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Abstract

While significant progress has been made on Physics-Informed Neural Networks
(PINNs), a comprehensive comparison of these methods across a wide range of
Partial Differential Equations (PDEs) is still lacking. This study introduces PIN-
Nacle, a benchmarking tool designed to fill this gap. PINNacle provides a diverse
dataset, comprising over 20 distinct PDEs from various domains, including heat
conduction, fluid dynamics, biology, and electromagnetics. These PDEs encapsu-
late key challenges inherent to real-world problems, such as complex geometry,
multi-scale phenomena, nonlinearity, and high dimensionality. PINNacle also of-
fers a user-friendly toolbox, incorporating about 10 state-of-the-art PINN methods
for systematic evaluation and comparison. We have conducted extensive experi-
ments with these methods, offering insights into their strengths and weaknesses. In
addition to providing a standardized means of assessing performance, PINNacle
also offers an in-depth analysis to guide future research such as domain decompo-
sition methods and loss reweighting for handling multi-scale problems. To the best
of our knowledge, it is the largest benchmark with a diverse and comprehensive
evaluation that will undoubtedly foster further research in PINNs.

1 Introduction

Partial Differential Equations (PDEs) are of paramount importance in science and engineering, as
they often underpin our understanding of intricate physical systems such as fluid flow, heat transfer,
and stress distribution [37]. The computational simulation of PDE systems has been a focal point
of research for an extensive period, leading to the development of numerical methods such as finite
difference [6], finite element [45], and finite volume methods [14].

Recent advancements have led to the use of deep neural networks to solve forward and inverse
problems involving PDEs [44, 62, 11, 54]. Among these, Physics-Informed Neural Networks
(PINNs) have emerged as a promising alternative to traditional numerical methods in solving such
problems [44, 25]. PINNs leverage the underlying physical laws and available data to effectively
handle various scientific and engineering applications. The growing interest in this field has spurred
the development of numerous PINN variants, each tailored to overcome specific challenges or to
enhance the performance of the original framework.
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Figure 1: Architecture of PINNacle. It contains a dataset covering more than 20 PDEs, a toolbox that
implements about 10 SOTA methods, and an evaluation module. These methods have a wide range of
application scenarios like fluid mechanics, electromagnetism, heat conduction, geophysics, and so on.

While PINN methods have achieved remarkable progress, a comprehensive comparison of these
methods across diverse types of PDEs is currently lacking. Establishing such a benchmark is
crucial as it could enable researchers to more thoroughly understand existing methods and pinpoint
potential challenges. Despite the availability of several studies comparing sampling methods [60] and
reweighting methods [2], there has been no concerted effort to develop a rigorous benchmark using
challenging datasets from real-world problems. The sheer variety and inherent complexity of PDEs
make it difficult to conduct a comprehensive analysis. Moreover, different mathematical properties
and application scenarios further complicate the task, requiring the benchmark to be adaptable and
exhaustive.

To resolve these challenges, we propose PINNacle, a comprehensive benchmark for evaluating and
understanding the performance of PINNs. As shown in Fig. 1, PINNacle consists of three major
components — a diverse dataset, a toolbox, and evaluation modules. The dataset comprises tasks
from over 20 different PDEs from various domains, including heat conduction, fluid dynamics,
biology, and electromagnetics. Each task brings its own set of challenges, such as complex geometry,
multi-scale phenomena, nonlinearity, and high dimensionality, thus providing a rich testing ground
for PINNs. The toolbox incorporates more than 10 state-of-the-art (SOTA) PINN methods, enabling
a systematic comparison of different strategies, including loss reweighting, variational formulation,
adaptive activations, and domain decomposition. These methods can be flexibly applied to the tasks
in the dataset, offering researchers a convenient way to evaluate the performance of PINNs which is
also user-friendly for secondary development. The evaluation modules provide a standardized means
of assessing the performance of different PINN methods across all tasks, ensuring consistency in
comparison and facilitating the identification of strengths and weaknesses in various methods.

PINNacle provides a robust, diverse, and comprehensive benchmark suite for PINNs, contributing
significantly to the field’s understanding and application. It represents a major step forward in the
evolution of PINNs which could foster more innovative research and development in this exciting
field. Code and data are publicly available at https://github.com/i207M/PINNacle.

In a nutshell, our contributions can be summarized as follows:

• We design a dataset encompassing over 20 challenging PDE problems. These problems
encapsulate several critical challenges faced by PINNs, including handling complex geome-
tries, multi-scale phenomena, nonlinearity, and high-dimensional problems.

• We systematically evaluate more than 10 carefully selected representative variants of PINNs.
We conducted thorough experiments and ablation studies to evaluate their performance. To
the best of our knowledge, this is the largest benchmark comparing different PINN variants.
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• We provide an in-depth analysis to guide future research. We show using loss reweighting
and domain decomposition methods could improve the performance on multi-scale and
complex geometry problems. Variational formulation achieves better performance on inverse
problems. However, few methods can adequately address nonlinear problems, indicating a
future direction for exploration and advancement.

2 Related Work

2.1 Benchmarks and datasets in scientific machine learning

The growing trend of AI in scientific research has stimulated the development of various benchmarks
and datasets, which differ greatly in data formats, sizes, and governing principles. For instance, [33]
presents a benchmark for comparing neural operators, while [3, 41] benchmarks methods for learning
latent Newtonian mechanics. Furthermore, domain-specific datasets and benchmarks exist in fluid
mechanics [20], climate science [42, 5], quantum chemistry [1], and biology [4].

Beyond these domain-specific datasets and benchmarks, physics-informed machine learning has
received considerable attention [18, 9] since the advent of Physics-Informed Neural Networks (PINNs)
[44]. These methods successfully incorporate physical laws into model training, demonstrating
immense potential across a variety of scientific and engineering domains. Various papers have
compared different components within the PINN framework; for instance, [10] and [60] investigate
the sampling methods of collocation points in PINNs, and [2] compare reweighting techniques for
different loss components. PDEBench [52] and PDEArena [17] design multiple tasks to compare
different methods in scientific machine learning such as PINNs, FNO, and U-Net. Nevertheless, a
comprehensive comparison of various PINN approaches remains absent in the literature.

2.2 Softwares and Toolboxes

A plethora of software solutions have been developed for solving PDEs with neural networks. These
include SimNet [19], NeuralPDE [43], TorchDiffEq [8], and PyDEns [29]. More recently, DeepXDE
[34] has been introduced as a fundamental library for implementing PINNs across different backends.
However, there remains a void for a toolbox that provides a unified implementation for advanced PINN
variants. Our PINNacle fills this gap by offering a flexible interface that facilitates the implementation
and evaluation of diverse PINN variants. We furnish clear and concise code for researchers to execute
benchmarks across all problems and methods.

2.3 Variants of Physics-informed neural networks

The PINNs have received much attention due to their remarkable performance in solving both forward
and inverse PDE problems. However, vanilla PINNs have many limitations. Researchers have
proposed numerous PINN variants to address challenges associated with high-dimensionality, non-
linearity, multi-scale issues, and complex geometries [18, 9, 25, 30]. Broadly speaking, these variants
can be categorized into: loss reweighting/resampling [57, 58, 53, 60, 40], innovative optimizers
[61], novel loss functions such as variational formulations [62, 26, 27, 28] or regularization terms
[63, 50], and novel architectures like domain decomposition [21, 31, 38, 24] and adaptive activations
[23, 22]. These variants have enhanced PINN’s performance across various problems. Here we
select representative methods from each category and conduct a comprehensive analysis using our
benchmark dataset to evaluate these variants.

3 PINNacle: A Hierarchical Benchmark for PINNs

In this section, we first introduce the preliminaries of PINNs. Then we introduce the details of
datasets (tasks), PINN methods, the toolbox framework, and the evaluation metrics.

3.1 Preliminaries of Physics-informed Neural Networks

Physics-informed neural networks are neural network-based methods for solving PDEs as well as
inverse problems of PDEs, which have received much attention recently. Specifically, let’s consider a
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general Partial Differential Equation (PDE) system defined on Ω, which can be represented as:

F(u(x);x) = 0, x ∈ Ω, (1)
B(u(x);x) = 0, x ∈ ∂Ω. (2)

where F is a differential operator and B is the boundary/initial condition. PINN uses a neural network
uθ(x) with parameters θ to approximate u(x). The objective of PINN is to minimize the following
loss function:

L(θ) = wc

Nc

Nc∑
i=1

||F(uθ(x
i
c);x

i
c)||2+

wb

Nb

Nb∑
i=1

||B(uθ(x
i
b);x

i
b)||2+

wd

Nd

Nd∑
i=1

||uθ(x
i
d)−u(xi

d)||2. (3)

where wc, wb, wd are weights. The first two terms enforce the PDE constraints on {xi
c}1...Nc

and
boundary conditions on {xi

b}1...Nb
. The last term is data loss, which is optional when there is data

available. However, PINNs have several inherent drawbacks. First, PINNs optimize a mixture of
imbalance loss terms which might hinder its convergence as illustrated in [57]. Second, nonlinear or
stiff PDEs might lead to unstable optimization [58]. Third, the vanilla MLPs might have difficulty
in representing multi-scale or high-dimensional functions. For example, [30] shows that vanilla
PINNs only work for a small parameter range, even in a simple convection problem. To resolve these
challenges, numerous variants of PINNs are proposed. However, a comprehensive comparison of
these methods is lacking, and thus it is imperative to develop a benchmark.

3.2 Datasets

To effectively compare PINN variants, we’ve curated a set of PDE problems (datasets) representing
a wide range of challenges. We chose PDEs from diverse domains, reflecting their importance in
science and engineering. Our dataset includes 22 unique cases, with further details in Appendix B.

• The Burgers’ Equation, fundamental to fluid mechanics, considering both one and two-
dimensional problems.

• The Poisson’s Equation, widely used in math and physics, with four different cases.
• The Heat Equation, a time-dependent PDE that describes diffusion or heat conduction,

demonstrated in four unique cases.
• The Navier-Stokes Equation, describing the motion of viscous fluid substances, showcased

in three scenarios: a lid-driven flow (NS2d-C), a geometrically complex backward step flow
(NS2d-CG), and a time-dependent problem (NS2d-LT).

• The Wave Equation, modeling wave behavior, exhibited in three cases.
• Chaotic PDEs, featuring two popular examples: the Gray-Scott (GS) and Kuramoto-

Sivashinsky (KS) equations.
• High Dimensional PDEs, including the high-dimensional Poisson equation (PNd) and the

high-dimensional diffusion or heat equation (HNd).
• Inverse Problems, focusing on the reconstruction of the coefficient field from noisy data

for the Poisson equation (PInv) and the diffusion equation (HInv).

It is important to note that we have chosen PDEs encompassing a wide range of mathematical
properties. This ensures that the benchmarks do not favor a specific type of PDE. The selected PDE
problems introduce several core challenges, which include:

• Complex Geometry: Many PDE problems involve complex or irregular geometry, such as
heat conduction or wave propagation around obstacles. These complexities pose significant
challenges for PINNs in terms of accurate boundary behavior representation.

• Multi-Scale Phenomena: Multi-scale phenomena, where the solution varies significantly
over different scales, are prevalent in situations such as turbulent fluid flow. Achieving a
balanced representation across all scales is a challenge for PINNs in multi-scale scenarios.

• Nonlinear Behavior: Many PDEs exhibit nonlinear or even chaotic behavior, where mi-
nor variations in initial conditions can lead to substantial divergence in outcomes. The
optimization of PINNs becomes intriguing on nonlinear PDEs.
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• High Dimensionality: High-dimensional PDE problems, frequently encountered in quantum
mechanics, present significant challenges for PINNs due to the “curse of dimensionality”.
This term refers to the increase in computational complexity with the addition of each
dimension, accompanied by statistical issues like data sparsity in high-dimensional space.

These challenges are selected due to their frequent occurrence in numerous real-world applications.
As such, a method’s performance in addressing these challenges serves as a reliable indicator of
its overall practical utility. Table 1 presents a detailed overview of the dataset, the PDEs, and
the challenges associated with these problems. We generate data using FEM solver provided by
COMSOL 6.0 [39] for problems with complex geometry and spectral method provided by Chebfun
[12] for chaotic problems. More details can be found in Appendix B.

A. Complex Geometry B. Multi-scale

C. Nonlinear and Chaotic D. High dimension

Dataset Complex geometry Multi-scale Nonlinearity High dim
Burgers1∼2 × ×

√
×

Poisson3∼6 ×/
√

×/
√

× ×
Heat7∼10 ×/

√
×/

√
× ×

NS11∼13 ×/
√

×/
√ √

×
Wave14∼16 ×/

√
×/

√
× ×

Chaotic17∼18 ×
√ √

×
High dim19∼20 × × ×

√

Inverse 21∼22 × ×
√

×

Table 1: Overview of our datasets along with their challenges. We chose 22 cases in total to evaluate
the methods of PINNs. The left picture shows the visualization of cases with these four challenges,
i.e., complex geometry, multi-scale, nonlinearity, and high dimension.

3.3 Methods and Toolbox

After conducting an extensive literature review, we present an overview of diverse PINNs approaches
for comparison. Then we present the high-level structure of our PINNacle.

3.3.1 Methods

As mentioned above, variants of PINNs are mainly based on loss functions, architecture, and
optimizer [18]. The modifications to loss functions can be divided into reweighting existing losses
and developing novel loss functions like regularization and variational formulation. Variants of
architectures include using domain decomposition and adaptive activations.

The methods discussed are directly correlated with the challenges highlighted in Table 1. For example,
domain decomposition methods are particularly effective for problems involving complex geometries
and multi-scale phenomena. Meanwhile, loss reweighting strategies are adept at addressing imbal-
ances in problems with multiple losses. We have chosen variants from these categories based on their
significant contributions to the field.

Here, we list the primary categories and representative methods as summarized in Table 2:

• Loss reweighting/Resampling (2∼4): PINNs are trained with a mixed loss of PDE residuals,
boundary conditions, and available data losses shown in Eq 3. Various methods [57, 59, 2,
35, 47] propose different strategies to adjust these weights wc, wb and wd at different epochs
or resample collocation points {xi

c} and {xi
b} in Eq 3, which indirectly adjust the weights

[60, 40]. We choose three famous examples, i.e., reweighting using gradient norms (PINN-
LRA) [57], using neural tangent kernel (PINN-NTK) [59], and residual-based resampling
(RAR)[34, 60].

• Novel optimizer (5): To handle the problem of multi-scale objectives, some new optimizers
[32, 61] are proposed. We chose MultiAdam, which is resistant to domain scale changes.

• Novel loss functions (6∼7): Some works introduce novel loss functions like variational
formulation [49, 28, 27] and regularization terms to improve training. We choose hp-VPINN
[27] and gPINN [63, 50], which are representative examples from these two categories.
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Complex Geometry Multi-scale Nonlinearity High dim
Vanilla PINN 1 × × × ×

Reweighting/Resampling2∼4 √ √
× ×

Novel Optimizer7 ×
√

× ×
Novel Loss Functions5∼6 × × × ×
Novel Architecture8∼10 √ √

× ×
Table 2: Overview of methods in our PINNacle.

√
denotes the method is potentially designed to

solve or show empirical improvements for problems encountering the challenge and vice versa.

• Novel activation architectures (8∼10): Some works propose various network architectures,
such as using CNN and LSTM [64, 15, 46], custom activation functions [22, 23], and domain
decomposition [21, 48, 24, 38]. Among adaptive activations for PINNs, we choose LAAF
[22] and GAAF [23]. Domain decomposition is a method that divides the whole domain
into multiple subdomains and trains subnetworks on these subdomains. It is helpful for
solving multi-scale problems, but multiple subnetworks increase the difficulty of training.
XPINNs, cPINNs, and FBPINNs [21, 24, 38] are three representative examples. We choose
FBPINNs which is the state-of-the-art domain decomposition that applies domain-specific
normalization to stabilize training.

3.3.2 Structure of Toolbox

We provide a user-friendly and concise toolbox for implementing, training, and evaluating diverse
PINN variants. Specifically, our codebase is based on DeepXDE and provides a series of encapsulated
classes and functions to facilitate high-level training and custom PDEs. These utilities allow for a
standardized and streamlined approach to the implementation of various PINN variants and PDEs.
Moreover, we provided many auxiliary functions, including computing different metrics, visualizing
predictions, and recording results.

Despite the unified implementation of diverse PINNs, we also design an adaptive multi-GPU parallel
training framework to enhance the efficiency of systematic evaluations of PINN methods. It addresses
the parallelization phase of training on multiple tasks, effectively balancing the computational loads
of multiple GPUs. It allows for the execution of larger and more complex tasks. In a nutshell, we
provide an example code for training and evaluating PINNs on two Poisson equations using our
PINNacle framework in Appendix D.

3.4 Evaluation
To comprehensively analyze the discrepancy between the PINN solutions and the true solutions,
we adopt multiple metrics to evaluate the performance of the PINN variants. Generally, we choose
several metrics that are commonly used in literature that apply to all methods and problems. We
suppose that y = (yi)

n
i=1 is the prediction and y′ = (y′i)

n
i=1 to is ground truth, where n is the number

of testing examples. Specifically, we use ℓ2 relative error (L2RE), and ℓ1 relative error (L1RE)
which are two most commonly used metrics to measure the global quality of the solution,

L2RE =

√∑n
i=1(yi − y′i)

2∑n
i=1 y

′
i
2 , L1RE =

∑n
i=1 |yi − y′i|∑n

i=1 |y′i|
. (4)

We also compute max error (mERR in short), mean square error (MSE), and Fourier error (fMSE) for
a detailed analysis of the prediction. These three metrics are computed as follows:

MSE =
1

n

n∑
i=1

(yi − y′i)
2, mERR = maxi |yi − y′i|, fMSE =

√∑kmax

kmin
|F(y)−F(y′)|2

kmax − kmin + 1
, (5)

where F denotes Fourier transform of y and kmin, kmax are chosen similar to PDEBench [52].
Besides, for time-dependent problems, investigating the quality of the solution with time is important.
Therefore we compute the L2RE error varying with time in Appendix E.2.

