosen by the learner and a model
M ∈M specified by the environment, an observation X is generated from a distribution induced by
M and ALG: X ∼ PM,ALG. The performance of the algorithm ALG on the model M is then measured
by the risk function L(M,X). The learner’s goal is to minimize the risk by choosing the algorithm
ALG. As described in the Introduction, the best possible expected risk the learner may achieve is the
following minimax risk:

infALG∈D supM∈M EM,ALG[L(M,X)]. (2)

While our main results concern the general problem formulation in Eq. (2), we focus on applica-
tions to statistical estimation and interactive decision making throughout. Below, we give additional
background on these settings and show how to view them as special cases.

2.1 Statistical estimation
In statistical decision theory [90, 13, 12], the learner is given the parameter space Θ, observation
space Y , decision space A, and a loss function L. For an underlying parameter θ⋆ ∈ Θ, n i.i.d.
samples Y1, ..., Yn ∼ Pθ⋆ are drawn and observed by the learner. The learner then chooses a decision
A = A(Y1, · · · , Yn) ∈ A based on the observations, and incurs the loss L(θ⋆, A).

Any general statistical estimation problem can be trivially viewed as a ISDM instance, by choosing
the model class asM = {Pθ : θ ∈ Θ} and the algorithm space as D = {ALG : Y⊗n → A}. For
model M = Pθ and algorithm ALG, the distribution of the whole observation X ∼ PM,ALG is given by

X = (Y1, · · · , Yn, A), Y1, · · · , Yn
i.i.d∼ Pθ, A = ALG(Y1, · · · , Yn).

The loss under model M is then measured by the loss of the decision A, i.e., L(M,X) := L(θ,A).

2.2 Interactive decision making
For interactive decision making, we consider the following variant of the Decision Making with
Structured Observations (DMSO) framework [40], which subsumes bandits and reinforcement
learning. The learner interacts with the environment (described by an underlying model M⋆ : Π→
∆(O), unknown to the learner) for T rounds. For each round t = 1, ..., T :

• The learner selects a decision πt ∈ Π, where Π is the decision space.
• The learner receives an observation ot ∈ O via ot ∼M⋆(πt), where O is the observation space.

3
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The underlying model M⋆ is formally a conditional distribution, and the learner is assumed to have
access to a known model classM⊆ (Π→ ∆(O)) with the following property.

Assumption 1 (Realizability). The model classM contains M⋆.

The model classM represents the learner’s prior knowledge of the structure of the underlying envi-
ronment. For example, for structured bandit problems, the models specify the reward distributions
and hence encode the structural assumptions on the mean reward function (e.g. linearity, smooth-
ness, or concavity). For a more detailed discussion, see Appendix B.

To each model M ∈ M, we associate a risk function L(M, ·) : Π → R≥0, which measures the
performance of a decision in Π under M . We consider two types of learning goals under the DMSO
framework:

• Generalized no-regret learning: The goal of the agent is to minimize the cumulative sub-optimality
during the course of the interaction, given by

RegDM(T ) :=
∑T

t=1 L(M
⋆, πt), (3)

where πt can be randomly drawn from a distribution pt ∈ ∆(Π) chosen by the learner at step t.

• Generalized PAC (Probably Approximately Correct) learning: the goal of the agent is to minimize
the sub-optimality of a final output decision π̂ (possibly randomized), which is selected by the
learner once all T rounds of interaction conclude. We measure performance via

RiskDM(T ) := L(M⋆, π̂). (4)

With an appropriate choice for L, the setting captures reward maximization (regret minimiza-
tion) [40, 42], model estimation and preference-based learning [23], multi-agent decision making
and partial monitoring [37], and various other tasks. In the main text, we focus on reward maxi-
mization and defer the results for more general choices L to the appendices (cf. Appendix B).

Example 1 (Reward maximization). In the reward-maximization task, R : O → [0, 1] is a known
reward function.1 For a model M ∈ M, EM,π[·] denotes expectation under the process o ∼ M(π),
and fM(π) := EM,π[R(o)] denotes the expected value function. For any M ∈ M, we let πM ∈
argmaxπ∈Π fM(π) be an optimal decision under M , and the risk function is defined by L(M,π) =
fM(πM)− fM(π), measuring the sub-optimality of the decision π under model M .

DMSO as an instance of ISDM. Any DMSO class (M,Π) induces an ISDM as follows. For any
t ∈ [T ], denote the full history of decisions and observations up to time t by Ht−1 = (πs, os)t−1

s=1.
The space of observations X consists of all X of the form X = (HT , π̂), where π̂ is a final decision.
An algorithm ALG = {qt}t∈[T ]∪{p} is specified by a sequence of mappings, where the t-th mapping
qt(· | Ht−1) specifies the distribution of πt based on Ht−1, and the final map p(· | HT ) specifies
the distribution of the output decision π̂ based on HT . The algorithm space D consists of all such
algorithms. The loss function is chosen to be L(M⋆, X) = L(M⋆, π̂) for PAC learning (4), and
L(M⋆, X) =

∑T
t=1 L(M

⋆, πt) for no-regret learning (3). For any algorithm ALG and model M ,
PM,ALG(·) is the distribution of X = (HT , π̂) generated by the algorithm ALG under the model M ,
and we let EM,ALG[·] to be the corresponding expectation.

3 A General Lower Bound
In this section, we introduce our general lower bound technique, the interactive Fano method, and
use it to provide minimax lower bounds for the ISDM framework.

Theorem 1 (Interactive Fano method). Fix a f -divergence Df . Let ALG be a given algorithm,
µ ∈ ∆(M) be a given prior distribution over models, and ∆ > 0 be a given risk level. For any
reference distribution Q ∈ ∆(X ), we define

ρ∆,Q = PM∼µ,X∼Q(L(M,X) < ∆). (5)

Then, the following lower bound holds:

sup
M∈M

EX∼PM,ALG [L(M,X)] ≥∆ · sup
Q∈∆(X ),δ∈[0,1]

{δ : EM∼µ[Df (PM,ALG,Q)] < df,δ(ρ∆,Q)} ,

1We assume the reward function R is known without loss of generality, since the observation o may have a
component containing the random reward.
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where we denote df,δ(p) = Df (Bern(1− δ),Bern(p)) if p ≤ 1− δ, and df,δ(p) = 0 otherwise.

This result generalizes the classical Fano method in the prequel (as well as more sophisticated vari-
ants [97, 36, 27]) in multiple ways:

• It encompasses general interactive learning/estimation problems in the ISDM framework, as op-
posed to purely passive estimation. This is reflected in the fact that the distribution over the
outcome X is allowed to depend on ALG itself.

• The most important and novel change is that Theorem 1 generalizes the “hard” separation condi-
tion required in the classical Fano method to a “soft” notion of separation captured by the quantile
ρ∆,Q in Eq. (5). The quantile ρ∆,Q reflects the average separation under “ghost data” X generated
from an arbitrary reference distribution Q, which is independent of the true model M ∼ µ.

• In addition, instead of relying on mutual information, which is can difficult to quantify for inter-
active problems, we use divergence with respect to the reference distribution Q, generalizing a
central idea in Foster et al. [40, 42].

In what follows, we will show that these generalizations allow the Interactive Fano method to achieve
two important desiderata: (1) unifying the methods of Fano, Le Cam, and Assouad (Section 3.1), and
(2) integrating these traditional lower bound techniques with the DEC approach [40, 42] to derive
new lower bounds (see Section 3.2).

3.1 Recovering non-interactive lower bounds
We begin by applying Theorem 1 to recover classical non-interactive lower bounds for statistical
estimation. Since a goal of our paper is to integrate the Fano and Assouad methods with the DEC
framework, this serves as an important sanity check to demonstrate that our framework can recover
the non-interactive versions of these methods.

Fano method. We specialize Theorem 1 to the KL divergence. Observe that for any reference
distribution Q,

PM∼µ,X∼Q(L(M,X) < ∆) ≤ supx µ(M : L(M,x) < ∆).

By choosing Q = EM∼µPM,ALG in Theorem 1, we obtain the following proposition, which encom-
passes prior generalizations of Fano’s inequality [97, 36, 27] developed in statistical estimation.

Proposition 2 (Recovering the generalized Fano method). Fix an algorithm ALG and prior distribu-
tion µ ∈ ∆(M), and let Iµ,ALG(M ;X) be the mutual information between M and X under M ∼ µ
and X ∼ PM,ALG. The following Bayes risk lower bound holds for all ∆ ≥ 0:

EM∼µEX∼PM,ALG [L(M,X)] ≥ ∆
(
1 +

Iµ,ALG(M ;X)+log 2
log supx µ(M :L(M,x)<∆)

)
. (6)

When applied to the statistical estimation setting (Section 2.1), the classical Fano method corre-
sponds to the special case of Proposition 2 where Θ = A = {1, 2, . . . ,m}, L(θ, a) = 1(θ ̸= a) is
the indicator loss, µ = Unif(Θ) is the uniform prior, and ∆ = 1.

Note that in Proposition 2, the term log supx µ(M ∈ M : L(M,x) < ∆) in the denominator of
Eq. (6) takes the supremum over the outcome x, resulting in a simplified expression that removes
the role of the algorithm ALG. This simplification is often sufficient to derive tight guarantees for
estimation, but is insufficient for interactive decision making in general. The DEC, which we define
in Section 3.2, more precisely accounts for the role of decisions selected by the algorithm.

Le Cam’s method and Assouad’s method. To recover Le Cam’s two-point method and Assouad’s
method from Theorem 1, we appeal to the following result, which recovers a lower bound known as
the Le Cam convex hull method [61, 96] which generalizes both approaches.

Proposition 3 (Recovering Le Cam’s convex hull method). For a parameter space Θ and obser-
vation space Y , consider a class of distributions P = {Pθ | θ ∈ Θ} ⊆ ∆(Y) indexed by Θ. Let
L : Θ×A → R+ be a loss function. Suppose Θ0 ⊆ Θ and Θ1 ⊆ Θ satisfy the separation condition

L(θ0, a) + L(θ1, a) ≥ 2∆, ∀a ∈ A, θ0 ∈ Θ0, θ1 ∈ Θ1. (7)

Then

inf
ALG

sup
θ∈Θ

EY∼Pθ
L(θ, ALG(Y )) ≥ ∆

2
max

ν0∈∆(Θ0),ν1∈∆(Θ1)

(
1−DTV

(
P⊗n
ν0

, P⊗n
ν1

))
,

5
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where the infimum is taken over all algorithms ALG : Y⊗n → A, and P⊗n
νi

is the distribution on

Y⊗n induced by θ ∼ νi, Y = (Y1, . . . , Yn)
i.i.d∼ Pθ for i ∈ {0, 1}.

Le Cam’s convex hull method is the most general formulation of the Le Cam two-point method,
which—in its most basic form—corresponds to the case in which ν0 and ν1 are singletons. The
convex hull method is also capable of recovering Assouad’s method [96]. It is important to note that
the classical Fano’s method, e.g. in the form of Proposition 2, cannot recover Proposition 3. This is
because of fundamental differences between the divergences (KL versus TV) used in the traditional
Fano method and the convex hull method.

3.2 Recovering DEC-based lower bounds for interactive decision making
Within the DMSO framework (Section 2.2), Foster et al. [40, 42] introduced the Decision-Estimation
Coefficient (DEC) as a complexity measure, providing both upper and lower bounds for any model
classM. We now show how to recover the lower bounds of Foster et al. [40, 42] through Theorem 1.
We focus on the lower bounds from Foster et al. [42], which are based on a variant of the DEC called
the constrained DEC, and provide the tightest guarantees from prior work.

Background on the Decision-Estimation Coefficient. Consider the reward maximization setting
(Example 1) under DMSO. For a model class M and a reference model ĎM : Π → ∆(O) (not
necessarily inM), we define the constrained regret-DEC via

r-deccε(M, ĎM) := inf
p∈∆(Π)

sup
M∈M

{
Eπ∼p[L(M,π)] | Eπ∼pD

2
H

(
M(π), ĎM(π)

)
≤ ε2

}
, (8)

and define the constrained PAC-DEC via

p-deccε(M, ĎM) := inf
p,q∈∆(Π)

sup
M∈M

{
Eπ∼p[L(M,π)] | Eπ∼qD

2
H

(
M(π), ĎM(π)

)
≤ ε2

}
. (9)

Here, the superscript “c” indicates “constrained”, and the superscript “r” (resp. “p”) indicates “re-
gret” (resp. “PAC”). We further define

p-deccε(M) = sup
ĎM∈co(M)

p-deccε(M, ĎM), r-deccε(M) = sup
ĎM∈co(M)

r-deccε(M∪ {ĎM}, ĎM),

where co(M) denotes the convex hull of the model classM.

Based on these complexity measures, Foster et al. [42] (see also Glasgow and Rakhlin [44]) provide
the following lower and upper bounds on optimal risk and regret, under mild growth conditions on
the DECs.

Theorem 4 (Informal; Foster et al. [42]). Consider the reward maximization variant of the DMSO
setting (Example 1). For any model classM and T ∈ N, the following lower and upper bounds hold:
(1) For PAC learning,

p-deccε(T )(M) ≲ inf
ALG

sup
M∈M

EM,ALG[RiskDM(T )] ≲ p-deccε̄(T )(M),

where ε(T ) ≍
√
1/T and ε̄(T ) ≍

√
log|M|/T (up to logarithmic factors).

(2) For no-regret learning,

r-deccε(T )(M) · T ≲ inf
ALG

sup
M∈M

EM,ALG[RegDM(T )] ≲ r-deccε̄(T )(M) · T + T · ε̄(T ).

Therefore, up to the log|M|-gap between the parameters ε(T ) and ε̄(T ) appearing in the lower and
upper bounds, the constrained PAC-DEC tightly captures the minimax risk of PAC learning, and the
constrained regret-DEC captures the minimax regret of no-regret learning.

A new complexity measure: The quantile Decision-Estimation Coefficient. We recover the
DEC-based lower bounds from Foster et al. [42] through a new variant we refer to as the quan-
tile DEC. To do so, we briefly recount the proof technique used by Foster et al. [42].

Given an algorithm ALG, the proof strategy is to first fix an arbitrary reference model ĎM , then ad-
versarially choose a hard alternative model M ∈ M (in a way that is guided by the DEC and
the algorithm ALG itself) such that DTV(PM,ALG,P ĎM,ALG) is small, yet ALG cannot achieve low risk on
model M . This lower bound technique does not explicitly require a separation condition between

6
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M and ĎM , which is a departure from the classical Fano and two-point methods. Thus to recover
it, the lack of an explicit separation condition in Theorem 1 will be critical. More precisely, for any
model M , we consider the following distributions over decisions:

qM,ALG = EM,ALG

[
1
T

∑T
t=1 q

t(· | Ht−1)
]
∈ ∆(Π), pM,ALG = EM,ALG

[
p(HT )

]
∈ ∆(Π). (10)

That is, qM,ALG is the expected empirical distribution over the decisions (π1, · · · , πT ) played by the
algorithm under M , and pM,ALG is the expected distribution of the final decision π̂.

With these definitions, we instantiate Theorem 1 with the Hellinger distance. We will use the sub-
additivity of Hellinger distance (Lemma C.1), which allows us to bound

D2
H (PM,ALG,P ĎM,ALG) ≤ 7T · Eπ∼p

ĎM,ALG

[
D2

H

(
M(π), ĎM(π)

)]
. (11)

Theorem 1 then yields the following intermediate result.

Lemma 5 (Recovering interactive two-point method). Let δ ∈ [0, 1] be given, and consider an
algorithm ALG. Define

∆⋆
ALG,δ := sup

ĎM∈co(M)

sup
M∈M

sup
∆≥0

{
∆ :

√
p

ĎM,ALG(π : L(M,π) ≥ ∆) >
√
δ +

√
14T Eπ∼q

ĎM,ALG
D2

H

(
M(π), ĎM(π)

)}
.

Then there exists M ∈M such that PM,ALG

(
L(M, π̂) ≥ ∆⋆

ALG,δ

)
≥ δ.

Using Lemma 5, as a starting point, we derive a new quantile-based variant of the DEC, which we
will show can be viewed as a slight generalization of the original PAC DEC of Foster et al. [42].

For any model M ∈M and any parameter δ ∈ [0, 1], we define the δ-quantile risk as follows:

L̂δ(M,p) = sup∆≥0{∆ : Pπ∼p(L(M,π) ≥ ∆) ≥ δ};
this serves as a measure of the sub-optimality of the distribution p ∈ ∆(Π) in terms of δ-quantile.
We now define the quantile PAC DEC as follows:

p-decqε,δ(M, ĎM) := infp,q∈∆(Π) supM∈M

{
L̂δ(M,p)

∣∣∣ Eπ∼qD
2
H

(
M(π), ĎM(π)

)
≤ ε2

}
, (12)

and define p-decqε,δ(M) := sup
ĎM∈co(M) p-decqε,δ(M, ĎM). Applying Lemma 5, it is immediate to

see that the quantile PAC-DEC provides a lower bound on the PAC risk.

Theorem 6 (Quantile DEC lower bound). Let any T ≥ 1 and δ ∈ [0, 1) be given, and define

εδ(T ) :=
1
14

√
δ
T . Then, for any algorithm ALG, there exists M⋆ ∈M such that

PM⋆,ALG

(
RiskDM(T ) ≥ p-decqεδ(T ),δ(M)

)
≥ δ

2 .

Unlike the original constrained DEC lower bounds (Theorem 4), which are restricted to the reward
maximization variant of the DMSO setting (Example 1), the quantile DEC lower bound in Theo-
rem 6 holds for any risk function L. As a result, the lower bound applies to a broader range of gen-
eralized PAC learning tasks, including model estimation [23] and multi-agent decision making [37],
where DEC-based lower bounds from prior work are loose in general; as a concrete application, we
derive a new lower bound for interactive estimation (Example 3) in Appendix E.2.

