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Abstract

The constrained Markov decision process (CMDP) framework emerges as an impor-
tant reinforcement learning approach for imposing safety or other critical objectives
while maximizing cumulative reward. However, the current understanding of how
to learn efficiently in a CMDP environment with a potentially infinite number of
states remains under investigation, particularly when function approximation is
applied to the value functions. In this paper, we address the learning problem given
linear function approximation with qπ-realizability, where the value functions of
all policies are linearly representable with a known feature map, a setting known
to be more general and challenging than other linear settings. Utilizing a local-
access model, we propose a novel primal-dual algorithm that, after Õ(poly(d)ϵ−3)1

queries, outputs with high probability a policy that strictly satisfies the constraints
while nearly optimizing the value with respect to a reward function. Here, d is the
feature dimension and ϵ > 0 is a given error. The algorithm relies on a carefully
crafted off-policy evaluation procedure to evaluate the policy using historical data,
which informs policy updates through policy gradients and conserves samples. To
our knowledge, this is the first result achieving polynomial sample complexity for
CMDP in the qπ-realizable setting.

1 Introduction

In the classical reinforcement learning (RL) framework, optimizing a single objective above all
else can be challenging for safety-critical applications like autonomous driving, robotics, and Large
Language Models (LLMs). For example, it may be difficult for an LLM agent to optimize a single
reward that fulfills the objective of generating helpful responses while ensuring that the messages
are harmless (Dai et al., 2024). In autonomous driving, designing a single reward often requires
reliance on complex parameters and hard-coded knowledge, making the agent less efficient and
adaptive (Kamran et al., 2022). Optimizing a single objective in motion planning involves combining
heterogeneous quantities like path length and risks, which depend on conversion factors that are not
necessarily straightforward to determine (Feyzabadi and Carpin, 2014).

The constrained Markov decision process (CMDP) framework (Altman, 2021) emerges as an im-
portant RL approach for imposing safety or other critical objectives while maximizing cumulative

*Corresponding author.
1Here Õ(·) hides log factors.
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reward (Wachi and Sui, 2020; Dai et al., 2024; Kamran et al., 2022; Wen et al., 2020; Girard and
Reza Emami, 2015; Feyzabadi and Carpin, 2014).

In addition to the single reward function optimized under a standard Markov decision process (MDP),
CMDP considers multiple reward functions, with one designated as the primary reward function.
The goal of a CMDP is to find a policy that maximizes the primary reward function while satisfying
constraints defined by the other reward functions. Although the results of this paper can be applied to
multiple constraint functions, for simplicity of presentation, we consider the CMDP problem with
only one constraint function.

Our current understanding of how to learn efficiently in a CMDP environment with a potentially
infinite number of states remains limited, particularly when function approximation is applied to the
value functions. Most works studying the sample efficiency of a learner have focused on the tabular
or simple linear CMDP setting (see related works for more details). However, there has been little
work in the more general settings such as the qπ-realizability, which assumes the value function of all
policies can be approximated by a linear combination of a feature map with unknown parameters.
Unlike Linear MDPs (Yang and Wang, 2019; Jin et al., 2020), where the transition model is assumed
to be linearly representable by a feature map, qπ-realizability only imposes the assumption on the
existence of a feature map to represent value functions of policies.

Nevertheless, the generality of qπ-realizability comes with a price, as it becomes considerably more
challenging to design effective learning algorithms, even for the unconstrained settings. For the
general online setting, we are only aware of one sample-efficient MDP learning algorithm (Weisz
et al., 2023), which, however, is computationally inefficient. To tackle this issue, a line of research
(Kearns et al., 2002; Yin et al., 2022; Hao et al., 2022; Weisz et al., 2022) applies the local-access
model, where the RL algorithm can restart the environment from any visited states - a setting that
is also practically motivated, especially when a simulator is provided. The local-access model is
more general than the generative model (Kakade, 2003; Sidford et al., 2018; Yang and Wang, 2019;
Lattimore et al., 2020; Vaswani et al., 2022), which allows visitation to arbitrary states in an MDP.
The local-access model provides the ability to unlock both the sample and computational efficiency
of learning with qπ-realizability for the unconstrained MDP settings. However, it remains unclear
whether we can harness the power of local-access for CMDP learning.

In this paper, we present a systematic study of CMDP for large state spaces, given qπ-realizable
function approximation in the local-access model. We summarize our contributions as follows:

• We design novel, computationally efficient primal-dual algorithms to learn CMDP near-
optimal policies with the local-access model and qπ-realizable function classes. The algo-
rithms can return policies with small constraint violations or even no constraint violations
and can handle model misspecification.

• We provide theoretical guarantees for the algorithms, showing that they can compute an
ϵ-optimal policy with high probability, making no more than Õ(poly(d)ϵ−3) queries to the
local-access model. The returned policies can strictly satisfy the constraint.

• Under the misspecification setting with a misspecification error ω, we show that our algo-
rithms achieve an Õ(ω) + ϵ sub-optimality with high probability, maintaining the same
sample efficiency of Õ(poly(d)ϵ−3).

2 Related works

Most provably efficient algorithms developed for CMDP are in the tabular and linear MDP settings.
In the tabular setting, most notably are the works by (Efroni et al., 2020; Liu et al., 2021; Zheng
and Ratliff, 2020; Vaswani et al., 2022; Kalagarla et al., 2021; Yu et al., 2021; Gattami et al., 2021;
HasanzadeZonuzy et al., 2021; Chen et al., 2021; Kitamura et al., 2024). Work by Vaswani et al.
(2022) have showed their algorithm uses no more than Õ

(
SA

(1−γ)3ϵ2

)
samples to achieve relaxed

feasibility and Õ
(

SA
(1−γ)5ζ2ϵ2

)
samples to achieve strict feasibility. Here, the γ ∈ [0, 1) is the

discount factor and ζ ∈ (0, 1
1−γ ] is the Slater’s constant, which characterizes the size of the feasible

region and hence the hardness of the CMDP. In their work, they have also provided a lower bound of
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Ω
(

SA
(1−γ)5ζ2ϵ2

)
on the sample complexity under strict feasibility. However, all the aforementioned

results all scale polynomially with the cardinality of the state space.

For problems with large or possibly infinite state spaces, works by (Jain et al., 2022; Ding et al.,
2021; Miryoosefi and Jin, 2022; Ghosh et al., 2024; Liu et al., 2022) have used linear function
approximations to address the curse of dimensionality. All these works, except Jain et al. (2022); Liu
et al. (2022), make the linear MDP assumption, where the transition function is linearly representable.

Under the generative model, for the infinite horizon discounted case, the online algorithm proposed
in Jain et al. (2022) achieves a regret of Õ(

√
d/
√
K) with Õ(

√
d/
√
K) constraint violation, where

K is the number of iterations. Work by Liu et al. (2022) is able to achieve a faster O(ln(K)/K)
convergence rate for both the reward suboptimality and constraint violation. For the online access
setting under linear MDP assumption, Ding et al. (2021); Ghosh et al. (2024) achieve a regret
of Õ(poly(d) poly(H)

√
T ) with Õ(poly(d) poly(H)

√
T )) violations, where T is the number of

episodes and H is the horizon term.

Miryoosefi and Jin (2022) presented an algorithm that achieves a sample complexity of Õ
(

d3H6

ϵ2

)
,

where d is the dimension of the feature space and H is the horizon term in the finite horizon CMDP
setting. In the more general setting under qπ-realizability, the best-known upper bounds are in the
unconstrained MDP setting.

In the unconstrained MDP setting with access to a local-access model, early work by Kearns et al.
(2002) have developed a tree-search style algorithms under this model, albeit in the tabular setting.
Under v∗-realizability, Weisz et al. (2021) presented a planner that returns an ϵ-optimal policy using
O((dH/ϵ)|A|) queries to the simulator. More works by (Yin et al., 2022; Hao et al., 2022; Weisz
et al., 2022) have considered the local-access model with qπ-realizability assumption. Recent work
by Weisz et al. (2022) have shown their algorithm can return a near-optimal policy that achieves a
sample complexity of Õ

(
d

(1−γ)4ϵ2

)
.

3 Problem formulation

Constrained MDP

We consider an infinite-horizon discounted CMDP (S,A, P, r, c, γ, b, s0) consisting a possibly count-
ably infinite state space S with a finite set of actions A, a reward function r : S × A → [0, 1], a
constraint function c : S ×A → [0, 1], a discount factor γ ∈ [0, 1), a constraint threshold b ≥ 0, and
a fixed initial state s0. LetM1(X) denote the space of probability distributions supported on the set
X . Then, the transition probability P : S ×A →M1(S).
Define a set of stationary randomized policies Πrand, and a policy π ∈ Πrand maps states to prob-
ability distributions over the actions (i.e., π : S → M1(A)). Given a π ∈ Πrand, the policy
π interacts with the CMDP starting from any state s ∈ S through discrete steps indexed by
t ∈ N0, where N0 = {0, 1, 2, . . . }. This interaction generates a trajectory of {St, At}t∈N0 , where
S0 = s,At ∼ π(·|St), and St+1 ∼ P (·|St, At). The reward action-value function is defined as
qrπ(s, a) = E [

∑∞
t=0 γ

tr(St, At)|S0 = s,A0 = a]. Similarly, the constraint action-value function
is defined as qcπ(s, a) = E [

∑∞
t=0 γ

tc(St, At)|S0 = s,A0 = a]. The reward state-value function
vrπ(s) = ⟨π(·|s), qrπ(s, ·)⟩, where ⟨·, ·⟩ denotes the inner product over actions. Likewise, the con-
straint state-value function vcπ(s) = ⟨π(·|s), qcπ(s, ·)⟩.
The objective of the CMDP is to find a policy π that maximizes the state-value function vrπ starting
from a given state s0, while ensuring that the constraint vcπ(s0) ≥ b is satisfied:

max
π∈Πrand

vrπ(s0) s.t. vcπ(s0) ≥ b. (1)

We assume the existence of a feasible solution to eq. (1) and let π∗ denote a solution to eq. (1). A
quantity unique to CMDP is the Slater’s constant, which is denoted as ζ = maxπ v

c
π(s0)− b. Slater’s

constant characterizes the size of the feasibility region, and hence the hardness of the problem.

Because the state space can be large or possibly infinite, we use linear function approximation to
approximate the values of stationary randomized policies. Let ϕ : S × A → Rd be a feature map.
We assume that both qrπ and qcπ satisfy the following condition:

3
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Assumption 1 (qπ-realizability) There exists B > 0 and a misspecification error ω ≥ 0 such that
for every π ∈ Πrand, there exists a weight vector wπ ∈ Rd, ∥wπ∥2 ≤ B, and ensures |qπ(s, a) −
⟨wπ, ϕ(s, a)⟩| ≤ ω for all (s, a) ∈ S ×A.

A mixture policy is defined as a policy randomly selected from a finite set of policies {π0, · · · , πK}
and executed for all subsequent steps. For example, a mixture policy π̄K is constructed by sampling
a policy πk with probability 1

K and following it. The value function of such mixture policy for state
s ∈ S is given by vπ̄K

(s) = 1
K

∑K−1
k=0 vπk

(s), where vπk
(s) is the value function of the individual

policy πk. Note that π̄K is a non-stationary policy, and the set of non-stationary policies includes the
set of stationary randomized policies Πrand.

We assume access to a local access model, where the agent can query the simulator only for states that
have been encountered during previous simulations. Our goal is to design an algorithm that outputs a
near-optimal mixture policy π̄K , whose performance can be characterized in one of two ways.

For a given target error ϵ > 0, the relaxed feasibility requires the returned policy π̄K whose sub-
optimality gap vrπ∗(s0)− vrπ̄K

(s0) is bounded by ϵ, while allowing for a small constraint violation.
Formally, we require π̄K such that

vrπ∗(s0)− vrπ̄K
(s0) ≤ ϵ s.t vcπ̄K

(s0) ≥ b− ϵ.

On the other hand, strict-feasibility requires the returned policy π̄K whose sub-optimality gap
vrπ∗(s0)− vrπ̄K

(s0) is bounded by ϵ while not allowing any constraint violation. Formally, we require
π̄K such that

vrπ∗(s0)− vrπ̄K
(s0) ≤ ϵ s.t vcπ̄K

(s0) ≥ b.

Notations

For any real number a ∈ R, we let ⌊a⌋ to denote the smallest integer i such that i ≤ a. For vector
x ∈ Rd, let ∥x∥1 =

∑
i |xi|, ∥x∥2 =

√∑
i x

2
i , and ∥x∥∞ = maxi |xi|. For a positive definite

matrix A ∈ Rd×d, the ∥x∥2A = x⊤Ax. We let proj[a1,a2](λ) = argminp∈[a1,a2] |λ − p|, and
trunc[a1,a2](y) = min{max{y, a1}, a2}. For any two positive numbers a, b, we write a = O(b) if
there exists an absolute constant c > 0 such that a ≤ cb. We use the Õ to hide any polylogarithmic
terms.

4 Confident-NPG-CMDP, a local-access algorithm for CMDP

In this section, we introduce a primal-dual algorithm, which we call Confident-NPG-CMDP (see
algorithm 1).

4.1 A primal-dual approach

We approach solving the CMDP problem by framing it as an equivalent saddle-point problem:

max
π

min
λ≥0

L(π, λ),

where L : Πrand × R+ → R is the Lagrange function. For a policy π ∈ Πrand and a Lagrange
multiplier λ ∈ R+, we have

L(π, λ) = vrπ(s0) + λ(vcπ(s0)− b).

Let (π∗, λ∗) be a solution to this saddle-point problem. By an equivalence to a LP formulation and
strong duality (Altman, 2021), π∗ is the policy that achieves the optimal value in the CMDP as
defined in eq. (1). An optimal Lagrange multiplier λ∗ ∈ argminλ≥0 L(π

∗, λ), Therefore, solving
eq. (1) is equivalent to finding a saddle-point of the Lagrange function.

A typical primal dual algorithm that finds the saddle-point will proceed in an iterative fashion
alternating between a policy update using policy gradient and a dual variable update using mirror
descent. The policy gradient is computed with respect to the primal value qpπk,λk

= qrπk
+ λkq

c
πk

and
the mirror descent is computed with respect to the constraint value vcπk

(s0) = ⟨πk(·|s0), qcπk
(s0, ·)⟩.

4
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Algorithm 1 Confident-NPG-CMDP
1: Input: s0 (initial state), ϵ (target accuracy), δ ∈ (0, 1] (failure probability); γ (discount factor)
2: Initialize:
3: Define K, η1, η2,m according to Theorem 1 for relaxed-feasibility and Theorem 2 for strict-

feasibility,
4: Set L← ⌊⌊K⌋/(⌊m⌋+ 1)⌋.
5: For each iteration k ∈ {0, . . . , ⌊K⌋} : πk ← Unif(A), Q̃p

k(·, ·)← 0, Ṽ c
k (·)← 0, and λk ← 0.