We assess the performance of PINNs against the reference from numerical solvers. Experimental
results utilizing the ℓ2 relative error (L2RE) metric are incorporated within the main text, while a
more exhaustive set of results, based on the aforementioned metrics, is available in the Appendix E.1.
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L2RE Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture

– PINN PINN-w LBFGS LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 1.45E-2 2.63E-2 1.33E-2 2.61E-2 1.84E-2 3.32E-2 4.85E-2 2.16E-1 3.47E-1 1.43E-2 5.20E-2 2.32E-1

2d-C 3.24E-1 2.70E-1 4.65E-1 2.60E-1 2.75E-1 3.45E-1 3.33E-1 3.27E-1 6.38E-1 2.77E-1 2.95E-1 –

Poisson

2d-C 6.94E-1 3.49E-2 NaN 1.17E-1 1.23E-2 6.99E-1 2.63E-2 6.87E-1 4.91E-1 7.68E-1 6.04E-1 4.49E-2

2d-CG 6.36E-1 6.08E-2 2.96E-1 4.34E-2 1.43E-2 6.48E-1 2.76E-1 7.92E-1 2.86E-1 4.80E-1 8.71E-1 2.90E-2

3d-CG 5.60E-1 3.74E-1 7.05E-1 1.02E-1 9.47E-1 5.76E-1 3.63E-1 4.85E-1 7.38E-1 5.79E-1 5.02E-1 7.39E-1

2d-MS 6.30E-1 7.60E-1 1.45E+0 7.94E-1 7.48E-1 6.44E-1 5.90E-1 6.16E-1 9.72E-1 5.93E-1 9.31E-1 1.04E+0

Heat 2d-VC 1.01E+0 2.35E-1 2.32E-1 2.12E-1 2.14E-1 9.66E-1 4.75E-1 2.12E+0 9.40E-1 6.42E-1 8.49E-1 9.52E-1

2d-MS 6.21E-2 2.42E-1 1.73E-2 8.79E-2 4.40E-2 7.49E-2 2.18E-1 1.13E-1 9.30E-1 7.40E-2 9.85E-1 8.20E-2

2d-CG 3.64E-2 1.45E-1 8.57E-1 1.25E-1 1.16E-1 2.72E-2 7.12E-2 9.38E-2 – 2.39E-2 4.61E-1 9.16E-2

2d-LT 9.99E-1 9.99E-1 1.00E+0 9.99E-1 1.00E+0 9.99E-1 1.00E+0 1.00E+0 1.00E+0 9.99E-1 9.99E-1 1.01E+0

NS 2d-C 4.70E-2 1.45E-1 2.14E-1 NaN 1.98E-1 4.69E-1 7.27E-1 7.70E-2 2.92E-1 3.60E-2 3.79E-2 8.45E-2

2d-CG 1.19E-1 3.26E-1 NaN 3.32E-1 2.93E-1 3.34E-1 4.31E-1 1.54E-1 9.94E-1 8.24E-2 1.74E-1 8.27E+0

2d-LT 9.96E-1 1.00E+0 9.70E-1 1.00E+0 9.99E-1 1.00E+0 1.00E+0 9.95E-1 1.73E+0 9.98E-1 9.99E-1 1.00E+0

Wave 1d-C 5.88E-1 2.85E-1 NaN 3.61E-1 9.79E-2 5.39E-1 1.21E-1 5.56E-1 8.39E-1 4.54E-1 6.77E-1 5.91E-1

2d-CG 1.84E+0 1.66E+0 1.33E+0 1.48E+0 2.16E+0 1.15E+0 1.09E+0 8.14E-1 7.99E-1 8.19E-1 7.94E-1 1.06E+0

2d-MS 1.34E+0 1.02E+0 1.37E+0 1.02E+0 1.04E+0 1.35E+0 1.01E+0 1.02E+0 9.82E-1 1.06E+0 1.06E+0 1.03E+0

Chaotic GS 3.19E-1 1.58E-1 NaN 9.37E-2 2.16E-1 9.46E-2 9.37E-2 2.48E-1 1.16E+0 9.47E-2 9.46E-2 7.99E-2

KS 1.01E+0 9.86E-1 NaN 9.57E-1 9.64E-1 1.01E+0 9.61E-1 9.94E-1 9.72E-1 1.01E+0 1.00E+0 1.02E+0

High dim PNd 3.04E-3 2.58E-3 4.67E-4 4.58E-4 4.64E-3 3.59E-3 3.98E-3 5.05E-3 – 4.14E-3 7.75E-3 –

HNd 3.61E-1 4.59E-1 1.19E-4 3.94E-1 3.97E-1 3.57E-1 3.02E-1 3.17E-1 – 5.22E-1 5.21E-1 –

Inverse PInv 9.42E-2 1.66E-1 NaN 1.54E-1 1.93E-1 9.35E-2 1.30E-1 8.03E-2 2.45E-2 1.30E-1 2.54E-1 8.44E-1

HInv 1.57E+0 5.26E-2 NaN 5.09E-2 7.52E-2 1.52E+0 8.04E-2 4.84E+0 4.56E-1 5.59E-1 2.12E-1 9.27E-1

Table 3: Mean L2RE of different PINN variants on PINNacle. Best results are highlighted in blue
and second-places in lightblue . We do not bold any result if errors of all methods are about 100%.
“NaN” means the method does not converge and “–” means the method is not suitable for the problem.

4 Experiments

4.1 Main Results

We now present experimental results. Except for the ablation study in Sec 4.3 and Appendix E.2,
we use a learning rate of 0.001 and train all models with 20,000 epochs. We repeat all experiments
three times and record the mean and std. We run all experiments on a Linux server with 20 Intel(R)
Xeon(R) Silver 4210 CPUs @ 2.20GHz and eight NVIDIA GeForce RTX 2080 Ti each with 12
GB GPU memory. All experiments in Table E.1 require a total about 776 GPU hours, which can be
completed in about 4 days on our cluster. Table 3 presents the main results for all methods on our
tasks and shows their average ℓ2 relative errors (with standard deviation results available in Appendix
E.1).

PINN. We use PINN-w to denote training PINNs with larger boundary weights. The vanilla PINNs
struggle to accurately solve complex physics systems, indicating substantial room for improvement.
Using an ℓ2 relative error (L2RE) of 10% as a threshold for a successful solution, we find that vanilla
PINN only solves 10 out of 22 tasks, most of which involve simpler equations (e.g., 1.45% on
Burgers-1d-C). They encounter significant difficulties when faced with physics systems characterized
by complex geometries, multi-scale phenomena, nonlinearity, and longer time spans. This shows
that directly optimizing an average of the PDE losses and initial/boundary condition losses leads to
critical issues such as loss imbalance, suboptimal convergence, and limited expressiveness.

PINN variants. PINN variants offer approaches to addressing some of these challenges to varying
degrees. Methods involving loss reweighting and resampling have shown improved performance in
some cases involving complex geometries and multi-scale phenomena (e.g., 1.43% on Poisson-2d-
CG). This is due to the configuration of loss weights and sampled collocation points, which adaptively
place more weight on more challenging domains during the training process. However, these methods
still struggle with Wave equations, Navier-Stokes equations, and other cases with higher dimensions
or longer time spans. MultiAdam, a representative of novel optimizers, solves several simple cases
and the chaotic GS equation (9.37%), but does not significantly outperform other methods. The new
loss term of variational form demonstrates significant superiority in solving inverse problems (e.g.,
1.19% on HInv for vPINN), but no clear improvement in fitting error over standard PINN in forward
cases. Changes in architecture can enhance expressiveness and flexibility for cases with complex
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L2RE Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture

– – PINN LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers-P 2d-C 4.74E-01 4.36E-01 4.13E-01 4.71E-01 4.93E-01 4.91E-01 2.82E+0 4.37E-01 4.34E-01 -

Poisson-P 2d-C 2.24E-01 7.07E-02 1.66E-02 2.33E-01 8.24E-02 4.03E-01 5.51E-1 1.84E-01 2.97E-01 2.87E-2

Heat-P 2d-MS 1.73E-01 1.23E-01 1.50E-01 1.53E-01 4.00E-01 4.59E-01 5.12E-1 6.27E-02 1.89E-01 2.46E-1

NS-P 2d-C 3.89E-01 - 4.52E-01 3.91E-01 9.33E-01 7.19E-01 3.76E-1 3.63E-01 4.85E-01 3.99E-1

Wave-P 1d-C 5.22E-01 3.44E-01 2.69E-01 5.05E-01 6.89E-01 7.66E-01 3.58E-1 4.03E-01 9.00E-01 1.15E+0

High dim-P HNd 7.66E-03 6.53E-03 9.04E-03 8.07E-03 2.22E-03 7.87E-03 - 6.97E-03 1.94E-01 -

Table 4: Results of different PINN variants on parametric PDEs. We report average L2RE on all
examples within a class of PDE. We bold the best results across all methods.

geometries and multi-scale systems. For example, FBPINN achieves the smallest error on the chaotic
GS equation (7.99%), while LAAF delivers the best fitting result on Heat-2d-CG (2.39%).

Discussion. For challenges related to complex geometries and multi-scale phenomena, some methods
can mitigate these issues by implementing mechanisms like loss reweighting, novel optimizers, and
better capacity through adaptive activation. This holds true for the 2D cases of Heat and Poisson
equations, which are classic linear equations. However, when systems have higher dimensions
(Poisson3d-CG) or longer time spans (Heat2d-LT), all methods fail to solve, highlighting the difficul-
ties associated with complex geometries and multi-scale systems.

In contrast, nonlinear, long-time PDEs like 2D Burgers, NS, and KS pose challenges for most
methods. These equations are sensitive to initial conditions, resulting in complicated solution
spaces and more local minima for PINNs [51]. The Wave equation, featuring a second-order time
derivative and periodic behavior, is particularly hard for PINNs, which often become unstable and
may violate conservation laws [24, 55]. Although all methods perform well on Poisson-Nd, only
PINN with LBFGS solves Heat-Nd, indicating the potential of a second-order optimizer for solving
high dimensional PDEs[53].

4.2 Parameterized PDE Experiments

To investigate whether PINNs could handle a class of PDEs, we design this experiment to solve
the same PDEs with different parameters. We choose 6 PDEs, i.e., Burgers2d-C, Poisson2d-C,
Heat2d-MS, NS-C, Wave1d-C, and Heat-Nd (HNd), with each case containing five parameterized
examples. Details of the parametrized PDEs are shown in Appendix B. Here we report the average
L2RE metric on these parameterized PDEs for every case, and results are shown in the following
Table 4. First, we see that compared with the corresponding cases in Table E.1, the mean L2RE of
parameterized PDEs is usually higher. We suggest that this is because there are some difficult cases
under certain parameters for these PDEs with very high errors. Secondly, we find that PINN-NTK
works well on parameterized PDE tasks which achieve three best results among all six experiments.
We speculate that solving PDEs with different parameters requires different weights for loss terms,
and PINN-NTK is a powerful method for automatically balancing these weights.

4.3 Hyperparameter Analysis

The performance of PINNs is strongly affected by hyperparameters, with each variant introducing its
own unique set. The results are shown in Figure 2. We focus on a set of problems, i.e., Burgers1d,
GS, Heat2d-CG, and Poisson2d-C. Detailed results and additional findings are in Appendix E.2.

Batch size and training epochs. Figure 19 presents the effects of varying batch sizes and training
epochs. Larger batch sizes generally yield better outcomes due to more accurate gradient estimations,
though saturation is observed beyond a batch size of 2048 for the GS and Poisson2d-C problems.
Similarly, increasing the number of training epochs reduces the L2RE, indicating an improvement in
model accuracy. However, this benefit plateaus around 20k to 80k epochs, where further increases in
epochs do not significantly reduce the error.

Learning Rates. The performance of standard PINNs under various learning rates and learning rate
schedules is shown in Figure 3. We observe that the influence of the learning rate on performance is
intricate, with optimal learning rates varying across problems. Furthermore, PINN training tends to
be unstable. High learning rates, such as 10−2, often lead to error spikes, while low learning rates,
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Figure 2: Performance of vanilla PINNs under different batch sizes (number of collocation points),
which is shown in the left figure; and number of training epochs, which is shown in the right figure.
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Figure 3: Convergence curve of PINNs with different learning rate schedules on Burgers1d, Heat2d-
CG, and Poisson2d-C.

like 10−5, result in slow convergence. Our findings suggest that a moderate learning rate, such as
10−3 or 10−4, or a step decay learning rate schedule, tends to yield more stable performance.

5 Limitations

First, real-world problems are often more complex, with giant geometric domains or chaotic behaviors.
Good performance on PINNacle does not guarantee it solves practical problems. We could explore
larger-scale PINN training methods or efficient domain decomposition methods[7]. Second, the
issues of safety in the PINN methods pose potential roadblocks. Developing theoretical convergence
for PINN like stability and convergence analysis [13] could help resolve these limitations.

6 Conclusion

In this work, we introduced PINNacle, a comprehensive benchmark offering a user-friendly toolbox
that encompasses over 20 PDE problems and 10 PINN methods with extensive experiments and
ablation studies. Looking forward, we plan to expand the benchmark by integrating additional state-of-
the-art methods and incorporating more practical problem scenarios. Our analysis of the experimental
results yields several key insights. First, domain decomposition is beneficial for addressing problems
characterized by complex geometries, and PINN-NTK is a strong method for balancing loss weights
as experiments show. Second, selecting appropriate hyperparameters is crucial to the performance
of PINNs. However, the best hyperparameters usually vary with PDEs. Third, we identify high-
dimensional and nonlinear problems as a pressing challenge. The overall performance of PINNs
is not yet on par with traditional numerical methods [16]. Fourth, there are only a few attempts
exploring of PINNs’ loss landscape [30]. Finally, integrating the strengths of neural networks with
numerical methods like preconditioning, weak formulation, and multigrid may present a promising
avenue toward overcoming the challenges[36].
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A Overview of Appendices

We provide supplementary details about problems and experiments for the main text in the Appendix.
In Appendix B, we provide mathematical descriptions and visualization for all PDEs in this paper.
In Appendix C, we list the detailed hyperparameters and training/testing settings. In Appendix D,
we provide a high-level overview of the codebase of the toolbox. In Appendix E, the results for the
main experiments, i.e., the performance of L2RE, L1RE, MSE, and runtime for all methods on all
PDEs are displayed. In Appendix F, we show the visualization results for several methods on some
problems.

B Details of PDEs and Methods

Here provide details of PDE tasks used for evaluating different variants of PINNs. Denote u to be the
function to solve and x, t to be spatial and temporal variables.

B.1 Definitions for PDEs in main experiments

1. One-dimensional Burgers Equation (Burgers1d)

The Burgers 1D equation is given by

ut + uux = νuxx. (6)

The domain is defined as
(x, t) ∈ Ω = [−1, 1]× [0, 1]. (7)

The initial and boundary conditions are

u(x, 0) = − sinπx, (8)
u(−1, t) = u(1, t) = 0. (9)

The parameter is

ν =
0.01

π
. (10)

2. 2D Coupled Burgers equation (Burgers 2d)

The 2D Coupled Burgers equation is given by

ut + u · ∇u− ν∆u = 0, (11)
u(0, y, t) = u(L, y, t), u(x, 0, t) = u(x, L, t), (12)

{x, y} ∈ [0, L], t ∈ [0, T ], (13)

Figure 4: Reference solution of Burgers1d using FEM solver.
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Figure 5: Reference solution of Burgers2d at timesteps t = 0, 0.2, 0.4, 1.0 using FEM solver.

The domain is defined as
(x, y, t) ∈ Ω = [0, L]2 × [0, 1]. (14)

The initial conditions are given by

w(x, y) =

L∑
i=−L

L∑
j=−L

aij sin(2π(ix+ jy)) + bij cos(2π(ix+ jy)), (15)

u(x, y, 0) = 2w(x, y) + c (16)
where a, b, c ∼ N(0, 1). The parameters are

L = 4, T = 1, ν = 0.001. (17)

3. Poisson 2D Classic (Poisson2d-C)

The Poisson 2D equation is given by

−∆u = 0. (18)
The domain is a rectangle minus four circles Ω = Ωrec \ Ri where Ωrec = [−0.5, 0.5]2 is the
rectangle and Ri denotes four circle areas:

R1 = {(x, y) : (x− 0.3)2 + (y − 0.3)2 ≤ 0.12}, (19)

R2 = {(x, y) : (x+ 0.3)2 + (y − 0.3)2 ≤ 0.12}, (20)

R3 = {(x, y) : (x− 0.3)2 + (y + 0.3)2 ≤ 0.12}, (21)

R4 = {(x, y) : (x+ 0.3)2 + (y + 0.3)2 ≤ 0.12}. (22)

The boundary condition is
u = 0, x ∈ ∂Ri, (23)
u = 1, x ∈ ∂Ωrec. (24)
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Figure 6: Reference solution of Poisson2d-CG by FEM solver.

4. Poisson-Boltzmann (Helmholtz) 2D Irregular Geometry (Poisson2d-CG)

The Poisson-Boltzmann (Helmholtz) 2D equation is given by

−∆u+ k2u = f(x, y). (25)

The function f(x) is defined as

f(x) = A ·

(∑
i

µ2
i + x2

i

)
sin(µ1πx1) sin(µ2πx2). (26)

The domain is [−1, 1]2 and the boundary conditions are

u = 0.2, x ∈ ∂Ωrec, (27)
u = 1, x ∈ ∂Ωcircle. (28)

Parameter references are
µ1 = 1, µ2 = 4, k = 8, A = 10. (29)

The domain is [−1, 1]2 with several circles removed. The circles Ωcircle = ∪4
i=1Ri are

R1 = {(x, y) : (x− 0.5)2 + (y − 0.5)2 ≤ 0.22} (30)

R2 = {(x, y) : (x− 0.4)2 + (y + 0.4)2 ≤ 0.42} (31)

R3 = {(x, y) : (x+ 0.2)2 + (y + 0.7)2 ≤ 0.12} (32)

R4 = {(x, y) : (x+ 0.6)2 + (y − 0.5)2 ≤ 0.32} (33)

5. Poisson 3D Complex Geometry with Two Domains (Poisson3d-CG)

The Poisson 3D equation with two domains is given by

−µi∆u+ k2i u = f(x, y, z), i = 1, 2. (34)

The function f(x, y, z) is defined as

f(x, y, z) =A1
exp(sinm1πx+ sinm2πy + sinm3πz)

x2 + y2 + z2 + 1
(x2 + y2 + z2 − 1)

+A2 sin(m1πx) sin(m2πy) sin(m3πz).

(35)

The coefficients are defined as
{
µ = µ1, k = k1, x ∈ Ω1,

µ = µ2, k = k2, x ∈ Ω2.
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Figure 7: Reference solution of Poisson3d-CG by FEM solver. The top row displays the solution
at 5 YZ planes with x = 0, 0.25, 0.5, 0.75, 1.0. The medium row displays it at XZ planes with y =
0.0, 0.25, 0.5, 0.75, 1.0. The bottom row displays it at XY planes with z = 0.0, 0.25, 0.5, 0.75, 1.0.