Recovering DEC-based lower bounds using the quantile DEC. At first glance, Theorem 6 might
appear to be weaker than the constrained PAC-DEC lower bound in Theorem 4 due to the loose
conversion from quantile risk to expected risk. However, by specializing to reward maximization
(Example 3) and leveraging the structure of the risk function L, we show that quantile PAC-DEC is
equivalent to its constrained counterpart for this setting, leading to a tight lower bound.

Proposition 7 (Recovering the PAC DEC lower bound). Under the reward maximization setting (Ex-
ample 1), for any ε > 0 and δ ∈ [0, 1) it holds that

p-deccε(M) ≤ p-decq√
2ε,δ

(M) + 4ε
1−δ .

As a corollary, we may choose δ = 1
2 and ε(T ) = 1

20
√
T

in Theorem 6, so that

supM∈M EM,ALG[RiskDM(T )] ≥
1

4
p-decq√

2ε(T ),1/2
(M) ≥ 1

4

(
p-deccε(T )(M)− 8ε(T )

)
.

Thus, the quantile PAC-DEC lower bound indeed recovers the constrained PAC-DEC lower bound
in Theorem 4.

7
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Our quantile DEC lower bound extends to regret with minor modifications, allowing us to recover
the regret lower bounds in Theorem 4. We defer the details to the Appendix E.1 (Theorem E.1).

3.3 Recovering mutual information-based lower bounds for interactive decision making
The following result uses Theorem 1 to extend classical Fano method to interactive decision making
and achieves tight dependence on the problem dimension that is not recovered by the standard DEC
lower bound in Foster et al. [40, 42].

Proposition 8 (Mutual information-based lower bound). Consider the DMSO setting. For any T ≥
1 and prior µ ∈ ∆(M), we define the maximum T -round mutual information as

Iµ(T ) := supALG Iµ,ALG(M ;HT ),

where we recall that Iµ,ALG(M ;HT ) is the mutual information between M and HT under M ∼ µ
andHT ∼ PM,ALG, and the supremum is taken over all possible DMSO algorithms ALG. Then for any
algorithm ALG,

sup
M∈M

EM,ALG[L(M, π̂)] ≥ 1

2
sup

µ∈∆(M)

sup
∆>0

{
∆ | sup

π
µ(M : L(M,π) ≤ ∆) ≤ 1

4
exp(−2Iµ(T ))

}
.

Using Proposition 8, along with mutual information bounds from Rajaraman et al. [70], we recover
a Ω(d/

√
T ) PAC lower bound for d-dimensional linear bandits, which in turn recovers the Ω(d

√
T )

regret lower bound [30, 73, 57, etc.].

Corollary 9. For d ≥ 2, consider the d-dimensional linear bandit problem with decision space
Π = {π ∈ Rd : ∥π∥2 ≤ 1}, parameter space Θ = {θ ∈ Rd : ∥θ∥2 ≤ 1}, and Gaussian
rewards. The model class is M = {Mθ}θ∈Θ, where for each θ ∈ Θ, the model Mθ is given by
Mθ(π) = N (⟨π, θ⟩ , 1). Then Proposition 8 implies a minimax risk lower bound:

infALG supM∈M EM,ALG[RiskDM(T )] ≥ Ω
(
min{d/

√
T , 1}

)
. (13)

In Section 4, we also instantiate Proposition 8 to derive a new complexity measure for DMSO.

4 Application to Interactive Decision Making: Bandit Learnability and
Beyond

In this section, we focus on the DMSO setting and apply our general results (Theorem 1) to derive
new lower and upper bounds for interactive decision making that go beyond the previous results
based on the Decision-Estimation Coefficient [40, 42] by incorporating hardness of estimation.

Background: Gaps between DEC-based and upper and lower bounds. A fundamental open
question of the DEC framework is whether the log |M|-gap between DEC lower and upper bounds
in Theorem 4 can be closed. To highlight this gap in a more interpretable fashion, we re-state
Theorem 4 in terms of a quantity we refer to as the minimax sample complexity. Let us focus on
regret. Recall that for a fixed model class M, the following notion of minimax regret (2) is the
central objective of interest:

Reg⋆(M, T ) := infALG supM∈M EM,ALG[RegDM(T )].

Given a parameter ∆ > 0, we define the minimax sample complexity
T ⋆(M,∆) := infT≥1{T : Reg⋆(M, T ) ≤ T∆} (14)

as the least value T for which there exists an algorithm that achieves ∆T regret. Clearly, character-
izing T ⋆(M,∆) is equivalent to characterizing the minimax regret Reg⋆(M, T ).

Consider the following quantity induced by DEC for a classM and parameter ∆ > 0:
T DEC(M,∆) = infε∈(0,1){ε−2 : r-deccε(M) ≤ ∆}. (15)

With this definition, Theorem 4 is equivalent to the following characterization of the minimax sample
complexity T ⋆(M,∆):

T DEC(M,∆) ≲ T ⋆(M,∆) ≲ T DEC(M,∆) · log |M|. (16)
That is, Theorem 4 characterizes the minimax sample complexity up to a multiplicative log|M|
factor. Our main result in this section will be to use the fractional covering number and interactive
Fano method (Theorem 1), to (i) tighten the above characterization (16) for various special cases
of interest, and (ii) give a new characterization for T ⋆(M,∆) in structured bandit problems which
avoids spurious parameters such as log|M| altogether.
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4.1 New upper and lower bounds through the fractional covering number
For the a model classM and parameter ∆ > 0, we define the fractional covering number as follows:

Nfrac(M,∆) := inf
p∈∆(Π)

sup
M∈M

1

p(π : L(M,π) ≤ ∆)
. (17)

Informally, the fractional covering number Nfrac(M,∆) represents the best possible coverage over
∆-optimal decisions that can be achieved through a single exploratory distribution in the face of an
unknown model M ∈ M. As we will now show, this quantity naturally arises as a lower bound on
optimal risk through the interactive Fano method. We begin with the following assumption.

Assumption 2 (Regular model class). There exists a constant CKL > 0 and a reference model ĎM
such that DKL(M(π) ∥ ĎM(π)) ≤ CKL for all M ∈M and π ∈ Π.

Assumption 2 is a mild assumption on the boundedness of KL divergence. As an example, for
structured bandits with means in [0, 1] and Gaussian rewards, Assumption 2 holds with CKL = 1

2 .
Details and more examples are provided in Appendix B.2. Our main lower bound based on the
fractional covering number follows by specializing Theorem 1 to KL divergence.

Theorem 10 (Fractional covering number lower bound). Suppose that M satisfies Assumption 2
with parameter CKL > 0. Then for any algorithm ALG and ∆ > 0, unless T ≥ logNfrac(M,∆)−2

2CKL
,

there exists M⋆ ∈M such that PM⋆,ALG[L(M⋆, π̂) ≥ ∆] ≥ 1
2 .

In particular, for (generalized) no-regret learning, fractional covering number also implies a regret
lower bound through Theorem 10. That is, for any algorithm to achieve ∆T -regret, it is necessary to
have T = Ω(logNfrac(M, 2∆)). Combining this with Theorem 4, we conclude that boundedness of
both the DEC and the fractional covering number is necessary for learning with any model classM.

Upper bounds based on the fractional covering number. We now complement Theorem 10 by
showing that for any reward maximization instance of the DMSO setting (Example 1), boundedness
of the fractional covering number alone is also sufficient to derive upper bounds on the sample
complexity of learning. The caveat is that while the lower bound is logarithmic in Nfrac(M,∆), the
upper bound will be polynomial.

Theorem 11 (Fractional covering number upper bound). Consider the reward maximization task
(Example 1). There exists an algorithm that for any classM and ∆ > 0, ensures that with proba-
bility at least 1− δ,

RegDM(T ) ≤ T ·∆+O(log(T/δ)) ·
√

T · Nfrac(M,∆).

Combining Theorem 10 and Theorem 11 yields the following bounds on T ⋆(M,∆) (omitting poly-
logarithmic factors):

logNfrac(M,2∆)
CKL

≲ T ⋆(M,∆) ≲ Nfrac(M,∆/2)
∆2 . (18)

The gap between the lower and upper bounds of (18) is exponential; However, for model classes
with CKL = O(1), (18) suffices to characterize finite-time learnability. As a special case, we now
show that fractional covering number characterizes the learnability of any structured bandit problem.

4.2 Application: Bandit learnability
We consider a structured bandit setting given by a reward function classH ⊆ (Π→ [0, 1]). The pro-
tocol is as follows: For each round t ∈ [T ], the learner chooses a decision πt ∈ Π, then receives a re-
ward rt ∼ N (h⋆(π

t), 1) in response, where the mean reward function h⋆ ∈ H. This corresponds to
an instance of the DMSO framework with induced model classMH = {π 7→ N (h(π), 1) | h ∈ H}.
We define the fractional covering number forH via

Nfrac(H,∆) := Nfrac(MH,∆) = inf
p∈∆(Π)

sup
h∈H

1

p(π : h(πh)− h(π) ≤ ∆)
, (19)

where we denote πh := argmaxπ∈Π h(π). This exactly coincides with the notion of maximin
volume of Hanneke and Yang [45], which was shown to give a tight characterization of learnability
for the special case of noiseless binary-valued structured bandits. We discuss the connection to
Hanneke and Yang [45] in more detail in Appendix G.2.

It is straightforward to show that for any structured bandit problem, the induced classMH satisfies
Assumption 2 with CKL = 1

2 (Example 7). This leads to the following lower bound.
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Corollary 12 (Lower bound for stochastic bandits). For the bandit model class MH defined as
above, it holds that T ⋆(MH,∆) ≥ 2 logNfrac(H,∆)− 2.

Combining this result with the upper bound in Theorem 11, we obtain the following bounds on the
minimax-optimal sample complexity for the structure bandit problem with classH:

logNfrac(H, 2∆) ≲ T ⋆(MH,∆) ≲ Nfrac(H,∆/2)
∆2 . (20)

This implies that Nfrac(H,∆) characterizes learnability for structured bandits.

Theorem 13 (Structured bandit learnability). For a given reward function classH, the bandit prob-
lem classMH is learnable for finite T if and only if Nfrac(H,∆) < +∞ for all ∆ > 0.

We remark that the lower and upper bound in Eq. (20) cannot be improved in terms of the fractional
covering number alone: (1) For K-armed bandits, we have Nfrac(H,∆) ≤ K, meaning the upper
bound is tight. (2) For d-dimensional linear bandits, we have logNfrac(H,∆) = Ω(d), meaning the
lower bound is nearly tight. Nevertheless, the exponential gap in Eq. (20) can be partly mitigated
by combining the fractional covering number with the DEC, as we will show in Section 4.3.

Our characterization bypasses the impossibility results of Hanneke and Yang [45]. Specifically,
Hanneke and Yang [45] show that for noiseless structured bandit problems, there exist classes H
for which bandit learnability is independent of the axioms of ZFC. Therefore, their results rule
out the possibility of a characterization of noiseless bandit learnability through any combinatorial
dimension [11] for the problem class. Our characterization is compatible with this result because
the argument of Hanneke and Yang [45] relies on the noiseless nature of the bandit problem, and
hence does not preclude a characterization for the noisy setting. Additional discussion is deferred to
Appendix G.2.

4.3 Improved upper bounds for general decision making
To close this section, we derive tighter upper bounds that scale with logNfrac(M,∆) by combining
the fractional covering number with the Decision-Estimation Coefficient. For simplicity of presenta-
tion, we focus on regret minimization under the setting of Example 1, and we assume the following
condition to simplify our bounds (the fully general upper bound is detailed in Appendix G.3).

Assumption 3 (Regularity of constrained DEC). A function d : [0, 1]→ R is said to have moderate
decay if d(ε) ≥ 10ε ∀ε ∈ [0, 1], and there exists a constant c ≥ 1 such that c d(ε)ε ≥ d(ε′)

ε′ for all
ε′ ≥ ε. We assume the function ε 7→ r-deccε(co(M)), as a function of ε, satisfies moderate decay
for a constant creg ≥ 1.

This condition essentially requires that the DEC for co(M) exhibits moderate growth, which means
that learning with co(M) is not “too easy”.We now state our upper bound, which tightens Theorem 4
by replacing the log|M| dependence in the upper bound with logNfrac(M,∆) (with the caveat that
the upper bound scales with the DEC for the convexified model class co(M)).

Theorem 14 (Upper bound with DEC and fractional covering number). Consider the reward max-
imization variant of the DMSO setting. Let M be any class for which Assumption 3 holds, and
assume that Π is finite. Let ε̄(T ) ≍

√
logNfrac(M,∆)/T . Then for any ∆ > 0, Algorithm 1 (see

Appendix G.3) ensures that with high probability,
RegDM ≤ T ·∆+O

(
cregT

√
log T

)
· r-deccε̄(T )(co(M)).

Restating this upper bound in terms of minimax sample complexity and combining it with the pre-
ceding lower bounds yields the following result.

Theorem 15. For any classM that satisfies Assumption 2 and 3, we have

max
{
T DEC(M,∆), logNfrac(M,2∆)

CKL

}
≲ T ⋆(M,∆)≲ T DEC(co(M),∆)·logNfrac(M,∆/2), (21)

up to dependence on creg and logarithmic factors.

In particular, when the model classM is convex (i.e. co(M) =M) and CKL = O(1), Theorem 15
provides lower and upper bounds for learning withM that match up to a quadratic factor. Indeed,
for convex model classes, the upper bound of (21) is always tighter than (16) (and also tighter than
the result in Foster et al. [40, 41]), as by definition we have

logNfrac(M,∆) ≤ logNfrac(M, 0) ≤ min {log |M|, log |Π|} , ∀∆ > 0.

As applications, we apply Theorem 15 to structured bandits and contextual bandits (Appendix G).
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A Related Work
To motivate our results, we briefly survey the most relevant lower bound techniques for estimation
and decision making.

Minimax bounds for statistical estimation. There is a vast body of literature on minimax risk
bounds for statistical estimation, including Hasminskii and Ibragimov [47], Bretagnolle and Huber
[17], Birgé [15], Donoho and Liu [33], Cover and Thomas [29], Ibragimov and Has’Minskii [48],
Tsybakov [81] as well as references therein. For minimax lower bounds, the most widely applied
techniques are Le Cam’s two-point method and convex-hull method [61], Assouad’s lemma [8], and
Fano’s method [29]. Variants and applications of these three methods abound [2, 27, 67, 36]; Fano’s
method in particular has perhaps the largest number of variants, of which the most general version
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we are aware of is due to Chen et al. [27], which is recovered by our interactive Fano method (cf.
Proposition 2). Another celebrated thread, starting from the seminal work of Donoho and Liu [32],
provides upper and lower bounds for a large class of non-parametric estimation problems based on
Le Cam’s two-point method through the study of a complexity measure known as the modulus of
continuity [33, 34, 60, 67].

Lower bounds for interactive learning. There is a long line of work studying the fundamental
limits of online learning and reinforcement learning (RL), including lower bounds for structured ban-
dits [30, 73, 79, 57, 52, etc.], contextual bandits [72, 39, etc.], Markov Decision Processes (MDPs)
[66, 31, 98, 92, 91, etc.], partially observable RL [53, 64, 25, 26, etc.], dynamical systems and con-
trol [80, 50, 78, 85, 99, etc.], and offline RL [71, 93, 88, 51, 24, 62, 86, etc.]. Most of these lower
bounds are proven in a case-by-case basis, as the constructions of hard instances are specialized to
the specific settings.

Decision-Estimation Coefficient. Toward a unifying understanding of the minimax complexity
for interactive decision making problems, Foster et al. [40, 42] introduce Decision-Estimation Co-
efficient (DEC) as a complexity measure and show that it characterizes the minimax-optimal regret
up to a log|M| factor. The DEC can be viewed as an interactive counterpart of the modulus of
continuity [32], and captures hardness of interactive decision making related to exploration, but not
necessarily estimation. An active line of research has built on the DEC to encompass a variety of
more general decision making settings [40, 41, 23, 42, 37, 44], including adversarial decision mak-
ing [41], PAC decision making [23, 42], reward-free learning and preference-based learning [23],
and multi-agent decision making and partial monitoring [37].

However, there is a remaining gap between the DEC lower and upper bounds [40, 42], which closely
relates to the complexity of estimation. Specifically, through the DEC framework, the sample com-
plexity (number of rounds required to achieve ε-risk) is characterized as

T DEC(M, ε) ≲ # sample complexity ≲ T DEC(M, ε)× Est(M),

where T DEC(M, ε) is a quantity measuring the complexity of exploration,2 and Est(M) is a measure
of the complexity of online estimation overM. The dependency on Est(M) can be necessary: For
example, in linear bandits, the optimal sample complexity scales as d2/ε2, while T DEC(M, ε) ≍
d/ε2, and Est(M) ≍ d. However, the complexity of estimation Est(M) is missing from the DEC
lower bound. This gap remains one of the main open questions in the DEC approach.

One potential reason is that the DEC lower bound does not recover Fano’s method or Assouad’s
lemma, as it essentially generalizes Le Cam’s two-point method. More specifically, while the statis-
tical estimation task is subsumed by the DMSO framework, the DEC lower bound specialized to this
setting at best recovers Le Cam’s two-point method. On the other hand, the Ω(d2/ε2) lower bound
for linear bandits is typically proven through Assouad’s lemma [18] or Fano’s method [70], similar
to its statistical estimation analog. Therefore, to close the remaining gap in the DEC approach, it is
necessary to have a deeper understanding of the latter two methods in the interactive setting.

Additional related work. A large portion of the aforementioned lower bounds for interactive
learning are proven using (variants of) the two-point method and can be recovered by the DEC
lower bound approach [40, 42]. Beyond the two-point method, comparatively fewer lower bounds
for interactive learning have been established using Assouad’s lemma or Fano’s method [21, 72, 3,
69, 39, 78, 70, etc.]. The approaches in these papers are specialized to the specific settings under
consideration, and there is not a general principle through which Fano’s method or Assouad’s lemma
can be lifted to handle interactivity. Indeed, the challenge of applying Fano’s method in interactive
contexts has been highlighted in various prior works, e.g., Arias-Castro et al. [7, Section 1.3] and
Rajaraman et al. [70, Section 1.5.4].