6: For each phase l ∈ {0, . . . , L+ 1} : Cl ← (), Dl ← {}

7: For a ∈ A: if (s0, a) ̸∈ ActionCov(C0), then append (s0, a) to C0 and set ⊥ to D0[(s0, a)] ▷
see ActionCov defined in eq. (4)

8: while True do ▷ main loop
9: Let ℓ be the smallest integer s.t. Dℓ[z

′] =⊥ for some z′ ∈ Cℓ
10: Let z be the first state-action pair in Cℓ s.t. Dℓ[z] =⊥

11: If ℓ = L+ 1, then return π̄K

12: kℓ ← ℓ× (⌊m⌋+ 1) ▷ iteration corresponding to phase ℓ
13: (result, discovered)← Gather-data(πkℓ

, Cℓ, α, z)
14: if discovered is True then
15: Append result to C0 and set ⊥ to D0[result] ▷ result is a state-action pair
16: Goto line 8

17: Dℓ[z]← result

18: if ̸ ∃z′ ∈ Cℓ s.t. Dℓ[z
′] =⊥ then

19: kℓ+1 ← kℓ + (⌊m⌋+ 1) if kℓ + (⌊m⌋+ 1) ≤ ⌊K⌋ otherwise ⌊K⌋

20: for k = kℓ, . . . , kℓ+1 − 1 do ▷ off-policy iterations reusing Cℓ, Dℓ

21: Qr
k, Q

c
k ← LSE(Cℓ, Dℓ, πk, πkℓ

)

22: For s ∈ Cov(Cℓ) \ Cov(Cℓ+1), and for a ∈ A
23: Q̃p

k(s, a)← trunc[0, 1
1−γ ]

Qr
k(s, a) + λk trunc[0, 1

1−γ ]
Qc

k(s, a)

24: Ṽ c
k (s)← trunc[0, 1

1−γ ]
⟨πk(·|s), Qc

k(s, ·)⟩

25: ▷ update policy
26: For s, a ∈ S ×A:

27: πk+1(a|s)←

{
πk+1(a|s) if s ∈ Cov(Cℓ+1)

πk(a|s)
exp(η1Q̃

p
k(s,a))∑

a′∈A πk(a′|s) exp(η1Q̃
p
k(s,a

′))
otherwise

28: ▷ update dual variable

29: λk+1 ←

{
λk+1 if s0 ∈ Cov(Cℓ+1)

proj[0,U ]

(
λk − η2(Ṽ

c
k (s0)− b)

)
otherwise.

30: For z ∈ Cℓ s.t. z ̸∈ Cℓ+1: append z to Cℓ+1 and set ⊥ to Dℓ+1[z]

5
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Given that we do not have access to an oracle for exact policy evaluations, we must collect data
to estimate the primal and constraint values. If we have the least-squares estimates of qrπk

and
qcπk

, denoted by Qr
k and Qc

k, respectively, then we can compute the least-squares estimate Qp
k =

Qr
k + λkQ

c
k to be the estimate of the primal value qpπk,λk

. Additionally, we can compute V c
k (s0) =

⟨πk(·|s0), Qc
k(s0, ·)⟩ to be the least-squares estimate of the constraint value vcπk

(s0). Then, for any
given (s, a) ∈ S ×A, our algorithm makes a policy update of the following form:

πk+1(a|s) ∝ πk(a|s) exp(η1Qp
k(s, a)), (2)

followed by a dual variable update of the following form:

λk+1 ← λk − η2 (V
c
k (s0)− b) ,

where the η1 and η2 are the step-sizes.

4.2 Core set and least square estimates

To construct the least-squares estimates, let us assume for now that we are given a set of state-action
pairs, which we call the core set C. By organizing the feature vector of each state-action pair in C
row-wise into a matrix ΦC ∈ R|C|×d, we can write the covariance matrix as V (C, α) = Φ⊤

C ΦC + αI .
For each (s, a) ∈ C, suppose we have run Monte Carlo rollouts using the rollout policy π with
the local access simulator to obtain an averaged Monte Carlo return denoted by q̄(s, a). Then we
gather all the state-action pairs into a vector q̄ ∈ R|C|. For any state-action pair (s, a) ∈ S ×A, the
least-square estimate of action-value qπ is defined to be

Q(s, a) = ⟨ϕ(s, a), V (C, α)−1Φ⊤
C q̄⟩. (3)

Since the algorithm can only rely on estimates for policy improvement and constraint evaluation, it
is imperative that these estimates closely approximate their true action values. In the local access
setting, an algorithm may not be able to visit all state-action pairs, so we cannot guarantee that the
estimates will closely approximate the true action values for all state-action pairs. However, we can
ensure the accuracy of the estimates for a subset of states.

Given C, let us define a set of state-action pairs whose features satisfies the condition
∥ϕ(s, a)∥V (C,α)−1 ≤ 1, then we call this set the action-cover of C:

ActionCov(C) = {(s, a) ∈ S ×A : ∥ϕ(s, a)∥V (C,α)−1 ≤ 1}. (4)

Following from the action-cover, we have the cover of C. For a state s to be in the cover of C, all its
actions a ∈ A, the pair (s, a) is in the action-cover of C. In other words,

Cov(C) = {s ∈ S : ∀a ∈ A, (s, a) ∈ ActionCov(C)}.

For any s ∈ Cov(C), we can ensure the least square estimate Q(s, a) defined by eq. (3) closely
approximates its true action value qπ(s, a) for all a ∈ A. However, such a core set C is not available
before the algorithm is run. Therefore, we need an algorithm that will build a core set incrementally
in the local-access setting while planning. To achieve this, we build our algorithm on CAPI-QPI-Plan
(Weisz et al., 2022), using similar methodology for core set building and data gathering.

4.3 Core set building and data gathering to control the accuracy of the least-square estimates

Confident-NPG-CMDP does not collect data in every iteration but collects data in interval of m =
O
(
ln(1 + ρ0) poly(ϵ

−1(1− γ)−1)
)
, where ρ0 ≥ 0 is an user defined constant. During each data

collection phase, the algorithm performs on-policy evaluation. Between these phases, it conducts
(⌊m⌋+ 1) off-policy evaluations, reusing data from the most recent on-policy iteration.

By setting ρ0 to a positive value, we impose an upper bound of 1+ρ0 on the per-trajectory importance
sampling ratio used in off-policy evaluations, and m is adjusted accordingly to maintain this bound.
The total number of data collection phases is L = ⌊⌊K⌋/(⌊m⌋+ 1)⌋, where K is the total number
of iterations. When ρ0 is set to zero, we have L = K, resulting in a purely on-policy version of the
algorithm.

6
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Confident-NPG-CMDP maintains a set of core sets {Cl}L+1
l=0 , one for each data collection phases.

Each core set Cl is a list of state-action pairs. Due to the off-policy evaluations, Confident-NPG-
CMDP also maintains a set of data sets {Dl}Ll=0. Initially, all core sets are empty, all policies are
initialized to the uniform policy, and all data sets are empty.

The algorithm begins by adding the feature vectors corresponding to (s0, a) for all actions a ∈ A
that are not in the action-cover of C0. These feature vectors are considered informative. For every
(s, a) ∈ C0, the algorithm adds an entry to D0 and sets its value to the placeholder ⊥, indicating that
there is no roll-out data yet. Then, in line 9 of algorithm 1, the algorithm finds the smallest integer
l ∈ {0, . . . , L} such that the corresponding Dl has an entry without roll-out data (i.e., it contains the
placeholder ⊥). When such a phase is found, a running phase begins, denoted by ℓ in algorithm 1.
We note that when ℓ = L+ 1, the algorithm returns and no roll-outs are stored.

Since only one running phase ℓ can be active at a time, and ℓ can only take value l ∈ {0, . . . , L}, the
algorithm updates the policies of the corresponding iterations in line 27, updates the dual variables of
these iterations in line 29, and extends the core set for the next phase in line 30.

Suppose during a running phase with ℓ = l, while performing the roll-out in Gather-data subroutine
(algorithm 3 in Appendix A), if any state-action pair (s, a) ∈ S ×A is not in the action-cover of Cℓ,
the current running phase stops and the newly discovered state-action pair is added to C0 in line 15.
The same state-action pair is then propagated to C1 and so on by line 30.

Once a state-action pair is added to a core set by line 7, line 15, and line 30, it remains in that core
set for the duration of the algorithm. This means that any Cl, l ∈ {0, . . . , L + 1} can grow in size
and be extended multiple times during the execution of the algorithm. When any new state-action
pair is added to a core set, the least-square estimate should be recomputed with the newly added
information. This implies that the policy needs to be updated and data re-collected. However, we can
avoid restarting the entire data collection procedure by updating only the policy for states that are
newly added to the extended core set. We elaborate on this approach further in the next paragraph.

When the algorithm enters the running phase ℓ = l, and the Gather-data subroutine returns, the LSE
subroutine (algorithm 4) computes the least-squares estimate Qr

k, Q
c
k using the most recently extended

core set Cℓ for each corresponding iteration k = kℓ, . . . , kℓ+1 − 1. Subsequently, Q̃p
k of line 23 of

algorithm 1 is updated with the newly updated least-square estimates Qr
k, Q

c
k. However, the policy

πk+1 will only be updated for states that are newly covered by Cℓ (i.e., s ∈ Cov(Cℓ) \ Cov(Cℓ+1)).
For any states that are already covered by Cℓ (i.e., s ∈ Cov(Cℓ+1)), the policy remains unchanged
from its previous update using the Q̃p at that time. By updating the policy in this manner, the accuracy
guarantee of Q̃p

k(s, a) with respect to qpπk,λk
(s, a) is ensured not just for πk, but for an extended set

of policies defined as follows:

Definition 1 For any policy π from the set of randomized policies Πrand and any subset X ⊆ S , the
extended set of policies is defined as:

Ππ,X = {π′ ∈ Πrand | π(·|s) = π′(·|s) for all s ∈ X}.

By maintaining a set of core sets, gathering data via the Gather-data subroutine (algorithm 3 in
Appendix A), making policy updates by line 27, and dual variable updates by line 29, we have:

Lemma 1 Whenever LSE subroutine in line 21 of Confident-NPG-CMDP is executed during a
running phase ℓ = l for l ∈ {0, . . . , L}, the least-square estimate Q̃p

k(s, a) satisfies the following
condition for all iterations k = kℓ, . . . , kℓ+1 − 1 associated with this phase and for all s ∈ Cov(Cℓ)
and a ∈ A,

|Q̃p
k(s, a)− qpπ′

k,λk
(s, a)| ≤ ϵ′ for all π′

k ∈ Ππk,Cov(Cℓ), (5)

where ϵ′ = (1+U)(ω+
√
αB+(ω+ ϵ)

√
d̃) with d̃ = Õ(d) and U is an upper bound on the optimal

Lagrange multiplier. Similarly, for initial state s0, we have

|Ṽ c
k (s0)− vcπ′

k
(s0)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃ for all π′

k ∈ Ππk,Cov(Cℓ). (6)

The accuracy guarantee of eq. (5) and eq. (6) are maintained throughout the execution of the algorithm.
By lemma 4.5 of Weisz et al. (2022) (restated in lemma 6 in Appendix A), for any past version Cpast

l
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of Cl and the corresponding policy πpast
k associated with Cpast

l , we have Ππk,Cov(Cl) ⊆ Ππpast
k ,Cov(Cpast

l ).
This means that if eq. (5) and eq. (6) hold true for any policy in Ππpast

k ,Cov(Cpast
l ), they will also hold

true for any future updated policy πk.

4.4 Differences between Confident-NPG-CMDP and CAPI-QPI-Plan

CAPI-QPI-Plan is designed for unconstrained MDPs and returns a deterministic policy, which may
not be feasible in the constrained setting. In contrast, Confident-NPG-CMDP returns a soft mixture
policy π̄K , ensuring that π̄K(a|s) > 0 for all (s, a) ∈ S ×A.

In constrained MDPs, controlling the dual variable via mirror descent adds an ϵ−2 factor to the sample
complexity. Directly applying CAPI-QPI-Plan would increase the complexity to Õ(ϵ−4) due to the
need to manage both the dual variable and estimation error. To address this, Confident-NPG-CMDP
employs the natural policy gradient for policy improvement and leverages the softmax policy structure
to perform off-policy estimation, thereby reducing the complexity to Õ(ϵ−3).

By employing a per-trajectory importance sampling ratio, we weigh the Monte Carlo returns generated
from data collected in earlier on-policy phases, resulting in unbiased estimates of action values with
respect to the target policy. However, this ratio can become large if there is a substantial difference
between the on-policy and target policies. To mitigate this, the algorithm collects data at intervals
of m, effectively determining when to gather new data as the policy significantly diverges from
an earlier recent data-gathering iteration. By setting ρ0 > 0, we can bound the per-trajectory
importance sampling ratio, thus controlling the interval m for resampling on-policy data to produce
well-controlled estimators.

Key algorithmic differences between Confident-NPG-CMDP and CAPI-QPI-Plan:

1. Policy Improvement Step: Confident-NPG-CMDP utilizes a softmax over the estimated
action-values, whereas CAPI-QPI-Plan employs a greedy approach.

2. Dual Variable Computation: Confident-NPG-CMDP requires computation of the dual
variable inherent in primal-dual algorithms.

3. Data Sampling Strategy: Unlike CAPI-QPI-Plan, Confident-NPG-CMDP does not sample
data at every iteration but collects data at specific intervals to control the importance sampling
ratio.

In the next two sections, we will demonstrate how these changes ensure a feasible mixture policy for
the CMDP and address the additional analytical challenges.

5 Confident-NPG-CMDP satisfies relaxed-feasibility

With the accuracy guarantee of the least-square estimates, we prove that at the termination of
Confident-NPG-CMDP, the returned mixture policy π̄K satisfies relaxed-feasibility. We note that
because of the execution of line 30 in algorithm 1, at termination, one can show using induction that
C0 = C1 = · · · = CL+1. Therefore, Cov(C0) = Cov(C1) = · · · = Cov(CL). Thus, it is sufficient
to only consider C0 at the termination of the algorithm. By line 7 of algorithm 1, we have ensured
s0 ∈ Cov(C0).
By employing the primal-dual approach discussed in section 4, we reduce the CMDP problem to an
unconstrained problem with a single reward function of the form rλ = r + λc. Therefore, we can
apply lemma 12 from the Confident-NPG algorithm in the single-reward setting (see Appendix A)
to our Confident-NPG-CMDP algorithm, replacing π with π∗. Consequently, the value difference
between π∗ and π̄K can be bounded, which leads to:

Lemma 2 Let δ ∈ (0, 1] be the failure probability, ϵ > 0 be the target accuracy, and s0 be the
initial state. Assuming for all s ∈ Cov(C0) and all a ∈ A, |Q̃p

k(s, a) − qpπ′
k,λk

(s, a)| ≤ ϵ′ and

|Ṽ c
k (s0)− vcπ′

k
(s0)| ≤ ω+

√
αB+(ω+ ϵ)

√
d̃ for all π′

k ∈ Ππk,Cov(C0), then, with probability 1− δ,
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Confident-NPG-CMDP returns a mixture policy π̄K that satisfies the following,

vrπ∗(s0)− vrπ̄K
(s0) ≤

5ϵ′

1− γ
+

(
√

2 ln(A) + 1)(1 + U)

(1− γ)2
√
K

,

b− vcπ̄K
(s0) ≤ [b− vcπ̄K

(s0)]+ ≤
5ϵ′

(1− γ)(U − λ∗)
+

(
√

2 ln(A) + 1)(1 + U)

(1− γ)2(U − λ∗)
√
K

,

where ϵ′ = (1 + U)(ω + (
√
αB + (ω + ϵ)

√
d̃)) with d̃ = Õ(d), and U is an upper bound on the

optimal Lagrange multiplier.