The boundary condition is
∂u

∂n
= 0, x ∈ ∂Ω. (36)

The domains and other parameters are defined as follows:

Ω1 = [0, 1]× [0, 1]× [0, 0.5]/ ∪4
i=1 Ri, (37)

Ω2 = [0, 1]× [0, 1]× [0.5, 1]/ ∪4
i=1 Ri. (38)

The circular regions Ri are

R1 = {(x, y, z) : (x− 0.4)2 + (y − 0.3)2 + (z − 0.6)2 ≤ 0.22} (39)

R1 = {(x, y, z) : (x− 0.6)2 + (y − 0.7)2 + (z − 0.6)2 ≤ 0.22} (40)

R1 = {(x, y, z) : (x− 0.2)2 + (y − 0.8)2 + (z − 0.7)2 ≤ 0.12} (41)

R1 = {(x, y, z) : (x− 0.6)2 + (y − 0.2)2 + (z − 0.3)2 ≤ 0.12} (42)
(43)

Other parameters are

m1 = 1,m2 = 10,m3 = 5, µ1 = 1, µ2 = 1, k1 = 8, k2 = 10, A1 = 20, A2 = 100. (44)

6. 2D Poisson equation with many subdomains (Poisson2d-MS)

The PDE and boundary condition is given by

−∇(a(x)∇u) = f(x, y), xinΩ (45)
∂u

∂n
+ u = 0, x ∈ ∂Ω. (46)

Here the domain is (x, y) ∈ Ω = [−10, 10]2. We divide the whole domain into many small squares,
and a(x) is a piecewise linear function in each square. We store the a(x) in a file in practical
implementation.
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Figure 8: Reference solution of Poisson2d-MS by FEM solver.

Figure 9: Reference solution of Heat2d-VC by FEM solver at timesteps t = 0, 0.5, 2.0, 3.5.

7. 2D Heat with Varying Coefficients (Heat2d-VC)

The 2D heat equation with a varying source is given by

∂u

∂t
−∇(a(x)∇u) = f(x, t). (47)

The domain is Ω× T = [0, 1]2 × [0, 5]. The function a(x) is chosen similarly to Darcy flow but with
an exponential GRF. The function f(x, t) is defined as

f(x, t) = A sin(m1πx) sin(m2πy) sin(m3πt). (48)

with A = 200,m1 = 1,m2 = 5,m3 = 1. The initial and boundary conditions are

u(x, y, 0) = 0, x ∈ Ω (49)
u(x, y, t) = 0, x ∈ ∂Ω. (50)

8. 2D Heat Multi-Scale (Heat2d-MS)

The 2D heat multi-scale equation is given by

∂u

∂t
− 1

(500π)2
uxx − 1

π2
uyy = 0, (51)

with domain Ω× T = [0, 1]2 × [0, 5].

The initial and boundary conditions are

u(x, y, 0) = sin(20πx) sin(πy), x ∈ Ω, (52)
u(x, y, t) = 0, x ∈ ∂Ω. (53)
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Figure 10: Reference solution of Heat2d-MS by FEM solver.

Figure 11: reference solution of Heat2d-CG by FEM solver at timesteps t = 0.5, 2.0, 2, 5, 3.0.

9. 2D Heat Complex Geometry (Heat Exchanger, Heat2d-CG)

The 2D heat equation for a complex geometry is given by

∂u

∂t
−∆u = 0. (54)

The domain is defined as Ω× T = ([−8, 8]× [−12, 12] \ ∪iRi)× [0, 3].

The boundary condition is
−n · (−c∇u) = g − qu. (55)

Here we choose c = 1. The positions of large circles are

(±4,±3), (±4,±9), (0, 0), (0,±6), r = 1 (56)

with g = 5 and q = 1. The positions of small circles are

(±3.2,±6), (±3.2, 0), r = 0.4 (57)

with g = 1 and q = 1. For the rectangular boundary conditions, g = 0.1 and q = 1.

10. 2D Heat Long Time (Heat2d-LT)

The governing PDE is

∂u

∂t
= 0.001∆u+ 5 sin(ku2)

(
1 + 2 sin

(
πt

4

))
sin(m1πx) sin(m2πy) (58)

with domain Ω× T = [0, 1]2 × [0, 100], m1 = 4, m2 = 2, and k = 1.

The initial and boundary conditions are given by

u(x, y, 0) = sin(4πx) sin(3πy), x ∈ Ω (59)
u(x, y, t) = 0, x ∈ ∂Ω. (60)

11. 2D NS lid-driven flow (NS2d-C).
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Figure 12: reference solution of Heat2d-LT by FEM solver at timesteps t = 0, 20, 50, 80, 100.

Figure 13: Reference solution of NS2d-Ld by FEM solver.

The PDE is given by

u · ∇u+∇p− 1

Re
∆u = 0, x ∈ Ω (61)

∇ · u = 0, x ∈ Ω (62)

The domain is Ω = [0, 1]2, the top boundary is Γ1, the left, right and bottom boundary is Γ2.

The boundary conditions are

u(x) = (4x(1− x), 0), x ∈ Γ1 (63)
u(x) = (0, 0), x ∈ Γ2 (64)

p = 0, x = (0, 0). (65)

The Reynolds number Re = 100.

12. 2D Back Step Flow (NS-CG)

The equations and boundary conditions are given by

u · ∇u+∇p− 1

Re
∆u = 0, (66)

∇ · u = 0. (67)

The domain is defined as Ω = [0, 4]× [0, 2] \ ([0, 2]× [1, 2]
⋃

Ri) (excluding the top-left quarter).
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Figure 14: Reference fields u, v, p from top to bottom of NS2d-LT by FEM solver at timesteps
t = 0.5, 1.0, 2.5, 4.0, 5.0.

The inlet velocity is given by uin = 4y(1 − y), the outlet pressure is p = 0, and the boundary
condition is no-slip: u = 0. The Reynolds number of Re = 100.

13. 2D NS Long Time (NS2d-LT)

The PDE of this case is given by

∂u

∂t
+ u · ∇u+∇p− 1

Re
∆u = f(x, y, t), (68)

∇ · u = 0. (69)

The domain is Ω× T = ([0, 2]× [0, 1])× [0, 5], and the forcing term f(x, y, t) can be given as

f(x, y, t) = (0,− sin(πx) sin(πy) sin(πt)). (70)

The boundary conditions are similar to case 12, and the left inlet initial condition can be given as an
oscillatory form:

u(0, y, t) = sin(πy)(A1 sin(πt) +A2 sin(3πt) +A3 sin(5πt)). (71)

where A1 = 1, A2 = 1, A3 = 1.

The initial condition in the domain is
u(x, y, 0) = 0. (72)

14. Basic 1D Wave Equation (Wave1d-C)

The governing PDE is
utt − 4uxx = 0 (73)

The domain is Ω× T = [0, 1]× [0, 1]. The boundary conditions are

u(0, t) = u(1, t) = 0 (74)

The initial condition:

u(x, 0) = sin(πx) +
1

2
sin(4πx) (75)

ut(x, 0) = 0 (76)

The analytical solution of this problem is

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt). (77)

15. 2D Wave Equation in Heterogeneous Medium (Wave2d-CG)

The governing PDE is given by [
∇2 − 1

c(x)

∂2

∂t2

]
u(x, t) = 0 (78)
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Figure 15: Reference solution of Wave2d-CG by FEM solver at timesteps t = 0, 0.5, 2.0, 4.0, 5.0.

The Domain is Ω = [−1, 1]× [−1, 1] and the initial condition is

u(x, 0) = exp

(
−∥x− µ∥2

2σ2

)
, x ∈ Ω (79)

∂u

∂t
(x, 0) = 0, x ∈ Ω (80)

The boundary conditions are
∂u

∂n
= 0, x ∈ ∂Ω (81)

The parameters are
µ = (−0.5, 0), σ = 0.3, (82)

and c(x) are generated by a Gaussian random field.

16. 2D Multi-Scale Long Time Wave Equation (Wave2d-MS)

The governing PDE is
utt − (uxx + a2uyy) = 0 (83)

The domain is defined as Ω = [0, 1]2 × [0, 100] and the boundary and initial conditions are

u(x, y, t) = c1 sinh(m1πx) sinh(n1πy) cos(p1πt), (x, y) ∈ ∂Ω. (84)

∂u

∂t
(x, y, 0) = 0 (85)

The exact solution to this problem is

u(x, y, t) = c1 sinh(m1πx) sinh(n1πy) cos(p1πt), (86)

where a =
√
2,m1 = 1, n1 = 1, p1 =

√
3 and c1 = 1.

17. 2D Diffusion-Reaction Gray-Scott Model (GS)

The governing PDE is

ut = ε1∆u+ b(1− u)− uv2 (87)

vt = ε2∆v − dv + uv2 (88)

The domain is Ω× T = [−1, 1]2 × [0, 200] and parameters are

b = 0.04, d = 0.1, ε1 = 1× 10−5, ε2 = 5× 10−6 (89)

The initial conditions are

u(x, y, 0) = 1− exp(−80((x+ 0.05)2 + (y + 0.02)2)) (90)

v(x, y, 0) = exp(−80((x− 0.05)2 + (y − 0.02)2)) (91)

The visualization of the reference solution of this case is in Figure 16.

18. Kuramoto-Sivashinsky Equation (KS)
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Figure 16: Reference solution of GS equation at timestep t = 0.0, 2.5, 5.0, 7.5, 10.0.

Figure 17: Reference solution of KS equation.

The governing PDE is
ut + αuux + βuxx + γuxxxx = 0 (92)

The domain is Ω× T = [0, 2π]× [0, 1]. (Note: Error may increase rapidly in chaotic problems.)

α =
100

16
, β =

100

162
, γ =

100

164
(93)

The initial condition is
u(x, 0) = cos(x)(1 + sin(x)) (94)

The reference solution of KS equation is shown in Figure B.1.

19. N-Dimensional Poisson equation (PNd)

The governing PDE is

−∆u =
π2

4

n∑
i=1

sin
(π
2
xi

)
(95)

The domain is defined by Ω = [0, 1]n. The exact solution is

u =

n∑
i=1

sin
(π
2
xi

)
(96)
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We choose n = 5 in our code.

20. N-Dimensional Heat Equation (HNd)

The governing PDE is
∂u

∂t
= k∆u+ f(x, t), x ∈ Ω× [0, 1] (97)

n · ∇u = g(x, t), x ∈ ∂Ω× [0, 1] (98)
u(x, 0) = g(x, 0), x ∈ Ω (99)

The geometric domain Ω = {x : |x|2 ⩽ 1} is a unit sphere in d-dimensional space. We choose
dimension d = 5.

k =
1

d
(100)

The two functions are

f(x, t) = −1

d
|x|22 exp

(
1

2
|x|22 + t

)
(101)

g(x, t) = exp

(
1

2
|x|22 + t

)
(102)

We can see that the exact solution of the equation is g(x, t).

21. Poisson inverse problem (PInv)

The governing PDE is
−∇(a∇u) = f (103)

The geometric domain is Ω = [0, 1]2, and
u = sinπx sinπy. (104)

The source term f is

f =
2π2 sinπx sinπy

1 + x2 + y2 + (x− 1)2 + (y − 1)2
+

2π((2x− 1) cosπx sinπy + (2y − 1) sinπx cosπy)

(1 + x2 + y2 + (x− 1)2 + (y − 1)2)2
. (105)

To ensure the uniqueness of the solution, we impose a boundary condition of a(x, y), i.e.,

a(x, y) =
1

1 + x2 + y2 + (x− 1)2 + (y − 1)2
, x ∈ ∂Ω (106)

We sample data of u(x, y) with 2500 uniformly distributed 50× 50 points and add Gaussian noise
N (0, 0.1) to it. The goal is to reconstruct the diffusion coefficients. We see that the ground truth of
a(x, y) is

a(x, y) =
1

1 + x2 + y2 + (x− 1)2 + (y − 1)2
, x ∈ Ω. (107)

22. Heat (Diffusion) inverse problem (HInv)

The governing PDE of this inverse problem is
ut −∇(a∇u) = f (108)

The geometric domain is Ω× T = [−1, 1]2 × [0, 1], and

u = e−t sinπx sinπy (109)
Similarly, we impose a boundary condition for the diffusion coefficient field:

a(x, y) = 2, ∂x ∈ Ω. (110)
Then the source function f is

f = ((4π2 − 1) sinπx sinπy + π2(2 sin2 πx sin2 πy − cos2 πx sin2 πy − sin2 πx cos2 πy))e−t (111)

We sample data of u(x, y, t) randomly with 2500 points from the temporal domain Ω× T and add
Gaussian noise N (0, 0.1) to it. The goal is to reconstruct the diffusion coefficients. We see that the
ground truth is

a(x, y) = 2 + sinπx sinπy, x ∈ Ω. (112)
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B.2 Definitions and design choices for parametric PDEs

We design a set of parametric PDEs and evaluate the average performance of PINN variants on cases
with different parameters. We choose Burgers2d-C, Poisson2d-C, Heat2d-MS, NS2d-C, Wave2d-C,
and Heat-Nd to design these parametric cases.

1. 2D Coupled Burgers equation (Burgers2d-C) with different initial values.

The initial values of this case are shown in Eq 16 where a and b are sampled from Gaussian Random
Field. Here the initial values are used as parameters and we sample 5 different a and b from GRF
and test the performance of PINN variants on all 5 cases. Each parametrized PDE is solved using
COMSOL. In PDEBench, the authors similarly tested the average effect of PDEs sampled multiple
times from the GRF with the same equation. Since the GRF has not changed, there is not much
variation in the magnitude and frequency of the initial flow velocity, but there may be significant
differences in their spatial distribution. This can also lead to differences in difficulty when solving
with the PINN method. From the 4, we see that the error of the best method increased from 26% to
41%, indicating a significant influence of the flow distribution on the solution.

2. Poisson 2d Classic (Poisson2d-C)

This PDE is defined on Ω = [−L,L]2. We parametrize this case by using different domain scales L
from {1, 2, 4, 8, 16}. Since this PDE is linear, we could compute the ground truth solution by linearly
scaling the original PDE where L = 0.5. Some papers [61] pointed out that the effect of PINN is
influenced by the size of the domain. This is because scaling the domain directly to [0, 1]d may be
suboptimal and can lead to an imbalanced ratio of PDE loss to boundary loss. This is because PINNs
are sensitive to initialization, so different domain scales might lead to different results. Here the real
solution of this linear PDE can be obtained through a linear transformation from a solution of another
domain scale L. The condition number does not differ when we change L, making it suitable to
study the influence of domain scale on PINN’s performance. We observed from the results that some
methods (PINN-NTK, MultiAdam, FBPINN) are relatively robust to domain scale.

3. 2D Heat Multi-Scale (Heat2d-MS)

We parameterize this case using different initial conditions in Eq 53,
u(x, y, 0) = sin(aπx) sin(πy). (113)

Here we choose (a, b) from {(20, 1), (1, 20), (10, 2), (2, 10), (5, 4)}. The reference solutions for
different parameters are solved using COMSOL. Changes in the frequency of the initial condition
will lead to changes in the frequency of the solution, which allows us to study the influence of the
initial condition frequency on PINN. Comparing the results of several experiments, we found that the
loss reweighting strategy of PINN-NTK and the adaptive activation function of LAAF perform well
for multi-scale problems overall. However, when the frequency variation range is more significant,
both their performances decline, suggesting room for improvement.

4. 2D NS lid-driven flow (NS2d-C)

We parametrize NS2d-C by setting different speeds at the top boundary in Eq 65,
u(x) = (ax(1− x), 0), x ∈ Γ1, (114)

where a is chosen from {2, 4, 8, 16, 32}. The reference solutions for different parameters are solved
using COMSOL. Different flow rates imply different Reynolds numbers, thus altering the difficulty
of solving the equation. As the Reynolds number increases, the condition number of the equation
will also increase. Generally, the higher the Reynolds number, the more likely turbulence or some
small-scale complex flow states will occur. Testing different Reynolds numbers is a natural idea.
Specifically, we chose a velocity u = ax(1− x), where a ranges between 2 and 32. Compared to the
main experiment with a = 4, the Reynolds number increased eightfold when a = 32.

5. 1D Wave Equation

We parametrize this case with different initial conditions in Eq 76,

u(x, 0) = sin(πx) +
1

2
sin(aπx), (115)

where a is chosen from {2, 4, 6, 8, 10}. The ground truth solution is given by,

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(πax) cos(2aπt). (116)
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6. N-Dimensional Heat Equation

We parametrize this case by choosing a different number of dimensions n from {4, 5, 6, 8, 10}.
The solutions are given by Eq 102. Although neural networks are theoretically universal function
approximators, the ability to fit the solution of high-dimensional PDEs still needs to be studied. So,
we chose heat equations of different dimensions to compare the effects of various PINN methods.
We observed that for high-dimensional heat equations, the improved optimizer MultiAdam is very
helpful in solving high-dimensional problems.
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PDE type Software Solver #Mesh
Burgers 1d-C Comsol BDF,MUMPS 1000

2d-C Comsol BDF,MUMPS 24912
Poisson 2d-C Comsol MUMPS 40000

2d-CG Comsol MUMPS 22420
3d-CG Comsol MUMPS 371024
2d-MS Comsol MUMPS 24912

Heat all Comsol BDF,MUMPS 24912
Naiver-Stokes 2d-C Comsol PARDISO 10000

2d-CG Comsol PARDISO 39294
2d-LT Comsol BDF,PARDISO 43250

Wave 1d-C Analytical
2d-CG Comsol Generalized alpha, MUMPS 24912
2d-MS Comsol Generalized alpha, MUMPS 25140

Chaotic GS Chebfun ETDRK4 1000
KS Chebfun ETDRK4 1000

High dim all Analytical
Inverse problems all Analytical

Table 5: Details of the solver for reference data.

B.3 Discussion about the reference solutions and Mesh Convergence Study.

Given that our benchmark includes various types of PDEs, we generated the reference data using
different types of numerical solvers, including the FEM solvers in COMSOL [39], Chebfun [12],
among others. For different PDEs, selecting the appropriate numerical solver allows for higher
precision results. The types of solvers used, mesh sizes, parameters, and convergence accuracies are
detailed in Table 5. For these problems, highly optimized numerical solvers can achieve solutions
with very high accuracy and theoretical guarantees. However, the choice of mesh discretization and
solver type is highly dependent on the PDE type and parameters. Although PINNs have limitations in
terms of accuracy and efficiency, their flexibility and ability to generalize by incorporating data are
advantages over traditional numerical solvers, which is one of the motivations behind the development
of PINNs.

We conducted a mesh convergence study for the Poisson3d and NS2d-CG equations using grids
with varying spacing. To estimate the error bound, we employed Richardson extrapolation [65], a
technique that leverages the solutions from different grid sizes to predict the solution’s behavior as
the grid is further refined. The principle behind Richardson extrapolation is that the error in the
numerical solution decreases predictably with grid refinement. If the error reduces as a power of the
grid size h, the extrapolated solution uextrapolated can be calculated as:

uextrapolated =
hp
2uh1

− hp
1uh2

hp
2 − hp

1

, (117)

where uh1
and uh2

are the solutions obtained on grids with sizes h1 and h2 respectively, and p is the
theoretical convergence rate. The error bound can then be estimated by comparing the extrapolated
solution with the finer grid solution uh2

as follows:

Error Bound =
||uextrapolated − uh2 ||

||uextrapolated||
. (118)

We obtained the following Figure 18 showing the error bound as a function of grid size. As we refined
the grid, the differences between the solutions decreased, and the error bound rapidly decreased with
smaller grid sizes. The error for the reference data we used was below 0.1%, indicating that it is
highly reliable and can serve as a valid reference for the PINN solutions.