The DEC is also closely related to a Bayesian complexity measure known as the information
ratio [75, 76, 56, 55, etc.],which was originally introduced to analyze Bayesian algorithms such
as posterior sampling. It is also related to a more recent generalization known as the algorithmic
information ratio (AIR) [94], developed for frequentist algorithms. Additionally, the DEC is
connected to asymptotic instance-dependent complexity, as explored by [87].

2Formally, the quantity T DEC(M, ε) here is the sample complexity implied by DEC (cf. Section 4).
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B Additional Background on DMSO Framework
The DMSO framework (Section 1.1) encompasses a wide range of learning goals beyond the reward
maximization setting [40, 42], including reward-free learning, model estimation, and preference-
based learning [23], and also multi-agent decision making and partial monitoring [37]. We provide
two examples below for illustration.

Example 2 (Preference-based learning). In preference-based learning, each model M ∈ M is
assigned with a comparison function CM : Π×Π→ R (where CM(π1, π2) typically the probability
of τ1 ≻ τ2 for τ1 ∼ (M,π1), τ2 ∼ (M,π2)), and the risk function is specified by L(M,π) =
maxπ⋆ CM(π⋆, π). Chen et al. [23] provide lower and upper bounds for this setting in terms of
Preference-based DEC (PBDEC).

Example 3 (Interactive estimation). In the setting of interactive estimation (a generalized PAC learn-
ing goal), each model M ∈ M is assigned with a parameter θM ∈ Θ, which is the parameter that
the agent aims to estimate. The decision space Π = Π0 × Θ, where each decision π ∈ Π consists
of π = (π0, θ), where π0 is the explorative policy to interact with the model3, and θ is the estima-
tor of the model parameter. In this setting, we define L(M,π) = Dist(θM , θ) for certain distance
Dist(·, ·).

This setting is an interactive version of the statistical estimation task, and it is also a generalization
of the model estimation task studied in Chen et al. [23]. Natural examples include estimating some
coordinates of the parameter θ in linear bandits. We provide nearly tight guarantee for this setting
in Appendix E.2.

Applicability of our results Our general interactive Fano method Lemma 5 applies to any gen-
eralized no-regret / PAC learning goal (Section 1.1). Therefore, our risk lower bound in terms of
quantile PAC-DEC Theorem 6 and fractional covering number lower bound Theorem 10 both apply
to any generalized learning goal. For a concrete example, see Appendix E.2 for the application to
interactive estimation.

B.1 Examples for statistical estimation (Section 2.1)

Example 4 (Mean estimation). For the mean estimation task, the parameter space Θ ⊆ Rd, and for
each θ ∈ Θ, Pθ = N (θ, Id). The goal is to estimate the ground truth parameter θ⋆, i.e., the decision
space is A = Rd, and the loss is given by L(θ,A) = ∥θ −A∥, where ∥·∥ is a norm over Rd.

Example 5 (Functional estimation). In the functional estimation task, a function T : Θ → R is
given, and the goal is to estimate the value of T (θ⋆), i.e., the decision space is A = R, and the loss
is L(θ,A) = |T (θ)−A|.

Example 6 (Density estimation). In the density estimation task, the goal is to estimate Pθ⋆ , i.e.,
the decision space A ⊆ ∆(Y), and the loss is given by L(θ,A) = D(Pθ, A), where D is a certain
divergence (e.g., TV distance or KL divergence).

B.2 Examples for Assumption 2
In this section, we provide three general types of model classes where Assumption 2 holds with mild
CKL. It is worth noting that in Assumption 2, the reference model ĎM does not necessarily belong
to co(M).

Example 7 (Gaussian bandits). Suppose that H ⊆ (A → [0, 1]) is a class of mean value function,
andMH,V is the class of the model M associated with a hM ∈ H:

M(π) = N (hM(π), 1), π ∈ A.

Then, consider the reference model ĎM given by ĎM(π) = N (0, 1)∀π ∈ A. It is clear that for any π,
and model M ∈MH,V,

DKL(M(π) ∥ ĎM(π)) =
1

2
hM(π)2 ≤ 1

2
,

and hence Assumption 2 holds with CKL = 1
2 .

3In other words, M(π) only depends on π through π0.
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Example 8 (Problems with finite observations). Suppose that the observation space O is finite.
Then, consider the reference model ĎM given by ĎM(π) = Unif(O)∀π ∈ Π. It holds that

DKL(M(π) ∥ ĎM(π)) ≤ log |O|, ∀π ∈ Π,

and hence Assumption 2 holds with CKL = log |O|.

Example 8 can further be generalized to infinite observation space, as long as every model in M
admits a bounded density function with respect to the same base measure.

Example 9 (Contextual bandits). Suppose that H ⊆ (C × A → [0, 1]) is a class of mean value
function, and MH,V is the class of the model M specified by a value function hM ∈ H and a
context distribution νM ∈ ∆(C). More specifically, for any π ∈ Π = (C → A), M(π) is the
distribution of (c, a, r), generated by c ∼ νM , a = π(c), and r ∼ N (hM(c, a), 1).

Then, consider the reference model ĎM specified by ν
ĎM = Unif(C) and h

ĎM ≡ 0. It is clear that for
any π, and model M ∈MH,V,

DKL(M(π) ∥ ĎM(π)) ≤ log |C|+ 1

and hence Assumption 2 holds with CKL = log |C|+ 1.

The factor of log |C| in Example 9 is due to the definition (45) of logNfrac(H,∆), where we take
supremum over all context distribution µ. This factor can be removed if we instead restrict the model
class to have a common context distribution (i.e., the setting where context distribution is known or
can be estimated from samples).

C Technical Tools
The following lemma is the “chain rule” of Hellinger distance [49] (see also Duchi [35, Lemma
11.5.3] and Foster et al. [43, Lemma D.2]).

Lemma C.1 (Sub-additivity for squared Hellinger distance). Let (X1,F1), . . . , (XT ,FT ) be a se-
quence of measurable spaces, and let X t =

∏t
i=1 Xi and F t =

⊗t
i=1 Fi. For each t, let Pt(· | ·)

and Qt(· | ·) be probability kernels from (X t−1,F t−1) to (Xt,Ft).

Let P and Q be the laws of X1, . . . , XT under Xt ∼ Pt(· | X1:t−1) and Xt ∼ Qt(· | X1:t−1)
respectively. Then it holds that

D2
H(P,Q) ≤ 7 EP

[
T∑

t=1

D2
H

(
Pt(· | X1:t−1),Qt(· | X1:t−1)

)]
. (22)

In particular, given a T -round algorithm ALG and a model M , we can consider random variables
X1 = (π1, o1), · · · , XT = (πT , oT ). Then, PM,ALG(Xt = · | X1:t−1) is the distribution of (πt, ot),
where πt ∼ pt(· | π1, o1, · · · , πt−1, ot−1), and ot ∼ M(πt). Therefore, applying Lemma C.1 to
D2

H (PM,ALG,P ĎM,ALG) gives the following corollary.

Corollary C.2. For any T -round algorithm ALG, it holds that

1

2
DTV

(
PM,ALG,P ĎM,ALG

)2 ≤ D2
H

(
PM,ALG,P ĎM,ALG

)
≤ 7T · Eπ∼p

ĎM,ALG

[
D2

H

(
M(π), ĎM(π)

)]
.

Lemma C.3 (Foster et al. [40, Lemma A.4]). For any sequence of real-valued random variables
(Xt)t≤T adapted to a filtration (Ft)t≤T , it holds that with probability at least 1− δ, for all t ≤ T ,

t∑
s=1

− logE [ exp(−Xs)| Fs−1] ≤
t∑

s=1

Xs + log (1/δ) .

Lemma C.4. For any pair of random variable (X,Y ), it holds that

EX∼PX

[
D2

H

(
PY |X ,QY |X

)]
≤ 2D2

H (PX,Y ,QX,Y ) .
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Lemma C.5. Suppose that for a random variable X , its mean and variance under P is µP and σ2
P,

and its mean and variance under Q is µQ and σ2
Q. Then it holds that

|µP − µQ|2 ≤ 4

(
σ2
P + σ2

Q +
1

2
|µP − µQ|2

)
D2

H (P,Q) .

In particular, when µP, µQ, σP, σQ ∈ [0, 1], we have D2
H (P,Q) ≥ 1

10 |µP − µQ|2.

On the other hand, when P = N (µP, 1),Q = N (µQ, 1), then D2
H (P,Q) ≤ 1

8 |µP − µQ|2.

Proof. Let ν = P+Q
2 be the common base measure and set µ = µP+µQ

2 . Then

|µP − µQ|2 = |EP[X − µ]− EQ[X − µ]|2

=

∣∣∣∣Eν

[(
dP
dν
− dP

dν

)
(X − µ)

]∣∣∣∣2
≤ Eν

(√dP
dν
−
√

dP
dν

)2
Eν

(√dP
dν

+

√
dP
dν

)2

(X − µ)2


≤ 2D2

H (P,Q) · 2
(
EP(X − µ)2 + EQ(X − µ)2

)
= 4

(
σ2
P + σ2

Q +
1

2
|µP − µQ|2

)
D2

H (P,Q) .

D Proofs from Section 3
In this section, we present proofs for the results in Section 3, except Section 3.2.

Before proceeding to proofs, we first discuss the classical Fano’s method to motivate our approach.

D.1 Additional background on classical Fano’s method
To motivate our approach, which can be viewed as a generalization of the classical Fano method
[29], let us briefly recall the classical approach and highlight some shortcomings. The classical
Fano method applies to the statistical estimation setting Section 2.1 (a special case of ISDM), and
takes the following form.

Proposition D.1 (Classical Fano method). Consider the statistical estimation setting (Section 2.1)
with parameter space Θ. Suppose that there exist θ1, . . . , θm ∈ Θ such that the following separation
condition holds:

L(θi, a) + L(θj , a) ≥ 2∆, ∀i ̸= j ∈ [m],∀a ∈ A. (23)

Let µ be the uniform distribution over {θ1, · · · , θm}, and let Iµ(θ;Y ) denote the mutual information

of (θ, Y ) ∼ Pµ generated by θ ∼ µ and Y = (Y1, . . . , Yn)
i.i.d∼ Pθ. Then for any algorithm ALG, we

have

Eθ∼µ,Y∼Pθ
[L(θ, ALG(Y ))] ≥ ∆ · sup

δ>0
{δ : Iµ(θ;Y ) < kl(1− δ ∥ 1/m)}, (24)

where the binary KL divergence is defined as kl(p ∥ q) = DKL(Bern(p) ∥ Bern(q)). This implies
the minimax lower bound

infALG supθ∈Θ EY∼Pθ
[L(θ, ALG(Y ))] ≥ ∆

(
1− Iµ(θ;Y )+log 2

logm

)
. (25)

The logm factor in Eq. (25) reflects the complexity of estimation in the parameter space, which is a
key concept we aim to incorporate into interactive decision making. Looking deeper, the “estimation
complexity” term logm in Eq. (25) arises from the "quantile" parameter 1/m appearing in the Eq.
(24). This parameter reflects the fact that under the separation condition (23), the following quantile
probability is at most 1/m for any distribution Y ∼ Q:

Pθ∼µ,Y∼Q(L(θ, ALG(Y )) < ∆) ≤ sup
a

Pθ∼µ(L(θ, a) < ∆) ≤ 1

m
. (26)
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Note that in this expression, θ is drawn from the uniform prior µ and Y is drawn independently of
θ. To deduce Eq. (24), it suffices to choose Q = Eθ∼µPθ and apply data-processing inequality:

Iµ(θ;Y ) ≥ kl(Pµ(L(θ, ALG(Y )) < ∆) ∥ Pθ∼µ,Y∼Q(L(θ, ALG(Y )) < ∆))

≥ kl(Pµ(L(θ, ALG(Y )) < ∆) ∥ 1/m).

In particular, for any δ ∈ (0, 1) such that Iµ(θ;Y ) ≤ kl(1− δ ∥ 1/m), we have Pµ(L(θ, ALG(Y )) <
∆) ≤ 1 − δ, using the monotonicity of the KL divergence. This argument gives Eq. (24) immedi-
ately, and by choosing δ⋆ = 1 − Iµ(θ;Y )+log 2

logm in Eq. (24), we arrive in the canonical statement in
Eq. (25).

To summarize, the structure of the classical Fano lower bound involves (i) a prior µ, (ii) a reference
distribution Q = Eθ∼µPθ, and (iii) a quantile parameter δ determined by the (iv) separation
condition (23) in the argument above. Crucially, we understand that the complexity of estimation
logm arises from the quantile probability Pθ∼µ,Y∼Q(L(θ, ALG(Y )) < ∆), and the only use of the
traditional separation condition (23) is to further bound this quantile by 1/m as in Eq. (26).

Having gained these insights into classical Fano method, we would like to point out several
limitations:

• First, in the form above, it is only applicable to statistical estimation rather than general interactive
settings.

• Second, it relies on mutual information due to the choice of the reference distribution, which
depends on the evolution of the algorithm over all T rounds in interactive settings, making it
difficult to analyze in many interactive problems.

• Third, and perhaps most importantly, the separation condition (23) must hold for an arbitrary
decision a. This “hard” separation condition is unlikely to hold for general model classes, as
noted throughout the DEC approach [42, Remark 2.3] line of work.

To address these shortcomings, we make use of core concepts (prior, reference distribution, quantile
parameter, separation condition) above, but adopt a new perspective that emphasizes and generalizes
the role of the quantile probability Pθ∼µ,Y∼Q(L(θ, ALG(Y )) < ∆).

D.2 Proof of Theorem 1
In the following, we fix a prior µ ∈ ∆(M), parameter ∆ > 0, f -divergence Df , and an algorithm
ALG. For simplicity, we denote Df (x, y) = Df (Bern(x),Bern(y)) for x, y ∈ [0, 1].

We first prove the following quantile lower bound:

PM∼µ,X∼PM,ALG(L(M,X) ≥ ∆) ≥ sup
Q∈∆(X ),δ∈[0,1]

{δ : EM∼µ[Df (PM,ALG,Q)] < df,δ(ρ∆,Q)} .

(27)

We only need to prove the following claim.

Claim. Suppose that there exists a reference distribution Q such that

df,δ(ρ∆,Q) > EM∼µDf (PM,ALG,Q),

then PM∼µ,X∼PM,ALG(L(M,X) ≥ ∆) ≥ δ.

We denote ρ̄∆ = PM∼µ,X∼PM,ALG(L(M,X) < ∆), and recall that we define ρ∆,Q =
PM∼µ,X∼Q(L(M,X) < ∆). We then consider the following two distributions overM×X :

P0 : M ∼ µ,X ∼ PM,ALG, P1 : M ∼ µ,X ∼ Q.

By the data processing inequality of f -divergence, we have

Df (ρ̄∆, ρ∆,Q) ≤ Df (P0, P1) = EM∼µDf (PM,ALG,Q).

Therefore, using df,δ(ρ∆,Q) > EM∼µDf (PM,ALG,Q), we know that df,δ(ρ∆,Q) > Df (ρ̄∆, ρ∆,Q).
In particular, this implies ρ∆,Q < 1− δ, and

Df (ρ̄∆, ρ∆,Q) < Df (1− δ, ρ∆,Q)
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Hence, we consider two cases: (1) ρ̄∆ ≤ ρ∆,Q, and (2) ρ̄∆ > ρ∆,Q. For case (1), we have ρ̄∆ ≤
ρ∆,Q < 1 − δ. For case (2), we can use the monotone property of Df (Lemma D.2), which also
implies ρ̄∆ < 1− δ.

Therefore, it holds that ρ̄∆ < 1− δ, and

PM∼µ,X∼PM,ALG(L(M,X) ≥ ∆) = 1− ρ̄∆ > δ.

Hence, the proof of Eq. (27) is completed. The in-expectation lower bounds then follows from the
fact that

EM∼µEX∼PM,ALG [L(M,X)] ≥∆ · PM∼µ,X∼PM,ALG(L(M,X) ≥ ∆).

Lemma D.2. For x, y ∈ [0, 1], the quantity Df (x, y) is increasing with respect to x when x ≥ y.

Proof of Lemma D.2 Fix any 1 ≥ x > z ≥ y ≥ 0, we define

p = y · x− z

x− y
∈ [0, 1], q = 1− (1− y) · x− z

x− y
∈ [0, 1].

Then, by definition,

p(1− x) + qx = z, p(1− y) + qy = y,

and hence for the channel P from {0, 1} to itself given by P (·|0) = Bern(p), P (·|1) = Bern(q), it
holds that

P ◦ Bern(x) = Bern(z), P ◦ Bern(y) = Bern(y).

Therefore, by data-processing inequality, we have

Df (Bern(z),Bern(y)) ≤ Df (Bern(x),Bern(y)).

This is the desired result.

D.3 Proof of Proposition 2
Fix the parameter ∆ > 0 and let µ ∈ ∆(M) be given. To apply Theorem 1, we consider KL
divergence (corresponding to f(x) = x log x) and choose the reference distribution

Q = EM∼µPM,ALG.

Then, by the choice of Q and definition of KL-divergence, we have

EM∼µDKL(PM,ALG ∥ Q) = Iµ,ALG(M ;X),

and by definition, we have

ρ∆,Q = PM∼µ,X′∼Q(L(M,X ′) < ∆) ≤ sup
x

µ(M : L(M,x) < ∆), (28)

By Theorem 1, for any δ ∈ (0, 1) such that Iµ,ALG(M ;X) < kl(1− δ ∥ ρ∆,Q), we have

EM∼µEX∼PM,ALG [L(M,X)] ≥ δ∆.

In particular, we may choose

δ⋆ := 1 +
Iµ,ALG(M ;X) + log 2

log supx µ(M : L(M,x) < ∆)
.