By setting the parameters to appropriate values, it follows from lemma 2 that we obtain the following
result:

Theorem 1 With probability 1−δ, the mixture policy π̄K returned by confident-NPG-CMDP ensures
that

vrπ∗(s0)− vrπ̄K
(s0) = Õ(

√
d(1− γ)−2ζ−1ω) + ϵ,

vcπ̄K
(s0) ≥ b−

(
Õ(
√
d(1− γ)−2ζ−1ω) + ϵ

)
.

if we choose n = Õ(ϵ−2ζ−2(1 − γ)−4d), α = O
(
ϵ2ζ2(1− γ)4

)
, K = Õ

(
ϵ−2ζ−2(1− γ)−6

)
,

η1 = Õ
(
(1− γ)2ζK−1/2

)
, η2 = ζ−1K−1/2, H = Õ

(
(1− γ)−1

)
, m = Õ

(
ϵ−1ζ−2(1− γ)−2

)
,

and L = ⌊K/(⌊m⌋+ 1)⌋ = Õ
(
ϵ−1(1− γ)−4

)
total number of data collection phases.

Furthermore, the algorithm utilizes at most Õ(ϵ−3ζ−3d2(1 − γ)−11) queries in the local-access
setting.

Remark 1: In the presence of misspecification error ω > 0, the reward suboptimality and constraint
violation is Õ(ω) + ϵ with the same sample complexity.

Remark 2: Suppose the Slater’s constant ζ is much smaller than the suboptimality bound of
Õ(ω) + ϵ, and it is reasonable to set ζ = ϵ. Then, the sample complexity is Õ(ϵ−6(1 − γ)−11d2),
which is independent of ζ.

Remark 3: Our algorithm requires the Slater’s constant ζ, which can be estimated by running
CAPI-QPI-Plan only on the constraint function c, treating it as an unconstrained optimization problem.
This yields an approximation of maxπ v

c
π(s0), allowing us to estimate ζ. Performing this estimation

before executing Confident-NPG-CMDP adds only an additive term to the overall sample complexity.

6 Confident-NPG-CMDP satisfies strict-feasibility

To address the strict feasibility problem, where no constraint violations are permitted (i.e., vcπ̄K
≥ b),

the algorithm must solve a more conservative CMDP. We define a surrogate CMDP with the tuple
(S,A, P, r, c, γ, b′, s0), where b′ = b + ∆ for some ∆ ≥ 0. Note that b′ ≥ b, imposing stricter
constraints than the original problem. The optimal policy of this surrogate CMDP ensures compliance
with the original constraint and is defined as follows:

π∗
△ ∈ argmax vrπ(s0) s.t. vcπ(s0) ≥ b′. (7)

Notice that π∗
△ is a more conservative policy than π∗, where π∗ is the optimal policy of the original

CMDP objective eq. (1). By solving this surrogate CMDP using Confident-NPG-CMDP and applying
the result of theorem 1, we obtain a π̄K that would satisfy

vrπ̄∗(s0)− vrπ̄K
(s0) ≤ ϵ̄ s.t. vcπ̄K

(s0) ≥ b′ − ϵ̄,

where ϵ̄ = Õ(ω) + ϵ. Expanding out b′, we have vcπ̄K
(s0) ≥ b+△− ϵ̄. If we can set△ such that

△− ϵ̄ ≥ 0, then vcπ̄K
(s0) ≥ b, which satisfies strict-feasibility. We show this formally in the next

theorem, where△ = O(ϵ(1− γ)ζ) and is incorporated into the algorithmic parameters for ease of
presentation.
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Theorem 2 With probability 1 − δ, a target ϵ > 0, the mixture policy π̄K returned
by confident-NPG-CMDP ensures that vrπ∗(s0) − vrπ̄K

(s0) ≤ ϵ and vcπ̄K
(s0) ≥ b, if

assuming the misspecification error ω ≤ ϵζ2(1 − γ)3(1 +
√

d̃)−1, and if we choose
α = O

(
ϵ2ζ3(1− γ)5

)
,K = Õ

(
ϵ−2ζ−4(1− γ)−8

)
, n = Õ

(
ϵ−2ζ−4(1− γ)−8d

)
, H =

Õ
(
(1− γ)−1

)
,m = Õ

(
ϵ−1ζ−2(1− γ)−3

)
, and L = ⌊K/(⌊m⌋+ 1)⌋ = Õ((ϵ−1ζ−2(1− γ)−5))

total data collection phases.

Furthermore, the algorithm utilizes at most Õ(ϵ−3ζ−6(1 − γ)−14d2) queries in the local-access
setting.

Remark 1: We note that by solving this conservative CMDP incurs a higher sample complexity,
necessitating a separate treatment for this setting. Additionally, in the presence of a misspecifica-
tion error ω > 0, the strict-feasibility setting requires additional assumptions on ω, whereas the
relaxed-feasibility setting does not. The sample complexity of the relaxed-feasibility setting can be
independent of Slater’s constant, whereas for strict feasibility, the returned policy must strictly adhere
to constraints, and we cannot simply set Slater’s constant ζ to ϵ and disregard its impact.

7 A discussion on memory cost and some implementation details

The overall memory requirement is d̃nH(L+ 1) + d̃+ (L+ 1)(m+ 1)d̃d. The term d̃nH(L+ 1)
comes from maintaining L + 1 copies of the core sets, and each core set contains no more than
d̃ state-action pairs. For each state-action pair in Cl for l ∈ {0, . . . , L}, the algorithm stores n
trajectories consisting of H tuples (s, a, r, c).

In phase L+ 1, the algorithm terminates, so no roll-outs are stored. The second term d̃ accounts for
the elements stored in CL+1, which has no more than d̃ elements.

Finally, the last term is the memory required to store the least-square weights of the estimator during
core set extensions. Each core set Cl can undergo up to d̃ extensions. Recall that one state-action pair
is added to C0 at a time, and subsequently propagated to C1, C2 and so on, ensuring that each core
set contains no more than d̃ elements. During every extension of Cl, the newly added state-action
pairs are marked, and up to m+ 1 least-square weights are stored to account for the corresponding
iterations associated with Cl. Since each weight vector has a dimension d, and there are L+ 1 core
sets maintained this manner, the total memory required to store all least-square weights is bounded
by (L+ 1)(m+ 1)d̃d.

We store the least-squares weights because the algorithm must return a mixture policy, which requires
access to all policies π0, . . . , πK−1. Instead of storing each πk for k = 0, . . . ,K − 1 across the
entire state-action space, the algorithm tracks the state-action pairs newly added to each core set
during extensions and saves their corresponding least-squares weights for each extension. With this
stored information and the initialization of π0, a subroutine can reconstruct the policies πk(·|s) for
any s and iteration k as needed. Please refer to Appendix E for a brief discussion on how to mark the
state-action pairs, store the least-square weights, and use this information to reconstruct the policies
as required.

8 Conclusion

We have presented a primal-dual algorithm for planning in CMDP with large state spaces, given qπ-
realizable function approximation. The algorithm, with high probability, returns a policy that achieves
both the relaxed and strict feasibility CMDP objectives, using no more than Õ(ϵ−3d2 poly(ζ−1(1−
γ)−1)) queries to the local-access simulator.

Our algorithm does not query the simulator and collect data in every iteration. Instead, the algorithm
queries the simulator only at fixed intervals. Between these data collection intervals, our algorithm
improves the policy using off-policy optimization. This approach makes it possible to achieve the
desired sample complexity in both feasibility settings.
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A Confident-NPG in a single reward setting

The pseudo code of Confident-NPG with a single reward setting is the same as Confident-NPG-CMDP
in algorithm 1, except that line 24 and line 29 will not appear in Confident-NPG. Additionally, the
LSE subroutine returns just Qr, and the policy update will be with respect to Q̃r. For the complete
pseudo code of Confident-NPG in the single reward setting, please see algorithm 2. In the following
analysis, for convenience, we omit the superscript r.

Algorithm 2 Confident-NPG

Input: s0 (initial state), ϵ (target accuracy), δ ∈ (0, 1] (failure probability), c ≥ 0, γ, K = 2 ln(|A|)
(1−γ)4ϵ2 ,

η1 = (1− γ)
√

2 ln(|A|)
K , m = ln(1+ρ0)

2ϵ(1−γ) ln
(

4
ϵ(1−γ)2

) , L = ⌊⌊K⌋/(⌊m⌋+ 1)⌋.

Initialize: for each iteration k ∈ {0, . . . , ⌊K⌋} : πk ← Uniform(A), Q̃r
k(s, a) ← 0, for all

s, a ∈ S ×A, and λk ← 0. For each phase l ∈ {0, . . . , L+ 1} : Cl ← (), Dl ← {}

1: for a ∈ A do
2: if (s0, a) ̸∈ ActionCov(C0) then
3: Append (s0, a) to C0; D0[(s0, a)]←⊥

4: while True do ▷ main loop
5: Get the smallest integer ℓ s.t. Dℓ[z

′] =⊥ for some z′ ∈ Cℓ
6: Get the first state-action pair z in Cℓ s.t. Dℓ[z] =⊥
7: if ℓ = L+ 1 then return π̄K

8: kℓ ← ℓ× (⌊m⌋+ 1) ▷ iteration corresponding to phase ℓ
9: (result, discovered)← Gather-data(πkℓ

, Cℓ, α, z)
10: if discovered is True then
11: ▷ result is a state-action pair
12: Append result to C0; D0[result]←⊥
13: break

14: ▷ result is a set of n H-horizon trajectories ∼ πkℓ
starting at z

15: Dℓ[z]← result

16: if ̸ ∃z′ ∈ Cℓ s.t. Dℓ[z
′] =⊥ then

17: kℓ+1 ← kℓ + (⌊m⌋+ 1) if kℓ + (⌊m⌋+ 1) ≤ ⌊K⌋ otherwise ⌊K⌋

18: ▷ update policy for every k ∈ [kℓ, kℓ+1 − 1] using Cℓ, Dℓ

19: for k = kℓ, . . . , kℓ+1 − 1 do
20: Qr

k , _← LSE(Cℓ, Dℓ, πk, πkℓ
)

21: ▷ update variables and improve policy
22: for all s ∈ Cov(Cℓ) \ Cov(Cℓ+1), and for all a ∈ A do
23: Q̃r

k(s, a)← Trunc[0, 1
1−γ ]

Qr
k(s, a)

24: for all s, a ∈ S ×A do

25: πk+1(a|s)←

{
πk+1(a|s) if s ∈ Cov(Cℓ+1)

πk(a|s) exp(η1Q̃
r
k(s,a))∑

a′∈A πk(a′|s) exp(η1Q̃r
k(s,a

′))
otherwise

26: for z ∈ Cℓ s.t. z ̸∈ Cℓ+1 do
27: Append z to Cℓ+1; Dℓ+1[z]←⊥

A.1 The Gather-data subroutine

Given a core set C, a behaviour policy µ, a starting state-action pair (s, a) ∈ S × A along with
some algorithmic parameters, the Gather-data subroutine (algorithm 3) will either 1) return a newly
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Algorithm 3 Gather-data

Input: policy π, core set C, regression parameter α = ϵ2(1−γ)2

25B2(1+U) , H = ln(4/(ϵ(1−γ)))
1−γ , n =

(1+ρ0)
2 ln

(
8d̃L
δ

)
2ϵ2(1−γ)2 , starting state and action (s, a)

Initialize: Trajectories← ()

1: if s ̸∈ Cov(C) then
2: for a ∈ A do
3: if (s, a) ̸∈ ActionCov(C) then return ((s, a), T rue)

4: for i ∈ [n] do
5: τ is,a ← ()

6: Si
0 ← s, Ai

0 ← a
7: append Si

0, A
i
0 to τ is,a

8: for h = 0, . . . ,H − 1 do
9: Si

h+1, R
i
h+1, C

i
h+1 ← simulator(Si

h, A
i
h)

10: if Si
h+1 ̸∈ Cov(C) then

11: for a ∈ A do
12: if (Si

h+1, a) ̸∈ ActionCov(C) then return ((Si
h+1, a), T rue)

13: ▷ no new informative features discovered
14: Ai

h+1 ∼ π(·|Si
h+1)

15: append Ri
h+1, C

i
h+1, S

i
h+1, A

i
h+1 to τ is,a

16: append τ is,a to Trajectories

return (Trajectories, False)

discovered state-action pair, or 2) return a set of n trajectories. Each trajectory is generated by running
the behaviour policy µ with the simulator for H consecutive steps. For i = 1, . . . , n, let τ is,a denote
the ith trajectory starting from s, a to be {Si

0 = s,Ai
0 = a,Ri

1, C
i
1, · · · , Si

H−1, A
i
H−1, R

i
H , Ci

H , Si
H}.

Then the i-th discounted cumulative rewards G(τ is,a) =
∑H−1

h=0 γhRi
h+1. For a target policy π, then

the empirical mean of the discounted sum of rewards is as follows,

q̄(s, a) =
1

n

n∑
i=1

ρ(τ is,a)G(τ is,a), (8)

where ρ(τ is,a) = ΠH−1
h=1

π(Ai
h|S

i
h)

µ(Ai
h|S

i
h)

is the per-trajectory importance sampling ratio.

For some given s̄ and ā, we establish the following relationship between the target policy π and the
behavior policy µ:

π(ā|s̄) ∝ µ(ā|s̄) exp(f(s̄, ā)) s.t. sup
s̄,ā
|f(s̄, ā)| ≤ ln(1 + ρ0)

2H
, (9)

where f(s̄, ā) : S ×A → R+ and ρ0 ≥ 0 is a given constant. By establishing the relationship stated
in eq. (9), the importance sampling ratio ρ(τ is,a) can be bounded by 1 + ρ0 as this is proven in the
following lemma:

Lemma 3 Suppose the trajectory τ = (S0, A0, R1, S1, A1, · · · , SH−1, AH−1, RH) is sampled from
a behaviour policy µ, and µ is related to the target policy π via eq. (9). The per-trajectory importance
sampling ratio

ρ(τ) = ΠH−1
h=1

π(Ah|Sh)

µ(Ah|Sh)
≤ 1 + ρ0.
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Proof: Let l0 = sups,a |f(s, a)|, where f is defined in eq. (9). For any (s, a) ∈ {(Sh, Ah)}H−1
h=1 ,

π(a|s) = µ(a|s) exp(f(s, a))∑
a′ µ(a′|s) exp(f(s, a′))

≤ µ(a|s) exp(l0)∑
a′ µ(a′|s) exp(−l0)

≤ µ(a|s) exp(2l0).