B.4 Relationship with existing PDE benchmarks
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Figure 18: Richardson extrapolation and error bound analysis for Poisson3d-CG(left) and NS2d-
CG(right).

PDE type/Number of PDEs PINNacle PDEBench PDEArena Wang et. al[56]
Burgers 2 1 0 0
Poisson 4 1 0 0

Convection-Diffusion 4 3 0 2
Shallow water 0 1 1 0
Naiver-Stokes 3 4 2 4

Wave 2 0 0 0
Chaotic 2 0 0 1

High dim 2 0 0 0
Inverse problems 2 0 0 0

Table 6: A comparison between our work and several existing PDE benchmarks. We list the PDEs
used in the experiments for each paper.

Here we compare the PDEs we used with PDEs in PDEBench [52], PDEArena [17], and Wang et.
al[56]. We list the number of different PDEs used in the experiments in Table 6. The selection of
PDEs for our study was carefully curated to align with the objectives of comparing PINN methods,
which differs from the approach taken in PDEBench or PDEArena. While PDEBench and PDEArena
are oriented towards time-dependent PDEs, such as the compressible Naiver-Stokes and Diffusion
Reaction equations, and provide extensive datasets for neural operator research, our focus was distinct.
For [56], we compared more PINN variants and selected a wider range of equations We chose a
range of PDEs. specifically for their relevance to PINN research, where datasets are not typically
provided, emphasizing the direct application of PINNs to the PDEs themselves. We select a diverse
range of PDE types and complexities from existing PINN literature. Among these, we included
widely applicable and representative PDEs like the incompressible Naiver-Stokes equation and the
Poisson equation (Darcy flow), which are fundamental to a multitude of disciplines. Our choice thus
facilitates a more targeted and appropriate comparison of PINN methodologies, underscoring the
unique aspects of our research approach.

B.5 Overview of methods

The baselines we selected could be roughly divided into several categories, i.e., loss reweighting/re-
sampling, novel optimizer, novel loss functions, and novel activation/architectures. As shown in Eq
119, the general formulation of PINNs is to optimize a mixture of PDE residual loss, boundary loss,
and available data loss,

L(θ) = wc

Nc

Nc∑
i=1

||F(uθ(x
i
c);x

i
c)||2 +

wb

Nb

Nb∑
i=1

||B(uθ(x
i
b);x

i
b)||2 +

wd

Nd

Nd∑
i=1

||uθ(x
i
d)− u(xi

d)||2.

(119)
Under this formulation, we could explain different variants of PINNs.
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• Loss reweighting methods dynamically modify the weights wc, wb, wd to enable a better
convergence rate. Resampling methods allocate new collocation points xc, xb or adjust their
sampling probability. These methods alleviate the imbalance between PINN optimization.
Results show that they achieve remarkable results on many cases of Poisson, Heat, and
Wave equations.

• Novel loss functions. It modifies the form of L(θ) or adds new regularization terms for
higher convergence accuracy. Results show that vPINNs are excellent at solving inverse
problems.

• Novel optimizer. An example of novel optimizer is Multi-Adam which is more suitable for
dealing with multiple conflict loss terms especially when they have a different scale. Results
show that it works for several problems with multi-scale problems.

• Novel activations/architectures. It modifies the form of surrogate neural networks uθ for
better model capacity. We see that these modifications are effective for some problems with
complex geometries and nonlinear NS equations.

C Model Configuration and Hyperparameters

C.1 Model architecture

Our research employs a specific model structure: a Multilayer Perceptron (MLP) with 5 layers, each
of which has a width of 100 neurons.

The model was trained for a total of 20,000 iterations or epochs. This number of training rounds was
found to be sufficient for the model to learn the underlying patterns in the data, while also avoiding
potential overfitting that might occur with too many epochs.

As for the number of collocation points, for 2-dimensional problems, we used 8192 points. These
collocation points provide dense coverage of the problem space while it does not consume too much
GPU memory. In addition to these, we utilized 2048 boundary/initial points.

For 3-dimensional problems, the number of collocation points and boundary/initial points were
increased to 32768 and 8192, respectively. This increase corresponds to the added complexity of
3-dimensional problems, requiring a more comprehensive representation of the problem space to
achieve reliable and accurate results.

C.2 Optimization hyperparameters

In our primary experiment, we use Adam optimizer with momentum (0.9, 0.999). We set the learning
rate at 1e-3. This learning rate was selected after carefully considering the trade-off between the
speed of convergence and the stability of learning, which we discussed previously. We found that this
learning rate provides a good balance, enabling robust learning without the issues associated with
excessively high or low rates. For vanilla PINNs, the loss weights are set to 1.

In summary, our model structure and parameters were carefully selected to balance the need for
accuracy and computational efficiency, providing a fair and effective comparison in our study. Detailed
ablation studies about these hyperparameters are reported in Appendix E.

C.3 Other method-specific hyperparameters

Here we present the hyperparameters of the methods we tested.

• PINN. There are no special hyperparameters for the baseline PINN. Please refer to the
section above for the network structure and optimization hyperparameters.

• PINN-w. We assign larger weights to boundary conditions for PINN-w. Specifically, the
weight for PDE loss is set at 1, while those for initial and boundary conditions are increased
to 100. These losses are then aggregated as the target loss.

• PINN-LRA. We set α = 0.1 for updating loss weights, which is the recommended value in
the original paper.
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Custom PDE Class

 mypde.geom = ...
 mypde.pde  = ...
 mypde.add_bcs(...)

 mypde.load_ref_data(...)

BasicPDE
Callbacks

[TesterCallback(),
...

PlotCallback()]

mypde.
create_model

(net)

model.
complile

(opt,weights)

Net

net = FNN(...) 

Optimizer

opt = LR_Adaptor(...) 

Task

Multi-GPU

Training
Multi-GPU

Training
Multi-GPU

Training

Logs/Visualization

Trainer

Trainer.train_all_parallel()

Figure 19: A high-level illustration of PINNacle code structure.

• PINN-NTK. No special hyperparameter is needed for this method.

• RAR. For residual-based adaptive refinement, we add new points where the residual is
greatest into the training set every 2000 epochs.

• MultiAdam. Although there is no manual weighting for MultiAdam, the loss grouping
criteria can affect its performance. Due to time constraints, we only tuned the grouping
criteria for the Wave1d-C case, where losses were divided into Dirichlet boundary losses and
non-Dirichlet losses and trained for 10,000 epochs. For all other cases, we simply categorize
the losses into PDE and boundary losses.

• gPINN. For simplicity, we assign a weight of 0.01 to the gradient terms and a weight of 1 to
all others. However, these weights are delicate and require further fine-tuning.

D High-level Structure of Toolbox

In Figure 19, we provide a high-level overview of the usage and modules of the benchmark. We
provide several encapsulated classes upon DeepXDE. Specifically, we have a PDE class for building
PDE problems conveniently. Then we warp the model class by passing neural network architecture,
optimizer, and custom callbacks. After that, the model is compiled by DeepXDE. Finally, we invoke
the multi-GPU parallel training and evaluation framework to allocate the training tasks to different
GPUs. We support convenient one-button parallel training and testing on all PDE cases using all
methods. An example code snippet is shown here.

import deepxde as dde
from trainer import Trainer
from src.pde import PDE1 , ..., PDEn
from src.utils.callbacks import TesterCallback

trainer = Trainer(’experiment -name’,device)
for pde_class in [PDE1 , ..., PDEn]:

def get_model ():
pde = pde_class ()
net = dde.nn.FNN([pde.input_dim] + n_layers * [n_hidden] + [pde.output_dim ])
opt = torch.optim.Adam(net.parameters (), lr=learning_rate)
model = pde.create_model(net)
model.compile(opt)
return model

trainer.add_task(
get_model , {’iterations ’: num_iterations ,’callbacks ’: [TesterCallback ()]}

)
trainer.train_all_parallel ()
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E Detailed Experimental Results

E.1 Detailed results of main experiments.

The detailed results of the main experiments in listed in the subsection. In Table 9, we provide the
mean and std of L2RE for all baselines on all PDEs. In Table 8, we provide the mean and std of L1RE
for all baselines on all PDEs. In Table 11, Table 12, and Table 13, we provide the low-frequency,
medium-frequency, and high-frequency Fourier errors, respectively. In Table 10, we provide the
mean and std of MSE for all baselines on all PDEs. In Table 14, we provide the average runtime
(seconds) for all baselines trained with 20000 epochs on all PDEs averaged by three runs. In Table
E.2, we show the results of all baselines on parametric PDEs.

Here we provide an analysis of these results. Since the results of the main experiments have been
described in the main text, we won’t go over them again. For different metrics of the same PDE, the
best-performing methods often differ. This is because different errors reflect different mismatches
between the predicted solution and the true solution.

• From the results, we can see that for most cases, methods that perform well in L2RE error
also perform well in L1RE. This shows that L1RE and L2RE are generally similar. Although
the absolute values differ, they can mostly be used interchangeably, or one can be chosen for
calculation.

• Max error measures the worst-case error, significantly different from the average loss
measured by L1RE/L2RE. From the results, we can see that hp-VPINN performs very
well on this metric, followed by the adaptive activation function LAAF. PINN-LRA and
PINN-NTK are optimal for some equations, but their effects are not as stable.

• Fourier error allows for the convergence of different frequency components, so it’s an
essential reference indicator. Since functions defined in irregular geometric areas are not
suitable for calculating Fourier error, we ignored these equations. Looking at **Table 9,
Table 10, and Table 11** comprehensively, for mid-low frequency functions, FBPINN is the
best performing in most instances. Loss reweighting methods like PINN-LRA and ordinary
PINN are better for low and high-frequency components, respectively. We speculate that
reweighting the loss to some extent changes the convergence order of different function
components.

• Regarding the runtime metric, hp-VPINN is the fastest in most problems. This might be due
to the optimization inherent in hp-VPINN’s implementation and its fewer required differ-
entiations than vanilla PINN. All other methods introduced varying degrees of additional
computational overhead compared to vanilla PINN, with some methods like gPINN even
requiring about twice the computational time. We list all training and inference Flops in
Table 15 and Table 18. The flops metric also shows that vanilla PINNs and hp-VPINNs are
the most efficient PINN variants.
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L2RE Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture

– PINN PINN-w LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 1.45E-2(1.59E-3) 2.63E-2(4.68E-3) 2.61E-2(1.18E-2) 1.84E-2(3.66E-3) 3.32E-2(2.14E-2) 4.85E-2(1.61E-2) 2.16E-1(3.34E-2) 3.47E-1(3.49E-2) 1.43E-2(1.44E-3) 5.20E-2(2.08E-2) 2.32E-1(9.14E-2)

2d-C 3.24E-1(7.54E-4) 2.70E-1(3.93E-3) 2.60E-1(5.78E-3) 2.75E-1(4.78E-3) 3.45E-1(4.56E-5) 3.33E-1(8.65E-3) 3.27E-1(1.25E-4) 6.38E-1(1.47E-2) 2.77E-1(1.39E-2) 2.95E-1(1.17E-2) –

Poisson

2d-C 6.94E-1(8.78E-3) 3.49E-2(6.91E-3) 1.17E-1(1.26E-1) 1.23E-2(7.37E-3) 6.99E-1(7.46E-3) 2.63E-2(6.57E-3) 6.87E-1(1.87E-2) 4.91E-1(1.55E-2) 7.68E-1(4.70E-2) 6.04E-1(7.52E-2) 4.49E-2(7.91E-3)

2d-CG 6.36E-1(2.57E-3) 6.08E-2(4.88E-3) 4.34E-2(7.95E-3) 1.43E-2(4.31E-3) 6.48E-1(7.87E-3) 2.76E-1(1.03E-1) 7.92E-1(4.56E-3) 2.86E-1(2.00E-3) 4.80E-1(1.43E-2) 8.71E-1(2.67E-1) 2.90E-2(3.92E-3)

3d-CG 5.60E-1(2.84E-2) 3.74E-1(3.23E-2) 1.02E-1(3.16E-2) 9.47E-1(4.94E-4) 5.76E-1(5.40E-2) 3.63E-1(7.81E-2) 4.85E-1(5.70E-2) 7.38E-1(6.47E-4) 5.79E-1(2.65E-2) 5.02E-1(7.47E-2) 7.39E-1(7.24E-2)

2d-MS 6.30E-1(1.07E-2) 7.60E-1(6.96E-3) 7.94E-1(6.51E-2) 7.48E-1(9.94E-3) 6.44E-1(2.13E-2) 5.90E-1(4.06E-2) 6.16E-1(1.74E-2) 9.72E-1(2.23E-2) 5.93E-1(1.18E-1) 9.31E-1(7.12E-2) 1.04E+0(6.13E-5)

Heat 2d-VC 1.01E+0(6.34E-2) 2.35E-1(1.70E-2) 2.12E-1(8.61E-4) 2.14E-1(5.82E-3) 9.66E-1(1.86E-2) 4.75E-1(8.44E-2) 2.12E+0(5.51E-1) 9.40E-1(1.73E-1) 6.42E-1(6.32E-2) 8.49E-1(1.06E-1) 9.52E-1(2.29E-3)

2d-MS 6.21E-2(1.38E-2) 2.42E-1(2.67E-2) 8.79E-2(2.56E-2) 4.40E-2(4.81E-3) 7.49E-2(1.05E-2) 2.18E-1(9.26E-2) 1.13E-1(3.08E-3) 9.30E-1(2.06E-2) 7.40E-2(1.92E-2) 9.85E-1(1.04E-1) 8.20E-2(4.87E-3)

2d-CG 3.64E-2(8.82E-3) 1.45E-1(4.77E-3) 1.25E-1(4.30E-3) 1.16E-1(1.21E-2) 2.72E-2(3.22E-3) 7.12E-2(1.30E-2) 9.38E-2(1.45E-2) 1.67E+0(3.62E-3) 2.39E-2(1.39E-3) 4.61E-1(2.63E-1) 9.16E-2(3.29E-2)

2d-LT 9.99E-1(1.05E-5) 9.99E-1(8.01E-5) 9.99E-1(7.37E-5) 1.00E+0(2.82E-4) 9.99E-1(1.56E-4) 1.00E+0(3.85E-5) 1.00E+0(9.82E-5) 1.00E+0(0.00E+0) 9.99E-1(4.49E-4) 9.99E-1(2.20E-4) 1.01E+0(1.23E-4)

NS 2d-C 4.70E-2(1.12E-3) 1.45E-1(1.21E-2) NaN(NaN) 1.98E-1(2.60E-2) 4.69E-1(1.16E-2) 7.27E-1(1.95E-1) 7.70E-2(2.99E-3) 2.92E-1(8.24E-2) 3.60E-2(3.87E-3) 3.79E-2(4.32E-3) 8.45E-2(2.26E-2)

2d-CG 1.19E-1(5.46E-3) 3.26E-1(7.69E-3) 3.32E-1(7.60E-3) 2.93E-1(2.02E-2) 3.34E-1(6.52E-4) 4.31E-1(6.95E-2) 1.54E-1(5.89E-3) 9.94E-1(3.80E-3) 8.24E-2(8.21E-3) 1.74E-1(7.00E-2) 8.27E+0(3.68E-5)

2d-LT 9.96E-1(1.19E-3) 1.00E+0(3.34E-4) 1.00E+0(4.05E-4) 9.99E-1(6.04E-4) 1.00E+0(3.35E-4) 1.00E+0(2.19E-4) 9.95E-1(7.19E-4) 1.73E+0(1.00E-5) 9.98E-1(3.42E-3) 9.99E-1(1.10E-3) 1.00E+0(2.07E-3)

Wave 1d-C 5.88E-1(9.63E-2) 2.85E-1(8.97E-3) 3.61E-1(1.95E-2) 9.79E-2(7.72E-3) 5.39E-1(1.77E-2) 1.21E-1(1.76E-2) 5.56E-1(1.67E-2) 8.39E-1(5.94E-2) 4.54E-1(1.08E-2) 6.77E-1(1.05E-1) 5.91E-1(4.74E-2)

2d-CG 1.84E+0(3.40E-1) 1.66E+0(7.39E-2) 1.48E+0(1.03E-1) 2.16E+0(1.01E-1) 1.15E+0(1.06E-1) 1.09E+0(1.24E-1) 8.14E-1(1.18E-2) 7.99E-1(4.31E-2) 8.19E-1(2.67E-2) 7.94E-1(9.33E-3) 1.06E+0(7.54E-2)

2d-MS 1.34E+0(2.34E-1) 1.02E+0(1.16E-2) 1.02E+0(1.36E-2) 1.04E+0(3.11E-2) 1.35E+0(2.43E-1) 1.01E+0(5.64E-3) 1.02E+0(4.00E-3) 9.82E-1(1.23E-3) 1.06E+0(1.71E-2) 1.06E+0(5.35E-2) 1.03E+0(6.68E-3)

Chaotic GS 3.19E-1(3.18E-1) 1.58E-1(9.10E-2) 9.37E-2(4.42E-5) 2.16E-1(7.73E-2) 9.46E-2(9.46E-4) 9.37E-2(1.21E-5) 2.48E-1(1.10E-1) 1.16E+0(1.43E-1) 9.47E-2(7.07E-5) 9.46E-2(1.15E-4) 7.99E-2(1.69E-2)

KS 1.01E+0(1.28E-3) 9.86E-1(2.24E-2) 9.57E-1(2.85E-3) 9.64E-1(4.94E-3) 1.01E+0(8.63E-4) 9.61E-1(4.77E-3) 9.94E-1(3.83E-3) 9.72E-1(5.80E-4) 1.01E+0(2.12E-3) 1.00E+0(1.24E-2) 1.02E+0(2.31E-2)

High dim PNd 3.04E-3(5.62E-4) 2.58E-3(1.31E-3) 4.58E-4(1.89E-5) 4.64E-3(4.36E-3) 3.59E-3(1.25E-3) 3.98E-3(1.11E-3) 5.05E-3(6.07E-4) – 4.14E-3(5.59E-4) 7.75E-3(1.41E-3) –

HNd 3.61E-1(4.40E-3) 4.59E-1(4.34E-3) 3.94E-1(1.28E-2) 3.97E-1(1.26E-2) 3.57E-1(3.69E-3) 3.02E-1(4.07E-2) 3.17E-1(6.66E-3) – 5.22E-1(3.12E-3) 5.21E-1(7.79E-4) –

Inverse PInv 9.42E-2(1.58E-3) 1.66E-1(5.45E-3) 1.54E-1(3.32E-3) 1.93E-1(1.39E-2) 9.35E-2(1.12E-2) 1.30E-1(1.55E-2) 8.03E-2(2.79E-3) 2.45E-2(1.03E-2) 1.30E-1(1.07E-2) 2.54E-1(1.53E-1) 8.44E-1(1.37E-1)