As long as δ⋆ > 0, we have Iµ,ALG(M ;X) < kl(1 − δ⋆ ∥ ρ∆,Q), and hence
EM∼µEX∼PM,ALG [L(M,X)] ≥ δ⋆∆. This gives the desired lower bound (note that if δ⋆ ≤ 0,
there is nothing to prove).
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D.4 Proof of Proposition 3
We recover this result by applying Theorem 1 with TV distance. We first frame the problem in the
ISDM framework. Consider the “enlarged” model classM = {Mν : ν ∈ ∆(Θ)}, where for any
algorithm ALG : Y⊗n → A, the distribution PMν ,ALG is given by

X = (Y, ALG(Y )) ∼ PMν ,ALG : θ ∼ ν, Y = (Y1, · · · , Yn)
i.i.d∼ Pθ.

In other words, PMν ,ALG is the distribution induced by the prior ν and the algorithm ALG. We then
extend the loss function to L :M×X → R+ as

L(Mν , X) := inf
θ∈supp(ν)

L(θ, ALG(Y )), ∀X = (Y, ALG(Y )), ν ∈ ∆(Θ).

By the separation condition (7), we have L(Mν0
, X) + L(Mν1

, X) ≥ 2∆ for any ν0 ∈ ∆(Θ0),
ν1 ∈ ∆(Θ1). Therefore, choosing the prior µ = Unif({Mν0

,Mν1
}) and the reference distribution

Q = EM∼µPM,ALG gives

ρ∆,Q = PM∼µ,X∼Q(L(M,X) < ∆) ≤ 1/2,

and by the data-processing inequality,

EM∼µ[DTV (PM,ALG,Q)] =
1

2

(
DTV

(
PMν0

,ALG,Q
)
+DTV

(
PMν1

,ALG,Q
))

≤ 1

2
DTV

(
PMν0

,ALG,PMν1
,ALG
)
≤ 1

2
DTV

(
P⊗n
ν0

, P⊗n
ν1

)
.

Therefore, for any 0 ≤ δ < 1
2 −

1
2DTV

(
P⊗n
ν0

, P⊗n
ν1

)
, we have

EM∼µ[DTV(PM,ALG,Q)] ≤ dTV,δ(ρ∆,Q),

and hence applying Theorem 1 gives

E
θ∼ ν0+ν1

2
EY∼Pθ

[L(θ, ALG(Y ))] ≥ EM∼µEX∼PM,ALG [L(M,X)] ≥ ∆

2

(
1−DTV

(
P⊗n
ν0

, P⊗n
ν1

))
.

Taking the supremum over ν0 ∈ ∆(Θ0) and ν1 ∈ ∆(Θ1) gives the desired result.

We can use the Le Cam convex hull method to recover the classic two-point method and Assouad’s
method, as follows.

Example 10 (Le Cam’s two-point method). In Proposition 3, we can take the distribution ν0 (ν1)
to be supported on a single point in Θ0 (Θ1), to recover the classical two-point method. Concretely,
under the setting and assumption of Proposition 3, we have the following two-point lower bound:

infALG supθ∈Θ EY∼Pθ
L(θ, ALG(Y )) ≥ ∆

2 maxθ0∈Θ0,θ1∈Θ1

(
1−DTV

(
P⊗n
θ0

, P⊗n
θ1

))
,

where P⊗n
θ is the distribution of Y = (Y1, · · · , Yn)

i.i.d∼ Pθ. ◁

Example 11 (Assouad’s method). Suppose that Θ = {−1, 1}d for some d ≥ 1, and that the loss
function has the following coordinate-wise structure:

L(θ, a) =

d∑
j=1

Lj(θ, a), ∀θ ∈ Θ, a ∈ A.

We write θ ∼j θ
′ if θ and θ′ differ only in the j-th coordinate. Assume that the following separation

condition holds for all j ∈ [d]:

Lj(θ, a) + Lj(θ
′, a) ≥ 2∆, ∀a ∈ A, θ ∼j θ

′.

To apply Proposition 3, we consider Θj
i = {θ : θj = i} for i ∈ {0, 1} and j ∈ [d]. Then, for

each j ∈ [d], the separation condition (7) holds for the loss Lj and the subsets Θj
0,Θ

j
1. Therefore,

applying Proposition 3 for each j ∈ [d] with νj0 = Unif(Θj
0) and νj1 = Unif(Θj

1) gives the following
Assouad-type lower bound:

inf
ALG

sup
θ∈Θ

EY∼Pθ
L(θ, ALG(Y )) ≥ d∆

2
min

∃j:θ∼jθ′

(
1−DTV

(
P⊗n
θ , P⊗n

θ′

))
.

◁
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D.5 Proof of Corollary 9
Consider the following setup of linear bandits: let θ⋆ ∈ Rd be an unknown parameter. At time
t, the learner chooses an action πt ∈ {π ∈ Rd : ∥π∥2 ≤ 1} and receives a Gaussian reward
rt ∼ N (⟨θ⋆, πt⟩ , 1). For T ∈ N, letHT = (π1, r1, · · · , πT , rT ) be the observed history up to time
T . The central claim of this section is the following upper bound on the mutual information.

Theorem D.3. For any r > 0, we define the prior µr over Bd(r) by

µr : θ⋆ ∼ N
(
0,

r2

4d
Id

)
| ∥θ⋆∥ ≤ r.

Then for any algorithm ALG, we have

Iµr,ALG(θ
⋆;HT ) ≤ d log

(
1 +

r2T

4d2

)
.

Proof. Denote λ = r2

4 . We first prove that if θ⋆ ∼ µ = N (0, λId/d), then

Iµ,ALG(θ
⋆;HT ) ≤ d

2
log

(
1 +

λT

d2

)
. (29)

By the Bayes rule, the posterior distribution of θ⋆ conditioned on (Ht−1, πt) is

p(θ⋆ | Ht−1, πt) ∝ exp

(
−d∥θ⋆∥22

2λ
− 1

2

∑
s<t

(rs − ⟨θ⋆, πs⟩)2
)
,

which is a Gaussian distribution with covariance (Σt−1)−1, where

Σt−1 =
d

λ
Id +

∑
s<t

πs(πs)⊤.

Therefore, by the chain rule of mutual information, we have

Iµ,ALG(θ
⋆;HT ) =

T∑
t=1

Iµ,ALG(θ
⋆; rt | Ht−1, πt)

=

T∑
t=1

Eµ,ALG

[
1

2
log
(
1 + (πt)⊤(Σt−1)−1πt

)]

= Eµ,ALG

[
1

2

T∑
t=1

log
det(Σt)

det(Σt−1)

]

= Eµ,ALG

[
1

2
log

det(ΣT )

(d/λ)d

]
≤ Eµ,ALG

[
d

2
log

Tr(ΣT )/d

d/λ

]
≤ d

2
log

(
1 +

λT

d2

)
,

which is exactly Eq. (29).

Next we deduce the claimed result from Eq. (29). Consider the random variable Z =
1 {∥θ⋆∥2 ≤ r} ∈ {0, 1}, and then

d

2
log

(
1 +

λT

d2

)
≥ Iµ,ALG(θ

⋆;HT )

≥ Iµ,ALG(θ
⋆;HT | Z)

≥ P(Z = 1) · Iµr,ALG(θ
⋆;HT |Z = 1)
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= Pµ(∥θ⋆∥2 ≤ r) · Iµr,ALG(θ
⋆;HT ).

Here the first inequality is Eq. (29), the second inequality follows from I(X;Y ) − I(X;Y |
f(X)) = I(f(X);Y ) − I(f(X);Y | X) ≥ 0, the third identity follows from the definition of
conditional mutual information. Finally, noticing that Pµ(∥θ⋆∥2 ≤ r) ≥ 1

2 by concentration of χ2
d

random variable, we arrive at the desired statement.

Next we show how to translate the mutual information upper bound in Theorem D.3 to lower bounds
of estimation and regret.

Theorem D.4. Let T ≥ 1, r = min
{

c0d√
T
, 1
}

for a small absolute constant c0, and consider the
prior µ = µr. For any T -round algorithm with output π̂, Proposition 8 implies that

Eµ,ALG

[∥∥∥∥π̂ − θ⋆

∥θ⋆∥

∥∥∥∥2
]
≥ 1

4
.

Therefore, we may deduce that

sup
M⋆∈M

EM⋆,ALG[RiskDM(T )] ≳ min

{
d√
T
, 1

}
.

Proof. We first prove the first inequality by applying Proposition 8 to the following risk function
L̃(Mθ, π) = ∥π − normalize(θ)∥22,

where we denote normalize(θ) = θ
∥θ∥ ∈ Bd(1). Notice that for θ ∈ Θ, we have

L(Mθ, π) = ∥θ∥ − ⟨θ, π⟩ ≥ ∥θ∥ ·
∥∥∥∥π − θ

∥θ∥

∥∥∥∥2 = ∥θ∥ · L̃(Mθ, π).

For ∆ ∈ (0, 1), we first claim that

ρ∆ := sup
π

µ
(
θ : L̃(Mθ, π) ≤ ∆

)
= O

(√
d∆(d−1)/2

)
. (30)

To see so, by symmetry of Gaussian distribution, we know for fixed any π ∈ Rd,

µ
(
θ : L̃(Mθ, π) ≤ ∆

)
= Pθ∼Unif(Sd−1)

(
θ : ∥θ − π∥2 ≤ ∆

)
,

and hence we can instead consider the uniform distribution over the sphere Sd−1. By rotational
invariance, we may assume that π = (x, 0, · · · , 0), with x ≥ 0. Then{
θ ∈ Sd−1 : ∥θ − π∥22 ≤ ∆

}
=

{
θ ∈ Sd−1 : θ1 ≥

x2 + 1−∆

2x

}
⊆
{
θ ∈ Sd−1 : θ1 ≥

√
1−∆

}
.

By Bubeck et al. [19, Section 2], for θ ∼ Unif(Sd−1), the density of θ1 ∈ [−1, 1] is given by

f(θ1) =
Γ(d/2)

Γ((d− 1)/2)
√
π
(1− θ21)

(d−3)/2.

Therefore,

ρ∆ ≤
∫ 1

√
1−∆

f(θ1)dθ1 = O(
√
d) · (1−

√
1−∆)∆(d−3)/2 = O

(√
d∆(d−1)/2

)
.

With the upper bound (30) of ρ∆, we know that for ∆ = 1
2 , it holds

log(1/ρ∆) ≥ 2Iµ(T ),

as long as c0 is a sufficiently small constant. Therefore, Proposition 8 gives that

Eµ,ALG

[
∥π̂ − normalize(θ)∥2

]
= Eµ,ALG

[
L̃(Mθ, π̂)

]
≥ 1

4
.

This completes the proof of the first inequality.

Finally, using the fact that Pθ⋆∼µ(∥θ⋆∥ ≤ c1r) ≤ 1
100 for a small absolute constant c1, we can

conclude that

sup
M⋆∈M

EM⋆,ALG[RiskDM(T )] ≥ Eµ,ALG[L(Mθ, π)] ≥
c1r

8
= Ω

(
min

{
d√
T
, 1

})
.

This is the desired result.
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E Additional Results from Section 3.2
In addition to the reward-maximization setting (Example 1), we also introduce a slightly more gen-
eral setting. In this setting, we assume that for each model M ∈M, the risk function is L(M,π) =
fM(πM)− fM(π), but fM is not assumed to be the expected reward function (Example 1). Instead,
we only require fM satisfying the following assumption, where M+ ⊆ (Π → ∆(O)) is a pre-
specified model class of reference models that contains co(M) (following Foster et al. [42]). The
lower bound we prove can be stronger by allowingM+ to be a larger model class.

Assumption 4. LetM+ ⊆ (Π→ ∆(O)) be a given class of reference models, such that co(M) ⊆
M+. For any M ∈ M, the risk function takes form L(M,π) = fM(πM) − fM(π) for some
functional fM : Π→ R, so that fM can be extended toM+, such that for any model M ∈ M and
reference model ĎM ∈M+ we have

|fM(π)− f
ĎM(π)| ≤ CrDH

(
M(π), ĎM(π)

)
, ∀π ∈ Π. (31)

In some cases, considering a larger reference model classM+ can be convenient for proving lower
bounds, see e.g., Appendix B.2 and Appendix H.7.

E.1 Recovering DEC-based regret lower bounds
In this section, we demonstrate how our general lower bound approach recovers the regret lower
bounds of Foster et al. [42], Glasgow and Rakhlin [44]. We first state our lower bound in terms of
constrained DEC in the following theorem.

Theorem E.1. Under the reward maximization setting (Example 1), for any T -round algorithm ALG,
there exists M⋆ ∈M such that

RegDM ≥
T

2
·
(

r-deccε(T )(M)− 6ε(T )
)
− 1

with probability at least 0.01 under PM⋆,ALG, where ε(T ) = 1
100

√
T

.

Theorem E.1 immediately yields an in-expectation regret lower bound in terms of constrained DEC.
It also shaves off the unnecessary logarithmic factors in the lower bound of Foster et al. [42, Theorem
2.2].

For the remainder of this section, we sketch how we prove Theorem E.1 in a slightly more general
setting (Assumption 4), following Appendix F.3. Before providing our regret lower bounds, we first
present several important definitions.

Definition of quantile regret-DEC We note that it is possible to directly modify the definition
of quantile PAC-DEC (12), and then apply Theorem 6 to obtain an analogous regret lower bound
immediately. However, as Foster et al. [42] noted, the “correct” notion of regret-DEC (cf. Eq. (8))
turns out to be more sophisticated. Therefore, we define the quantile version of regret-DEC similarly,
as follows.

Throughout the remainder of this section, we fix the integer T . Define

ΠT =

{
π̂ : π̂ =

1

T

T∑
t=1

δπt , where π1, · · · , πT ∈ Π

}
⊆ ∆(Π),

i.e., ΠT is the class of all T -round mixture decision. We introduce the mixture decision space ΠT

here to handle the average of T -round profile (π1, · · · , πT ) of the algorithm. In particular, when Π
is convex, we may regard ΠT = Π.

Next, we define the quantile regret-DEC as

r-decqε,δ(M, ĎM) := inf
p∈∆(ΠT )

sup
M∈M

{
L̂δ(M,p) ∨ Eπ∼p[L(ĎM,π)]

∣∣∣ Eπ∼pD
2
H

(
M(π), ĎM(π)

)
≤ ε2

}
,

(32)

and define r-decqε,δ(M) := sup
ĎM∈M+ r-decqε,δ(M, ĎM).

The following proposition relates our quantile regret-DEC to the constrained regret-DEC (proof in
Appendix F.6).
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Proposition E.2. Suppose that Assumption 4 holds forM. Then, for any ĎM ∈M+, it holds that

r-deccε(M∪ {ĎM}, ĎM) ≤ 2 · r-decqε,δ(M, ĎM) + cδCrε,

where we denote cδ = max
{

δ
1−δ , 1

}
. In particular, it holds that

r-decqε,1/2(M) ≥ 1

2

(
max

ĎM∈M+
r-deccε(M∪ {ĎM}, ĎM)− Crε

)
.

Lower bound with quantile regret-DEC Now, we prove the following lower bound for the re-
gret of any T -round algorithm, via our general interactive Fano method (Lemma 5). The proof is
presented in Appendix F.5.

Theorem E.3. Suppose that Assumption 4 holds for M. Then, for any T -round algorithm ALG,
parameters ε, δ, C > 0, there exists M ∈M such that

PM,ALG

(
RegDM(T ) ≥ T · (r-decqε,δ(M)− CCrε)− 1

)
≥ δ − 1

C2
−
√
14Tε2.

As a corollary, there exists M⋆ ∈M such that

RegDM(T ) ≥
T

2
·
(

max
ĎM∈M+

r-deccε(T )(M∪ {ĎM}, ĎM)− 4Crε(T )

)
− 1

≥ T

2
·
(

r-deccε(T )(M)− 4Crε(T )
)
− 1

with probability at least 0.01 under PM⋆,ALG, where ε(T ) = 1
100

√
T

.

Theorem E.1 is now an immediate corollary, because for reward-maximization setting, we always
have Cr =

√
2 in Assumption 4.

E.2 Results for interactive estimation
More generally, we show that for a fairly different task of interactive estimation (Example 3), we
also have an equivalence between quantile PAC-DEC with constrained PAC-DEC.

Recall that in this setting, each model M ∈ M is assigned with a parameter θM ∈ Θ, which is the
parameter that the agent want to estimate. The decision space Π = Π0 × Θ, where each decision
π ∈ Π consists of π = (π0, θ), where π0 is the explorative decision to interact with the model, and
θ is the estimator of the model parameter. The risk function is then defined as L(M,π) = ρ(θM , θ),
for certain distance ρ(·, ·).
In interactive estimation, we can show that the quantile DEC is in fact lower bounded the constrained
DEC, as follows (proof in Appendix F.7).

Proposition E.4. Consider the setting of Example 3. Then as long as δ < 1
2 , it holds that

p-deccε(M) ≤ 2 · p-decqε,δ(M).

In particular, for such a setting (which encompasses the model estimation task considered in Chen
et al. [23]), Theorem 6 provides a lower bound of estimation error in terms of constrained PAC-
DEC. This is significant because the constrained PAC-DEC upper bound in Theorem 4 is actually
not restricted to Example 1, and we have hence shown that

p-deccε(T )(M) ≲ inf
ALG

sup
M⋆∈M

EM⋆,ALG[RiskDM(T )] ≲ p-deccε̄(T )(M),

where ε(T ) ≍
√
1/T and ε̄(T ) ≍

√
log|M|/T . Therefore, for interactive estimation, constrained

PAC-DEC is also a nearly tight complexity measure.

Remark E.5. The log |M|-gap between the lower and upper bound can further be closed for convex
model class, utilizing the upper bounds in Appendix G.3. More specifically, we consider a convex
model class M, where M 7→ θM is a convex function on M. Then, a suitable instantiation of
ExO+ (Algorithm 1) achieves

RiskDM(T ) ≲∆+ inf
γ>0

(
p-decoγ(M) +

logN(Θ,∆) + log(1/δ)

T

)
,
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where N(Θ,∆) is the ∆-covering number of Θ, because we have logNfrac(M,∆) ≤ logN(Θ,∆)
by considering the prior q = Unif(Θ0) for a minimal ∆-covering of Θ. Similar to Theorem H.5,
we can upper bound p-decoγ(M) by p-deccε(M). Taking these pieces together, we can show that
under the assumption that p-deccε(M) is of moderate decay, ExO+ achieves

RiskDM(T ) ≲ p-deccε(T )(M),

where ε(T ) ≍
√
logN(Θ, 1/T )/T .