We see that π(a|s)
µ(a|s) ≤ exp(2l0), and it follows that ΠH−1

h=1
π(Ah|Sh)
µ(Ah|Sh)

≤ exp(2l0H). By assumption,

l0 ≤ ln(1+ρ0)
2H , then exp(2l0H) ≤ exp

(
2H ln(1+ρ0)

2H

)
≤ 1 + ρ0. ■

Define the probability distribution Pπ,s,a over trajectory {Sh, Ah, Rh+1}h≥0 as follows: the initial
state S0 is set deterministically to s, and the initial action A0 is set deterministically to a. For each
subsequent time step h ≥ 0, the next state Sh+1 is sampled according to the transition probability
P (·|Sh, Ah), and the next action Ah+1 is sampled from the policy π(·|Sh+1). It follows that Eπ,s,a

denotes the expectation with respect to distribution Pπ,s,a.

Now, we show that for all (s, a) ∈ C, |q̄(s, a) − qπ(s, a)| ≤ ϵ, where ϵ > 0 is a given target error.
Additionally, the accuracy guarantee of |q̄(s, a)− qπ(s, a)| ≤ ϵ continues to holds for the extended
set of policies defined in definition 1. Formally, we state the main result of this section.

Lemma 4 For any s, a ∈ S × A,X ⊂ S, the Gather-data subroutine will either return with
((s′, a′),True) for some s′ ̸∈ X , or it will return with (D[(s, a)],False), where D[(s, a)] is a set of n
independent trajectories generated by a behavior policy µ starting from (s, a). When Gather-data
returns False for (s, a), we assume 1) the behavior policy µ and target policy π for all the states and
actions encountered in the trajectories stored in D[(s, a)] satisfy eq. (9) and 2) q̄(s, a) is an unbiased
estimate of Eπ′,s,a[

∑H−1
h=0 γhRh+1] for all π′ ∈ Ππ,X . Then, the importance-weighted return q̄(s, a)

constructed from D[(s, a)] according to eq. (8) will, with probability 1− δ′,

|q̄(s, a)− qπ′(s, a)| ≤ ϵ for all π′ ∈ Ππ,X .

Proof: The proof follows similar reasoning to Lemma 4.2 Weisz et al. (2022).

Recall D[(s, a)] stores n number of trajectories indexed by i, where each trajectory τ is,a =

(Si
0 = s,Ai

0 = a,Ri
0, . . . , S

i
H−1) ∼ µ. The per-trajectory importance sampling ratio ρ(τ is,a) =

ΠH−1
h=1

π(Ai
h|S

i
h)

µ(Ai
h|S

i
h)

, and the discounted cumulative return is
∑H−1

h=0 γhRi
h+1. By the triangle inequality,

|q̄(s, a)− qπ(s, a)| = |
1

n

n∑
i=1

ΠH−1
h=0

π(Ai
h|Si

h)

µ(Ai
h|Si

h)

H−1∑
h=0

γhRi
h+1 − qπ(s, a)|

≤ | 1
n

n∑
i=1

ρ(τ is,a)

H−1∑
h=0

γhRi
h+1 − Eπ,s,a

H−1∑
h=0

γhRh+1|+ |Eπ,s,a

H−1∑
h=0

γhRh+1 − qπ(s, a)|. (10)

The goal is to bound each of the two terms in eq. (10) by ϵ
4 so that the sum of the two is ϵ

2 .

By assumption, the policies π and µ satisfies eq. (9) for all state-action pairs (Si
h, A

i
h) ex-

tracted from the i-trajectory τ is,a. Second, q̄(s, a) is assumed to be an unbiased estimate of

Eπ,s,a

[∑H−1
h=0 γhRh+1

]
. Note that for all i = 1, . . . , n, the importance weighted cumulative

return ρ(τ is,a)
∑H−1

h=0 γhRi
h+1 are independent random variables, and the value of each such random

variable ∈
[
0, 1+ρ0

1−γ

]
. This is because 1)

∑H−1
h=0 γhRi

h+1 ≤ 1
1−γ since the rewards take values in the

range of [0, 1], and 2) ρ(τ is,a) ≤ 1 + ρ0 by lemma 3. We apply Hoeffding’s inequality,

P

(∣∣∣∣∣ 1n
n∑

i=1

ρ(τ is,a)

H−1∑
h=0

γhRi
h+1 − Eπ,s,a

H−1∑
h=0

γhRh+1

∣∣∣∣∣ > ϵ

4

)
≤ 2 exp

− 2n
(
ϵ
4

)2(
1+ρ0

1−γ

)2
 .
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Then, we have with probability 1− δ′/2, where δ′ = 2 exp

(
− 2nϵ2

16( 1+ρ0
1−γ )

2

)
, the first term in eq. (10)

| 1n
∑n

i=1 ρ(τ
i
s,a)

∑H−1
h=0 γhRi

h+1 − Eπ,s,a

∑H−1
h=0 γhRh+1| ≤ ϵ

4 . For the second term in eq. (10),

|Eπ,s,a

H−1∑
h=0

γhRh+1 − qπ(s, a)| = |Eπ,s,a

∞∑
h=H

γhRh+1| ≤
γH

1− γ
.

By the choice of H = ln(4/(1−γ)ϵ)
1−γ , we have γH

1−γ ≤
ϵ
4 . Putting everything together, we get

|q̄(s, a)− qπ(s, a)| ≤ ϵ
2 . To get the final result, we need to upper bound |qπ(s, a)− qπ′(s, a)| by ϵ

2 ,
so that |q̄(s, a)− qπ′(s, a)| ≤ |q̄(s, a)− qπ(s, a)|+ |qπ(s, a)− qπ′(s, a)| ≤ ϵ.

Recall that π and π′ differs in distributions over states that are not in X . For a trajectory (S0 =
s,A0 = a, S1, . . . ), let T be the smallest positive integer such that ST ̸∈ X , then the distribution
of the trajectory (S0 = s,A0 = a, S1, . . . , ST ) are the same under Pπ,s,a and Pπ′,s,a because
π(·|s) = π′(·|s) for all s ∈ X . Then,

|qπ(s, a)− qπ′(s, a)| =

∣∣∣∣∣Eπ,s,a

[
T−1∑
t=0

γtRt + γT vπ(ST )

]
− Eπ′,s,a

[
T−1∑
t=0

γtRt + γT vπ′(ST )

]∣∣∣∣∣
=
∣∣Eπ,s,a

[
γT vπ(ST )

]
− Eπ′,s,a

[
γT vπ′(ST )

]∣∣
=

∑
s′∈X ,a′

Pπ,s,a(ST−1 = s′, AT−1 = a′)P (ST |s′, a′)γT vπ(ST )

−
∑

s′∈X ,a′

Pπ′,s,a(ST−1 = s′, AT−1 = a′)P (ST |s′, a′)γT vπ′(ST )

=
∑

s′∈X ,a′

Pπ,s,a(ST−1 = s′, AT−1 = a′)P (ST |s′, a′)γT (vπ(ST )− vπ′(ST ))

≤ 1

1− γ

∑
s′∈X ,a′

Pπ,s,a(ST−1 = s′, AT−1 = a′)P (ST |s′, a′)γT =
1

1− γ
Eπ,s,a[γ

T ]

=
1

1− γ

∞∑
t=1

γtPπ,s,a(T = t) ≤ 1

1− γ

H−1∑
t=1

Pπ,s,a(T = t)γ0 +
1

1− γ

∞∑
t=H

Pπ,s,a(T ≥ H)γH

≤ 1

1− γ
Pπ,s,a(1 ≤ T < H) +

γH

1− γ
.

Recall Pπ,s,a(1 ≤ T < H) =
∑H−1

t=1

∑
s′∈X ,a′∈A Pπ,s,a(St−1 = s′, At−1 = a′)P (ST |s′, a′), and

recall S0 = s,A0 = a, then by the law of total probability, we have

Pπ,s,a(St = s′, At = a′)

=
∑

s1,...,st−1,
a1,...,at−1

Πt−1
i=0P (Si+1 = si+1|Si = si, Ai = ai)

(
Πt

i=1π(Ai = ai|Si = si)
)

=
∑

s1,...,st−1,
a1,...,at−1

Πt−1
i=0P (Si+1 = si+1|Si = si, Ai = ai)Π

t
i=1

π(Ai = ai|Si = si)

µ(Ai = ai|Si = si)
µ(Ai = ai|Si = si)

≤ (1 + ρ0)
∑

s1,...,st−1,
a1,...,at−1

Πt−1
i=0P (Si+1 = si+1|Si = si, Ai = ai)Π

t
i=1µ(Ai = ai|Si = si) (11)

= (1 + ρ0)Pµ,s,a(St = s′, At = a′).

To get eq. (11), we use lemma 3 and that 1 ≤ t ≤ H − 1.
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Altogether, we have

|qπ(s, a)− qπ′(s, a)|

≤ 1

1− γ

H−1∑
t=1

∑
s′∈X ,a′∈A

(1 + ρ0)Pµ,s,a(St−1 = s′, At−1 = a′)P (ST |s′, a′)

+
γH

1− γ

≤ 1 + ρ0
1− γ

Pµ,s,a(1 ≤ T < H) +
ϵ

4
.

Now, we bound Pµ,s,a(1 ≤ T < H). For each (s, a) ∈ X , in the ith rollouts, let Ii(s, a) be an
indicator function, where it takes the value 1 when the event that ST ̸∈ X occurs during 1 ≤ T < H .
Then Eµ,s,a[Ii(s, a)] = Pµ,s,a(1 ≤ T < H). By another Hoeffding’s inequality,

P

(
|Eµ,s,a[Ii(s, a)]−

1

n

n∑
i=1

Ii(s, a)| >
ϵ(1− γ)

4(1 + ρ0)

)
≤ 2 exp

(
−2n(ϵ(1− γ)/4(1 + ρ0))

2

(1)
2

)

= 2 exp

− 2nϵ2

16
(

1+ρ0

1−γ

)2
 = δ′.

Then, with probability 1− δ′/2,

|Eµ,s,a[Ii(s, a)]−
1

n

n∑
i=1

Ii(s, a)| ≤
ϵ(1− γ)

4(1 + ρ0)
, (12)

When Gather-data subroutine returns, all indicators Ii(s, a) = 0 for all (s, a) ∈ X and i ∈ [n], then
we have

Pµ,s,a(1 ≤ T < H) ≤ ϵ(1− γ)

4(1 + ρ0)
. (13)

Putting everything together, we have the result. ■

A.2 The LSE subroutine

Algorithm 4 LSE
Input: C, D, πk, π

′
k

1: for s, a ∈ C do
2: for every τ is,a ∈ D[(s, a)] for every i ∈ [n] do
3: extract {Si

0, A
i
0, R

i
1, C

i
1, S

i
1, A

i
1 · · ·Si

H , Ai
H} from τ is,a

4: compute Gi
r(s, a)←

∑H−1
h=0 γhRi

h+1; Gi
c(s, a)←

∑H−1
h=0 γhCi

h+1

5: compute ρi(s, a)← ΠH−1
h=1

πk(A
i
h|S

i
h)

π′
k(A

i
h|S

i
h)

6: q̄r(s, a)← 1
n

∑n
i=1 ρ

i(s, a)Gi
r(s, a); q̄c(s, a)← 1

n

∑n
i=1 ρ

i(s, a)Gi
c(s, a)

7: wr ←
(
Φ⊤

C ΦC + αI
)−1

Φ⊤
C q̄

r; wc ←
(
Φ⊤

C ΦC + αI
)−1

Φ⊤
C q̄

c

8: Qr(s, a)← ⟨wr, ϕ(s, a)⟩, Qc(s, a)← ⟨wc, ϕ(s, a)⟩ for all s, a
return Qr, Qc

Given a core set C, a set of trajectories, a behaviour policy µ, a target policy π, the LSE subroutine
(algorithm 4) returns a least-square estimate Q of qπ .

If the core set C is empty, we define Q(·, ·) to be zero. Then, for a target accuracy ϵ > 0 and a uniform
misspecification error ω defined in assumption 1, we have a bound on the accuracy of q̄ with respect
to qπ as given by the next lemma.
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Lemma 5 [Lemma 4.3 of Weisz et al. (2022)] Let π be a randomized policy. Let C = {(si, ai)}i∈[N ]

be a set of state-action pairs of set size N ∈ N. Assume for all i ∈ [N ], |q̄(si, ai)− qπ(si, ai)| ≤ ϵ.
Then, for all s, a ∈ S ×A,

|Q(s, a)− qπ(s, a)| ≤ ω + ∥ϕ(s, a)∥V (C,α)−1

(√
αB + (ω + ϵ)

√
N
)
.

Proof: If assumption 1 holds, then there exists a wπ ∈ Rd, ∥wπ∥2 ≤ B such that for any
(s, a) ∈ S × A, |ϕ(s, a)⊤wπ − qπ(s, a)| ≤ ω, where ω is the misspecification error. Let w̄π =
V (C,α)−1

∑
i∈[N ] ϕ(si, ai)ϕ(si, ai)

⊤wπ. For any (s, a) ∈ S × A, recall Q(s, a) = ϕ(s, a)⊤w,
where w = V (C,α)−1

∑
i∈[N ] ϕ(si, ai)q̄(si, ai). It follows that

|Q(s, a)− qπ(s, a)|
≤ |ϕ(s, a)⊤(w − w̄π)|+ |ϕ(s, a)⊤(w̄π − wπ)|+ |ϕ(s, a)⊤wπ − qπ(s, a)|. (14)

To bound the second term in eq. (14), we have
|ϕ(s, a)⊤(w̄π − wπ)| ≤ ∥ϕ(s, a)∥V (C,α)−1∥w̄π − wπ∥V (C,α)

≤ ∥ϕ(s, a)∥V (C,α)−1∥ − αV (C, α)−1wπ∥V (C,α)

= α∥ϕ(s, a)∥V (C,α)−1∥wπ∥V (C,α)−1

≤ α∥ϕ(s, a)∥V (C,α)−1∥wπ∥ 1
α I (15)

≤ α∥ϕ(s, a)∥V (C,α)−1

√
1

α
B =

√
αB∥ϕ(s, a)∥V (C,α)−1 .

Let α be the smallest eigenvalue of V (C, α), then by eigendecomposition, V (C, α) = QΛQ⊤ ≥
Q(αI)Q⊤ = αQQ⊤ ≥ αI since QQ⊤ is orthonormal. This implies that V (C, α)−1 ≤ 1

αI , which
leads to eq. (15).