HInv 1.57E+0(7.21E-2) 5.26E-2(3.31E-3) 5.09E-2(4.34E-3) 7.52E-2(5.42E-3) 1.52E+0(6.46E-2) 8.04E-2(1.20E-2) 4.84E+0(2.07E+0) 4.56E-1(1.30E-2) 5.59E-1(5.24E-1) 2.12E-1(4.89E-2) 9.27E-1(1.20E-1)
Table 7: Mean (Std) of L2RE for main experiments.
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L1RE Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture

– PINN PINN-w LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 9.55E-3(6.42E-4) 1.88E-2(4.05E-3) 1.35E-2(2.57E-3) 1.30E-2(1.73E-3) 1.35E-2(4.66E-3) 2.64E-2(5.69E-3) 1.42E-1(1.98E-2) 4.02E-2(6.41E-3) 1.40E-2(3.68E-3) 1.95E-2(8.30E-3) 3.75E-2(9.70E-3)

2d-C 2.96E-1(7.40E-4) 2.43E-1(2.98E-3) 2.31E-1(7.16E-3) 2.48E-1(5.33E-3) 3.27E-1(3.73E-5) 3.12E-1(1.15E-2) 3.01E-1(3.55E-4) 6.56E-1(3.01E-2) 2.57E-1(2.06E-2) 2.67E-1(1.22E-2) –

Poisson

2d-C 7.40E-1(5.49E-3) 3.08E-2(5.13E-3) 7.82E-2(7.47E-2) 1.30E-2(8.23E-3) 7.48E-1(1.01E-2) 2.47E-2(6.38E-3) 7.35E-1(2.08E-2) 4.60E-1(1.39E-2) 7.67E-1(1.36E-2) 6.57E-1(3.99E-2) 5.01E-2(4.71E-3)

2d-CG 5.45E-1(4.71E-3) 4.54E-2(6.42E-3) 2.63E-2(5.50E-3) 1.33E-2(4.96E-3) 5.60E-1(8.19E-3) 2.46E-1(1.07E-1) 7.31E-1(2.77E-3) 2.45E-1(5.14E-3) 4.04E-1(1.03E-2) 7.09E-1(2.12E-1) 3.21E-2(6.23E-3)

3d-CG 4.51E-1(3.35E-2) 3.33E-1(2.64E-2) 7.76E-2(1.63E-2) 9.93E-1(2.91E-4) 4.61E-1(4.46E-2) 3.55E-1(7.75E-2) 4.57E-1(5.07E-2)) 7.96E-1(3.57E-4) 4.60E-1(1.13E-2) 3.82E-1(4.89E-2) 6.91E-1(7.52E-2)

2d-MS 7.60E-1(1.06E-2) 7.49E-1(1.12E-2) 7.93E-1(7.62E-2) 7.26E-1(1.46E-2) 7.84E-1(2.42E-2) 6.94E-1(5.61E-2) 7.41E-1(2.01E-2) 9.61E-1(5.67E-2) 6.31E-1(5.42E-2) 9.04E-1(1.01E-1) 9.94E-1(9.67E-5)

Heat 2d-VC 1.12E+0(5.79E-2) 2.41E-1(1.73E-2) 2.07E-1(1.04E-3) 2.03E-1(1.12E-2) 1.06E+0(5.13E-2) 5.45E-1(1.07E-1) 2.41E+0(5.27E-1) 8.79E-1(2.57E-1) 7.49E-1(8.54E-2) 9.91E-1(1.37E-1) 9.44E-1(1.75E-3)

2d-MS 9.30E-2(2.27E-2) 2.90E-1(2.43E-2) 1.13E-1(3.57E-2) 6.69E-2(8.24E-3) 1.19E-1(2.16E-2) 3.00E-1(1.14E-1) 1.80E-1(1.12E-2) 9.25E-1(3.90E-2) 1.14E-1(4.98E-2) 1.08E+0(2.02E-1) 5.33E-2(3.92E-3)

2d-CG 3.05E-2(8.47E-3) 1.37E-1(7.70E-3) 1.12E-1(2.57E-3) 1.07E-1(1.44E-2) 2.21E-2(3.42E-3) 5.88E-2(1.02E-2) 8.20E-2(1.32E-2) 3.09E+0(1.86E-2) 1.94E-2(1.98E-3) 3.77E-1(2.17E-1) 6.77E-1(3.93E-2)

2d-LT 9.98E-1(6.00E-5) 9.98E-1(1.42E-4) 9.98E-1(1.47E-4) 9.99E-1(1.01E-3) 9.98E-1(2.28E-4) 9.99E-1(5.69E-5) 9.98E-1(8.62E-4) 9.98E-1(0.00E+0) 9.98E-1(1.27E-4) 9.98E-1(8.58E-5) 1.01E+0(7.75E-4)

NS 2d-C 5.08E-2(3.06E-3) 1.84E-1(1.52E-2) NaN 2.44E-1(3.05E-2) 5.54E-1(1.24E-2) 9.86E-1(3.16E-1) 9.43E-2(3.24E-3) 1.98E-1(7.81E-2) 4.42E-2(7.38E-3) 3.78E-2(8.71E-3) 1.18E-1(3.10E-2)

2d-CG 1.77E-1(1.00E-2) 4.22E-1(8.72E-3) 4.12E-1(6.93E-3) 3.69E-1(2.46E-2) 4.65E-1(4.44E-3) 6.23E-1(8.86E-2) 2.36E-1(1.15E-2) 9.95E-1(3.50E-4) 1.25E-1(1.42E-2) 2.40E-1(8.01E-2) 5.92E+0(5.65E-4)

2d-LT 9.88E-1(1.86E-3) 9.98E-1(4.68E-4) 9.97E-1(3.64E-4) 9.95E-1(6.66E-4) 1.00E+0(2.46E-4) 9.99E-1(9.27E-4) 9.90E-1(3.60E-4) 1.00E+0(1.40E-4) 9.90E-1(3.78E-3) 9.96E-1(2.68E-3) 1.00E+0(1.38E-3)

Wave 1d-C 5.87E-1(9.20E-2) 2.78E-1(8.86E-3) 3.49E-1(2.02E-2) 9.42E-2(9.13E-3) 5.40E-1(1.74E-2) 1.15E-1(1.91E-2) 5.60E-1(1.69E-2) 1.41E+0(1.30E-1) 4.38E-1(1.40E-2) 6.82E-1(1.08E-1) 6.55E-1(4.86E-2)

2d-CG 1.96E+0(3.83E-1) 1.78E+0(8.89E-2) 1.58E+0(1.15E-1) 2.34E+0(1.14E-1) 1.16E+0(1.16E-1) 1.09E+0(1.54E-1) 7.22E-1(1.63E-2) 1.08E+0(1.25E-1) 7.45E-1(2.15E-2) 7.08E-1(9.13E-3) 1.15E+0(1.03E-1)

2d-MS 2.04E+0(7.38E-1) 1.10E+0(4.25E-2) 1.08E+0(6.01E-2) 1.13E+0(4.91E-2) 2.08E+0(7.45E-1) 1.07E+0(1.40E-2) 1.11E+0(1.91E-2) 1.05E+0(1.00E-2) 1.17E+0(4.66E-2) 1.12E+0(8.62E-2) 1.29E+0(2.81E-2)

Chaotic GS 3.45E-1(4.57E-1) 1.29E-1(1.54E-1) 2.01E-2(5.99E-5) 1.11E-1(4.79E-2) 2.98E-2(6.44E-3) 2.00E-2(6.12E-5) 2.72E-1(1.79E-1) 1.04E+0(3.04E-1) 2.07E-2(9.19E-4) 1.16E-1(1.31E-1) 5.06E-2(1.87E-2)

KS 9.44E-1(8.57E-4) 8.95E-1(2.99E-2) 8.60E-1(3.48E-3) 8.64E-1(3.31E-3) 9.42E-1(8.75E-4) 8.73E-1(8.40E-3) 9.36E-1(6.12E-3) 8.88E-1(9.92E-3) 9.39E-1(3.25E-3) 9.44E-1(9.86E-3) 9.85E-1(3.35E-2)

High dim PNd 2.40E-3(3.44E-4) 2.34E-3(1.27E-3) 3.17E-4(9.16E-6) 4.58E-3(4.56E-3) 2.98E-3(1.24E-3) 3.40E-3(8.71E-4) 4.43E-3(8.45E-4) – 4.33E-3(1.88E-3) 5.72E-3(1.57E-3) –

HNd 2.25E-1(3.87E-3) 3.27E-1(5.13E-3) 2.63E-1(1.30E-2) 2.64E-1(1.59E-2) 2.24E-1(2.56E-3) 1.58E-1(2.71E-2) 1.83E-1(5.99E-3) – 3.42E-1(3.32E-3) 3.40E-1(5.24E-3) –

Inverse PInv 8.30E-2(6.88E-4) 1.14E-1(3.56E-3) 1.14E-1(6.95E-3) 1.33E-1(1.01E-2) 8.35E-2(9.53E-3) 1.13E-1(1.64E-2) 7.33E-2(2.49E-3) 1.96E-2(7.75E-3) 8.12E-1(1.01E+0) 2.18E-1(1.20E-1) 8.39E-1(1.39E-1)

HInv 1.06E+0(5.39E-2) 4.16E-2(3.18E-3) 3.94E-2(1.52E-3) 5.96E-2(2.54E-3) 1.01E+0(5.68E-2) 6.29E-2(8.58E-3) 3.51E+0(1.59E+0) 4.59E-1(1.22E-3) 3.93E-1(3.32E-1) 1.89E-1(6.30E-2) 8.46E-1(7.18E-2)
Table 8: Mean (Std) of L1RE for main experiments.
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mERR Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture
– PINN LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 9.03E-02(6.76E-03) 1.53E-01(5.64E-02) 1.33E-01(7.85E-02) 3.38E-01(2.82E-01) 4.02E-01(2.04E-01) 9.47E-01(1.88E-02) 1.84E+00(1.53E-02) 2.58E-01(2.96E-01) 1.88E-01(6.02E-02) 1.34E+00(4.98E-1)
2d-C 4.32E+00(8.01E-02) 3.84E+00(1.96E-01) 4.07E+00(6.99E-02) 4.47E+00(1.32E-01) 3.99E+00(1.33E-01) 3.83E+00(6.03E-03) 9.12E+00(3.83E+00) 4.11E+00(1.99E-01) 4.14E+00(1.11E-01) -

Poisson

2d-C 9.41E-01(9.40E-02) 5.93E-01(3.87E-01) 2.94E-02(1.37E-02) 9.27E-01(9.67E-02) 3.99E-01(3.67E-01) 7.99E-01(2.80E-02) 2.09E-01(1.30E-02) 8.26E-01(2.78E-02) 5.02E-01(2.37E-03) 1.71E-1(1.52E-2)
2d-CG 1.63E+00(1.76E-02) 3.49E-01(2.49E-01) 6.81E-02(3.06E-02) 1.65E+00(1.32E-02) 5.84E-01(7.86E-02) 1.67E+00(5.90E-03) 1.62E+00(3.37E-03) 1.61E+00(2.51E-02) 1.49E+00(1.45E-01) 1.98E-1(3.14E-2)
3d-CG 1.04E+00(5.37E-02) 3.91E-01(1.40E-01) 1.12E+00(7.37E-04) 1.09E+00(1.11E-01) 6.88E-01(1.51E-01) 7.87E-01(1.34E-01) 1.59E-1(7.13E-5) 1.14E+00(3.77E-02) 1.21E+00(2.49E-01) 1.07E+00(2.63E-02)
2d-MS 4.87E+00(2.10E-01) 9.58E+00(2.05E-01) 9.66E+00(1.86E-02) 4.96E+00(2.90E-01) 5.88E+00(6.69E-01) 5.01E+00(2.61E-01) 9.87E+00(1.20E-03) 4.40E+00(4.58E-01) 8.77E+00(2.15E+00) 9.87E+00(5.44E-4)

Heat 2d-VC 9.93E-01(7.20E-02) 2.63E-01(8.90E-03) 2.67E-01(1.74E-02) 1.03E+00(7.73E-02) 4.73E-01(1.07E-01) 4.46E+00(1.05E+00) 8.83E-01(3.35E-01) 7.79E-01(8.19E-02) 7.85E-01(2.12E-01) 7.78E-1(1.11E-3)
2d-MS 9.10E-02(3.20E-02) 1.60E-01(5.65E-02) 6.65E-02(2.50E-02) 4.36E-02(1.28E-02) 1.58E-01(8.85E-02) 7.10E-01(3.05E-01) 3.69E-01(1.00E-03) 5.53E-02(1.20E-02) 8.35E-02(4.70E-02) 1.81E-1(4.94E-3)
2d-CG 9.40E-01(7.48E-02) 6.40E-01(3.70E-02) 1.14E+00(1.21E-01) 9.00E-01(1.47E-01) 1.39E+00(2.32E-01) 2.20E+00(2.95E-01) 4.38E+00(3.48E-01) 9.59E-01(5.39E-02) 3.18E+00(4.99E-01) 2.83E+00(3.63E-1)
2d-LT 2.18E+00(6.95E-01) 1.82E+00(1.60E-02) 1.83E+00(1.40E-02) 1.85E+00(1.16E-02) 1.82E+00(2.40E-02) 5.46E+00(6.13E+00) 3.09E+00(3.46E-01) 1.84E+00(1.51E-02) 1.81E+00(7.94E-03) 3.32E+00(6.15E-2)

NS 2d-C 2.26E-01(6.33E-03) nan(nan) 2.65E-01(3.05E-02) 2.22E-01(1.42E-02) 5.67E-01(6.28E-02) 4.73E-01(3.17E-02) 1.80E-01(1.64E-02) 1.84E-01(5.41E-03) 1.99E-01(9.09E-03) 2.00E-1(4.73E-2)
2d-CG 2.06E-01(6.69E-03) 4.97E-01(9.10E-02) 3.33E-01(3.92E-02) 2.11E-01(4.38E-03) 6.23E-01(1.87E-01) 2.94E-01(9.84E-03) 4.31E+00(1.47E-02) 1.68E-01(2.34E-03) 1.80E-01(7.47E-03) 8.00E+00(0.00E+00)
2d-LT 1.17E+02(5.00E-01) 1.21E+02(2.00E-01) 1.21E+02(6.51E-01) 1.18E+02(7.69E-01) 1.21E+02(2.40E-01) 1.21E+02(5.69E-01) 1.23E+02(5.54E-01) 1.18E+02(6.76E-01) 1.19E+02(5.28E-01) 1.24E+02(7.76E-1)

Wave 1d-C 9.34E-01(1.16E-01) 5.17E-01(6.11E-02) 2.75E-01(2.22E-02) 8.16E-01(6.80E-02) 1.26E+00(1.89E-01) 1.28E+00(6.21E-02) 6.17E-01(5.41E-02) 7.40E-01(7.71E-02) 1.18E+00(3.23E-01) 8.51E-1(1.11E-1)
2d-CG 2.00E+00(9.89E-02) 1.95E+00(1.26E-01) 2.00E+00(1.80E-02) 1.93E+00(8.80E-02) 1.71E+00(5.74E-02) 1.73E+00(2.81E-03) 1.66E+00(2.19E-02) 1.93E+00(1.48E-01) 1.88E+00(1.13E-01) 1.65E+00(2.44E-2)
2d-MS 1.44E+03(2.92E+02) 1.95E+03(3.91E+02) 1.74E+03(2.15E+02) 1.30E+03(2.72E+02) 1.05E+03(4.29E+01) 1.09E+03(4.19E+01) 4.43E+02(4.24E+00) 1.80E+03(8.80E+01) 1.45E+03(4.66E+02) 5.59E+03(1.55E+02)

Chaotic GS 3.66E+00(1.00E-01) 3.48E+00(8.97E-02) 3.61E+00(6.38E-02) 3.60E+00(6.85E-02) 3.41E+00(1.27E-01) 3.41E+00(3.54E-02) 8.93E-01(6.51E-02) 3.76E+00(5.27E-02) 3.41E+00(1.28E-01) 8.36E-1(8.16E-2)
KS 9.84E-01(1.64E-03) 9.83E-01(3.76E-04) 8.76E-01(1.72E-01) 9.83E-01(7.11E-04) 9.82E-01(1.42E-04) 9.84E-01(4.09E-03) 3.33E+00(7.80E-02) 9.83E-01(6.72E-04) 9.83E-01(3.76E-04) 3.30E+00(4.74E-2)

High dim PNd 2.96E-02(1.57E-02) 4.05E-03(9.49E-04) 4.99E-03(4.48E-03) 2.72E-02(1.17E-02) 3.96E-02(2.29E-02) 3.16E-02(1.21E-02) – 5.90E-02(4.88E-02) 1.76E+00(8.43E-01) –
HNd 5.18E-02(2.21E-02) 1.29E-01(1.94E-01) 6.32E-02(3.49E-02) 4.64E-02(1.59E-02) 7.92E-03(3.01E-03) 5.02E-02(5.95E-03) – 2.04E-02(1.22E-02) 1.27E+00(1.45E+00) –

Table 9: Mean (Std) of max error for main experiments.
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MSE Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture

– PINN PINN-w LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 7.90E-5(1.78E-5) 2.64E-4(8.69E-5) 3.03E-4(2.62E-4) 1.30E-4(5.19E-5) 5.78E-4(6.31E-4) 9.68E-4(5.51E-4) 1.77E-2(5.58E-3) 5.13E-3(1.90E-3) 1.80E-4(1.35E-4) 3.00E-4(1.56E-4) 1.53E-2(1.03E-2)

2d-C 1.69E-1(7.86E-4) 1.17E-1(3.41E-3) 1.09E-1(4.84E-3) 1.22E-1(4.22E-3) 1.92E-1(5.07E-5) 1.79E-1(9.36E-3) 1.72E-1(1.31E-4) 7.08E-1(5.16E-2) 1.26E-1(1.54E-2) 1.41E-1(1.12E-2) –

Poisson

2d-C 1.17E-1(2.98E-3) 3.09E-4(1.25E-4) 7.24E-3(9.95E-3) 5.00E-5(5.33E-5) 1.19E-1(2.55E-3) 1.79E-4(8.84E-5) 1.15E-1(6.22E-3) 4.86E-2(4.43E-3) 1.39E-1(5.67E-3) 9.38E-2(1.91E-2) 7.89E-4(2.17E-4)

2d-CG 1.28E-1(1.03E-3) 1.17E-3(1.83E-4) 6.13E-4(2.31E-4) 6.99E-5(3.50E-5) 1.32E-1(3.23E-3) 2.73E-2(1.92E-2) 1.98E-1(2.28E-3) 2.50E-2(3.80E-4) 7.67E-2(2.73E-3) 1.77E-1(8.70E-2) 4.84E-4(9.87E-5)