In particular, for the (non-interactive) functional estimation problem (see e.g. Polyanskiy and Wu
[67]), the parameter space Θ ⊂ R, and hence by considering covering number, we have log |Θ| =
Õ (1). Therefore, for convex M, under mild assumption that the DEC is of moderate decaying
(Assumption 3), the minimax risk is then characterized by (up to logarithmic factors)

inf
ALG

sup
M⋆∈M

EM⋆,ALG[RiskDM(T )] ≍ p-decc√
1/T

(M).

This result can be regarded as a generalization of Polyanskiy and Wu [67] to the interactive estima-
tion setting.

F Proofs from Section 3.2 and Appendix E
Additional notations For notational simplicity, for any distribution q ∈ ∆(Π) and reference
model ĎM , we denote the localized model class around ĎM as

Mq,ε(ĎM) :=
{
M ∈M : Eπ∼qD

2
H

(
M(π), ĎM(π)

)
≤ ε2

}
.

F.1 Proof of Lemma 5
To apply Theorem 1, we consider the squared Hellinger distance (which we recall is a f -divergence
corresponding to f(x) = 1

2 (
√
x − 1)2). Consider a fixed tuple (ĎM,M,∆) with M ∈ M, ĎM ∈

co(M), and ∆ ≥ 0 that satisfies√
p

ĎM,ALG(π : L(M,π) ≥ ∆) >
√
δ +

√
14T Eπ∼q

ĎM,ALG
D2

H

(
M(π), ĎM(π)

)
. (33)

We choose the reference distribution to be Q = P ĎM,ALG, and take µ to be the singleton distribution
supported on M . Recall that for the DMSO framework, the observation is X = (HT , π̂), and the
loss function is L(M,X) = L(M, π̂) (Section 2.2). Then, by definition, we have

ρ∆,Q = PX∼Q(L(M,X) < ∆) = p
ĎM,ALG(π : L(M,π) < ∆).

Further, using the sub-additivity of Hellinger distance (11), we have
D2

H

(
PM,ALG,P ĎM,ALG

)
≤ 7T · Eπ∼q

ĎM,ALG
D2

H

(
M(π), ĎM(π)

)
.

Therefore, using the condition (33), we have
1

2

(√
δ −

√
1− ρ∆,Q

)2
> D2

H

(
PM,ALG,P ĎM,ALG

)
.

Hence, it holds that D2
H (PM,ALG,Q) < D2

H (1− δ, ρ∆,Q), and applying Theorem 1 gives
PM,ALG(L(M, π̂) ≥ ∆) ≥ δ.

Taking supremum over all pairs (ĎM,M,∆) satisfying Eq. (33) gives the desired lower bound.

F.2 Proof of Theorem 6
Fix any algorithm ALG and abbreviate ε = εδ(T ). Take an arbitrary parameter ∆0 < p-decqε,δ(M).
Then there exists ĎM such that ∆0 < p-decqε,δ(M, ĎM). Hence, by the definition (12), we know that

∆0 < sup
M∈M

{
L̂δ(M,p

ĎM,ALG)
∣∣∣ Eπ∼q

ĎM,ALG
D2

H

(
M(π), ĎM(π)

)
≤ ε2

}
.

Therefore, there exists M ∈M such that
Eπ∼q

ĎM,ALG
D2

H

(
M(π), ĎM(π)

)
≤ ε2, Pπ∼p

ĎM,ALG
(L(M,π) ≥ ∆0) ≥ δ.

This immediately implies√
p

ĎM,ALG(π : L(M,π) ≥ ∆) >
√

δ1 +
√

14TEπ∼q
ĎM,ALG

D2
H

(
M(π), ĎM(π)

)
,

where
√
δ1 =

√
δ −

√
14Tε2. Notice that δ1 > δ

2 by the choice of ε = 1
14

√
δ
T , and hence

applying Lemma 5 shows that there exists M ∈ M such that PM,ALG(L(M, π̂) ≥ ∆0) ≥ δ
2 . Letting

∆0 → p-decqε,δ(M) completes the proof.
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F.3 Proof of Proposition 7
In this section, we prove Proposition 7 under the slightly more general setting of Assumption 4.

Proposition F.1. Under Assumption 4, for any reference model ĎM ∈ M+ and ε > 0, δ ∈ [0, 1), it
holds that

p-deccε/√2(M, ĎM) ≤ p-decqε,δ(M, ĎM) +
2εCr

1− δ
.

For Example 1, we always have Cr ≤
√
2, and hence Proposition 7 follows immediately from

Proposition F.1.

Proof of Proposition F.1. Fix a reference model ĎM and a ∆0 > p-decqε,δ(M, ĎM). Then, we pick
a pair (p̄, q̄) such that

∆0 > sup
M∈M

{
L̂δ(M, p̄)

∣∣∣ Eπ∼q̄D
2
H

(
M(π), ĎM(π)

)
≤ ε2

}
,

whose existence is guaranteed by the definition of p-decqε,δ(M, ĎM) in (12). In other words, we
have

Pπ∼p̄(L(M,π) ≤ ∆0) ≥ 1− δ, ∀M ∈Mq̄,ε(ĎM)

Consider q = p̄+q̄
2 and ε′ = ε√

2
. Also let

M̃ := argmax
M∈Mq,ε′ (

ĎM)

fM(πM).

Now, consider p ∈ ∆(Π) given by

p(·) = p̄
(
·|L(M̃, π) ≤ ∆0

)
.

By definition, for π ∼ p we have fM̃ (π) ≥ fM̃ (πM̃ )−∆0, and hence

Eπ∼p[L(M,π)] = fM(πM)− Eπ∼p[f
M(π)]

≤ fM(πM)− Eπ∼p

[
fM̃ (π)

]
+ Cr · Eπ∼pDH

(
M(π), M̃(π)

)
≤ fM(πM)− fM̃ (πM̃ ) + ∆0 + Cr · Eπ∼pDH

(
M(π), M̃(π)

)
.

Notice that for any M ∈Mq,ε′(ĎM), we have fM(πM) ≤ fM̃ (πM̃ ) and also

Eπ∼pDH

(
M(π), M̃(π)

)
≤ 1

p̄
(
L(M̃, π) ≤ ∆0

)Eπ∼p̄DH

(
M(π), M̃(π)

)
≤ 1

1− δ

(
Eπ∼p̄DH

(
M(π), ĎM(π)

)
+ Eπ∼p̄DH

(
M̃(π), ĎM(π)

))
≤ 2ε

1− δ
.

Combining these inequalities gives

p-deccε′(M, ĎM) ≤ sup
M∈M

{
Eπ∼p[L(M,π)] | Eπ∼qD

2
H

(
M(π), ĎM(π)

)
≤ ε2

2

}
≤ ∆0 +

2εCr

1− δ
.

Letting ∆0 → p-decqε,δ(M, ĎM) completes the proof.

F.4 Proof of Proposition 8
Recall that we frame the DMSO setting as an instance of ISDM in Section 2.2, where the observation
is given by X = (HT , π̂), and the loss is L(M,X) = L(M, π̂). In particular, for any prior µ ∈
∆(M), we have

sup
X

µ(M : L(M,X) < ∆) = sup
π∈Π

µ(M : L(M,π) < ∆),
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and by definition, Iµ,ALG(M ;X) ≤ Iµ(T ). In particular, for any pair (∆, µ) such that

sup
π

µ(M : L(M,π) ≤ ∆) ≤ 1

4
exp(−2Iµ(T )), (34)

we have Iµ,ALG(M ;X)+log 2
log supx µ(M :L(M,x)<∆) ≥ − 1

2 , and hence applying Proposition 2 gives
supM∈M EM,ALG[L(M, π̂)] ≥ ∆

2 . Taking supremum over all pairs (∆, µ) satisfying (34)
gives the desired lower bound.

F.5 Proof of Theorem E.3
Our proof adopts the analysis strategy originally proposed by Glasgow and Rakhlin [44].

Fix a 0 < ∆ < r-decqε,δ(M) and a parameter c ∈ (0, 1). Then there exists ĎM ∈ M+ such that
r-decqε,δ(M, ĎM) > ∆.

Fix a T -round algorithm ALG with rules p1, · · · , pT , we consider a modified algorithm ALG′ : for t =
1, · · · , T , and history H(t−1), we set p′t(·|H(t−1)) = pt(·|H(t−1)) if

∑t−1
s=1 L(

ĎM,πs) < T∆ − 1,
and set p′t(·|H(t−1)) = 1π

ĎM
if otherwise. By our construction, it holds that under ALG′, we have∑T

t=1 L(
ĎM,πt) < T∆ almost surely. Furthermore, we can define the stopping time

τ = inf

{
t :

t∑
s=1

L(ĎM,πs) ≥ T∆− 1 or t = T + 1

}
.

If τ ≤ T , then it holds that
∑τ

t=1 L(
ĎM,πt) ≥ T∆− 1.

Now, we consider p = P ĎM,ALG′( 1
T

∑T
t=1 π

t = ·) ∈ ∆(ΠT ). Using our definition of r-decq, we know
that Eπ∼pL(ĎM,π) < ∆ by our construction, and hence there exists M ∈M such that

Pπ∼p(L(M,π) ≥ ∆) > δ, Eπ∼pD
2
H

(
M(π), ĎM(π)

)
≤ ε2.

By definition of p and Lemma C.1, we have

P ĎM,ALG′

(
T∑

t=1

L(M,πt) ≥ T∆

)
> δ, D2

H

(
PM,ALG′ ,P ĎM,ALG′

)
≤ 7Tε2. (35)

We also know

E ĎM,ALG′

[
1

T

T∑
t=1

|fM(πt)− f
ĎM(πt)|2

]
≤ E ĎM,ALG′

[
1

T

T∑
t=1

C2
rD

2
H

(
M(πt), ĎM(πt)

)]
= C2

r Eπ∼pD
2
H

(
M(π), ĎM(π)

)
≤ C2

r ε
2,

and hence by Markov inequality,

P ĎM,ALG′

(
1

T

T∑
t=1

|fM(πt)− f
ĎM(πt)| ≥ CCrε

)
≤ 1

C2
.

In the following, we consider events

E1 :=

{
T∑

t=1

L(M,πt) ≥ T∆

}
,

and the random variable X :=
∑T

t=1|fM(πt) − f ĎM(πt)|. By definition, P ĎM,ALG′(E1) > δ,
P ĎM,ALG′(X ≥ CTCrε) ≤ 1

C2 . We have the following claim.

Claim: Under the event E1 ∩ {τ ≤ T}, we have
τ∑

t=1

L(M,πt) ≥ T∆−X − 1.
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To prove the claim, we bound
τ∑

t=1

L(M,πt) =

T∑
t=1

L(M,πt)−
T∑

t=τ+1

L(M,πt)

≥ T∆−
T∑

t=τ+1

[fM(πM)− fM(πt)]

≥ T∆− (T − τ)fM(πM) +

T∑
t=τ+1

f
ĎM(πt)−X

= T∆− (T − τ) ·
(
fM(πM)− f

ĎM(π
ĎM)
)
−X,

where the first inequality follows from E1, and the second inequality follows from∑T
t=τ+1|fM(πt)− f ĎM(πt)| ≤ X . On the other hand, we can also bound

τ∑
t=1

L(M,πt) =

τ∑
t=1

[fM(πM)− fM(πt)]

≥ τfM(πM)−
τ∑

t=1

f
ĎM(πt)−X

= τ ·
(
fM(πM)− f

ĎM(π
ĎM)
)
+

τ∑
t=1

L(ĎM,πt)−X

≥ τ ·
(
fM(πM)− f

ĎM(π
ĎM)
)
+ T∆− 1−X,

where the first inequality follows from
∑τ

t=1|fM(πt)− f ĎM(πt)| ≤ X , and the second inequality is
because

∑τ
t=1 L(

ĎM,πt) ≥ T∆− 1 given τ ≤ T , which follows from the definition of the stopping
time τ . Therefore, taking maximum over the above two inequalities proves our claim.

Now, using the claim, we know

P ĎM,ALG′

(
τ∧T∑
t=1

L(M,πt) ≥ T (∆− Cε)− 1

)
≥ P ĎM,ALG′(E1 ∩ {X ≤ CTε}) ≥ δ − 1

C2
.

Notice that D2
H

(
PM,ALG′ ,P ĎM,ALG′

)
≤ 7Tε2, and hence for any event E , it holds PM,ALG′(E) ≥

P ĎM,ALG′(E)−
√
14Tε2. In particular, we have

PM,ALG′

(
τ∧T∑
t=1

L(M,πt) ≥ T (∆− CCrε)− 1

)
≥ δ − 1

C2
−
√
14Tε2.

Finally, we note that ALG and ALG′ agree on the first τ ∧T rounds (formally, ALG and ALG′ induce the
same distribution of (π1, · · · , πτ∧T )), and hence

PM,ALG

(
τ∧T∑
t=1

L(M,πt) ≥ T (∆− CCrε)− 1

)
≥ δ − 1

C2
−
√
14Tε2.

The proof is hence complete by noticing that
∑τ∧T

t=1 L(M,πt) ≤
∑T

t=1 L(M,πt) = RegDM(T )
and taking ∆→ r-decqε,δ(M).

F.6 Proof of Proposition E.2
Fix a ĎM ∈M+, and ∆ > r-decqε,δ(M, ĎM). Choose p ∈ ∆(ΠT ) such that

L̂δ(M,p) ∨ Eπ∼p[L(ĎM,π)] ≤ ∆, ∀M ∈Mp,ε(ĎM).

The existence of p is guaranteed by the definition (32). In other words, we have Eπ∼p[L(ĎM,π)] ≤ ∆
and

Pπ∼p(L(M,π) ≥ ∆) ≤ δ, ∀M ∈Mp,ε(ĎM).
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We then has the following claim.

Claim. For any model M ∈M, it holds that

Eπ∼p[L(M,π)] ≤ Eπ∼p[L(ĎM,π)] + ∆ + cδCrEπ∼pDH

(
M(π), ĎM(π)

)
. (36)

Fix any M ∈M, we prove (36) as follows. Consider the event E = {π : L(M,π) ≤ ∆}. Then,

p(E)
(
fM(πM)− f

ĎM(π
ĎM)
)
= Eπ∼p1 {E}

(
L(M,π)− L(ĎM,π) + f

ĎM(π)− fM (π)
)

≤ p(E)∆ + CrEπ∼p1 {E}DH

(
M(π), ĎM(π)

)
,

where the inequality uses L(M,π) ≤ ∆ for π ∈ E and Assumption 4. Therefore,

Eπ∼pL(M,π) = Eπ∼p1 {E}L(M,π) + Eπ∼p1 {Ec}L(M,π)

≤ p(E)∆ + Eπ∼p1 {Ec}
(
fM(πM)− f

ĎM(π
ĎM) + f

ĎM(π)− fM (π) + L(ĎM,π)
)

≤ 2∆ +
p(Ec)Cr

p(E)
Eπ∼p1 {E}DH

(
M(π), ĎM(π)

)
+ CrEπ∼p1 {Ec}DH

(
M(π), ĎM(π)

)
≤ 2∆ +max

{
p(Ec)
p(E)

, 1

}
CrEπ∼pDH

(
M(π), ĎM(π)

)
.

This completes the proof of our claim.

Therefore, using (36) with Eπ∼p[L(ĎM,π)] ≤ ∆ yields

Eπ∼p[L(M,π)] ≤ 2∆ + cδCrε, ∀M ∈Mp,ε(ĎM).

This immediately implies

r-deccε(M∪ {ĎM}, ĎM) ≤ 2∆ + cδCrε.

Finally, taking ∆→ r-decqε,δ(M, ĎM) completes the proof.

F.7 Proof of Proposition E.4
Fix a reference model ĎM and let ∆0 > p-decqε,δ(M, ĎM). Then there exists p, q ∈ ∆(Π) such that

sup
M∈M

{
L̂δ(M,p)

∣∣∣ Eπ∼qD
2
H

(
M(π), ĎM(π)

)
≤ ε2

}
< ∆0.

Therefore, it holds that

Pπ∼p(L(M,π) ≤ ∆0) ≥ 1− δ, ∀M ∈Mq,ε(ĎM).

If the constrained set Mq,ε(ĎM) is empty, then we immediately have p-deccε(M, ĎM) = 0, and
the proof is completed. Therefore, in the following we may assume Mq,ε(ĎM) is non-empty, and
M̂ ∈Mq,ε(ĎM).

Claim. Let θ̂ = θM̂ and π̂ = (π0, θ̂) for an arbitrary π0, it holds that

L(M, π̂) ≤ ∆0, ∀M ∈Mq,ε(ĎM).

This is because for any M ∈Mq,ε(ĎM), it holds that

Pπ∼p(L(M,π) ≤ ∆0, L(M̂, π) ≤ ∆0) ≥ 1− 2δ > 0.

Hence, there exists θ ∈ Θ such that ρ(θM , θ) ≤ ∆0 and ρ(θM̂ , θ) ≤ ∆0 holds. Therefore, it must
hold that ρ(θM , θ̂) ≤ 2∆0 for any M ∈Mq,ε(ĎM).

The above claim immediately implies that

p-deccε(M, ĎM) ≤ sup
M∈M

{
L(M, π̂) | Eπ∼qD

2
H

(
M(π), ĎM(π)

)
≤ ε2

}
≤ 2∆0.

Letting ∆0 → p-decqε,δ(M, ĎM) yields p-deccε(M, ĎM) ≤ 2p-decqε,δ(M, ĎM), which is the desired
result.
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G Additional Discussion and Results from Section 4
G.1 Properties of the fractional covering number
Before proceeding to applications, let us briefly discuss some connections between the fractional
covering number and classical notions of covering number considered in the context of statistical
estimation.