Finally, we bound the first term in eq. (14). For every i ∈ [N ], let ξi = ϕ(si, ai)
⊤wπ − q̄(si, ai).

Then,
|ξi| = |q̄(si, ai)− ϕ(si, ai)

⊤wπ| ≤ |q̄(si, ai)− qπ(si, ai)|+ |qπ(si, ai)− ϕ(si, ai)
⊤wπ|

≤ ϵ+ ω.

It follows that for all s, a ∈ S ×A,

|ϕ(s, a)⊤(w − w̄π)| = |⟨V (C, α)−1
∑
i∈[N ]

ϕ(si, ai)
(
q̄(si, ai)− ϕ(si, ai)

⊤wπ

)
, ϕ(s, a)⟩|

= |⟨V (C, α)−1
∑
i∈[N ]

ϕ(si, ai)ξi, ϕ(s, a)⟩|

≤
∑
i∈[N ]

|⟨V (C, α)−1ϕ(si, ai)ξi, ϕ(s, a)⟩|

≤ (ω + ϵ)
∑
i∈[N ]

|⟨V (C, α)−1ϕ(si, ai), ϕ(s, a)⟩|

≤ (ω + ϵ)
√
|C|
√∑

i∈[N ]

⟨V (C, α)−1ϕ(si, ai), ϕ(s, a)⟩2 by Holder’s inequality

≤ (ω + ϵ)
√
|C|

√√√√√ϕ(s, a)⊤V (C, α)−1

∑
i∈[N ]

ϕ(si, ai)ϕ(si, ai)⊤

V (C, α)−1ϕ(s, a)

≤ (ω + ϵ)
√
|C|

√√√√√ϕ(s, a)⊤V (C, α)−1

∑
i∈[N ]

ϕ(si, ai)ϕ(si, ai)⊤ + αI

V (C, α)−1ϕ(s, a)

= (ω + ϵ)
√
|C|
√
ϕ(s, a)⊤V (C, α)−1ϕ(s, a)

= (ω + ϵ)
√
N∥ϕ(s, a)∥V (C,α)−1 .

Putting everything together complete the proof. ■
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A.3 The accuracy of least-square estimates

Given a core set C and a target policy π, for any s ∈ Cov(C), a ∈ A, the feature vector ϕ(s, a)
satisfies ∥ϕ(s, a)∥V (C,α)−1 ≤ 1. Then, by lemma 5, we have |Q(s, a)−qπ(s, a)| = O(ω+ ϵ) for any
s ∈ Cov(C). In this section, we verify whether this accuracy is maintained throughout the execution
of our algorithm.

We note that policy improvements can only occur during a running phase ℓ = l. When all (s, a) pairs
in Cℓ have their placeholder value ⊥ replaced by trajectories, algorithm 2 executes line 17 to line 27.
During each iteration from kℓ to kℓ+1−1, the LSE subroutine is executed. The accuracy of q̄k is used
to bound the estimation error in lemma 5. Therefore, we will first verify that the accuracy guarantee
of q̄k(s, a) used in lemma 4 is indeed satisfied by the main algorithm and maintained throughout its
execution.

Once a state-action pair is added to a core set, it remains in that core set for the duration of the
algorithm. This means that any core set Cl for l ∈ {0, . . . , L+ 1} can grow in size over time. When
a core set Cl is extended during a running phase ℓ = l − 1, the least-square estimate will need be
updated based on the newly extended Cl in running phase ℓ = l, which contains newly discovered
features. However, the policy is update only for states that are newly covered by the extended core set
Cl using the newly improved estimates. Meanwhile, the policy for other states that have already been
updated by a prior softmax update remain unchanged. Note that after line 27 of algorithm 2 is run, the
next phase’s core set Cl+1 will be set to Cl, which means that any state that was once newly covered
by Cl is no longer considered newly covered. Consequently, the policy for those states will remain
unchanged throughout the rest of the algorithm’s execution. By updating the policies accordingly,
we arrive at the following lemma, which will be crucial in proving the accuracy guarantee of the
least-squares estimators.

Lemma 6 For any l ∈ {0, . . . , L}, let Cpast
l be any past version of Cl and let πpast

k for k =

kl, · · · , kl+1 − 1 be the corresponding policies associated with Cpast
l . If at any later point dur-

ing the execution of the algorithm, πk is updated again, then it holds that

πk ∈ Ππk,Cov(Cl) ⊆ Ππpast
k ,Cov(Cpast

l ).

Additionally, for any states that have been covered by Cpast
l , it will continue to be covered by Cl

throughout the execution of the algorithm. In other words, s ∈ Cov(Cpast
l ) ⊆ Cov(Cl).

Proof: The proof follows similar logic to Lemma 4.5 of Weisz et al. (2022). Recall for matrices A,B,
A ≥ B means that A−B is positive semidefinite.

Because Cl ⊇ Cpast
l , there may be more rows added to ΦCl

than ΦCpast
l

. Recall V (Cl, α) = Φ⊤
Cl
ΦCl

+αI ,

and likewise for V (Cpast
l ) except ΦCl

is replaced by Cpast
l . Note that both V (Cl, α), V (Cpast

l , α) are
dimension d × d. Let C′l contain a set of state-action pairs that are in Cl \ Cpast

l . Then, V (Cl, α) −
V (Cpast

l , α) =
∑

(s,a)∈C′
l
ϕ(s, a)ϕ(s, a)⊤. Since any rank-1 matrices is positive semidefinite and

their sum is also positive semidefinite, it follows that V (Cl, α) ≥ V (Cpast
l , α).

Since V (Cl, α) and V (Cpast, α) are symmetric positive definite matrices, then it follows that
V (Cl, α)−1 ≤ V (Cpast

l , α)−1. From this, we see that for any x ∈ Rd, ∥x∥V (Cl,α)−1 ≤ ∥x∥V (Cpast
l ,α)−1 .

Then, it follows that ActionCov(Cpast
l ) ⊆ ActionCov(Cl), and likewise Cov(Cpast

l ) ⊆ Cov(Cl).
Therefore, for an s ∈ Cov(Cpast

l ), the same state s ∈ Cov(Cl), and the second result follows. Finally,
by the definition of the extended policy set definition 1, Ππk,Cov(Cl) ⊆ Ππpast

k ,Cov(Cpast
l ). ■

Lemma 7 For any l ∈ {0, . . . , L} and any (s, a) ∈ Cl, the importance-weighted q̄k(s, a) computed
in the LSE subroutine during the running phase ℓ = l is an unbiased estimator of the expected
discounted reward:

Eπ′
k,s,a

[
H−1∑
h=0

γhRh+1

]
for π′

k ∈ Ππk,Cov(Cl),

for iterations k = kl, · · · , kl+1 − 1 associated with this phase.
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Proof: For the algorithm to execute the LSE subroutine, every (s, a) ∈ Cl must have its placeholder
value ⊥ in Dl[(s, a)] replaced with trajectories. Trajectories are stored in Dl only when the
Gather-data subroutine returns “discovered is False” during the running phase ℓ = l. This
ensures that every state within these trajectories has passed the uncertainty test, thereby ensuring
that all such states are in the cover of Cl and will remain in the cover of Cl for the duration of
the algorithm, as established in lemma 6. Additionally, once trajectories for a (s, a) ∈ Cl are
stored in Dl, they remain unchanged throughout the algorithm’s execution. We aim to show
that q̄k(s, a) computed using Dl[(s, a)], is an unbiased estimate of the stated quantity for all it-
erations associated with the phase. This will be established through the following inductive arguments.

Base case: for a (s, a) ∈ Cl, the trajectories are generated and stored in Dl[(s, a)] for the
first time during the running phase ℓ = l.

We let τ is,a denote the i-th trajectory (Si
0 = s,Ai

0 = a,Ri
1, S

i
1, . . . , S

i
H−1, A

i
H−1, R

i
H) generated by

πkl
interacting with the simulator, and there are n such trajectories stored in Dl[(s, a)]. Then, for all

k = kl, · · · , kl+1 − 1, the return

q̄k(s, a) =
1

n

n∑
i=1

ΠH−1
h=1

πk(A
i
h|Si

h)

πkl
(Ai

h|Si
h)

G(τ is,a),

where G(τ is,a) =
∑H−1

h=0 γhRh+1.

The behavior policy πkl
is updated in a previous loop through the algorithm when ℓ = l − 1. For

iterations, starting with k = kl + 1, . . . , kl+1 − 1, the policy πk is updated in iteration k − 1. Thus,
the most recent policy πk and the behaviour policy πkl

are available for the computation of the
importance sampling ratio: ρk(τ is,a) = ΠH−1

h=1
πk(A

i
h|S

i
h)

πkl
(Ai

h|S
i
h)

. We show that the importance weighted

return ρk(τ
i
s,a)G(τ is,a) is an unbiased estimate of Eπk,s,a[G(τ is,a)]:

Eπkl
,s,a

[
ρk(τ

i
s,a)

H−1∑
h=0

γhRi
h+1

]

= Eπkl
,s,a

[
δ(s, a)P (S1|S0 = s,A0 = a)πk(A1|S1) . . . .πk(AH−1|SH−1)

δ(s, a)P (S1|S0 = s,A0 = a)πkl
(A1|S1) . . . πkl

(AH−1|SH−1)

H−1∑
h=0

γhRi
h+1

]

= Eπk,s,a

[
H−1∑
h=0

γhRi
h+1

]
,

where δ(s, a) is the dirac-delta function. Note, for the on-policy iteration k = kl, the importance
sampling ratio ρk(τ

i
s,a) = 1, and the result is trivially satisfied.

Finally, since all the states in the trajectories are in Cov(Cl), it follows that any policy π′
k ∈

Ππk,Cov(Cl) produces the same ρk(τ
i
s,a). The return ρk(τ

i
s,a)G(τ is,a) is an unbiased estimate of

Eπ′
k,s,a

[G(τ is,a] for all π′
k ∈ Ππk,Cov(Cl). This is true for all i = 1, . . . , n. Consequently, q̄k(s, a) is

an unbiased estimate of Eπ′
k,s,a

[
∑H−1

h=0 Rh+1] for all for all π′
k ∈ Ππk,Cov(Cl).

The requirement that the importance weighted q̄k be unbiased for all policies π′
k ∈ Ππk,Cov(Cl) is

important. This ensures that if πk is to be updated in a future loop through the algorithm again, the
estimates remain unbiased and unchanged.

Previously generated trajectories: for any (s, a) ∈ Cl, the trajectories have already been generated
and stored in Dl[(s, a)] during a previous loop of the algorithm when ℓ = l.

Let Dpast
l [(s, a)] denote a past snapshot of the data stored for a (s, a) ∈ Cpast

l . Let πpast
k for k =

kl, . . . kl+1 − 1 denote the policies associated with Cpast
l after line 27 has been run. Finally, let τ i,past

s,a

denote the i-th trajectory stored in Dpast
l [(s, a)].

Assume the importance weighted return ρk(τ
i,past
s,a )G(τ i,past

s,a ) is an unbiased estimate of
Eπ̃k,s,a[G(τ i,past

s,a )] for all π̃k ∈ Ππpast
k ,Cov(Cpast

l ) for k = kl, . . . , kl+1−1. When the algorithm executes
a loop with ℓ = l again, by lemma 6, the most recent policy πk ∈ Ππk,Cov(Cl) ⊆ Ππpast

k ,Cov(Cpast
l ) ,

then ρk(τ
i,past
s,a )G(τ i,past

s,a ) is also an unbiased estimate of Eπ′
k,s,a

[G(τ i,past
s,a )] for all π′

k ∈ Ππk,Cov(Cl).

20

76158https://doi.org/10.52202/079017-2424



Once Dpast
l [(s, a)] is populated with trajectories, Dpast

l [(s, a)] remain unchanged throughout the
execution of the algorithm. Therefore, G(τ is,a) = G(τ i,past

s,a ). Since all the states in the trajectories are
in Cov(Cpast

l ) ⊆ Cov(Cl) by lemma 6, any policy π̃k ∈ Ππpast
k ,Cov(Cpast

l ) produces the same ρk(τ
i
s,a).

Thus, we have ρk(τ is,a)G(τ is,a) = ρk(τ
i,past
s,a )G(τ i,past

s,a ). It follows that ρk(τ is,a)G(τ is,a) is an unbiased
estimate of Eπ′

k,s,a
[G(τ is,a)] for all π′

k ∈ Ππk,Cov(Cl). This is true for all i = 1, . . . , n. Consequently,
q̄k(s, a) is an unbiased estimate of Eπ′

k,s,a
[
∑H−1

h=0 Rh+1] for all π′
k ∈ Ππk,Cov(Cl). ■

Lemma 8 Whenever the LSE-subroutine of Confident-NPG is executed during a running phase ℓ = l
for l ∈ {0, . . . , L}, the behaviour policy πkℓ

(·|s) and target policy πk(·|s) for k = kℓ, . . . , kℓ+1 − 1
satisfy eq. (9) for any s ∈ Cov(Cℓ).

Proof: Recall that the behavior policy πkl
is updated during a previous loop of the algorithm when

ℓ = l − 1. By the time the LSE subroutine is executed, πkℓ
will be the policy that generated the data.

Therefore, for the on-policy iteration where k = kℓ, eq. (9) is trivially satisfied.

For subsequent iterations, starting with k = kℓ + 1, . . . , kℓ+1 − 1, for any s ∈ Cov(Cℓ), the
policy πk(·|s) will have either performed a softmax update for the first time or remain unchanged
from a previous softmax update based on an earlier least-square estimate. Either way, for any
s ∈ Cov(Cℓ), the target policy πk and behaviour policy πkℓ

relate to each other in the form of
πk(·|s) ∝ πkℓ

(·|s) exp(η1
∑k−1

t=kℓ
Q̃t(s, a)). Since Q̃t(s, a) ∈ [0, 1

1−γ ] for any t = kℓ, . . . , k − 1,
then it follows that

0 ≤ η1

k−1∑
t=kℓ

Q̃t(s, a) ≤ η1(k − kℓ)
1

1− γ
≤ η1((⌊m⌋+ 1)− 1)

1− γ
.

By choosing η1 = (1 − γ)
√

2 ln(|A|)
K , H = ln(4/ϵ(1−γ))

1−γ ,m = ln(1+ρ0)
2Hϵ(1−γ)2 , and K = 2 ln(A)

(1−γ)4ϵ2 , we

have η1((⌊m⌋+1)−1)
1−γ ≤ η1m

1−γ = ln(1+ρ0)
2H . Then it follows that eq. (9) is satisfied. ■

Lemma 9 For any l ∈ {0, . . . , L} and any (s, a) ∈ Cl, the importance-weighted q̄k(s, a) computed
in the LSE subroutine during the running phase ℓ = l satisfies the following with probability 1− δ′,

|q̄k(s, a)− qπ′
k
(s, a)| ≤ ϵ for π′

k ∈ Ππk,Cov(Cl) (16)

for all iterations k = kl, . . . , kl+1 − 1 associated with this phase.