3d-CG 2.64E-2(2.67E-3) 1.18E-2(1.97E-3) 9.51E-4(6.51E-4) 7.54E-2(7.86E-5) 2.81E-2(5.15E-3) 1.16E-2(4.42E-3) 2.01E-2(4.93E-3) 4.58E-2(8.04E-5) 2.82E-2(2.62E-3) 2.16E-2(5.87E-3) 4.63E-2(9.28E-3)

2d-MS 2.67E+0(9.04E-2) 3.90E+0(7.16E-2) 4.28E+0(6.83E-1) 3.77E+0(9.98E-2) 2.80E+0(1.87E-1) 2.36E+0(3.15E-1) 2.56E+0(1.43E-1) 6.09E+0(5.46E-1) 1.83E+0(3.00E-1) 5.87E+0(8.72E-1) 6.68E+0(8.23E-4)

Heat 2d-VC 4.00E-2(4.94E-3) 2.19E-3(3.21E-4) 1.76E-3(1.43E-5) 1.79E-3(9.80E-5) 3.67E-2(1.42E-3) 9.14E-3(3.13E-3) 1.89E-1(9.44E-2) 3.23E-2(2.26E-2) 1.74E-2(4.35E-3) 2.93E-2(7.12E-3) 3.56E-2(1.71E-4)

2d-MS 1.09E-4(4.94E-5) 1.60E-3(3.35E-4) 2.25E-4(1.22E-4) 5.27E-5(1.18E-5) 1.54E-4(4.17E-5) 1.51E-3(1.25E-3) 3.43E-4(1.87E-5) 2.57E-2(2.22E-3) 1.57E-4(8.06E-5) 3.10E-2(1.15E-2) 2.17E-4(2.47E-5)

2d-CG 2.09E-3(9.69E-4) 3.15E-2(2.08E-3) 2.32E-2(1.59E-3) 2.02E-2(4.15E-3) 1.12E-3(2.65E-4) 7.79E-3(2.63E-3) 1.34E-2(4.13E-3) 1.16E+1(9.04E-2) 8.53E-4(9.74E-5) 3.94E-1(2.71E-1) 5.61E-1(5.96E-2)

2d-LT 1.14E+0(2.38E-5) 1.13E+0(1.82E-4) 1.14E+0(1.67E-4) 1.14E+0(6.41E-4) 1.14E+0(3.55E-4) 1.14E+0(8.74E-5) 1.14E+0(2.23E-4) 1.14E+0(0.00E+0) 1.14E+0(2.20E-4) 1.14E+0(3.27E-4) 1.16E+0(2.83E-4)

NS 2d-C 4.19E-5(2.00E-6) 4.03E-4(6.45E-5) NaN 7.56E-4(1.90E-4) 4.18E-3(2.05E-4) 1.07E-2(5.67E-3) 1.13E-4(8.77E-6) 5.30E-4(3.50E-4) 2.33E-5(4.71E-6) 2.67E-5(4.71E-6) 1.37E-4(7.24E-5)

2d-CG 6.94E-4(6.45E-5) 5.19E-3(2.43E-4) 5.40E-3(2.49E-4) 4.22E-3(5.82E-4) 5.45E-3(2.13E-5) 9.32E-3(3.09E-3) 1.16E-3(8.97E-5) 1.06E+0(1.61E-2) 3.37E-4(6.60E-5) 1.72E-3(1.33E-3) 3.34E+0(2.97E-5)

2d-LT 5.06E+2(1.21E+0) 5.10E+2(3.40E-1) 5.10E+2(4.13E-1) 5.09E+2(6.15E-1) 5.10E+2(3.42E-1) 5.10E+2(2.23E-1) 5.05E+2(7.30E-1) 5.11E+2(1.76E-2) 5.06E+2(1.82E+0) 5.11E+2(2.99E+0) 5.15E+2(1.77E+0)

Wave 1d-C 1.11E-1(3.66E-2) 2.54E-2(1.61E-3) 4.08E-2(4.31E-3) 3.01E-3(4.82E-4) 9.07E-2(6.02E-3) 4.68E-3(1.28E-3) 9.66E-2(5.85E-3) 6.17E-1(1.19E-1) 6.03E-2(2.87E-3) 1.48E-1(4.44E-2) 1.39E-1(1.97E-2)

2d-CG 1.64E-1(6.13E-2) 1.28E-1(1.13E-2) 1.03E-1(1.46E-2) 2.17E-1(2.05E-2) 6.25E-2(1.17E-2) 5.59E-2(1.29E-2) 3.09E-2(8.98E-4) 5.24E-2(9.01E-3) 3.49E-2(3.38E-3) 2.99E-2(4.68E-4) 5.78E-2(7.99E-3)

2d-MS 1.30E+5(4.25E+4) 7.35E+4(1.68E+3) 7.34E+4(1.97E+3) 7.69E+4(4.55E+3) 1.33E+5(4.47E+4) 7.15E+4(8.04E+2) 7.27E+4(5.47E+2) 1.13E+2(1.46E+2) 7.91E+4(2.55E+3) 7.98E+4(8.00E+3) 8.95E+5(1.15E+4)

Chaotic GS 1.00E-1(1.35E-1) 1.64E-2(1.70E-2) 4.32E-3(4.07E-6) 2.59E-2(1.44E-2) 4.40E-3(8.83E-5) 4.32E-3(1.11E-6) 3.62E-2(2.28E-2) 4.00E-1(2.33E-1) 4.32E-3(4.71E-6) 1.69E-2(1.79E-2) 5.16E-3(1.64E-3)

KS 1.16E+0(2.95E-3) 1.11E+0(5.07E-2) 1.04E+0(6.20E-3) 1.06E+0(1.09E-2) 1.16E+0(1.98E-3) 1.05E+0(1.04E-2) 1.12E+0(8.67E-3) 1.05E+0(2.50E-3) 1.16E+0(4.50E-3) 1.14E+0(2.33E-2) 1.16E+0(5.28E-2)

High dim PNd 9.47E-5(3.47E-5) 8.30E-5(5.53E-5) 2.09E-6(1.69E-7) 4.02E-4(5.23E-4) 1.43E-4(9.92E-5) 1.70E-4(9.61E-5) 2.57E-4(6.31E-5) – 3.03E-4(2.25E-4) 4.80E-4(2.81E-4) –

HNd 1.19E+1(2.92E-1) 1.93E+1(3.65E-1) 1.42E+1(9.23E-1) 1.44E+1(9.14E-1) 1.17E+1(2.41E-1) 8.52E+0(2.34E+0) 9.21E+0(3.90E-1) – 2.49E+1(2.99E-1) 2.50E+1(2.76E-1) –

Inverse PInv 1.89E-3(6.31E-5) 5.89E-3(3.88E-4) 5.08E-3(2.18E-4) 7.94E-3(1.16E-3) 1.89E-3(4.49E-4) 3.64E-3(8.28E-4) 1.37E-3(9.45E-5) 1.23E-4(9.50E-5) 6.25E-1(8.80E-1) 1.87E-2(1.98E-2) 3.98E+0(1.33E+0)

HInv 5.36E+0(4.86E-1) 6.02E-3(7.71E-4) 5.66E-3(9.88E-4) 1.23E-2(1.75E-3) 5.01E+0(4.22E-1) 1.43E-2(4.35E-3) 6.01E+1(3.72E+1) 8.83E-1(6.52E-2) 1.27E+0(1.69E+0) 1.03E-1(4.73E-2) 2.23E+2(5.54E+1)
Table 10: Mean (Std) of MSE for main experiments.
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fMSE-L Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture
– PINN LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 2.21E-02(1.02E-02) 1.46E-02(1.77E-02) 1.75E-01(2.76E-01) 5.02E-01(6.21E-01) 1.19E-01(2.00E-01) 1.79E+00(1.99E+00) 1.40E+01(1.06E+00) 1.32E-01(2.50E-01) 9.38E-02(1.47E-01) 2.10E+00(1.50E+00)
2d-C 4.85E+01(9.27E+00) 8.18E+01(1.24E+01) 8.36E+01(1.07E+01) 4.77E+01(6.85E+00) 1.39E+02(5.63E+01) 8.89E+01(3.98E+00) 4.54E+03(5.57E+03) 8.34E+01(7.63E+00) 9.27E+01(7.53E+00) –

Poisson

2d-C – – – – – – – – – –
2d-CG – – – – – – – – – –
3d-CG – – – – – – – – – –
2d-MS 1.74E+03(6.29E+01) 8.62E+03(1.10E+03) 8.62E+03(6.08E+02) 2.99E+03(2.59E+02) 3.46E+03(1.93E+03) 7.41E+03(5.99E+02) 1.13E+04(4.70E+01) 2.61E+03(5.60E+02) 1.24E+04(5.71E+03) 5.90E+03(6.03E+00)

Heat 2d-VC 4.78E+00(5.53E-01) 3.66E-02(8.92E-03) 3.58E-01(2.81E-01) 2.00E+00(1.49E+00) 2.78E+00(3.95E+00) 2.91E+03(1.84E+03) 1.74E+00(1.04E+00) 1.43E+00(1.87E+00) 1.28E+01(2.08E+01) 4.34E+00(2.13E-2)
2d-MS 1.56E-01(2.33E-01) 1.12E-01(1.76E-01) 1.46E+00(1.60E+00) 3.55E-01(3.96E-01) 3.48E-01(3.43E-01) 1.37E+01(1.38E+01) – 3.50E-01(2.74E-01) 1.11E+00(1.01E+00) –
2d-CG – – – – – – – – – –
2d-LT 3.90E+02(6.18E+02) 2.71E+01(3.42E-02) 2.75E+01(5.86E-01) 2.70E+01(1.36E-01) 2.70E+01(9.84E-02) 3.34E+05(6.48E+05) 2.63E+01(7.51E-01) 2.70E+01(1.56E-01) 2.71E+01(3.78E-02) 8.47E+01(7.99E-1)

NS 2d-C 4.29E-02(3.76E-02) – 3.74E-01(1.26E-01) 2.35E-02(1.24E-02) 2.20E+01(2.96E+01) 6.97E-01(4.72E-01) 5.38E-01(1.29E-01) 1.34E-02(1.03E-02) 1.73E-02(8.42E-03) 2.47E-2(2.70E-3)
2d-CG – – – – – – – – – –
2d-LT 2.07E+05(9.61E+02) 2.05E+05(2.37E+02) 2.07E+05(5.52E+02) 2.06E+05(4.53E+02) 2.05E+05(2.78E+02) 2.05E+05(2.96E+02) 4.87E+04(1.64E+02) 2.07E+05(7.29E+02) 2.06E+05(7.01E+02) –

Wave 1d-C 5.38E+01(1.52E+01) 4.81E-01(5.90E-01) 4.65E-01(4.37E-01) 1.10E+02(7.79E+01) 3.57E+02(1.97E+02) 3.00E+02(8.28E+01) 2.85E+01(8.07E+00) 1.98E+01(1.48E+01) 3.89E+02(3.79E+02) 6.01E+01(1.46E+01)
2d-CG 2.42E+01(1.08E+01) 3.47E+02(2.09E+02) 5.26E+02(5.40E+01) 1.75E+02(1.90E+02) 1.25E+02(9.42E+01) 8.10E+01(6.42E+00) 1.25E+01(4.98E+00) 4.36E+02(4.69E+02) 7.19E+01(6.05E+01) 1.49E+01(3.22E+00)
2d-MS 3.72E+08(3.03E+08) 8.91E+05(1.18E+06) 7.01E+05(3.95E+05) 3.93E+08(3.18E+08) 2.39E+06(2.83E+06) 1.85E+06(1.89E+06) 1.13E+02(9.57E-01) 3.08E+06(2.04E+06) 4.33E+06(8.23E+06) 1.10E+07(1.93E+06)

Chaotic GS 1.45E+02(4.99E+00) 1.44E+01(1.09E+01) 7.79E+00(4.79E+00) 2.96E+02(7.67E+01) 6.51E+00(9.23E+00) 5.26E+01(2.87E+01) 2.79E+01(2.09E+01) 2.69E+02(1.34E+01) 4.89E+01(5.30E+01) 3.49E+00(2.45E+00)
KS 1.65E+01(3.09E+01) 1.06E+00(5.77E-03) 3.81E+02(2.09E+02) 1.03E+00(6.13E-02) 1.07E+00(6.48E-03) 1.38E+02(6.24E+00) 1.24E+02(1.76E+01) 1.08E+00(1.41E-02) 1.04E+00(2.96E-02) –

High dim PNd – – – – – – – – – –
HNd – – – – – – – – – –

Table 11: Mean (Std) of low-frequency Fourier error for main experiments.
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fMSE-M Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture
– PINN LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 1.43E-03(1.93E-04) 2.94E-05(2.03E-05) 9.34E-05(7.38E-05) 7.51E-05(6.01E-05) 6.18E-04(5.93E-04) 6.69E-03(1.40E-03) 3.00E+00(2.22E-01) 3.53E-05(5.77E-05) 1.72E-05(1.72E-05) 4.88E-1(3.65E-1)
2d-C 3.28E-01(4.31E-03) 2.23E-01(3.59E-02) 2.11E-01(2.04E-02) 3.32E-01(4.83E-03) 3.25E-01(1.15E-03) 3.03E+00(3.63E+00) 3.23E-01(2.30E-04) 3.25E-01(2.89E-02) 2.95E-01(1.71E-02) –

Poisson

2d-C – – – – – – – – – –
2d-CG – – – – – – – – – –
3d-CG – – – – – – – – – –
2d-MS 6.57E+00(3.70E-02) 1.70E+01(4.14E+00) 1.47E+01(1.54E+00) 1.18E+01(2.32E+00) 5.61E+00(3.18E+00) 8.26E+00(5.99E-01) 2.88E+01(2.37E-01) 1.26E+01(3.53E+00) 9.87E+00(2.25E+00) 2.03E+01(2.50E-3)

Heat 2d-VC 2.75E-02(2.11E-03) 1.46E-03(4.26E-04) 7.99E-03(1.17E-02) 1.01E-01(7.00E-02) 1.54E-02(1.23E-02) 6.91E+01(1.07E+02) 9.26E-03(3.06E-03) 3.58E-02(2.86E-02) 8.90E-01(1.27E+00) 1.56E-2(2.62E-4)
2d-MS 7.35E-04(7.70E-04) 4.55E-05(5.24E-05) 1.26E-04(3.07E-05) 2.07E-05(1.15E-05) 3.13E-03(3.56E-03) 2.65E-03(1.55E-03) 7.57E-02(2.40E-03) 6.19E-05(1.89E-05) 1.05E-04(1.25E-04) Nan
2d-CG – – – – – – – – – –
2d-LT 2.11E+00(3.00E+00) 1.59E+02(1.37E-01) 1.59E+02(1.97E-01) 1.59E+02(2.12E-01) 1.59E+02(3.85E-02) 1.59E+02(1.81E-01) 4.57E-01(2.67E-02) 1.59E+02(2.20E-01) 1.59E+02(1.36E-01) 8.91E-1(4.84E-2)

NS 2d-C 1.72E-04(9.81E-05) – 3.96E-03(3.45E-03) 1.48E-04(6.28E-05) 1.48E-01(2.31E-01) 5.84E-03(9.82E-04) 2.86E-03(1.58E-03) 1.05E-04(8.46E-05) 4.46E-05(3.38E-05) 2.18E-5(2.47E-6)
2d-CG – – – – – – – – – –
2d-LT 1.00E-02(9.51E-04) 2.63E-02(2.55E-03) 1.49E-02(3.02E-03) 1.06E-02(9.30E-04) 2.52E-02(4.51E-03) 2.12E-02(2.08E-03) – 1.05E-02(1.37E-03) 1.26E-02(2.12E-03) 4.53E+00(1.83E-2)

Wave 1d-C 1.61E-01(3.55E-02) 7.58E-03(8.03E-03) 3.62E-02(8.80E-03) 8.55E-01(3.57E-01) 2.63E+00(2.04E+00) 2.50E+00(9.12E-01) 5.93E-01(6.18E-02) 1.96E-01(1.46E-01) 1.48E+00(9.12E-01) 8.48E-2(2.36E-2)
2d-CG 8.29E-02(6.50E-03) 1.06E-03(1.01E-03) 8.18E-04(2.57E-04) 8.27E-04(3.83E-04) 3.12E-03(2.43E-03) 1.36E-03(3.20E-04) 4.73E-02(3.85E-03) 4.73E-02(3.85E-03) 1.53E-03(5.15E-04) 1.49E-03(5.58E-04)
2d-MS 1.47E+04(1.73E+04) 1.31E+05(1.66E+05) 1.78E+05(9.50E+04) 2.39E+04(4.63E+04) 2.39E+05(1.80E+05) 1.82E+04(2.13E+04) 4.75E+01(2.01E+00) 1.62E+05(1.72E+05) 3.15E+05(4.71E+05) 6.18E+04(3.16E+04)

Chaotic GS 5.39E+01(2.19E-01) 7.94E-02(5.38E-02) 3.37E-02(9.80E-03) 6.27E-02(1.76E-02) 8.88E-02(8.20E-02) 1.72E-01(3.91E-02) 2.36E-02(1.40E-02) 4.62E-02(6.99E-03) 1.35E-01(1.17E-01) 5.08E-2(3.92E-2)
KS 5.54E-01(1.46E-02) 5.45E-01(2.42E-03) 5.60E-01(2.11E-02) 5.47E-01(3.82E-03) 5.46E-01(6.98E-05) 5.48E-01(1.06E-02) – 5.46E-01(3.93E-04) 5.46E-01(1.23E-03) –

High dim PNd – – – – – – – – –
HNd – – – – – – – – –

Table 12: Mean (Std) of medium-frequency Fourier error for main experiments.
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fMSE-H Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture
– PINN LRA NTK RAR MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 2.96E-05(9.65E-06) 1.85E-04(8.34E-05) 1.48E-04(1.36E-04) 2.39E-03(2.55E-03) 6.16E-04(4.21E-04) 1.09E-01(8.12E-03) 1.40E-02(1.26E-03) 7.15E-04(1.24E-03) 1.93E-04(7.30E-05) 6.87E-3(4.12E-3)
2d-C 6.78E-02(1.23E-03) 5.33E-02(1.37E-03) 5.43E-02(1.56E-03) 6.78E-02(1.08E-03) 7.07E-02(7.45E-04) 6.80E-02(2.95E-04) 2.31E-01(2.46E-01) 5.84E-02(1.19E-03) 5.98E-02(1.01E-03) –

Poisson

2d-C – – – – – – – – – –
2d-CG – – – – – – – – – –
3d-CG – – – – – – – – – –
2d-MS 1.68E-02(4.05E-04) 2.07E+00(3.81E-01) 2.23E+00(1.14E-01) 1.89E+00(2.11E-01) 2.30E+00(5.97E-01) 8.62E-01(3.40E-02) 5.44E-02(4.98E-03) 1.27E+00(2.34E-01) 3.07E+00(1.14E+00) 7.17E-2(8.16E-6)