To start, we recall that for many standard statistical estimation tasks such as regression and non-
parametric estimation, the risk function L is given by a (pseudo) metric (e.g., ℓ2 distance between
parameters or mean-squared error in predictions). The following lemma shows that in this case, the
fractional covering number coincides with the classical covering number induced by the metric, e.g.,
in location estimation (Example 4), density estimation (Example 6), etc.

Lemma G.1 (Connection to classical covering numbers). Suppose the decision space Π is equipped
with a pseudo-metric ρ : Π×Π→ R+ and there is a map M 7→ πM ∈ Π such that the risk function
is given by

L(M,π) = ρ(πM , π), ∀M ∈M, π ∈ Π. (37)
Let ΠM := {πM : M ∈ M} ⊆ Π, and define N(ΠM,∆) to be the ∆-covering number of ΠM
under ρ. Then

N(ΠM, 2∆) ≤ Nfrac(M,∆) ≤ N(ΠM,∆).

Duality between fractional covering and fractional packing For classical covering numbers
with respect to a pseudo-metric (as in Lemma G.1), it is known that there is a duality between
covering and packing. In spite of a lack of metric structure for the general setting we study, we can
show that fractional covering number naturally admits a dual representation in terms of a fractional
packing number. Specifically, it holds that

inf
µ∈∆(M)

sup
π∈Π

µ(M : L(M,π) ≤ ∆) = sup
p∈∆(Π)

inf
M∈M

p(π : L(M,π) ≤ ∆),

as long as the minimax theorem can be applied (e.g. when Π orM are finite or satisfy appropriate
compactness conditions). Therefore, in this case, we have

Nfrac(M,∆) = sup
µ∈∆(M)

inf
π∈Π

1

µ(M : L(M,π) ≤ ∆)
(38)

which can be interpreted as a fractional packing number. We mention in passing that using this
interpretation, it is possible to derive Theorem 10 directly from Proposition 8.

Recovering the Yang-Barron method. As a simple example of the fractional covering number,
we recover and further generalize the well-known Yang-Barron method [95] for statistical estimation
problems (see also [89, Section 15.3.5]).

Example 12 (Yang-Barron method). For a statistical estimation problem with model classM, we
define the KL covering number ofM as

NKL(M, ε) := min

{
k : ∃M1, · · · ,Mk ∈M, such that ∀M ∈M,min

i∈[k]
DKL(M ∥M i) ≤ ε2

}
.

For a fixed parameter ε > 0, we can pick k = NKL(M, ε) and M1, · · · ,Mk ∈ M such that
mini∈[k] DKL(M ∥ M i) ≤ ε2 for all M ∈ M. Then, let us consider the localized sub-class
Mi := {M ∈ M : DKL(M ∥ M i) ≤ ε2} for each i ∈ [k]. It is clear that Assumption 2 holds for
eachMi with CKL ≤ ε2. Further, usingM =

⋃n
i=1Mi, we have

logNfrac(M,∆) ≤ max
i∈[k]

logNfrac(Mi,∆) + log k. (39)

For details, see Appendix H.4. Therefore, applying Theorem 10 toMi and take supremum over i ∈
[k] and ε > 0 gives the following result: For any algorithm ALG to achieve supθ∈Θ Eθ,ALGL(M,π) ≤
∆, it is necessary that

logNfrac(M,∆) ≤ inf
ε>0

(
2Tε2 + logNKL(M, ε)

)
+ 2.

When the risk function L is given by a metric (cf. Eq. (37)), this inequality coincides with the
Yang-Barron method formulated in Wainwright [89, Section 15.3.5], as the fractional covering num-
ber Nfrac(M,∆) can be lower bounded by the covering number (Lemma G.1).
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Recovering the local packing lower bound for statistical estimation. As a simple example of
the fractional covering number, we recover the well-known local packing-based lower bound [15]
for the classical problem of location estimation [89].

Example 13 (Local packing lower bound for location estimation). In the location estimation task
(Example 4), recall that the model class is given byM = {Mθ : θ ∈ Θ}, where Mθ = N (θ, Id).
Consider the local packing number of Θ around θ⋆ ∈ Θ, which is given by

Nloc(Θ,∆; θ⋆) := max

{
k : ∃θ1, · · · , θk ∈ Θ,

∥∥θi − θ⋆
∥∥ ≤ ∆,

∥∥θi − θj
∥∥ >

∆

2
,∀i ̸= j

}
.

Then, for the localized sub-class Mε,θ⋆ := {Mθ : ∥θ − θ⋆∥ ≤ ε} ⊆ M, Assumption 2 holds
with CKL ≤ 1

2ε
2, and we also have Nfrac(Mε,θ⋆ , ε/4) ≥ Nloc(Θ, ε; θ⋆). Therefore, we can apply

Theorem 10 toMε,θ⋆ and take supremum over all θ⋆ ∈ Θ and ε ≥ 8∆ to show the following result:
For any algorithm ALG to achieve supθ∈Θ Eθ,ALG∥π̂ − θ∥ ≤ ∆, it is necessary that

T ≥ sup
ε≥8∆

logNloc(Θ, ε)− 2

ε2
,

where Nloc(Θ, ε) = supθ⋆∈Θ Nloc(Θ, ε; θ⋆) is the local packing number of Θ. This lower bound is
known to be tight in general [14, 15, 59, etc.]. ◁

G.2 Additional discussion from Section 4.2
In the literature on statistical learning, there is a long line of work which characterizes learnabil-
ity of hypothesis classes in terms of abstract complexity measures. Examples include the Vapnik-
Chervonenkis dimension for binary classification [83, 16], the Littlestone dimension [63] for online
classification [10] and differentially private classification [20, 6], and their real-valued counterparts
(e.g. scale-sensitive dimensions) for regression [9, 5].

Beyond the settings above—particularly for interactive settings—learnability is less well under-
stood. The question of what complexity measure characterizes bandit learnability has been explored
in Russo and Van Roy [74], Abernethy et al. [1], Simchowitz et al. [79], Hashimoto et al. [46, etc.],
but a complete resolution has yet to be reached. Remarkably, Ben-David et al. [11] demonstrate that
there exists a simple and natural learning task for which it is impossible to characterize learnabil-
ity through any combinatorial dimension. More recently, Hanneke and Yang [45] provide similar
impossibility results for characterizing the learnability of noiseless structured noiseless bandits with
real-valued rewards.

Our characterization bypasses the impossibility results of Hanneke and Yang [45]. Specifically,
Hanneke and Yang [45] show that for noiseless structured bandit problems, there exist classes H
for which bandit learnability is independent of the axioms of ZFC. Therefore, their results rule
out the possibility of a characterization of noiseless bandit learnability through any combinatorial
dimension [11] for the problem class. Our characterization is compatible with this result because the
argument of Hanneke and Yang [45] relies on the noiseless nature of the bandit problem, and hence
does not preclude a characterization for the noisy setting.

Connection to the maximin volume. Hanneke and Yang [45] propose maximin volume, a complex-
ity measure that tightly characterizes the complexity of learning noiseless binary-valued structured
bandit problems. For such problem classes, the fractional covering number is exactly the inverse of
the maximin volume. While the fractional covering number can be viewed as a generalization of
the maximin volume in this sense, we emphasize that the fractional covering number directly arises
from our general lower bound framework, and is applicable to general decision making problems in
the DMSO framework.

Noise distribution. We note that the upper bound in (20) applies to any reward distribution with sub-
Gaussian noise (cf. Appendix H.2). Meanwhile, since the lower bound in Corollary 12 is specialized
to Gaussian noise, it acts as a lower bound for the broader class of sub-Gaussian noise distributions
as well. We expect the lower bound to extend to other “reasonable” noise distributions.

G.3 Exploration-by-Optimization Algorithm
In this section, we present a slightly modified version of the Exploration-by-Optimization Algorithm
(ExO+) developed by Foster et al. [41], built upon Lattimore and Szepesvári [58], Lattimore and

35

75619 https://doi.org/10.52202/079017-2407



Algorithm 1 Exploration-by-Optimization (ExO+)

Input: Problem (M,Π), prior q ∈ ∆(Π), parameter T ≥ 1, γ > 0.
1: Set q1 = q.
2: for t = 1, · · · , T do
3: Solve the exploration-by-optimization objective

(pt, ℓt)← argmin
p∈∆(Π),ℓ∈L

Γqt,γ(p, ℓ)

4: Sample πt ∼ pt, execute πt and observe ot

5: Update

qt+1(π) ∝π qt(π) exp(ℓt(π;πt, ot))

Gyorgy [55]. The original ExO+ algorithm has an adversarial regret guarantee for any model class
M, scaling with r-decoγ(co(M)), the offset DEC of the mode class co(M), and log |Π|, the log-
cardinality of the decision space. For our purpose, we adapt the original ExO+ algorithm by using
a prior q ∈ ∆(Π) not necessarily the uniform prior, and with a suitably chosen prior q, ExO+ then
achieves a regret guarantee scaling with logNfrac(M,∆), instead of log |Π| (cf. Foster et al. [41]),
which is always an upper bound of logNfrac(M,∆).

Offset DEC for regret. We first recall the following (original) definition of DEC [40]:

r-decoγ(M, ĎM) := inf
p∈∆(Π)

sup
M∈M

Eπ∼p[L(M,π)]− γEπ∼pD
2
H

(
M(π), ĎM(π)

)
, (40)

and r-decoγ(M) := sup
ĎM∈co(M) r-decoγ(M, ĎM). Through the Estimation-to-Decision (E2D)

algorithm [40], offset regret-DEC provides an upper bound of RegDM for any learning problem,
and it is also closely related to the complexity of adversarial decision making.

As discussed in Foster et al. [42], in the reward maximization setting (Example 1), the constrained
regret-DEC r-decc can always be upper bounded in terms of the offset DEC r-deco. Conversely,
in the same setting, we also show that the offset DEC can also be upper bounded in terms of the
constrained DEC (Theorem H.5), and hence the two concepts can be regarded as equivalent under
mild assumptions (e.g. moderate decaying, Assumption 3).

Exploration-by-Optimization algorithm. The algorithm, ExO+, is restated in Algorithm 1. At
each round t, the algorithm maintains a reference distribution qt ∈ ∆(Π), and use it to obtain a
decision distribution pt ∈ ∆(Π) and an estimation function ℓt ∈ L := (Π × Π × O → R), by
solving a joint minimax optimization problem based on the exploration-by-optimization objective:
Defining

Γq,γ(p, ℓ;M,π⋆) = Eπ∼p[f
M(π⋆)− fM(π)]

− γEπ∼pEo∼M(π)Eπ′∼q[1− exp (ℓ(π′;π, o)− ℓ(π⋆;π, o))],
(41)

and

Γq,γ(p, ℓ) = sup
M∈M,π⋆∈Π

Γq,γ(p, ℓ;M,π⋆), (42)

the algorithm solve (pt, ℓt)← argminp∈∆(Π),ℓ∈L Γqt,γ(p, ℓ). The algorithm then samples πt ∼ pt,
executes πt and observes ot from the environment. Finally, the algorithm updates the reference
distribution by performing the exponential weight update with weight function ℓt(·;πt, ot).

Guarantee of ExO+. Following Foster et al. [41], we define

exo1/γ(M, q) := inf
p∈∆(Π),ℓ∈L

Γq,γ(p, ℓ), (43)

and exo1/γ(M) = supq∈∆(Π) exo1/γ(M, q). The following theorem is deduced from Foster et al.
[41, Theorem 3.1 and 3.2].
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Theorem G.2. Under the reward maximization setting4(Assumption 4), it holds that

r-decoγ/4(co(M)) ≤ exo1/γ(M) ≤ r-decoγ/8(co(M)), ∀γ > 0.

Now, we present the main guarantee of Algorithm 1, which has the desired dependence on the prior
q ∈ ∆(Π).

Theorem G.3. It holds that with probability at least 1− δ,

RegDM ≤ T
(
∆+ r-decoγ/8(co(M))

)
+ γ log

(
1

δ · q(π : fM⋆(πM⋆)− fM⋆(π) ≤ ∆)

)
Proof. Consider the set Π⋆ := {π : fM⋆

(πM⋆)− fM⋆
(π) ≤ ∆} and the distribution q⋆ = q(·|Π⋆).

Following Proposition G.4, we consider

Xt(π
t, ot) := Eπ∼q⋆

[
ℓt(π;πt, ot)

]
− logEπ∼qt

[
exp

(
ℓt(π;πt, ot)

)]
,

and Proposition G.4 implies that

T∑
t=1

Xt(π
t, ot) ≤ log(1/q(Π⋆)).

Applying Lemma C.3, we have with probability at least 1− δ,

T∑
t=1

− logEt−1

[
exp

(
−Xt(π

t, ot)
)]
≤

T∑
t=1

Xt(π
t, ot) + log(1/δ).

Notice that

Et−1

[
exp

(
−Xt(π

t, ot)
)]

= Eπ∼ptEo∼M⋆(π)Eπ′∼qt
[
exp

(
ℓt(π′;π, o)− Eπ⋆∼q⋆ℓ

t(π⋆;π, o)
)]
.

Using the fact that 1− x ≤ − log x and Jensen’s inequality, we have

T∑
t=1

Eπ⋆∼q⋆Err(p
t, ℓt; qt,M⋆, π⋆) ≤ log(1/q(Π⋆)) + log(1/δ),

where we denote

Err(p, ℓ; q,M⋆, π⋆) := Eπ∼pEo∼M⋆(π)Eπ′∼q[1− exp (ℓ(π′;π, o)− ℓ(π⋆;π, o))].

Therefore, it holds that

RegDM =

T∑
t=1

Eπ∼pt

[
fM⋆

(πM⋆)− fM⋆
(π)
]

≤
T∑

t=1

∆+ Eπ⋆∼q⋆Eπt∼pt

[
fM⋆

(π⋆)− fM⋆
(πt)

]
= T∆+ γ

T∑
t=1

Eπ⋆∼q⋆Err(p
t, ℓt; qt,M⋆, π⋆)

+

T∑
t=1

Eπ⋆∼q⋆
[
Eπt∼pt

[
fM⋆

(π⋆)− fM⋆
(πt)

]
− γErr(pt, ℓt; qt,M⋆, π⋆)

]︸ ︷︷ ︸
=Γqt,γ(p

t,ℓt;M⋆,π⋆)

≤ T∆+ γ(log(1/q(Π⋆)) + log(1/δ)) +

T∑
t=1

Γqt,γ(p
t, ℓt)

≤ T
(
∆+ exo1/γ(M)

)
+ γ(log(1/q(Π⋆)) + log(1/δ)).

Applying Theorem G.2 completes the proof.
4We remark that their proof applies as long as fM can be linearly extended to co(M).
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Proposition G.4. For any q′ ∈ ∆(Π), it holds that
T∑

t=1

Eπ∼q′ [ℓ
t(π;πt, ot)]− logEπ∼qt

[
exp

(
ℓt(π;πt, ot)

)]
≤ DKL(q

′ ∥ q).

Proof. This is essentially the standard guarantee of exponential weight updates. For simplicity, we
assume Π is discrete. Then, by definition,

qt(π) =
q(π) exp

(∑t
s=1 ℓ

s(π;πs, os)
)

∑
π′∈Π q(π′) exp

(∑t−1
s=1 ℓ

s(π′;πs, os)
) ,

and hence

logEπ∼qt
[
exp

(
ℓt(π;πt, ot)

)]
= logEπ∼q exp

(
t∑

s=1

ℓs(π;πs, os)

)

− logEπ∼q exp

(
t−1∑
s=1

ℓs(π;πs, os)

)
.

Therefore, taking summation over t = 1, · · · , T , we have

−
T∑

t=1

logEπ∼qt
[
exp

(
ℓt(π;πt, ot)

)]
= − logEπ∼q

[
exp

(
T∑

t=1

ℓt(π;πt, ot)

)]
.

The proof is then completed by the following basic fact of KL divergence: for any function h : Π→
R,

Eπ∼q′ [h(π)] ≤ logEπ∼q exp(h(π)) +DKL(q
′ ∥ q).

G.4 Application: Structured bandits
We now instantiate our general results to give tighter guarantees for structured bandits, improving
the upper bounds in Section 4.2.

DEC for structured bandits. We consider the same structured bandit protocol as in Section 4.2;
recall that H denotes the reward function class andMH denotes the induced model class. In what
follows, we simplify the results in Theorem 15 to be stated purely in terms of H. For a reference
value function sh : C × A → [0, 1], we define

r-deccε(H,sh) := inf
p∈∆(Π)

sup
h∈H

{
Eπ∼p

[
h(πh)− h(π)

] ∣∣ Eπ∼p(h(π)− sh(π))2 ≤ ε2
}
,

where we recall that πh := maxπ∈Π h(π). We then define the DEC forH as

r-deccε(H) = sup
sh∈co(H)

r-deccε(H ∪ {sh},sh).

As a corollary of Theorem G.3, the r-deccε(H) and logNfrac(H,∆) together provide an upper bound
for structured bandits withH.

Theorem G.5. LetH be given. Suppose that Π is finite, and that ε 7→ r-deccε(co(H)) satisfies mod-
erate decay as a function of ε (Assumption 3) with constant creg. Let ε̄(T ) ≍

√
logNfrac(H,∆)/T .

The Algorithm 1 ensures that high probability,

RegDM ≤ T ·∆+O(cregT
√
log T ) · r-deccε̄(T )(co(H)).

As a corollary, the minimax sample complexity of structured bandit learning withH is bounded as

max
{
T DEC(H,∆), logNfrac(H, 2∆)

}
≲ T ⋆(MH,∆) ≲ T DEC(co(H),∆) · logNfrac(H,∆/2),

(44)

where we denote T DEC(H,∆) = infε∈(0,1){ε−2 : r-deccε(H) ≤ ∆} (following Eq. (15)) and omit
logarithmic factors and dependence on the constant creg.
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There are many standard structured bandit problems where the value function class H is convex,
including multi-armed bandits, linear bandits, and non-parametric bandits (with smoothness [72],
or concavity [54], or sub-modularity [65], or etc.). For these problem classes, the complexity of
no-regret learning is completely characterized by the DEC ofH and the fractional covering number
Nfrac(H,∆) (up to a quadratic factor).