Proof: We apply lemma 4 to each (s, a) ∈ Cl. To ensure the applicability of the lemma, we verify its
two conditions: 1) the policies satisfy eq. (9) and 2) the estimate are unbiased.

We note that when the LSE-subroutine is executed during a running phase with ℓ = l, the Gather-data
subroutine has already completed, and the algorithm trajectories for each state-action pair (s, a) ∈ Cl
are stored in Dl[(s, a)]. For any trajectory to be stored in Dl, this means that every state within the
trajectories has passed the uncertainty test, ensuring that all such states are in the cover of Cl. By
lemma 6, these states will continue to be covered by Cl throughout the execution of the algorithm.
The implication of this is that all the states in a trajectory of Dl[(s, a)] satisfy eq. (9) by lemma 8.

Second, by lemma 7, the importance weighted return q̄k(s, a) is unbiased estimate of any
Eπ′

k,s,a

[∑H−1
h=0 γhRh+1

]
for all π′

k ∈ Ππk,Cov(Cl
). Altogether, by lemma 4, we can ensure eq. (16)

holds.

Consider a past loop through the algorithm with ℓ = l, let Cpast
l be the core set and πpast

k for
k = kl, . . . , kl+1 − 1 be the policies associated with Cpast

l after line 27 has been run. If eq. (16) holds
for all π̃k ∈ Ππpast

k ,Cov(Cpast
l ), then the accuracy of q̄k will continue to hold for any future update of πk

because πk ∈ Ππk,Cov(Cl) ⊆ Ππpast
k ,Cov(Cpast

l ) by lemma 6. ■

Lemma 10 (Weisz et al. (2022)) At any time during the execution of the main algorithm, for all
l ∈ {0, . . . , L}, the size of each Cl is bounded:

|Cl| ≤ 4d ln

(
1 +

4

α

)
= d̃ = Õ(d),
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where the α is the smallest eigenvalue of V (C, α) and N is the radius of the Euclidean ball containing
all the feature vectors.

Lemma 11 Whenever LSE subroutine of Confident-NPG is executed during a running phase ℓ = l for
l ∈ {0, . . . , L}, the least-square estimate Q̃k(s, a) satisfies the following condition for all iterations
k = kℓ, · · · , kℓ+1 − 1 associated with this phase and for all s ∈ Cov(Cℓ) and a ∈ A,

|Q̃k(s, a)− qπ′
k
(s, a)| ≤ ϵ′ for all π′

k ∈ Ππk,Cov(Cℓ), (17)

where ϵ′ = ω +
√
αB + (ω + ϵ)

√
d̃.

Proof: We prove the result by induction similar to Lemma F.1 of Weisz et al. (2022). We let
C−l , π−

k , Q̃
−
k to denote the value of variable Cl, πk, Q̃k at the time when line 17 to line 27 were most

recently executed with ℓ = l in a previous loop through the algorithm. If such time does not exist, we
let their values be the initialization values. Only after the execution of line line 27 will C−l change
and as well as Cl+1, and this is the only time that Cl+1 can be changed. Therefore, at the start of a
new loop, we see that Cl+1 = C−l . This also holds at the initialization of the algorithm, we conclude
that at the start of each loop, Cov(Cl+1) = Cov(C−l ).

At initialization, Q̃k = 0 for any k ∈ {0, . . . ,K} and Cl = () for all l ∈ {0, . . . , L}. By applying
lemma 5 (Lemma 4.3 of Weisz et al. (2022)), for any (s, a) ∈ S ×A,

|Q̃k(s, a)− qπ′
k
(s, a)| ≤ ω +

√
αB ≤ ϵ′,

which satisfies eq. (17).

Next, let us consider the start of a loop after ℓ = l is set and assume that the inductive hypothesis
holds for the previous time line 17 to line 27 were executed with the same value of ℓ = l. For any
s ∈ Cov(C−l−1), policy πkl

(·|s) would have already been set in a previous loop with value l − 1
and remains unchanged in the current loop. By lemma 9, the condition of lemma 5 holds, then by
lemma 5, we have for any s ∈ Cov(C−l−1),

|Q̃−
kl
(s, ·)− qπ′

kl
(s, ·)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃ for πk′

l
∈ Ππ−

kl
,Cov(C−

l−1)
,

where ∥ϕ(s, ·)∥V (C−
l−1,α)

−1 ≤ 1 because s ∈ Cov(C−l−1) and |C−
l−1| ≤ d̃ by lemma 10. Recall by

definition, Q̃kl
= Q̃−

kl
, πkl

= π−
kl

, Cl = C−
l−1, and Cov(Cl) = Cov(C−l−1). It follows that for any

s ∈ Cov(Cl), |Q̃kl
(s, ·)− qπ′

kl
(s, ·)| ≤ ϵ′ for πk′

l
∈ Ππkl

,Cov(Cl).

For any s that is already covered by Cl (i.e., s ∈ Cov(C−l )), and for any off-policy iteration k =

kl +1, · · · , kl+1 − 1, Q̃k(s, ·) = Q̃−
k (s, ·). Additionally, the policy πk(·|s) would already have been

set in a previous running loop with the same value of l and remains unchanged in the current loop.
For s ∈ Cov(C−l ), by lemma 9, the condition of lemma 5 holds, and then by lemma 5,

|Q̃−
k (s, ·)− qπ′

k
(s, ·)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃ for πk′ ∈ Ππ−

k ,Cov(C−
l ),

where ∥ϕ(s, ·)∥V (C−
l ,α)−1 ≤ 1 because s ∈ Cov(C−l ) and |C−l | ≤

√
d̃ by lemma 10. By lemma 6,

Ππk,Cov(Cl) ⊆ Ππ−
k ,Cov(C−

l ). By definition, Q̃k(s, ·) = Q̃−
k (s, ·) for s ∈ Cov(Cl+1) = Cov(C−l ),

|Q̃k(s, ·)− qπ′
k
(s, ·)| ≤ ϵ′ for any π′

k ∈ Ππk,Cov(Cl+1).

Finally, for any s that is newly covered by Cl (i.e., s ̸∈ Cov(Cl+1)), and for all k = kl, . . . , kl+1 − 1,
Q̃k(s, ·) = Qk(s, ·). By lemma 9, the condition of lemma 5 holds, and then by lemma 5, we have

|Qk(s, ·)− qπ′
k
(s, ·)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃ for πk′ ∈ Ππk,Cov(Cl),

where ∥ϕ(s, ·)∥V (Cl,α)−1 ≤ 1 and |Cl| ≤ d̃ by lemma 10. ■

Lemma 12 For any δ′ ∈ (0, 1], a target accuracy ϵ > 0, misspecification error ω ≥ 0, and initial
state s0, with probability at least 1− δ′, the value difference between any π ∈ Πrand and the mixture
policy π̄K returned by Confident-NPG has the following bound:

vπ(s0)− vπ̄K
(s0) ≤

4ϵ′

1− γ
+

1

K(1− γ)

K−1∑
k=0

Es′∼dπ(s0),s′∈Cov(C0)

[
⟨Q̃k(s

′, ·), π(·|s′)− πk(·|s′)⟩
]
.
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Proof: For any l ∈ {0, . . . , L} and for all iterations k = kl, . . . , kl+1 − 1 associated with l, define

π+
k (·|s) =

{
πk(·|s) if s ∈ Cov(Cl)
π(·|s) otherwise.

Then, for any s ∈ Cov(Cl),

vπ(s)− vπk
(s) = vπ(s)− vπ+

k
(s) + vπ+

k
(s)− vπk

(s)

=
1

1− γ
Es′∼dπ(s)

[
⟨qπ+

k
(s′, ·), π(·|s′)− π+

k (·|s
′)⟩
]

︸ ︷︷ ︸
I

by performance difference lemma

+ ⟨qπ+
k
(s, ·), π+

k (·|s)⟩ − ⟨qπk
(s, ·), πk(·|s)⟩︸ ︷︷ ︸

II

,

where dπ(s) is the discounted state occupancy measure induced by following π starting from s.

To bound term II , we note that for any s ∈ Cov(Cl), we have π+
k (·|s) = πk(·|s) and both

πk, π
+
k (·|s) ∈ Ππk,Cov(Cl). By lemma 11, we have for any s ∈ Cov(Cl), a ∈ A, |Q̃k(s, a) −

qπ′
k
(s, a)| ≤ ϵ′ for any π′

k ∈ Ππk,Cov(Cl). Then, for any s ∈ Cov(Cl), a ∈ A,

|qπ+
k
(s, a)− qπk

(s, a)| ≤ |qπ+
k
(s, a)− Q̃k(s, a)|+ |Q̃k(s, a)− qπk

(s, a)| ≤ 2ϵ′.

It follows that for any s ∈ Cov(Cl),

⟨qπ+
k
(s, ·), π+

k (·|s)⟩ − ⟨qπk
(s, ·), πk(·|s)⟩ = ⟨πk(·|s), qπ+

k
(s, ·)− qπk

(s, ·)⟩

≤ |⟨πk(·|s), qπ+
k
(s, ·)− qπk

(s, ·)⟩|

≤ ∥qπ+
k
(s, ·)− qπk

(s, ·)∥∞∥πk(·|s)∥1
≤ 2ϵ′.

To bound term I , we note that for any s ̸∈ Cov(Cl), π+
k (·|s) = π(·|s) and π+

k ∈ Ππk,Cov(Cl), then

1

1− γ
Es′∼dπ

s

[
⟨qπ+

k
(s′, ·), π(·|s′)− π+

k (·|s
′)⟩
]

=
1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
⟨qπ+

k
(s′, ·), π(·|s′)− π+

k (·|s
′)⟩
]

+
1

1− γ
Es′∼dπ

s ,s
′ ̸∈Cov(Cl)

[
⟨qπ+

k
(s′, ·), π(·|s′)− π+

k (·|s
′)⟩
]

=
1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
⟨qπ+

k
(s′, ·), π(·|s′)− π+

k (·|s
′)⟩
]

=
1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
⟨qπ+

k
(s′, ·)− Q̃k(s

′, ·), π(·|s′)− π+
k (·|s

′)⟩
]

+
1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
⟨Q̃k(s

′, ·), π(·|s′)− π+
k (·|s

′)⟩
]

≤ 1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
∥qπ+

k
(s′, ·)− Q̃k(s

′, ·)∥∞∥π(·|s′)− π+
k (·|s

′)∥1
]

by Holder’s inequality

+
1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
⟨Q̃k(s

′, ·), π(·|s′)− π+
k (·|s

′)⟩
]

≤ 2ϵ′

1− γ
by lemma 11 and ∥π∗(·|s′)− π+

k (·|s
′)∥1 ≤ 2

+
1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
⟨Q̃k(s

′, ·), π(·|s′)− πk(·|s′)⟩
]

=
2ϵ′

1− γ
+

1

1− γ
Es′∼dπ

s ,s
′∈Cov(Cl)

[
⟨Q̃k(s

′, ·), π(·|s′)− πk(·|s′)⟩
]
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In summary, for any l, for any k = kl, . . . , kl+1 − 1 associated with l, and for any s ∈ Cov(Cl),

vπ(s)− vπk
(s) ≤ 4ϵ′

1− γ
+

1

1− γ
Es′∼dπ(s),s′∈Cov(Cl)

[
⟨Q̃k(s

′, ·), π(·|s′)− πk(·|s′)⟩
]
.

Because of line 27 of algorithm 2, one can use induction to show that by the time Confident-NPG
terminates, all the Cl for l ∈ {0, . . . , L + 1} will be equal. Therefore, the cover of Cl for all
l ∈ {0, . . . , L+1} are also equal. Thus, it is sufficient to only consider C0 at the end of the algorithm.
Because of line 3 of algorithm 2, s0 ∈ Cov(C0). Putting everything together, the value difference can
be bounded as follows,

1

K

K−1∑
k=0

(vπ(s0)− vπk
(s0)) =

1

K

L∑
l=0

kl+1−1∑
k=kl

(vπ(s0)− vπk
(s0))

≤ 1

K

L∑
l=0

kl+1−1∑
k=kl

4ϵ′

1− γ

+
1

K(1− γ)

L∑
l=0

kl+1−1∑
k=kl

Es′∼dπ(s0),s′∈Cov(Cl)

[
⟨Q̃k(s

′, ·), π(·|s′)− πk(·|s′)⟩
]

≤ 4ϵ′

1− γ
+

1

K(1− γ)

K−1∑
k=0

Es′∼dπ(s0),s′∈Cov(C0)

[
⟨Q̃k(s

′, ·), π(·|s′)− πk(·|s′)⟩
]
.

■

B Confident-NPG-CMDP

We include the proofs of lemmas that appear in prior works and supporting lemmas that are helpful
proving the lemmas in the main section. The lemmas that appear in the main section will have the
same numbering here.

B.1 The accuracy of least-square estimates

Once a state-action pair is added to a core set, it remains in that core set for the duration of the
algorithm. This means that any Cl for l ∈ {0, . . . , L + 1} can grow in size. When a core set Cl is
extended during a running phase ℓ = l, the least-square estimates will need be updated based on the
newly extended Cl which contains newly discovered features. However, the policy is update only
for states that are newly covered by the extended core set Cl using the newly improved estimates.
Note that after line 30 of algorithm 1 is run, the next phase’s core set Cl+1 will be set to Cl, which
means that any state that was once newly covered by Cl is no longer considered newly covered.
Consequently, the policy for those states will remain unchanged throughout the rest of the algorithm’s
execution.

We introduce hypothetical Q̃r
k and Q̃c

k to reflect the value of Q̃p
k, used in the update of πk+1 for k =

kl, . . . , kl+1 − 1 associated with running phase ℓ = l. At initialization, Q̃r
k(s, a) = 0, Q̃c

k(s, a) = 0
for all k = 0, . . . ,K, s ∈ S and a ∈ A. The values are specified in the following cases when line 27
is run:

Q̃r
k(s, a)←


Q̃r

k(s, a) if s ∈ Cov(Cl+1)

Qr
k(s, a) if s ∈ Cov(Cl) \ Cov(Cl+1)

initial value 0 if s ̸∈ Cov(Cl),

Q̃c
k(s, a)←


Q̃c

k(s, a) if s ∈ Cov(Cl+1)

Qc
k(s, a) if s ∈ Cov(Cl) \ Cov(Cl+1)

initial value 0 if s ̸∈ Cov(Cl),
where Qr

k(s, a), Q
c
k(s, a) are the least-square estimates using the most recently extended Cl at that

time. The dual variable λk is defined in line 29. Therefore, the Q̃p
k(s, a) used in the update of policy

at line 27 can be written as Q̃p
k(s, a) = trunc[0, 1

1−γ ] Q̃
r
k(s, a) + λk trunc[0, 1

1−γ ] Q̃
c
k(s, a).
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Lemma 1 Whenever LSE subroutine in line 21 of Confident-NPG-CMDP is executed during a
running phase ℓ = l for l ∈ {0, . . . , L}, the least-square estimate Q̃p

k(s, a) satisfies the following
condition for all iterations k = kℓ, . . . , kℓ+1 − 1 associated with this phase and for all s ∈ Cov(Cℓ)
and a ∈ A,

|Q̃p
k(s, a)− qpπ′

k,λk
(s, a)| ≤ ϵ′ for all π′

k ∈ Ππk,Cov(Cℓ),

where ϵ′ = (1+U)(ω+
√
αB+(ω+ ϵ)

√
d̃) with d̃ = Õ(d) and U is an upper bound on the optimal

Lagrange multiplier. Similarly, for initial state s0, we have

|Ṽ c
k (s0)− vcπ′

k
(s0)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃ for all π′

k ∈ Ππk,Cov(Cℓ).