Heat 2d-VC 4.22E-04(2.39E-04) 1.88E-03(1.07E-04) 1.90E-03(7.60E-05) 3.02E-02(3.49E-03) 1.15E-02(8.98E-03) 1.99E+00(9.14E-01) 5.11E-04(3.47E-04) 2.43E-02(2.66E-03) 2.63E-02(1.52E-02) 6.39E-5(3.77E-6)
2d-MS 6.81E-06(5.66E-06) 7.12E-05(4.00E-05) 9.24E-05(6.51E-05) 9.91E-05(1.35E-04) 5.69E-04(3.34E-04) 1.03E-02(3.68E-03) 1.99E-03(1.45E-04) 8.63E-05(3.67E-05) 1.62E-04(1.36E-04) –
2d-CG – – – – – – – – – –
2d-LT 2.10E-01(1.45E-02) 7.73E-01(2.31E-04) 7.72E-01(2.41E-04) 7.72E-01(9.35E-05) 7.73E-01(2.03E-04) 7.95E-01(4.27E-02) 2.70E-01(2.79E-02) 7.73E-01(1.59E-04) 7.72E-01(8.87E-05) 2.05E-1(4.46E-4)

NS 2d-C 4.89E-06(1.01E-06) – 2.05E-04(4.41E-05) 3.80E-06(3.71E-07) 2.16E-03(5.85E-04) 1.32E-03(3.12E-04) 6.98E-06(4.41E-06) 1.18E-06(2.56E-07) 2.05E-06(7.23E-07) 6.48E-8(1.75E-8)
2d-CG – – – – – – – – – –
2d-LT 1.09E+02(1.92E-01) 1.11E+02(3.51E-02) 1.10E+02(1.61E-01) 1.09E+02(1.16E-01) 1.10E+02(2.72E-01) 1.10E+02(1.00E-01) 4.51E+02(3.00E+00) 1.09E+02(1.30E-01) 1.09E+02(4.04E-01) –

Wave 1d-C 1.25E-03(3.43E-04) 3.43E-02(9.35E-03) 4.28E-03(6.00E-04) 7.06E-02(7.51E-03) 8.96E-02(1.06E-02) 8.64E-02(5.08E-03) 6.15E-04(7.67E-05) 5.34E-02(2.92E-03) 8.45E-02(1.85E-02) –
2d-CG 6.39E-03(1.09E-03) 3.93E-02(1.01E-02) 4.80E-02(3.17E-03) 3.31E-02(9.96E-03) 2.70E-02(4.96E-03) 3.09E-02(5.50E-04) 3.03E-03(2.29E-04) 4.91E-02(3.19E-02) 2.54E-02(2.53E-03) 5.11E-3(1.86E-4)
2d-MS 7.61E+04(4.06E+03) 7.51E+04(1.67E+03) 7.90E+04(4.65E+03) 7.62E+04(5.81E+03) 7.35E+04(3.05E+02) 7.49E+04(5.94E+02) – 8.09E+04(2.45E+03) 8.09E+04(6.69E+03) –

Chaotic GS 5.30E-01(1.48E-03) 1.04E+00(7.44E-03) 1.05E+00(4.11E-03) 1.12E+00(2.99E-03) 1.04E+00(5.34E-03) 1.10E+00(2.14E-03) 1.70E-03(1.01E-03) 1.12E+00(2.14E-03) 1.09E+00(7.71E-03) –
KS 1.27E-03(2.94E-04) 1.11E-03(1.32E-06) 2.17E-03(2.09E-03) 1.12E-03(2.36E-05) 1.11E-03(7.08E-09) 7.28E-03(1.16E-03) 4.48E-01(1.76E-03) 1.11E-03(1.45E-07) 1.11E-03(7.82E-07) –

High dim PNd – – – – – – – – – –
HNd – – – – – – – – – –

Table 13: Mean (Std) of high-frequency Fourier error for main experiments.
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Avg Runtime Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture
– PINN PINN-w L-BFGS LRA NTK MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 2.84E+2 2.78E+2 3.76E+3 7.64E+2 6.70E+2 5.06E+2 6.28E+2 2.85E+2 3.61E+2 3.56E+2 1.11E+3
2d-C 3.11E+3 3.11E+3 4.98E+4 1.84E+4 4.35E+3 2.72E+3 4.03E+3 8.95E+2 4.08E+3 4.07E+3 –

Poisson

2d-C 3.39E+2 3.33E+2 1.65E+3 9.01E+2 8.09E+2 6.13E+2 7.66E+2 3.29E+2 5.72E+2 4.20E+2 4.12E+3
2d-CG 3.69E+2 3.59E+2 3.13E+4 9.36E+2 8.80E+2 6.57E+2 8.06E+2 3.55E+2 6.05E+2 4.34E+2 4.17E+3
3d-CG 1.45E+3 2.32E+3 8.55E+4 4.06E+3 4.40E+3 2.41E+3 5.01E+3 1.94E+3 2.01E+3 1.68E+3 2.18E+3
2d-MS 3.83E+2 3.74E+2 2.00E+4 7.47E+2 8.74E+2 6.67E+2 7.92E+2 1.81E+3 6.62E+2 4.57E+2 4.22E+3

Heat 2d-VC 1.16E+3 1.16E+3 8.21E+4 3.52E+3 1.69E+3 1.91E+3 1.34E+3 3.03E+3 1.52E+3 1.52E+3 3.92E+3
2d-MS 1.13E+3 1.14E+3 5.72E+3 3.48E+3 1.61E+3 1.89E+3 1.30E+3 1.69E+3 1.51E+3 1.50E+3 5.84E+3
2d-CG 1.16E+3 1.17E+3 1.28E+4 5.14E+3 1.64E+3 1.90E+3 1.31E+3 3.05E+3 1.52E+3 1.51E+3 5.28E+3
2d-LT 1.15E+3 1.18E+3 7.78E+3 3.52E+3 1.65E+3 1.90E+3 1.32E+3 2.12E+3 1.51E+3 1.50E+3 3.93E+3

NS 2d-C 7.52E+2 7.64E+2 1.24E+3 2.24E+3 1.84E+3 1.25E+3 2.03E+3 5.68E+2 9.49E+2 9.43E+2 7.16E+3
2d-CG 7.56E+2 7.58E+2 2.78E+3 3.26E+3 1.84E+3 1.22E+3 1.97E+3 6.79E+2 9.35E+2 9.31E+2 5.48E+3
2d-LT 3.05E+3 3.05E+3 4.54E+4 2.25E+4 4.29E+3 3.73E+3 4.42E+3 1.38E+3 3.99E+3 3.99E+3 4.10E+3

Wave 1d-C 3.50E+2 3.52E+2 2.98E+4 1.12E+3 8.40E+2 2.72E+2 7.75E+2 2.22E+2 6.01E+2 4.36E+2 3.09E+3
2d-CG 1.21E+3 1.24E+3 2.62E+4 4.50E+3 1.77E+3 2.01E+3 1.27E+3 5.99E+2 2.35E+3 1.57E+3 3.01E+3
2d-MS 2.19E+3 2.19E+3 1.23E+4 6.76E+3 5.02E+3 4.12E+3 6.18E+3 2.11E+3 2.63E+3 2.25E+3 3.67E+3

Chaotic GS 2.55E+3 2.55E+3 2.76E+3 7.57E+3 3.17E+3 4.22E+3 2.59E+3 6.12E+2 3.23E+3 3.22E+3 5.47E+3
KS 1.40E+3 1.40E+3 2.97E+3 3.17E+3 3.59E+3 2.29E+3 3.83E+3 7.14E+2 1.62E+3 1.63E+3 8.83E+3

High dim PNd 1.78E+3 1.83E+3 2.19E+3 4.30E+3 4.75E+3 3.02E+3 1.91E+3 – 3.50E+3 2.33E+3 –
HNd 2.35E+3 2.45E+3 2.97E+3 7.42E+3 6.28E+3 4.00E+3 2.74E+3 – 3.09E+3 3.08E+3 –

Inverse PInv 4.53E+2 4.88E+2 2.76E+3 1.25E+3 1.71E+3 7.46E+2 1.50E+3 4.90E+2 5.75E+2 5.88E+2 3.63E+3
HInv 1.09E+3 1.12E+3 2.78E+3 3.39E+3 1.68E+3 1.77E+3 1.56E+3 1.86E+3 1.44E+3 1.44E+3 3.93E+3

Table 14: Average running time (seconds) for main experiments, we run all methods three times with 20000 epochs.
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Training Flops Name Vanilla Loss Reweighting/Sampling Optimizer Loss functions Architecture
– PINN PINN-w L-BFGS LRA NTK MultiAdam gPINN vPINN LAAF GAAF FBPINN

Burgers
1d-C 1.87E+11 1.87E+11 2.32E+12 5.12E+11 4.29E+11 3.39E+11 4.11E+11 1.81E+11 2.22E+11 2.29E+11 7.34E+11
2d-C 2.72E+12 2.72E+12 4.17E+13 1.23E+13 2.61E+12 1.82E+12 2.79E+12 6.23E+11 2.53E+12 2.73E+12 –

Poisson

2d-C 2.55E+11 2.55E+11 1.34E+12 6.04E+11 5.32E+11 4.15E+11 5.03E+11 2.21E+11 3.83E+11 2.81E+11 2.46E+12
2d-CG 2.37E+11 2.37E+11 2.08E+13 6.17E+11 5.82E+11 4.4E+11 5.29E+11 2.38E+11 4.05E+11 2.91E+11 2.79E+12
3d-CG 9.03E+11 9.03E+11 5.32E+13 2.72E+12 2.95E+12 1.61E+12 3.36E+12 1.3E+12 1.35E+12 1.13E+12 1.46E+12
2d-MS 2.75E+11 2.75E+11 5.02E+11 1.43E+13 5.66E+11 4.47E+11 5.31E+11 1.21E+12 4.44E+11 3.06E+11 2.83E+12

Heat 2d-VC 7.10E+11 7.10E+11 4.87E+13 2.26E+12 1.03E+12 1.28E+12 8.98E+11 2.03E+12 1.02E+12 1.02E+12 2.63E+12
2d-MS 7.15E+11 7.15E+11 2.23E+12 3.35E+13 1.01E+12 1.27E+12 8.71E+11 1.13E+12 1.05E+12 1.01E+12 3.71E+12
2d-CG 6.91E+11 6.91E+11 7.52E+12 3.34E+12 1.07E+12 1.27E+12 8.78E+11 2.04E+12 1.08E+12 1.01E+12 3.54E+12
2d-LT 7.62E+11 7.62E+11 3.84E+12 2.26E+12 1.11E+12 1.27E+12 8.84E+11 1.42E+12 1.01E+12 1.01E+12 2.63E+12

NS 2d-C 5.05E+11 5.05E+11 9.82E+11 1.39E+12 1.23E+12 8.38E+11 1.36E+12 3.81E+11 6.36E+11 6.32E+11 4.85E+12
2d-CG 4.85E+11 4.85E+11 1.80E+12 2.14E+12 1.23E+12 8.17E+11 1.32E+12 4.55E+11 6.26E+11 6.24E+11 3.67E+12
2d-LT 1.87E+12 1.87E+12 2.57E+13 1.51E+13 2.87E+12 2.5E+12 2.96E+12 9.25E+11 2.77E+12 2.67E+12 2.75E+12

Wave 1d-C 2.15E+11 2.15E+11 1.44E+13 7.51E+11 5.63E+11 1.82E+11 5.19E+11 1.49E+11 4.13E+11 2.92E+11 2.07E+12
2d-CG 7.11E+11 7.11E+11 1.57E+13 3.02E+12 1.19E+12 1.35E+12 8.51E+11 4.01E+11 1.75E+12 1.08E+12 2.02E+12
2d-MS 1.47E+12 1.47E+12 8.77E+12 4.53E+12 3.36E+12 2.76E+12 4.14E+12 1.41E+12 1.74E+12 1.51E+12 2.46E+12

Chaotic GS 1.68E+12 1.68E+12 1.79E+12 5.07E+12 2.12E+12 2.83E+12 1.74E+12 4.07E+11 2.16E+12 2.16E+12 3.66E+12
KS 9.12E+11 9.12E+11 1.96E+12 2.12E+12 2.41E+12 1.53E+12 2.57E+12 4.78E+11 1.09E+12 1.09E+12 5.92E+12

High dim PNd 1.19E+12 1.19E+12 1.40E+12 2.88E+12 3.18E+12 2.02E+12 1.28E+12 – 2.35E+12 1.56E+12 –
HNd 1.57E+12 1.57E+12 4.97E+12 2.02E+12 4.21E+12 2.68E+12 1.84E+12 – 2.07E+12 2.06E+12 –

Inverse PInv 3.04E+11 3.27E+11 1.68E+12 8.38E+11 1.15E+12 5.24E+11 1.01E+12 3.28E+11 3.85E+11 3.94E+11 2.43E+12
HInv 7.34E+11 7.34E+11 1.81E+12 2.27E+12 1.13E+12 1.19E+12 1.05E+12 1.25E+12 9.65E+11 9.65E+11 2.63E+12

Table 15: Average Flops every epoch for main experiments, we run all methods three times.
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L2RE Burgers1d GS Heat2d-CG Poisson2d-C

PINN

1e-5 2.35E-2(1.90E-3) 9.39E-2(3.60E-4) 1.20E-1(2.40E-3) 1.08E+0(1.08E-1)
1e-4 1.99E-2(4.30E-3) 1.79E-1(1.20E-1) 1.35E-1(2.00E-2) 2.81E-2(2.44E-3)
1e-3 1.93E-2(4.00E-3) 9.35E-2(2.30E-4) 8.51E-2(8.90E-3) 2.32E-2(1.52E-3)
1e-2 3.79E-1(1.40E-1) 1.91E-1(1.30E-1) 1.73E-1(7.10E-2) 3.26E-2(1.51E-3)

decay 1.69E-2(4.10E-3) 1.81E-1(1.20E-1) 1.59E-1(2.00E-2) 2.41E-2(9.33E-4)
PINN-LRA 1e-5 3.44E-2(1.40E-2) 1.79E-1(1.20E-1) 1.18E-1(7.60E-4) 2.91E-2(3.19E-3)

1e-4 2.12E-2(5.30E-3) 9.36E-2(4.50E-4) 1.37E-1(8.50E-3) 2.49E-2(3.88E-3)
1e-3 1.49E-2(9.60E-4) 9.37E-2(3.63E-5) 1.31E-1(9.60E-3) 2.26E-2(1.93E-3)
1e-2 6.23E-1(7.40E-2) 1.29E-1(5.10E-2) 8.99E-2(7.00E-3) 1.00E+0(5.62E-7)

decay 1.37E-2(5.00E-4) 1.81E-1(1.20E-1) 1.19E-1(1.30E-2) 2.61E-2(7.64E-4)
PINN-NTK 1e-5 1.08E-1(2.70E-2) 4.09E-1(1.20E-3) 1.21E-1(2.80E-3) 1.86E-3(1.26E-4)

1e-4 4.72E-2(8.70E-3) 1.96E-1(1.40E-1) 1.27E-1(5.30E-3) 2.30E-3(9.48E-4)
1e-3 2.91E-2(7.40E-3) 2.99E-1(1.50E-1) 1.21E-1(9.50E-3) 5.34E-3(1.22E-4)
1e-2 NaN 1.90E+0(1.63E+0) NaN 2.39E-1(2.00E-1)

decay 1.74E-2(2.30E-3) 3.06E-1(1.50E-1) 1.48E-1(9.60E-3) 8.24E-4(1.32E-4)

Table 16: Results of PINN, PINN-NTK, PINN-LRA under different learning rates or learning rate
schedules.

L2RE Burgers1d GS Heat2d-CG Poisson2d-C

PINN

512 4.59E-1(8.36E-2) 2.46E-1(1.09E-1) 4.31E-1(6.57E-2) 3.15E-2(4.04E-3)
2048 2.60E-1(2.43E-1) 9.37E-2(2.60E-4) 2.02E-1(1.92E-2) 2.62E-2(2.31E-3)
8192 2.14E-2(1.76E-3) 9.41E-2(6.05E-4) 1.35E-1(1.71E-2) 2.58E-2(6.51E-4)
32768 1.44E-2(4.91E-4) 9.37E-2(3.89E-5) 3.73E-2(3.23E-3) 2.63E-2(2.32E-3)

PINN-LRA

512 2.80E-1(2.02E-1) 9.39E-2(1.66E-4) 3.66E-1(3.86E-2) 3.00E-2(3.16E-3)
2048 1.82E-1(1.85E-1) 1.33E-1(5.57E-2) 2.07E-1(4.96E-3) 2.57E-2(1.78E-3)
8192 1.88E-2(9.45E-4) 9.36E-2(2.14E-4) 1.01E-1(2.18E-2) 2.82E-2(8.12E-4)
32768 1.49E-2(1.51E-3) 1.17E-1(3.25E-2) 4.44E-2(1.05E-2) 2.49E-2(6.32E-4)

Table 17: Comparison of PINN and PINN-LRA’s performance under different batch sizes (number of
collocation points).

E.2 Ablation Experiments

Influence of learning rates. To understand the impact of learning rates We selected three methods,
i.e., vanilla Physics-Informed Neural Networks (PINN), PINN-NTK, and PINN-LRA. We conduct
experiments on four PDE problems, i.e., Burgers1d-C, GS, Heat2d-CG, and Poisson2d-C. The
comparative analysis involved evaluating the performance of these methods using learning rates of
1e-5, 1e-4, 1e-3, and 1e-2, along with a step learning rate decay strategy implemented every 1000
epochs with a decay factor of 0.75. The results are shown in Table E.2. As stated in the main text, a
moderate learning rate like 1e-3, 1e-4, or using a decay strategy is a good choice.

Influence of batch size (Collocation points). To further understand the impact of the number
of collocation points on our model’s performance, we conducted an ablation study. We used four
different numbers of collocation points, specifically 512, 2048, 8192, and 32768. The cases tested
in this study were burgers1d, GS, Heat2d-CG, and Poisson2d, which is the same as the ablation
study on learning rates. We utilized two variants of Physics-Informed Neural Networks: the vanilla
PINN and the PINN-LRA. We found that using more batch size leads to a continual improvement in
performance. For some cases, 8192 is a enough large batch size and the performance saturates. The
conclusions and plots of this experiment are shown in the main text.

Influence of training epochs. In this ablation study, we examine the impact of varying the number
of training epochs on our model’s performance. We selected four different values, specifically 5k,
20k, 80k, and 160k epochs. Similar to the previous study, the cases chosen for testing were burgers1d,
GS, Heat2d-CG, and Poisson2d. The trend is that training more epochs leads to better performance.
However, it is easier to saturate than a larger batch size.