We also note that the lower bound of Eq. (44) is proven for Gaussian noise, while our upper bound
applies to a much more general class of reward distributions (with bounded variance).

G.5 Application: Contextual bandits with general function approximation
Next, we instantiate our general results for stochastic contextual bandits with general function ap-
proximation, generalizing the structured bandit problem. We consider the stochastic contextual ban-
dit problem with context space C, action spaceA, and a reward function classH ⊆ (C×A → [0, 1]).
This problem is a special case of the DMSO setting with decision space Π = (C → A), and the en-
vironment is specified by a tuple (h⋆ ∈ H, ν⋆ ∈ ∆(C)). The protocol is as follows: For each round
t, the environment draws ct ∼ ν, and the learner takes action at = πt(ct) based on the decision
πt : C → A, and receives a reward rt ∼ N (h⋆(c

t, at), 1).

We can formulate the model class as follows. For a reward function h ∈ H and context distribution
ν ∈ ∆(C), the corresponding model Mh,ν is specified as

(c, a, r) ∼Mh,ν(π) : c ∼ ν, a = π(a), r ∼ N (h(c, a), 1).

LetMH = {Mh,ν : h ∈ H, ν ∈ ∆(C)} be the induced model class of contextual bandits. Following
Appendix G.4, we instantiate Theorem 15 to provide characterization of learningMH.

DEC for contextual bandits. For any context c ∈ C, the value function classH induces a restricted
value function class H|c = {h(c, ·) : h ∈ H}, which corresponds to a (non-contextual) bandit
function class. We define the following variant of the DEC

r-deccε(H) := sup
c∈C

r-deccε(H|c),

which corresponds to the maximum of the per-context DEC over all contexts. We also define
T DEC(H,∆) = infε∈(0,1){ε−2 : r-deccε(H) ≤ ∆}, following Eq. (15).

Fractional covering number for contextual bandits. Specializing the fractional covering num-
ber to contextual bandits, we define

Nfrac(H,∆) := inf
p∈∆(Π)

sup
h∈H,ν∈∆(C)

1

p(π : Ec∼ν [h(c, πh(c))− h(c, π(c))] ≤ ∆)
, (45)

where πh ∈ Π is defined via πh(c) := argmaxa∈A h(c, a) for c ∈ C.

Intuitively, the value of the fractional covering number logNfrac(H,∆) for contextual bandits cap-
tures the difficulty of estimating optimal actions, but also the difficulty of generalizing across
contexts. For example, when we consider the unstructured contextual bandit problems (i.e.,
H = (C × A → [0, 1])), it holds that logNfrac(H,∆) = |C| log |A|, but in general we can have
logNfrac(H,∆)≪ log |Π| = |C| log |A|.
As a corollary of Theorem 15, we derive the following upper and lower bounds on the complexity
of contextual bandit learning withH.

Theorem G.6. Let H be given. Suppose that both the context space C and the action space A
are finite, and that ε 7→ r-deccε(co(H)) satisfies moderate decay as a function of ε (Assumption
3) with constant creg. Let ε̄(T ) ≍

√
logNfrac(H,∆)/T . Then Algorithm 1 ensures that with high

probability, ;

RegDM ≤ T ·∆+O(cregT
√
log T ) · r-deccε̄(T )(co(H)).

As a corollary, the complexity of learningMH is bounded by

max

{
T DEC(H,∆),

logNfrac(H, 2∆)

log |C|

}
≲ T ⋆(MH,∆) ≲ T DEC(co(H),∆) · logNfrac(H,∆/2),

(46)

omitting dependence on creg and logarithmic factors.
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By definition, we have r-deccε(co(H)) = r-deccε(H) if the per-context value function class H|c is
convex for every context c ∈ C. Natural settings in which H|c is convex include contextual linear
bandits [28], contextual non-parametric bandits [22], contextual concave bandits [54], etc. For these
problem classes, the complexity of no-regret learning is completely characterized by the DEC of H
and the newly proposed Nfrac(H,∆) (up to a quadratic factor and a factor of log |C|).
As a concrete example. we can derive upper bounds based on the fractional covering number for
finite-action contextual bandits as follows.

Corollary G.7. For any value function class H, Algorithm 1 ensures the following regret bound
with high probability.

RegDM(T ) ≤ T ·∆+O
(√

T |A| · logNfrac(H,∆)
)
.

Compared to the well-known regret bound of O(
√
T |A| · log |H|) for learning any with any fi-

nite contextual bandit class H [38, 77], this result above always provides a tighter upper bound,
as logNfrac(H,∆) ≤ log |H|. For certain (very simple) function classes H, the quantity
logNfrac(H,∆) can be much smaller than log |H| (for details, see Example 14). More importantly,
logNfrac(H,∆) leads to lower bounds for any contextual bandit function class (Theorem G.6). By
contrast, lower bounds for structured contextual bandits in prior work have been proven in a case-
by-case fashion (for specific value function classesH).

H Proofs from Section 4 and Appendix G
In this section, we mainly focus on no-regret learning, and we present the regret upper and lower
bounds in terms of DEC and logNfrac(M,∆). The results can be generalized immediately to PAC
learning.

H.1 Proof of Theorem 10
Fix an arbitrary reference model ĎM ∈ (Π→ ∆(O)) such that Assumption 2 holds. We remark that
ĎM is not necessarily inM or co(M).

We only need to prove the following fact.

Fact. If T < logNfrac(M,∆)−2
2CKL

, then for any T -round algorithm ALG, there exists a model M ∈ M
such that RiskDM(T ) ≥ ∆ with probability at least 1

2 under PM,ALG.

Proof. By the definition (17) of Nfrac(M,∆), we know
1

Nfrac(M,∆)
:= sup

p∈∆(Π)

inf
M∈M

p(π : L(M,π) ≤ ∆).

Therefore, we have

inf
M∈M

p
ĎM,ALG(π : L(M,π) ≤ ∆) ≤ 1

Nfrac(M,∆)
,

and hence there exists M ∈M such that

T <
log
(
1/p

ĎM,ALG(π : L(M,π) ≤ ∆)
)
− 2

2CKL
.

Notice that by the chain rule of KL divergence, we have

DKL(PM,ALG ∥ PĎM,ALG) = EM,ALG

[
T∑

t=1

DKL(M(πt) ∥ ĎM(πt))

]
≤ TCKL.

Hence, using data-processing inequality,

DKL(pM,ALG ∥ pĎM,ALG) <
log
(
1/p

ĎM,ALG(π : L(M,π) ≤ ∆)
)
− 2

2
≤ DKL(1/2 ∥ pĎM,ALG(π : L(M,π) ≤ ∆)).

This immediately implies pM,ALG(π : L(M,π) ≤ ∆) < 1
2 by the monotonicity of KL divergence.
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H.2 Proof of Theorem 11
In this section, we present an algorithm based on reduction to multi-arm bandits (Algorithm 2) that
achieves the desired upper bound. For the application to bandits with Gaussian rewards, we relax
the assumption R : O → [0, 1] as follows.

Assumption 5. For any M ∈ M and π ∈ Π, the random variable R(o) is 1-sub-Gaussian under
o ∼M(π).

Suppose that ∆ > 0 is given, and fix a distribution p⋆∆ that attains the infimum of (17). Based on
p⋆∆, we consider a reduced decision space Πsub ⊂ Π, generated as

Πsub = {π(1), · · · , π(N)}, π(1), · · · , π(N) ∼ p⋆∆ independently,
where we set N = Nfrac(M,∆) log(1/δ). Then the space Πsub is guaranteed to contain a near-
optimal decision, as follows.

Lemma H.1. With probability at least 1− δ, there exists π ∈ Πsub such that L(M⋆, π) ≤ ∆.

Therefore, we can then regard M⋆ as a N -arm bandit instance with action space A = Πsub, and
for each pull of an arm π ∈ A, the stochastic reward r is generated as r = R(o), o ∼ M⋆(π).
Then, we pick a standard bandit algorithm BanditALG, e.g. the UCB algorithm (see e.g. Lattimore
and Szepesvári [57]), and apply it to the multi-arm bandit instance M⋆

Bandit, and the guarantee of
BanditALG yields

T∑
t=1

max
π′∈Πsub

fM⋆
(π′)− fM⋆

(πt) ≤ O
(√

TN log(T/δ)
)
.

with probability at least 1− δ. Therefore, we have

RegDM(T ) ≤ T · (fM⋆
(πM⋆)− max

π′∈Πsub

fM⋆
(π′)) +O

(√
TN log(T/δ)

)
≤ T ·∆+O

(√
TN log(T/δ)

)
,

with probability at least 1 − 2δ. This gives the desired upper bound, and we summarize the full
algorithm in Algorithm 2.

Proof of Lemma H.1. By definition,

P
(
∀i ∈ [N ], L(M⋆, π(i)) > ∆

)
≤ p⋆∆(π : L(M⋆, π) > ∆)

N

≤
(
1− 1

Nfrac(M,∆)

)N

≤ exp

(
− N

Nfrac(M,∆)

)
≤ δ.

H.3 Proof of Lemma G.1
Proof of the upper bound. Take a minimal ∆-covering of ΠM, i.e., a set {π1, · · · , πn} ⊆ Π such
that for all M ∈ M, there exists i ∈ [n] such that ρ(πM , πi) ≤ ∆. Therefore, we may consider the
distribution p = Unif({π1, · · · , πn}), which guarantee

Nfrac(M,∆) ≤ sup
M∈M

1

p(π : ρ(πM , π) ≤ ∆)
≤ n = N(ΠM,∆).

Proof of the lower bound. Consider the maximal 2∆-packing of ΠM, i.e., let {π1, · · · , πm} ⊆
ΠM be a maximal set such that ρ(πi, πj) > 2∆ for any i ̸= j. Then, by the duality between
packing and covering, the set {π1, · · · , πm} form a 2∆-covering of ΠM, and hence we have m ≥
N(ΠM, 2∆). On the other hand, the sets Πi := {π : ρ(π, πj) ≤ ∆} are pairwise disjoint, and hence
for any p ∈ ∆(Π), we have

m · inf
M∈M

p(π : ρ(πM , π) ≤ ∆) ≤
m∑
i=1

p(π : ρ(πi, π) ≤ ∆) ≤ 1.

Therefore, it holds that Nfrac(M,∆) ≥ m ≥ N(ΠM, 2∆).
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Algorithm 2 A reduction algorithm based on the fractional covering number

Input: Problem (M,Π), parameter ∆, δ > 0, T ≥ 1, Algorithm BanditALG for multi-arm bandits.

1: Set

p⋆∆ = arg inf
p∈∆(Π)

sup
M∈M

1

p(π : L(M,π) ≤ ∆)
. (47)

2: Set N = Nfrac(M,∆) log(1/δ) and sample the decision subspace Πsub = {π(1), · · · , π(N)} ⊂
Π as

π(1), · · · , π(N) ∼ p⋆∆ independently.

3: Run the bandit algorithm BanditALG on the instance M⋆
Bandit for T rounds.

H.4 Proof of Example 12
It remains to prove Eq. (39). More generally, we prove the following lemma.

Lemma H.2. For model classM =
⋃n

i=1Mi, it holds that

Nfrac(M,∆) ≤
n∑

i=1

Nfrac(Mi,∆).

Proof of Lemma H.2 For each i ∈ [n], we define λi =
Nfrac(Mi,∆)∑n

j=1 Nfrac(Mj ,∆) .

Fix p1, · · · , pn ∈ ∆(Π). Then, let us consider the distribution p =
∑n

i=1 λipi ∈ ∆(Π). For any
model M ∈ M, there exists i ∈ Mi, and hence p(π : L(M,π) ≤ ∆) ≥ λi minMi∈Mi pi(π :
L(Mi, π) ≤ ∆). Therefore, it holds that

inf
M∈M

p(π : L(M,π) ≤ ∆) ≥ min
i∈[n]

λi inf
M∈Mi

pi(π : L(M,π) ≤ ∆).

In other words,

sup
M∈M

1

p(π : L(M,π) ≤ ∆)
≥ max

i∈[n]

1

λi
sup

M∈Mi

1

pi(π : L(M,π) ≤ ∆)
.

Taking infimum over p1, · · · , pn ∈ ∆(Π) gives

Nfrac(M,∆) = inf
p∈∆(Π)

sup
M∈M

1

p(π : L(M,π) ≤ ∆)
≥ max

i∈[n]

1

λi
sup

M∈Mi

1

pi(π : L(M,π) ≤ ∆)

≤ inf
p1,··· ,pn∈∆(Π)

max
i∈[n]

1

λi
sup

M∈Mi

1

pi(π : L(M,π) ≤ ∆)

= max
i∈[n]

1

λi
inf

pi∈∆(Π)
sup

M∈Mi

1

pi(π : L(M,π) ≤ ∆)

= max
i∈[n]

1

λi
· Nfrac(Mi,∆) =

n∑
i=1

Nfrac(Mi,∆),

where the last line follows from the definition of λ1, · · · , λn. This is the desired result.

H.5 Proof of Theorem 14
We first state the following more general result, and Theorem 14 is then a direct corollary (under
Assumption 3). Analoguous guarantees also hold for PAC learning.

Theorem H.3. Let T ≥ 1, δ ∈ (0, 1). With suitably chosen prior q ∈ ∆(Π), ExO+ (Algorithm 1)
achieves with probability at least 1− δ:

1

T
RegDM ≤ ∆+ r-decoγ/8(co(M)) + γ

logNfrac(M,∆) + log(1/δ)

T
. (48)

42

75626https://doi.org/10.52202/079017-2407



In particular, whenM is a reward-maximization problem class (Example 1), ExO+ achieves (with
a suitable parameter γ) that with probability at least 1− δ:

1

T
RegDM ≤ ∆+ C

√
log(T ) · r-dec

c

ε̄(T )(co(M)), (49)

where C is an absolute constant, ε̄(T ) =
√

logNfrac(M,∆)+log(1/δ)
T , and the modified version of

constrained regret-DEC is defined as

r-dec
c

ε(co(M)) := ε · sup
ε′∈[ε,1]

r-deccε′(co(M))

ε′
. (50)

Remark H.4 (Upper bound without regularity condition). In Theorem 14 (and Eq. (49)), we as-
sume that (1)M is a reward-maximization problem, and (2) the constrained regret-DEC of co(M)
satisfies certain regularity condition (Assumption 3). We can relax these two assumptions and obtain
a weaker upper bound. Specifically, we may only assume that fM : Π→ [0, 1] is affine with respect
to M ∈ co(M) (cf. Theorem G.2). In this case, we can still bound the regret of ExO+ as

1

T
RegDM ≤ ∆+ r-decc√

γ/8
(co(M)) + γ

logNfrac(M,∆) + log(1/δ)

T
, (51)

which follows from Eq. (48) and the fact that (by definition)

r-decoγ(co(M)) ≤ r-decc√γ(co(M)), ∀γ > 0.

In particular, using Eq. (51) above, we can show that (omitting poly-logarithmic factors)

T ⋆(M,∆) ≲
1

∆
· T DEC(co(M),∆/3) · logNfrac(M,∆/2).

This is worse than the upper bound of Theorem 15 by (roughly) a factor of ∆−1.

Proof of Theorem H.3. By the definition (17) of Nfrac(M,∆), we know

1

Nfrac(M,∆)
:= sup

p∈∆(Π)

inf
M∈M

p(π : L(M,π) ≤ ∆).

Therefore, there exists q ∈ ∆(Π) such that

inf
M∈M

q(π : L(M,π) ≤ ∆) ≥ 1

Nfrac(M,∆)
,

We then instantiate Algorithm 1 with such a prior q, and Eq. (48) follows immediately from The-
orem G.3. To prove Eq. (49), we invoke the following structural result that relates offset DEC to
constrained DEC.

Theorem H.5. Suppose that Assumption 4 holds for the model classM. Then for any ε ∈ (0, 1], it
holds that

inf
γ>0

(
r-decoγ(M) + γε2

)
≤
(
3
√
⌊log2(2/ε)⌋+ 2

)
·
(

r-dec
c

ε(M) + Crε
)
.

Under the assumption that ε 7→ r-deccε(co(M)) is of moderate decay with a constant creg, we have

r-dec
c

ε(co(M)) ≤ cregr-deccε(M), ∀ε ∈ (0, 1].

Hence, Eq. (49) follows from (48) as long as the parameter γ is chosen according to Eq. (H.5).

H.5.1 Proof of Theorem H.5
Fix a ε ∈ (0, 1] and ĎM ∈ co(M). We only need to prove the following result:

Claim. Suppose that r-deccε′(M, ĎM) ≤ Dε′ for all ε′ ∈ [ε, 1]. Then there exists γ = γ(D, ε) such
that

r-decoγ(M) + γε2 ≤
(
3
√
⌊log2(2/ε)⌋+ 2

)
· (D + Cr)ε.
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Set K = ⌊log2(1/ε)⌋+1 and fix a parameter c = c(ε) ∈ (0, 1
2 ] to be specified later in proof. Define

εi := 2−i for i = 0, · · · ,K − 1 and εK = ε. We also define λi := cε · 2i for i = 0, · · · ,K − 1, and
λK = 1−

∑K−1
i=0 λi ≥ c.

Define ∆i = r-deccεi(M ∪ {ĎM}, ĎM), and let pi attains the infp. In the following, we choose
γ = γ(D, ε) = 9(D+Cr)

8cε .

By definition of pi, it holds that

Eπ∼pi
[L(M,π)] ≤ ∆i, ∀M ∈M∪ {ĎM} : Eπ∼pi

D2
H

(
M(π), ĎM(π)

)
≤ ε2i .