Proof: By using the primal-dual approach, we have reduced the CMDP problem to an unconstrained
problem with a single reward of the form rλ = r + λc.

Because of line 7 have executed before entering the loop and line 30 have been executed in the
previous phase ℓ = l − 1, the initial state s0 ∈ Cov(Cℓ). If s0 is in Cov(Cℓ) for the first time (i.e.
s0 ∈ Cov(Cℓ) \ Cov(Cℓ+1) ), then the dual variable λk makes a mirror descent update in line 29
using V c

k (s0) at that time. After line 30 is executed, the core set for the next phase Cℓ+1 = Cℓ. This
means that any states, including s0, that are covered by Cℓ are then covered by Cℓ+1. By lemma 6,
the initial state s0 will continue to be covered by Cℓ+1 for the remainder of the algorithm’s execution.
This implies that the dual variable λk referenced in this lemma remains fixed at the value set when s0
is covered by Cℓ for the first time and does not change thereafter for the duration of the algorithm’s
execution.

Then the proof of this lemma follows similar logic to lemma 11 in the single reward setting. The result
of lemma 11 uses lemma 5. For lemma 5 to hold, lemma 9 is used to verify the conditions sufficient
for lemma 5 to hold. For lemma 9 to hold, one of the requirement is that the behaviour policy πkℓ

and the target policy πk must satisfy eq. (9). In the following paragraphs, we show that eq. (9) indeed
hold with appropriate changes to the parameters of interest. Then it follows that lemma 9 holds and
consequently lemma 5 holds. Once all the sufficient conditions hold, by following similar logic as in
lemma 11, we have the proof.

Since the policies are updated with respect to Q̃p instead of Q̃ of the single-reward setting, we need to
make adjustment to η1, H,m,K to ensure πkℓ

and πk indeed satisfy eq. (9). First, note the value Q̃p
k

for k = 0, . . . ,K are in the range of 0 and 1+U
1−γ . The upper bound value is the result of the primary

reward function taking values in the range of [0, 1] and the dual variable taking values in the range of
[0, U ]. The value U is defined in lemma 13 for relaxed-feasibility and in lemma 15 for strict-feasibility,
and it is an upper bound on the optimal dual variable (i.e., λ∗ ≤ U ). By similar argument to lemma 8,

we make the following changes to η1, H,m,K. We set the step size η1 = 1−γ
1+U

√
2 ln(|A|)

K , the total

number of iterations K =
62(
√

2 ln(|A|)+1)2(1+U)2

(1−γ)4ϵ2 , and H = ln((30
√

d̃(1+U))/((1−γ)2ϵ))
1−γ . Then, it

follows that m = (1+U) ln(1+ρ0)
2Hϵ(1−γ)2 .

Next, from lemma 7, we have each q̄rk(s, a) and q̄ck(s, a) is an unbiased estimate of
Eπ′

k,s,a
[
∑H−1

h=0 γhRh+1] and Eπ′
k,s,a

[
∑H−1

h=0 γhCh+1] respectively for all π′
k ∈ Ππk,Cov(Cl). Let

δ′ = 2 exp

(
− 2n( ϵ

4 )
2(

(1+ρ0)
1−γ

)2

)
. By lemma 9, with probability 1− δ′, we have for any (s, a) ∈ Cl,

|q̄rk(s, a)− qrπ′
k
| ≤ ϵ, |q̄ck(s, a)− qcπ′

k
| ≤ ϵ for all π′

k ∈ Ππk,Cov(Cl).

Then the conditions of lemma 5 hold, and by similar argument to lemma 11 using lemma 5, we have
for each (s, a) ∈ Cov(Cl),

|Q̃r
k(s, a)− qrπ′

k
(s, a)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃,

|Q̃c
k(s, a)− qcπ′

k
(s, a)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃,
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for all π′
k ∈ Ππk,Cov(Cℓ). Then it follows that for a given λk,

|Q̃p
k(s, a)− qpπ′

k,λk
(s, a)| = |(Q̃r

k(s, a)− qrπ′
k
(s, a)) + λk(Q̃

c
k(s, a)− qcπ′

k
(s, a))| ≤ ϵ′,

for all π′
k ∈ Ππk,Cov(Cℓ).

Finally, since s0 ∈ Cov(Cℓ) and Ṽ c
k (s0) = ⟨π′

k(·|s0), Q̃c
k(s0, ·)⟩, therefore |Ṽ c

k (s0) − vcπk
(s0)| =

|⟨π′
k(·|s0), Q̃c

k(s0, ·)− qcπ′
k
(s0, ·)⟩| ≤ ω +

√
αB + (ω + ϵ)

√
d̃ for all π′

k ∈ Ππk,Cov(Cℓ). ■

C Relaxed-feasibility

Lemma 13 [Lemma 4.1 of Jain et al. (2022)] Let λ∗ be the optimal dual variable that satisfies
minλ≥0 maxπ v

r
π(ρ) + λ(vcπ(ρ)− b). If we choose

U =
2

ζ(1− γ)
,

then λ∗ ≤ U .

Proof: Let π∗
c (ρ) = argmax vcπ(ρ), and recall that ζ = vcπ∗

c
(ρ)− b > 0, then

vrπ∗(ρ) = max
π

min
λ≥0

vrπ(ρ) + λ(vcπ(ρ)− b).

By Altman (2021),

vrπ∗(ρ) = min
λ≥0

max
π

vrπ(ρ) + λ(vcπ(ρ)− b)

= max
π

vrπ(ρ) + λ∗(vcπ(ρ)− b)

≥ vrπ∗
c
(ρ) + λ∗(vcπ∗

c
(ρ)− b)

≥ vrπ∗
c
(ρ) + λ∗ζ.

After rearranging terms, we have

λ∗ ≤
vrπ∗(ρ)− vrπ∗

c
(ρ)

ζ
≤ 1

ζ(1− γ)
.

By choosing U = 2
ζ(1−γ) , we have λ∗ ≤ U . ■

Definition 2

Rp(π∗,K) =

K−1∑
k=0

Es′∼dπ∗ (s0),s′∈Cov(C0)

[
⟨π∗(·|s′)− πk(·|s′), Q̃r

k(s
′, ·) + λkQ̃

c
k(s

′, ·)⟩
]
,

Rd(λ,K) =

K−1∑
k=0

(λk − λ)(Ṽ c
k (s0)− b).

Lemma 2 Let δ ∈ (0, 1] be the failure probability, ϵ > 0 be the target accuracy, and s0 be the
initial state. Assuming for all s ∈ Cov(C0) and all a ∈ A, |Q̃p

k(s, a) − qpπ′
k,λk

(s, a)| ≤ ϵ′ and

|Ṽ c
k (s0)− vcπ′

k
(s0)| ≤ ω+

√
αB+(ω+ ϵ)

√
d̃ for all π′

k ∈ Ππk,Cov(C0), then, with probability 1− δ,
Confident-NPG-CMDP returns a mixture policy π̄K that satisfies the following,

vrπ∗(s0)− vrπ̄K
(s0) ≤

5ϵ′

1− γ
+

(
√

2 ln(|A|) + 1)(1 + U)

(1− γ)2
√
K

,

b− vcπ̄K
(s0) ≤ [b− vcπ̄K

(s0)]+ ≤
5ϵ′

(1− γ)(U − λ∗)
+

(
√
2 ln(|A|) + 1)(1 + U)

(1− γ)2(U − λ∗)
√
K

,

where ϵ′ = (1 + U)(ω + (
√
αB + (ω + ϵ)

√
d̃)) with d̃ = Õ(d).

26

76164https://doi.org/10.52202/079017-2424



Proof: For the following result, we consider a k ∈ {0, . . . ,K} with its corresponding l ∈ {0, . . . , L}.
At the time of termination, all Cl are equal.

To obtain a bound on the suboptimality and the constraint violation, we apply lemma 12 with π = π∗

of CMDP, Q̃p
k = Q̃r

k + λkQ̃
c
k instead of Q̃k, and lemma 1 instead of lemma 11 of the single reward

setting. Then, we have

1

K

K−1∑
k=0

vpπ∗,λk
(s0)− vpπk,λk

(s0) (18)

≤ 4ϵ′

1− γ
+

1

K(1− γ)

K−1∑
k=0

Es′∼dπ∗ (s0),s′∈Cov(C0)

[
⟨Q̃r

k(s
′, ·) + λkQ̃

c
k(s

′, ·), π∗(·|s′)− πk(·|s′)⟩
]

=
4ϵ′

1− γ
+

Rp(π∗,K)

K(1− γ)
.

By Proposition 28.6 of Lattimore and Szepesvári (2020), the primal regret Rp(π∗,K) ≤
1+U
1−γ

√
2K ln(|A|) with η1 = 1−γ

1+U

√
2 ln(|A|)

K . Expanding eq. (18) in terms of vr, vc, we have

1

K

K−1∑
k=0

vrπ∗(s0)− vrπ(s0) +
1

K

K−1∑
k=0

λk(v
c
π∗(s0)− vcπk

(s0))

≤ 4ϵ′

1− γ
+

1 + U

(1− γ)2

√
2 ln(|A|)

K
. (19)

Furthermore, by lemma 1, we have |Q̃c
k(s, a) − qcπ′

k
(s, a)| ≤ ω +

√
αB + (ω + ϵ)

√
d̃ for any

s ∈ Cov(Cl). Recall Ṽ c
k (s0) = ⟨πk(·|s0), Q̃c

k(s0, ·)⟩, then it follows that λk(v
c
πk
(s0)− Ṽ c

k (s0)) ≤
|λk(v

c
πk
(s0)− Ṽ c

k (s0))| ≤ U(ω +
√
αB + (ω + ϵ)

√
d̃) ≤ ϵ′.

1

K

K−1∑
k=0

λk(v
c
πk
(s0)− vcπ∗(s0)) ≤

1

K

K−1∑
k=0

λk(v
c
πk
(s0)− b)

=
1

K

K−1∑
k=0

λk(v
c
πk
(s0)− Ṽ c

k (s0)) + λk(Ṽ
c
k (s0)− b)

≤ ϵ′ +
Rd(0,K)

K

≤ ϵ′ +
U

(1− γ)
√
K

.

The update to the dual variable is a mirror descent algorithm. By Proposition 28.6 of Lattimore and
Szepesvári (2020), the dual regret Rd(0,K) ≤ U

√
K

1−γ with η2 = U(1−γ)√
K

. Altogether,

1

K

K−1∑
k=0

vrπ∗(s0)− vrπk
(s0) ≤

4ϵ′

1− γ
+

1 + U

(1− γ)2

√
2 ln(|A|)

K
+ ϵ′ +

U

(1− γ)
√
K

≤ 5ϵ′

1− γ
+

(
√
2 ln(|A|) + 1)(1 + U)

(1− γ)2
√
K
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For bounding the constraint violations, we first incorporate Rd(λ,K) into eq. (19) and rearrange
terms to obtain:

1

K

K−1∑
k=0

vrπ∗(s0)− vrπk
(s0) +

λ

K

K−1∑
k=0

(b− vcπk
(s0))

≤ 1

K

K−1∑
k=0

(λk − λ)(vcπk
(s0)− b) +

4ϵ′

1− γ
+

(1 + U)
√
2 ln(|A|)

(1− γ)2
√
K

=
1

K

K−1∑
k=0

(λk − λ)(vcπk
(s0)− Ṽ c

k (s0)) +
1

K

K−1∑
k=0

(λk − λ)(Ṽ c
k (s0)− b)

+
4ϵ′

1− γ
+

(1 + U)
√
2 ln(|A|)

(1− γ)2
√
K

= ϵ′ +
Rd(λ,K)

K
+

4ϵ′

1− γ
+

(1 + U)
√
2 ln(|A|)

(1− γ)2
√
K

≤ 5ϵ′

1− γ
+

(1 + U)(
√
2 ln(|A|) + 1)

(1− γ)2
√
K

There are two constraint cases. Case one is no violation: b − vcπ̄K
(s0) ≤ 0. Then, it also holds

that b −△− vcπ̄K
(s0) ≤ 0 for any△ ≥ 0, which is what we want to show. Case two is violation:

b− vcπ̄K
(s0) > 0, for which case, λ = U . Using notation [x]+ = max{x, 0}, we have

1

K

K−1∑
k=0

vrπ∗(s0)− vrπk
(s0) +

U

K

[
K∑

k=0

b− vcπ(s0)

]
+

≤ 5ϵ′

1− γ
+

(1 + U)(
√
2 ln(|A|) + 1)

(1− γ)2
√
K

.

By Lemma B.2 of Jain et al. (2022), we have

[b− vcπ̄K
(s0)]+ ≤

5ϵ′

(1− γ)(U − λ∗)
+

(
√

2 ln(|A|) + 1)(1 + U)

(1− γ)2(U − λ∗)
√
K

.

■

Theorem 1 With probability 1−δ, the mixture policy π̄K returned by confident-NPG-CMDP ensures
that

vrπ∗(s0)− vrπ̄K
(s0) =

5(1 + U)(1 +
√
d̃)

1− γ
ω + ϵ, (20)

vcπ̄K
(s0) ≥ b−

(
5(1 + U)(1 +

√
d̃)

(1− γ)
ω + ϵ

)
. (21)

if we choose n = 302(1+ρ0)
2(1+U)2d̃

2ϵ2(1−γ)4 ln
(

8d̃(L+1)
δ

)
, α = (1−γ)2ϵ2

302(1+U)2B2 , K =
62(
√

2 ln(|A|)+1)2(1+U)2

(1−γ)4ϵ2 ,

η1 = 1−γ
1+U

√
2 ln(|A|)

K , η2 = U(1−γ)√
K

, H = ln((30
√

d̃(1+U))/((1−γ)2ϵ))
1−γ , m = (1+U) ln(1+ρ0)

2ϵH(1−γ)2 , and
U = 2

ζ(1−γ) .

Furthermore, the algorithm utilizes at most Õ(d2(1 + U)3ϵ−3(1 − γ)−8) queries in the
local-access setting.