In particular, we may abbreviateMi := {M ∈M : Eπ∼pi
D2

H

(
M(π), ĎM(π)

)
≤ ε2i }, and it holds

fM(πM) ≤ f
ĎM(π

ĎM) + ∆i + Crεi, ∀M ∈Mi.

Next, we choose p =
∑K

i=0 λipi ∈ ∆(Π), and we know

Eπ∼p[L(ĎM,π)] ≤
K∑
i=0

λiEπ∼p[L(ĎM,π)] ≤
K∑
i=0

λi∆i =: ∆.

Fix a M ∈ M. Let j ∈ {0, · · · ,K} be the maximum index such that M ∈ Mj . Such a j must
exists becauseM =M0. Now,

Eπ∼p[L(M,π)] = fM(πM)− f
ĎM(π

ĎM) + Eπ∼p[L(ĎM,π)] + Eπ∼p[f
ĎM(π)− fM(π)]

≤ ∆j + Crεj +∆+ CrEπ∼pDH

(
M(π), ĎM(π)

)
.

Case 1: j = K. Then, using AM-GM inequality, we have

Eπ∼p[L(M,π)]− γEπ∼pD
2
H

(
M(π), ĎM(π)

)
≤ ∆K + εK +∆+

C2
r

4γ
.

Case 2: j < K. Then for each i > j, it holds that Eπ∼pjD
2
H

(
M(π), ĎM(π)

)
> ε2j , and hence

Eπ∼pD
2
H

(
M(π), ĎM(π)

)
≥

K∑
i=j+1

λjEπ∼pjD
2
H

(
M(π), ĎM(π)

)
≥

K∑
i=j+1

λjε
2
j ≥

cε · εj
2

.

Therefore, using AM-GM inequality,

Eπ∼p[L(M,π)]− γEπ∼pD
2
H

(
M(π), ĎM(π)

)
≤ ∆j + Crεj +∆+

9C2
r

4γ
− 8

9
γEπ∼pD

2
H

(
M(π), ĎM(π)

)
≤ ∆j + Crεj +∆+

9C2
r

4γ
− 8cγε

9
εj .

By our choice of γ, we have γε ≥ 9
8c

(
∆j

εj
+ Cr

)
, and hence in both cases, we have

Eπ∼p[L(M,π)]− γEπ∼pD
2
H

(
M(π), ĎM(π)

)
≤ ∆+ (D + Cr)ε+

9C2
r

4γ
.

Note that by definition, we have ∆ ≤ (cK + 1)Dε and γ(ε) · ε = 9
8c (D + Cr), and hence

r-decoγ(ε)(M, ĎM) ≤ (2D + Cr + cKD + 2cCr)ε.

Thus,

r-decoγ(ε)(M, ĎM) + γ(ε)ε2 ≤
(
2D + Cr + cK(D + Cr) +

9(D + Cr)

8c

)
εK .

Balancing c and re-arranging yields the desired result.
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H.6 Proof of Theorem 15
Note that the minimax-optimal sample complexity T ⋆(M,∆) is just a way to better illustrate our
minimax regret upper and lower bounds. By the definition of T ⋆(M,∆), we have

1

T
Reg⋆(M, T ) = sup{∆ : T ⋆(M,∆) ≤ T}.

Under Assumption 3, the regret upper bound in Theorem 14 implies (up to creg, CKL and logarithmic
factors)

1

T
Reg⋆(M, T ) ≲ r-deccε̄(T )(M).

And the regret lower bound Theorem E.1 implies (up to creg and logarithmic factors)

r-deccε(T )(M) ≲
1

T
Reg⋆(M, T ).

By the definition of T ⋆(M,∆) and T DEC(M,∆), we then have

T DEC(M,∆) ≲ T ⋆(M,∆) ≲ T DEC(co(M),∆) · logNfrac(M,∆/2).

Together with Theorem 10, we prove that

max

{
T DEC(M,∆),

logNfrac(M,∆)

CKL

}
≲ T ⋆(M,∆) ≲ T DEC(co(M),∆) · logNfrac(M,∆/2).

H.7 Proof of Theorem G.5
For the upper bound, we work with more general noise structure (beyond Gaussian noises). We
define MH,V to be the class of all bandits models with mean reward function in H and variance
bounded by 1. Specifically, for any M ∈ MH,V, it is associated with a value function hM ∈ H,
such that for any decision π ∈ Π, the distribution M(π) of the random reward r has mean hM(π)
and variance at most 1.

We also recall that the subclassMH ⊆MH,V is the bandit problem class with the standard Gaussian
noise.

Proof of Theorem G.5: lower bound of (44). The lower bound with logNfrac(H,∆) is exactly
Corollary 12.

To prove the lower bound with T DEC(H,∆), we need to lower bound the DEC ofMH in terms of
the DEC ofH, as follows.

Lemma H.6. ConsiderM+ =Mco(H),V as the class of all reference models (Appendix E). Then,

max
ĎM∈M+

r-deccε(MH ∪ {ĎM}, ĎM) ≥ r-decc2√2ε(H). (52)

Notice that forM+, Assumption 4 holds with Cr =
√
10 (by Lemma C.5). Therefore, as a corollary

of Theorem E.3: for any T -round algorithm ALG, there exists M⋆ ∈MH such that

RegDM(T ) ≥
T

2
· (r-deccε(T )(H)− 5ε(T ))− 1 (53)

with probability at least 0.01 under PM⋆,ALG, where ε(T ) = 1
50

√
T

. Therefore, the lower bound in
terms of T DEC(H,∆) follows immediately (using regularity condition Assumption 3).

Combining both lower bounds completes the proof.
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Proof of Theorem G.5: upper bound. We apply Theorem H.3 similar to the proof of Theorem 15
(in Appendix H.2).

Using Theorem H.3, we know that ExO+ can be suitably instantiated on the model classMH,V so
that with probability at least 1− δ,

1

T
RegDM ≤∆+ C

√
log(T ) · r-dec

c

ε̄(T )(co(MH,V)),

where C is an absolute constant, ε̄(T ) =
√

logNfrac(H,∆)+log(1/δ)
T . We only need to upper bound

the r-dec
c

ε(co(MH,V)) (defined in (50)) in terms of the DEC of co(H).
Lemma H.7. For any ε ≥ 0, it holds that

r-deccε(MH,V) ≤ r-decc√10ε(H)

We also note that co(MH,V) ⊆ Mco(H),V because the model class Mco(H),V is convex and it
containsMH,V. Therefore, we know

r-deccε(co(MH,V)) ≤ r-deccε(Mco(H),V) ≤ r-decc√10ε(co(H)).

Using the regularity of ε 7→ r-deccε(co(H)), we know

r-dec
c

ε̄(T )(co(MH,V)) ≤ creg · r-decc√10ε(co(H)).

This gives the desired upper bound.

H.7.1 Proof of Lemma H.6
Fix a ε ∈ [0, 1], we denote ε1 = 2

√
2ε and take any ∆ < r-deccε1(H). We pick sh ∈ co(H) such

that r-deccε1(H,sh) > ∆. Then, it holds that

inf
p∈∆(Π)

sup
h∈H∪{sh}

{
Eπ∼p[h(πh)− h(a)] | Eπ∼p(h(a)− sh(a))2 ≤ ε21

}
≥ ∆.

Suppose that sh ∈ co(H) is given by sh = Eh∼µ[h] with µ ∈ ∆(H). Then, consider the reference
model ĎM ∈ M+ with mean reward function sh and Gaussian noise, i.e. ĎM(π) = N

(
sh(π), 1

)
.

Then, we know that forM =MH,

r-deccε(M∪ {ĎM}, ĎM)

= inf
p∈∆(Π)

sup
M∈M∪{ ĎM}

{
Eπ∼p[L(M,π)] | Eπ∼pD

2
H

(
M(π), ĎM(π)

)
≤ ε2

}
= inf

p∈∆(Π)
sup

h∈H∪{sh}

{
Eπ∼p[h(πh)− h(π)] | Eπ∼pD

2
H

(
N (h(π), 1),N

(
sh(π), 1

))
≤ ε2

}
≥ inf

p∈∆(Π)
sup

h∈H∪{sh}

{
Eπ∼p[h(πh)− h(π)] | Eπ∼p(h(π)− sh(π))2 ≤ 8ε2

}
≥ ∆,

where the last line follows from Lemma C.5. Taking ∆ → r-deccε1(H) completes the proof of
(52).

H.7.2 Proof of Lemma H.7
Fix a reference model ĎM ∈ co(MH,V). By definition, we know the mean reward function h ĎM of ĎM
belongs to co(H), i.e. ĎM ∈ Mco(H),V. Therefore, for any model M ∈ MH,V and decision π ∈ Π,
by Lemma C.5,

D2
H

(
M(π), ĎM(π)

)
≥ 1

10
|hM(π)− h

ĎM(π)|2.

Therefore, forM =MH,V,

r-deccε(M∪ {ĎM}, ĎM)

= inf
p∈∆(Π)

sup
M∈M∪{ ĎM}

{
Eπ∼p[L(M,π)] | Eπ∼pD

2
H

(
M(π), ĎM(π)

)
≤ ε2

}
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≥ inf
p∈∆(Π)

sup
M∈M∪{ ĎM}

{
Eπ∼p[L(M,π)] | Eπ∼p|hM(π)− h

ĎM(π)|2 ≤ 10ε2
}

= inf
p∈∆(Π)

sup
h∈H∪{sh}

{
Eπ∼p[h(πh)− h(π)] | Eπ∼p(h(π)− sh(π))2 ≤ 8ε2

}
= r-decc√10ε(H ∪ {sh},sh),

where the second equality follows from the fact that when = h, we have L(M,π) = h(πh)− h(π).
Taking supremum over ĎM completes the proof.

H.8 Proof of Theorem G.6
Similar to Appendix H.7, we consider a larger model class MH,V of models with general noise
structure. A model M ∈MH,V is specified by a context distribution νM ∈ ∆(C), a reward function
hM ∈ H, and a reward distribution RM(·|·, ·), such that for any c ∈ C, a ∈ A, r ∼ RM(·|c, a) has
mean hM(c, a) and variance at most 1. The model M is then given by

(c, a, r) ∼M(π) : c ∼ νM , a = π(c), r ∼ RM(·|c, a).

The model classMH,V is defined to be the set of all possible models described above.

Proof of Theorem G.6: lower bound. The lower bound with logNfrac(H,∆) follows immedi-
ately by applying Theorem 10 to the classMH, which admits CKL = O (log |C|) in Assumption 2
(as shown in Example 9).

On the other hand, the lower bound with T DEC(H,∆) follows from the reduction to the per-context
bandits problem. Specifically, for a fixed context c ∈ C,H|c corresponds to a structure bandits class
MH|c . Notice that we can naturally regardMH|c ⊂MH by viewingMH|c as a contextual bandits
class with the fixed context c. Therefore, by Theorem G.5 (specifically (53)):

1

T
Reg⋆(MH, T ) ≥ 1

T
Reg⋆(MH|c , T ) ≳ r-deccε(T )(H|c)− 6ε(T ), ε(T ) =

1

50
√
T
.

Taking maximum over c ∈ C yields

1

T
Reg⋆(MH, T ) ≳ r-deccε(T )(H)− 6ε(T ).

This gives the desired lower bound with T DEC(H,∆).

Combining both lower bounds completes the proof.

Proof of Theorem G.6: upper bound. We follow the proof strategy of Appendix H.7. By Theo-
rem H.3, ExO+ can be suitably instantiated on the problem classMH,V so that with probability at
least 1− δ:

1

T
RegDM ≤∆+ C inf

γ>0

(
r-decoγ/8(co(MH,V)) + γ

logNfrac(M,∆) + log(1/δ)

T

)
.

We also note that co(MH,V) ⊆ Mco(H),V. Therefore, it remains to upper bound the offset DEC of
Mco(H),V.

Lemma H.8. For γ > 0, it holds that

r-decoγ(MH,V) ≤ sup
c∈C

r-decoγ/2(MH|c,V).

Then, we can apply the result of Theorem H.5. From the proof of Theorem H.5, it is not hard to see
that: for any ε > 0, there exists γ = γ(ε) such that for any c ∈ C,

r-decoγ/2(MH|c,V) + γε2 ≲
√
log(2/ε) · (creg · r-deccε(co(H)) + ε),

where we also use the regularity condition of ε 7→ r-deccε(co(H)). This immediately gives

RegDM ≤ T∆+O(cregT
√
log T ) · r-deccε̄(T )(co(H)),

where ε̄(T ) =
√

logNfrac(H,∆)+log(1/δ)
T . This is the desired upper bound.
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H.8.1 Proof of Lemma H.8
Fix a reference model ĎM ∈ co(MH,V), and then ĎM ∈ Mco(H),V by definition. In particular, ĎM
has mean value function h ĎM ∈ H and context distribution ν̄ ∈ ∆(C). We also know that for each
c ∈ C, h ĎM(x, ·) ∈ co(H|c).
Then, by Lemma C.4, we also have

2D2
H

(
M(π), ĎM(π)

)
≥ Ec∼νM ,a=π(c)D

2
H

(
RM(r = ·|c, a),R ĎM(r = ·|c, a)

)
.

Thus, we adopt the following notations: For each c ∈ C and model M ∈ MH,V, we define Mc ∈
MH|c,V to be a bandit model such that for every action a ∈ A, Mc(a) = RM(r = ·|c, a). Then by
definition, it holds that

2D2
H

(
M(π), ĎM(π)

)
≥ Ec∼νM ,a=π(c)D

2
H

(
Mc(a), ĎMc(a)

)
.

Now, combining the inequalities above, we have

r-decoγ(MH,V, ĎM)

= inf
p∈∆(Π)

sup
M∈MH,V

Eπ∼p[L(M,π)]− γEπ∼pD
2
H

(
M(π), ĎM(π)

)
≤ inf

p∈∆(Π)
sup

M∈MH,V

Eπ∼pEc∼νM ,a=π(c)

[
hM(c, πM(c))− hM(c, a)− γ

2
D2

H

(
Mc(a), ĎMc(a)

)]
(1)
= inf

p=(pc),pc∈∆(A)
sup

M∈MH,V

Ec∼νM ,a∼pc

[
hM(c, πM(c))− hM(c, a)− γ

2
D2

H

(
Mc(a), ĎMc(a)

)]
(2)

≤ inf
p=(pc),pc∈∆(A)

sup
M∈MH,V

sup
c∈C

Ea∼pc

[
hM(c, πM(c))− hM(c, a)− γ

2
D2

H

(
Mc(a), ĎMc(a)

)]
(3)
= inf

p=(pc),pc∈∆(A)
sup
c∈C

sup
Mc∈MH|c,V

Ea∼pc

[
hMc(πMc

)− hMc(a)− γ

2
D2

H

(
Mc(a), ĎMc(a)

)]
(4)
= sup

c∈C
inf

pc∈∆(A)
sup

Mc∈MH|c,V

Ea∼pc

[
hMc(πMc)− hMc(a)− γ

2
D2

H

(
Mc(a), ĎMc(a)

)]
= sup

c∈C
r-decoγ/2(MH|c,V,

ĎMc) ≤ sup
c∈C

r-decoγ/2(MH|c,V),

where the equality (1) is because for a sequence (pc ∈ ∆(A))c∈C , there is a corresponding p ∈ ∆(Π)
such that for π ∼ p, we have π(c) ∼ pc independently; in inequality (2) we bound the expectation
over c ∼ νM by the supremum supc∈C ; the equality (3) follows from the fact that Mc ∈ MH|c,V
is a bandit model with mean reward function hMc(·) = hM(c, ·); and the equality (4) is because we
can choose pc separately for every c ∈ C. By the arbitrariness of ĎM ∈ co(M), we now have

r-decoγ(MH,V) ≤ sup
c∈C

decoγ/2(MH|c,V).

H.9 Proof of Corollary G.7
We follow the notations of Appendix H.8. By Lemma H.8, we have

r-decoγ(MH,V) ≤ sup
c∈C

r-decoγ/2(MH|c,V).

Notice that for each c ∈ C, MH|c,V is a class of |A|-arm bandits, and hence by Foster et al. [40,
Proposition 5.1] and Lemma C.5, we have

r-decoγ(MH|c,V) ≤
8|A|
γ

.

Therefore, Theorem H.3 implies that ExO+ achieves with probability at least 1− δ:

1

T
RegDM ≤ ∆+

16|A|
γ

+ γ
logNfrac(H,∆) + log(1/δ)

T
.

Balancing γ > 0 gives the desired upper bound.

As a remark, we provide an example of function classH with logNfrac(H,∆)≪ log |H|.
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Example 14. Suppose that A = {0, 1}, and the function classH = {hx}x∈C , where

hx(c, 0) =
1

2
, hx(c, 1) =

{
1, c = x,

0, c ̸= x.
.

Clearly, we have log |H| = log |C|.
On the other hand, we consider a distribution p over policies, such that π ∼ p is generated as
π(c) ∼ Bern(ε), independently over all c ∼ C. Then, for any h = hx ∈ H and ν ∈ ∆(C), we have

Ec∼ν [h(c, πh(c))− h(c, π(c))] = ν(x) · 1
2
1 {π(x) = 1}+ 1

2
Ec∼ν [1 {c ̸= x, π(c) = 1}].

Notice that π(x) = 1 with probability ∆, and conditional on the event {π(x) = 1},

Eπ∼p[Ec∼ν [1 {c ̸= x, π(c) = 1}]|π(x) = 1] ≤ ∆.

Hence,

p(π : Ec∼ν [h(c, πh(c))− h(c, π(c))] ≤ ∆) ≥ ∆

2
,

which implies logNfrac(H,∆) ≤ log(2/∆).

Therefore, for unbounded context space C, we have logNfrac(H,∆) ≪ log |H| for the function
classH defined above.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The claims are validated by detailed proofs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the con-
tributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes] .

Justification: The paper discusses the limitations of the work performed.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: The paper provides detailed assumptions and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or fig-
ures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work. There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA] .

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limi-
tations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing or research with human subjects.
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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