Proof: From lemma 2, we have

vrπ∗(s0)− vrπ̄K
(s0) ≤

5ϵ′

(1− γ)
+

(
√

2 ln(|A|) + 1)(1 + U)

(1− γ)2
√
K

, (22)

b− vcπ̄K
(s0) ≤

5ϵ′

(1− γ)(U − λ∗)
+

(
√
2 ln(|A|) + 1)(1 + U)

(1− γ)2(U − λ∗)
√
K

, (23)
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Let C = 1
ζ(1−γ) for a ζ ∈ (0, 1

1−γ ]. By lemma 13, we chose U = 2C and λ∗ ≤ C. It follows that
1

U−λ∗ ≤ 1
C = ζ(1− γ) ≤ 1, and thus the right hand side of eq. (23) is upper bounded by the right

hand side of eq. (22). Recall ϵ′ = (1 + U)
(
ω +

(√
αB + (ω + ϵ)

√
d̃
))

. Then, the goal is to set
the parameters H,n,K, and α appropriately so that the A,B and C of the following expression,
when added together, is less than ϵ:

5(1 + U)(1 +
√
d̃)ω

1− γ
+

5(1 + U)
√
αB

1− γ︸ ︷︷ ︸
A

+
5(1 + U)ϵ

√
d̃

1− γ︸ ︷︷ ︸
B

+
(
√

2 ln(|A|) + 1))(1 + U)

(1− γ)2
√
K︸ ︷︷ ︸

C

. (24)

First, we set n appropriately so that the failure probability is well controlled. The failure probability
depends on the number of times Gather-data subroutine (algorithm 3) is executed. Gather-data is
run for phase 0, . . . , L. Each phase has at most d̃ elements, and recall d̃ is defined in lemma 10.
Therefore, Gather-data would return success at most d̃ times. Altogether, Gather-data can return
success at most d̃(L+ 1) times, each with probability of at least 1− δ′ = 1− δ/(d̃(L+ 1)). By a
union bound, Gather-data returns success in all occasions with probability 1− δ.

By setting H = ln((30
√

d̃(1+U))/((1−γ)2ϵ))
1−γ and n = 302(1+ρ0)

2(1+U)2d̃
2ϵ2(1−γ)4 ln

(
8d̃(L+1)

δ

)
, we have for

any l ∈ {0, . . . , L}, k = kl, . . . , kl+1 − 1, the |q̄rk(s, a)− qrπ′
k
(s, a)| ≤ 4

6
(1−γ)ϵ

5(1+U)
√

d̃
and |q̄ck(s, a)−

qcπ′
k
(s, a)| ≤ 4

6
(1−γ)ϵ

5(1+U)
√

d̃
hold for all π′

k ∈ Ππk,Cov(Cl) with probability at least 1− δ. Then, this is

used in the accuracy guarantee of the least-square estimate (lemma 1) and finally in the suboptimality
bound of lemma 2.

Then, we can set α of eq. (24) to be equal to ϵ
6 and solve for α = ϵ2(1−γ)2

302(1+U)2B2 . Finally, by setting

K =
62(
√

2 ln(|A|)+1)2(1+U)2

(1−γ)4ϵ2 , we have C of eq. (24) be less than ϵ
6 . Altogether, we have the reward

suboptimality satisfying eq. (20) and constraint satisfying eq. (21).

For the query complexity, we note that our algorithm does not query the simulator in every iteration,
but at fixed intervals, which we call phases. Each phase is m iterations in length. There are total of
L = ⌊K/(⌊m⌋ + 1)⌋ ≤ K/m = Õ

(
(1 + U)(1− γ)−3ϵ−1

)
phases. In each phases, Gather-data

subroutine (algorithm 3) can be run. Each time Gather-data returns success with trajectories, the
subroutine would have made at most nH queries. Gather-data is run for each of the elements in
Cl, l ∈ {0, . . . , L}. By the time the algorithm terminates, all Cl’s are the same. Since there are
at most Õ(d) elements in each Cl, the algorithm will make a total of nH(L + 1)|C0| number of
queries to the simulator. Since we have H = Õ((1− γ)−1), n = Õ((1 + U)2dϵ−2(1− γ)−4) and
L = Õ((1 + U)ϵ−1(1− γ)−3), the sample complexity is Õ(d2(1 + U)3(1− γ)−8ϵ−3). ■

D Strict-feasibility

Lemma 14 Let π∗
△ be defined as in eq. (7) and π∗ be an optimal policy of CMDP. Then, for a△ > 0,

vrπ∗(s0)− vrπ∗
△
(s0) ≤ λ∗△,

where λ∗ is an optimal dual variable that satisfies minλ≥0 maxπ v
r
π(s0) + λ(vcπ(s0)− b′).

Proof:

vrπ∗
△
(s0) = max

π
min
λ≥0

vrπ(s0) + λ(vcπ(s0)− b′).
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By Altman (2021),
vrπ∗

△
(s0) = min

λ≥0
max
π

vrπ(s0) + λ(vcπ(s0)− b′)

= max
π

vrπ(s0) + λ∗(vcπ(s0)− b′)

≥ vrπ∗(s0) + λ∗(vcπ∗(s0)− (b+△))

≥ vrπ∗(s0) + λ∗(b− b−△) because vcπ∗(s0) ≥ b

= vrπ∗(s0)− λ∗△.

After rearranging the terms, we get the result. ■

Lemma 15 Let λ∗ be the optimal dual variable that satisfies minλ≥0 maxπ V
r
π (s0)+λ(V c

π (s0)−b′).
If we choose

U =
4

ζ(1− γ)
,

then λ∗ ≤ U requiring that△ ∈ (0, ζ
2 ).

Proof: Let π∗
c (s0) = argmaxV c

π (s0), and recall that ζ = V c
π∗
c
(s0)− b > 0, then

vrπ∗
△
(s0) = max

π
min
λ≥0

vrπ(s0) + λ(vcπ(s0)− b′)

By Altman (2021),
vrπ∗

△
(s0) = min

λ≥0
max
π

vrπ(s0) + λ(vcπ(s0)− b′)

= max
π

vrπ(s0) + λ∗(V c
π (s0)− b′)

≥ vrπ∗
c
(s0) + λ∗(vcπ∗

c
(s0)− (b+△))

= vrπ∗
c
(s0) + λ∗(ζ −△).

If we require△ ∈ (0, ζ
2 ), then we have

vrπ∗
△
(s0) ≥ vrπ∗

c
(s0) + λ∗(ζ − ζ

2
)

= vrπ∗
c
(s0) +

λ∗ζ

2
(25)

After rearranging terms in eq. (25), we have

λ∗ ≤
2(vrπ∗

△
(s0)− vrπ∗

c
(s0))

ζ
≤ 2

ζ(1− γ)
.

By choosing U = 4
ζ(1−γ) , λ∗ ≤ U . ■

Theorem 2 With probability 1 − δ, a target ϵ > 0, the mixture policy π̄K returned by confident-
NPG-CMDP ensures that vrπ∗(s0) − vrπ̄K

(s0) ≤ ϵ and vcπ̄K
(s0) ≥ b, if assuming the misspeci-

ficiation error ω ≤ △(1−γ)

70(1+U)(1+
√

d̃)
, and if we choose △ = ϵ(1−γ)ζ

8 , α = △2(1−γ)2

702(1+U)2B2 ,K =

142(
√

2 ln(|A|)+1)2(1+U)2

(1−γ)4△2 , n = (14∗5)2(1+ρ0)
2d̃(1+U)2

2△2(1−γ)4 ln
(

8d̃(L+1)
δ

)
, H =

ln

(
14∗5(1+U)

√
d̃

△(1−γ)2

)
1−γ ,m =

(1+U) ln(1+ρ0)
2△H(1−γ)2 , U = 4

ζ(1−γ) .

Furthermore, the algorithm utilizes at most Õ(d2(1 + U)3(1− γ)−11ϵ−3ζ−3) queries in the local-
access setting.

Proof: Let λ∗ be the optimal dual variable that satisfies the Lagrangian primal-dual of the surrogate
CMDP defined by eq. (7) (i.e., λ∗ = argminλ≥0 maxπ v

r
π(s0) + λ(vcπ(s0)− b′)).

vrπ∗(s0)− vrπ̄K
(s0)

=
[
vrπ∗(s0)− vrπ∗

△
(s0)

]
︸ ︷︷ ︸

surrogate suboptimality

+
[
vrπ∗

△
(s0)− vrπ̄K

(s0)
]

︸ ︷︷ ︸
Confident-NPG-CMDP suboptimality

≤ λ∗△+ ϵ̄,
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where ϵ̄ = 5(1+U)(1+
√

d̃)ω
1−γ + 5(1+U)

√
αB

1−γ + 5(1+U)ϵ
√

d̃
1−γ +

(
√

2 ln(|A|)+1)(1+U)

(1−γ)2
√
K

. By lemma 14,

vrπ∗(s0) − vrπ∗
△
(s0) ≤ λ∗△. We can further upper bound λ∗ by U = 4

ζ(1−γ) using lemma 15 and

requiring△ ∈
(
0, ζ

2

)
. Together with theorem 1, we have Confident-NPG-CMDP return π̄K s.t.

vrπ∗(s0)− vrπ̄K
(s0) ≤

4△
ζ(1− γ)

+ ϵ̄ and (26)

b′ − V c
π̄K

(s0) ≤ ϵ̄.

Now, we need to set △ such that 1) △ ∈
(
0, ζ

2

)
and 2) △ − ϵ̄ ≥ 0 are satisfied. If we choose

△ = ϵ(1−γ)ζ
8 , then the first condition is satisfied. This is because ϵ ∈

(
0, 1

1−γ

]
, and thus△ ≤ ζ

8 < ζ
2 .

Next, we check if our choice of △ = ϵ(1−γ)ζ
8 satisfies △ − ϵ̄ ≥ 0. For the condition △ − ϵ̄ ≥ 0

to be true, we make an assumption on the misspecification error ω ≤ △(1−γ)

70(1+U)(1+
√

d̃)
, and pick

n, α,K, η1, η2, H,m to be the values outlined in this theorem. Consequently, we have ϵ̄ = 1
2△.

Then, we have ensured the condition△− ϵ̄ ≥ 0 is satisfied.

We note that because ζ ∈
(
0, 1

1−γ

)
, we have ϵ̄ ≤ ϵ

16 ≤ ϵ. following from eq. (26), we have

vrπ∗(s0) − vrπ̄K
(s0) ≤ ϵ and b′ − V c

π̄K
(s0) ≤ △

2 . Then it follows that b + △
2 ≤ V c

π̄K
(s0). Strict-

feasilbility is achieved.

For the query complexity, we note that our algorithm does not query the simulator in every iteration,
but at fixed intervals, which we call phases. Each phase is m iterations in length. There are total of
L = ⌊K/(⌊m⌋ + 1)⌋ ≤ K/m = Õ

(
(1 + U)(1− γ)−3△−1

)
phases. In each phase, Gather-data

subroutine (algorithm 3) can be run. Each time Gather-data subroutine returns with trajectories,
the subroutine would have made at most nH queries. Gather-data is run for each of the element
in Cl, l ∈ {0, . . . , L}. By the time the algorithm terminates, all Cl’s are the same. Since there are
at most Õ(d) elements in each Cl, the algorithm will make a total of nH(L + 1)|C0| number of
queries to the simulator. Since we have H = Õ((1 − γ)−1), n = Õ((1 + U)2d(1 − γ)−4△−2),
L = Õ

(
(1 + U)(1− γ)−3△−1

)
, and△ = ϵζ(1−γ)

8 , the sample complexity is Õ(d2(1 + U)3(1−
γ)−11ϵ−3ζ−3). ■

E A discussion on memory cost and some implementation details

By recording the states added to each core set during extensions and their corresponding least-squares
weights, we can reconstruct the policy as needed. This section explains how to track this information
and how it facilitates policy reconstruction.

In phase l, the policies πk for iterations k = kl + 1, . . . , kl+1 − 1 depend on the core set Cl.
Since Cl can be extended multiple times, these policies may change accordingly. However, we
do not want to change the action distribution for states have already passed the uncertainty test
in previous extensions (i.e. s ∈ Cov(Cl+1)). For such states, action distributions are based on
the least-square estimation of the core set at that time they passed the uncertainty test for the first
time (i.e., s ∈ Cov(Cl) \ Cov(Cl+1)). Therefore, it is essential to track newly added states in each
extension and store their corresponding least-square weights to recompute their action distributions.

To achieve this, C0 is extended only via line 7 and line 15 of algorithm 1, while other core sets Cl,
where l ∈ {1, . . . , L + 1} are extended solely via line 30 during the running phase ℓ = l − 1. We
mark newly added elements in line 7, line 15, and line 30. After executing line 21, we store the
least-square weights associated with these newly added state-action pairs.

By keeping track of the state-action pairs that are newly added in each extension and saving the
corresponding least-square weights, we can construct the policy πk+1 associated with Cl. Let C0l = ∅,
and Cil denote all state-action pairs added to Cl in extension i for i = 1 up to at most d̃. Let wi

k

represent the least-square weight computed using Cl = C0l ∪ C1l ∪ C2l ∪ · · · ∪ Cil for the k-th iteration.
When Cl is extended for the (i + 1)-th time, let Ci+1

l be the set of newly added state-action pairs,
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making the latest Cl = C0l ∪C1l ∪C2l ∪· · ·∪C
i+1
l . The least-squares weight wi+1

k is then computed using
Cl. When line 27 of algorithm 1 is executed, πk+1 remains unchanged for the rest of the algorithm’s
execution for any states already in Cov(C0l ∪ C1l ∪ · · · ∪ Cil ), equivalent to Cov(Cl+1) in line 27,
because line 30 would have been executed in the i-th extension, making Cl+1 = C0l ∪ C1l ∪ · · · ∪ Cil .
For states in Cov(C0l ∪C1l ∪· · ·∪C

i+1
l )\Cov(C0l ∪C1l ∪· · ·∪Cil ) (equivalent to Cov(Cl)\Cov(Cl+1)

in line 27), πk+1 makes a softmax update using wi+1
k . For all other states not in Cov(Cl), the policy

remains as πk.

A subroutine can start with π0, use the stored data to compute and return πk(·|s) for any s and k.
By tracking newly added elements and the corresponding least-square weights, the algorithm can
reconstruct policies π0, . . . , πK . This approach enables the algorithm to return the value of a mixture
policy at termination.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Reviewers may find results from section 4 leading to the main results stated in
section 5 and section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions are listed in every lemma and theorems. In the supplementary
section, all supporting lemmas will be proven or cited. All the lemmas are presented in
sequence leading up to the two main theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper does not include experiment

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include experiment
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiment
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiment
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper does not include experiment
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I have read the ethics guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: By understanding the sample complexity of CMDP, a framework used by many
of the safe reinforcement learning research, we can design more efficient algorithms. This
potentially has broader positive impact for real world applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such risk as it contains no data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use any data, model or code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not contain any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor resarch with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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