Influence of Adam hyperparameters. Here we examine the impact of varying the momentum
hyperparameters in the Adam optimizer. Despite the learning rate, Adam contains two momentum
hyperparameters, i.e., (β1, β2) for storing the approximate first and second-order momentum. In
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Name Inference Flops

Burgers 1d-C 5.03E+4
2d-C 5.05E+4

Poisson

2d-C 5.03E+4
2d-CG 5.03E+4
3d-CG 5.03E+4
2d-MS 5.04E+4

Heat 2d-VC 5.03E+4
2d-MS 5.04E+4
2d-CG 5.04E+4
2d-LT 5.04E+4

NS 2d-C 5.04E+4
2d-CG 5.05E+4
2d-LT 5.05E+4

Wave 1d-C 5.06E+4
2d-CG 5.04E+4
2d-MS 5.04E+4

Chaotic GS 5.04E+4
KS 5.02E+4

High dim PNd 5.06E+4
HNd 5.06E+4

Inverse PInv 5.04E+4
HInv 5.05E+4

Table 18: Inference flops on a single collocation point for PINNs using network parameters the same
with main experiments.

L2RE Burgers1d-C GS Heat2d-CG Poisson2d-C

PINN

5k 3.71E-2(1.21E-2) 2.40E-1(1.11E-1) 1.23E-1(3.77E-3) 3.84E-2(1.77E-3)
20k 1.66E-2(1.87E-3) 1.65E-1(1.01E-1) 8.95E-2(2.29E-2) 2.38E-2(1.43E-3)
80k 1.42E-2(6.63E-4) 9.36E-2(8.41E-5) 9.64E-2(1.85E-2) 1.86E-2(3.26E-3)
160k 1.38E-2(5.45E-4) 9.38E-2(5.38E-5) 8.21E-2(7.52E-3) 1.48E-2(1.55E-3)

PINN-LRA 5k 3.60E-2(8.82E-3) 1.64E-1(9.91E-2) 1.18E-1(2.32E-3) 3.87E-2(3.28E-3)
20k 1.56E-2(8.87E-4) 1.09E-1(2.19E-2) 9.29E-2(1.97E-2) 2.65E-2(1.92E-3)
80k 1.42E-2(1.23E-3) 9.38E-2(1.63E-4) 1.05E-1(1.48E-2) 1.79E-2(4.19E-4)
160k 1.35E-2(1.84E-4) 9.38E-2(5.48E-4) 1.19E-1(2.28E-2) 1.66E-2(3.50E-3)

Table 19: Performance of PINNs and PINN-LRA with different numbers of training epochs on 4
cases.

experiments, we observe that the momentum parameters not only affect the convergence speed and
stability but also influence the final error. Here we list the results in Table E.2. We observe that in
average (β1, β2) = (0.99, 0.99) achieves the best results compared with others.

Other method-specific parameters

We chose several different method-specific hyperparameters to study their influence.

L2RE burgers GS HeatComplex Poisson2d

PINN

(0.9,0.999) 1.79E-2(2.20E-3) 2.47E-1(1.09E-1) 7.76E-2(8.27E-3) 2.72E-2(2.40E-3)
(0.9,0.99) 1.52E-2(1.34E-4) 9.38E-2(5.93E-5) 5.10E-2(7.20E-3) 3.00E-2(6.98E-3)
(0.9,0.9) 1.68E-2(2.45E-3) 9.38E-2(1.98E-4) 4.56E-2(2.55E-3) 2.81E-2(3.95E-3)

(0.99,0.99) 1.35E-2(1.03E-4) 9.37E-2(1.38E-5) 2.98E-2(5.24E-3) 9.18E-3(4.90E-4)

PINN-NTK

(0.9,0.999) 1.60E-2(5.50E-4) 1.79E-1(1.20E-1) 7.37E-2(1.59E-2) 1.40E-2(4.06E-3)
(0.9,0.99) 1.57E-2(1.34E-4) 9.37E-2(5.93E-5) 6.65E-2(7.20E-3) 1.57E-2(3.03E-3)
(0.9,0.9) 1.74E-2(1.40E-3) 9.37E-2(2.11E-4) 8.12E-2(3.33E-2) 2.45E-2(3.64E-3)

(0.99,0.99) 1.35E-2(2.27E-4) 9.37E-2(1.54E-5) 3.62E-2(1.60E-3) 2.85E-3(1.68E-4)

Table 20: Performance comparison of PINN and PINN-NTK under different momentum parameters
of Adam optimizer.
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α Burgers1d GS Heat2d-CG Poisson2d-C
0.01 2.45E-2(1.75E-3) 9.37E-2(4.25E-5) 1.18E-1(4.72E-3) 2.51E-2(8.40E-3)
0.05 5.20E-2(2.14E-2) 9.37E-2(3.48E-5) 1.25E-1(7.62E-3) 2.63E-2(1.10E-2)
0.1 1.99E-2(5.61E-3) 9.37E-2(1.70E-5) 1.28E-1(4.66E-3) 2.62E-1(3.00E-1)
0.2 2.04E-2(3.66E-3) 9.37E-2(1.03E-5) 1.55E-1(3.31E-2) 4.69E-2(1.37E-2)
0.4 3.53E-2(2.47E-2) 1.75E-1(1.15E-1) 1.35E-1(7.37E-3) 1.14E-1(1.23E-1)
0.7 2.00E-2(3.72E-3) 9.37E-2(4.21E-5) 1.90E-1(4.09E-2) 3.50E-1(2.24E-1)

Table 21: Performance comparison of PINN-LRA with different momentum parameters.

weight w Burgers1d GS Heat2d-CG Poisson2d-C
0.001 6.12E-2(1.36E-2) 1.66E-1(1.01E-1) 4.97E-2(7.10E-4) 6.74E-1(1.71E-2)
0.01 1.95E-1(2.47E-2) 1.79E-1(1.21E-1) 7.78E-2(1.47E-2) 6.89E-1(2.47E-2)
0.1 4.93E-1(1.59E-2) 4.61E-1(1.99E-1) 1.34E-1(1.37E-3) 6.92E-1(7.72E-3)
1 5.53E-1(7.49E-2) 9.38E-2(1.79E-5) 2.19E-1(9.90E-2) 6.96E-1(4.39E-3)

Table 22: Performance comparison of gPINN with different weights.

Influence of momentum parameters for loss reweighting. Here we choose the momentum update
α from {0.01, 0.05, 0.2, 0.4, 0.7}. We see that the optimal value of α is problem-dependent. However,
we observe that relatively small α achieves better performance.

Influence of weight for gPINNs. Here we choose the weight of gPINNs w from
{0.001, 0.01, 0.1, 1}. We see that the optimal value of w is also problem-dependent and the property
is intriguing. We observe that the performance of gPINNs is bad on Poisson2d-C for all values of
w. We suggest that adding higher-order PDE residuals might harm the training process in some
situations.

Influence of number of grids for hp-VPINNs. The number of points to compute integral within a
domain Q and number of grids Ngrid are two critical hyperparameters for hp-VPINN. Here we choose
Q from {5, 10, 15, 20} for 2-dimensional problems and {6, 8, 10, 12} for 3-dimensional problems to
investigate their influence. We also take Ngrid into consideration, which varies in {4, 8, 16, 32} for
2-dimensional problems and 3-dimensional problems. Different parameter selection is applied due to
the limit of the VRAM. We can observe a consistent trend that as the Q value rises, the accuracy of the
model’s predictions also enhanced. This is attributed to the fact that the Q value dictates the number
of integration points; hence, a higher value leads to more precise integration. However, for certain
scenarios where hp-VPINN might not be the best fit, a surge in the Q value doesn’t significantly
bolster the prediction accuracy. On the other hand, the choice of Ngrid exhibits a complex influence
on accuracy. Generally, as the value of Ngrid increases, precision tends to improve. However, in
regions where the solution has large gradients or discontinuities, a denser grid might amplify these
anomalies, leading to larger errors during model training.

Influence of the number of subdomains and overlap factors for FBPINNs. The number of
subdomains for domain decomposition and the overlap ratio α are two important hyperparameters for
FBPINNs. The overlap ratio is chosen from {0.2, 0.4, 0.6, 0.8}.

Results on different domain scale Here we study the influence of domain scales. While numerical
methods are usually resistant to domain scales, PINN methods are not invariant to domain scale
changes. Moreover, normalizing the domain to [0, 1] might be suboptimal for PINNs. Here we
take the domain scale L of Poisson2d-C as an example to study the performance under different

Q Burgers1d Q GS Q Heat2d-CG Q Poisson2d-C
5 3.19E-01(2.91E-02) 6 3.88E-01(9.73E-02) 6 7.14E-01(7.14E-01) 5 2.46E-01(1.62E-01)
10 2.88E-01(6.03E-03) 8 4.25E-01(1.51E-01) 8 7.19E-01(4.89E-02) 10 2.43E-01(1.57E-01)
15 1.85E-01(6.97E-02) 10 3.68E-01(2.04E-01) 10 7.19E-01(4.75E-02) 15 2.45E-01(1.61E-01)
20 1.85E-01(4.65E-02) 12 3.58E-01(2.06E-01) 12 7.21E-01(4.95E-02) 20 2.46E-01(2.46E-01)

Table 23: Performance comparison of hp-VPINN with different Q.
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Ngrid Burgers1d Ngrid GS Ngrid Heat2d-CG Ngrid Poisson2d-C
4 3.67E-01(1.28E-02) 3 1.93E-01(2.06E-02) 3 6.91E-01(2.44E-02) 4 4.95E-01(8.46E-02)
8 2.43E-01(2.39E-03) 4 3.68E-01(2.04E-01) 4 7.19E-01(4.75E-02) 8 4.95E-01(8.63E-02)

16 3.66E-01(3.67E-02) 5 3.59E-01(1.34E-01) 5 7.22E-01(5.14E-02) 16 2.86E-01(1.94E-02)
32 4.59E-01(1.34E-02) 6 2.81E-01(1.96E-01) 6 7.23E-01(5.19E-02) 32 2.43E-01(1.57E-01)

Table 24: Performance comparison of hp-VPINN with different number of grids Ngrid.

Burgers1d GS
(1,1) 2.12E-1(1.19E-1) (1,1,1) 7.98E-2(3.59E-3)
(2,1) 1.75E-1(7.97E-2) (1,1,3) 8.15E-2(1.73E-3)
(3,1) 1.61E-1(9.77E-2) (1,1,5) 7.90E-2(1.28E-3)
(1,2) 1.98E-1(7.34E-2) (2,2,1) 8.15E-2(3.56E-3)

Heat2d-CG Poisson2d-C
(1,1,1) 3.30E-1(1.04E-1) (1,1) 5.01E-2(2.80E-3)
(1,1,3) 6.80E-1(1.18E-1) (1,2) 3.51E-1(1.26E-1)
(1,1,5) 7.48E-1(3.39E-2) (2,1) 4.38E-1(5.30E-2)
(2,2,1) 2.89E-1(2.30E-2) (2,2) 5.54E-2(1.23E-3)

Table 25: Performance (L2RE) comparison of FBPINN with different domain decomposition types.

settings. We see that Multi-Adam is the most stable under domain scale changes and achieves the
best performance when L is small.

Comparison between MultiAdam and L-BFGS . Here we compare the new MUltiAdam optimizer
for PINNs with L-BFGS, which is a frequently used optimizer in PINN variants. The L2Re result is
listed in the Table E.2. We see that L-BFGS does not converge in many cases as it is unstable while
MultiAdam has a better convergence property. However, L-BFGS achieves better accuracy on some
of the problems like high dimensional PDEs.

Temporal error analysis For time-dependent problems, an important metric is the generalization
ability along the time dimension. We selected Heat2d-CG, Heat2d-MS, and Wave1d-C with two
different parameters (domain scale is 2 and 8) to observe how the error evolves over time. We found
that the error accumulation over time varies depending on the specific PDE problem. For instance,
in the case of Heat2d-CG, its final state is a relatively easy steady state, which results in a gradual
reduction of error over time. On the other hand, for Heat2d-MS, the solution continuously oscillates,
leading to an increasing error as time progresses. In the case of Wave1d-C, due to the periodic nature
of the wave equation and the presence of a ground truth solution that is entirely zero, we observed
the L2 Relative Error (L2RE) also increases with fluctuations. In summary, error accumulation in
time-dependent problems remains challenging for PINNs, necessitating deeper analysis and improved
optimization methods in future research.

Runtime analysis The runtime results for different methods are shown in Table 14. We have
analyzed the results in the previous section.

F Other visualization results and analysis

Here we list some visualization results of these experiments. We see that Burgers1d, Poisson2d-C,
Poisson2d-CG, and NS2d-C could be solved with a relatively low error. Other problems are difficult
to learn, even the approximate shape of the solution. Here we only visualize two-dimensional cases,

α Burgers1d GS Heat2d-CG Poisson2d-C
0.2 9.88E-2(1.75E-2) 8.57E-2(3.14E-3) 1.05E+0(1.68E-1) 5.81E-1(1.01E-3)
0.4 9.01E-2(1.43E-2) 8.09E-2(7.63E-4) 7.36E-1(7.23E-2) 2.85E-1(9.30E-2)
0.6 1.75E-1(7.97E-2) 7.95E-2(6.30E-4) 6.79E-1(1.17E-1) 5.54E-2(1.23E-3)
0.8 1.61E-1(1.08E-1) 8.04E-2(1.03E-3) 6.96E-1(1.50E-1) 4.19E-2(4.71E-3)

Table 26: Performance (L2RE) comparison of FBPINN with different overlap ratios α.
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Scale L Adam MultiAdam LRA GePinn
0.5 6.94E-1(1.76E-2) 5.71E-1(6.11E-2) 6.93E-1(1.48E-2) 7.06E-1(2.94E-3)
1 6.92E-1(1.79E-2) 3.56E-2(1.25E-2) 3.88E-1(2.61E-1) 6.89E-1(1.41E-2)
2 4.41E-1(9.57E-2) 3.81E-2(9.38E-3) 1.68E-1(6.78E-2) 6.76E-1(3.86E-2)
4 1.77E-2(4.66E-3) 3.38E-2(9.71E-3) 1.11E-1(1.43E-1) 3.13E-2(2.85E-3)
8 2.39E-2(7.26E-3) 4.40E-2(3.07E-2) 1.41E-1(7.10E-2) 1.95E-2(6.42E-3)
16 1.83E-2(8.19E-3) 3.62E-2(1.10E-2) 9.45E-2(2.05E-2) 1.59E-2(6.03E-3)

Table 27: Performance comparison of vanilla PINNs, Multi-Adam, PINN-LRA, and gPINN on
Poisson2d-C different domain scales.

L2RE MultiAdam L-BFGS

Burgers 1d-C 4.85E-2(1.61E-2) 1.33E-2(5.30E-5)
2d-C 3.33E-1(8.65E-3) 4.65E-1(4.69E-3)

Poisson

2d-C 2.63E-2(6.57E-3) NaN
2d-CG 2.76E-1(1.03E-1) 2.96E-1(4.77E-1)
3d-CG 3.64E+0(2.74E-2) 3.51E+0(9.33E-2)
2d-MS 5.90E-1(4.06E-2) 1.45E+0(4.75E-3)

Heat 2d-VC 4.75E-1(8.44E-2) 2.32E-1(5.29E-3)
2d-MS 2.18E-1(9.26E-2) 1.73E-2(4.74E-3)
2d-CG 7.12E-2(1.30E-2) 8.57E-1(6.69E-4)
2d-LT 1.00E+0(3.85E-5) 1.00E+0(6.69E-5)

NS 2d-C 7.27E-1(1.95E-1) 2.14E-1(1.07E-3)
2d-CG 4.31E-1(6.95E-2) NaN
2d-LT 1.00E+0(2.19E-4) 9.70E-1(3.66E-4)

Wave 1d-C 1.21E-1(1.76E-2) NaN
2d-CG 1.09E+0(1.24E-1) 1.33E+0(2.34E-1)
2d-MS 9.33E-1(1.26E-2) NaN

Chaotic GS 9.37E-2(1.21E-5) NaN
KS 9.61E-1(4.77E-3) NaN

High dim PNd 3.98E-3(1.11E-3) 4.67E-4(7.12E-5)
HNd 3.02E-1(4.07E-2) 1.19E-4(4.01E-6)

Table 28: Mean L2RE comparison between MultiAdam and L-BFGS.

L2RE – Burgers-P Poisson-P Heat-P NS-P Wave-P High dim-P
Name – 2d-C 2d-C 2d-MS 2d-C 1d-C HNd
Vanilla PINN 4.74E-1(1.93E-1) 1.73E-1(2.40E-1) 7.66E-3(3.61E-3) 3.89E-1(4.40E-1) 2.24E-1(3.03E-1) 5.22E-1(3.56E-2)

Reweighting LRA 4.36E-1(1.99E-1) 1.23E-1(1.56E-1) 6.53E-3(6.12E-3) 0.00E+0(0.00E+0) 7.07E-2(1.14E-1) 3.44E-1(1.81E-1)
NTK 4.13E-1(1.82E-1) 1.50E-1(1.86E-1) 9.04E-3(6.52E-3) 4.52E-1(3.01E-1) 1.66E-2(4.52E-3) 2.69E-1(1.88E-1)

Sampling RAR 4.71E-1(1.98E-1) 1.53E-1(2.11E-1) 8.07E-3(1.75E-3) 3.91E-1(4.46E-1) 2.33E-1(3.10E-1) 5.05E-1(6.10E-2)
Optimizer MultiAdam 4.93E-1(1.94E-1) 4.00E-1(3.20E-1) 2.22E-3(1.55E-3) 9.33E-1(4.32E-2) 8.24E-2(9.22E-2) 6.89E-1(8.46E-2)

Loss functions gPINN 4.91E-1(2.01E-1) 4.59E-1(4.57E-1) 7.87E-3(2.82E-3) 7.19E-1(2.89E-1) 4.03E-1(3.44E-1) 7.66E-1(3.30E-2)
vPINN 2.82E+0(1.79E+0) 5.12E-1(2.43E-1) – 3.76E-1(6.90E-2) 5.51E-1(6.09E-1) –

Architecture
LAAF 4.37E-1(1.77E-1) 6.27E-2(4.65E-2) 6.97E-3(5.23E-3) 3.63E-1(4.38E-1) 1.84E-1(2.91E-1) 4.03E-1(1.27E-1)
GAAF 4.34E-1(1.85E-1) 1.89E-1(2.54E-1) 1.94E-1(8.63E-2) 4.85E-1(4.09E-1) 2.97E-1(2.38E-1) 9.00E-1(1.68E-1)

FBPINN – 2.46E-1(4.50E-1) – 3.99E-1(2.97E-1) 2.87E-2(2.81E-2) 1.15E+0(1.06E+0)

Table 29: L2RE (mean/std) of different methods on parametric experiments.

Figure 20: L2RE varying with time for PINNs on Heat2d-CG, Heat2d-MS.

46

76766https://doi.org/10.52202/079017-2442



Figure 21: L2RE varying with time for PINNs on Wave1d-C-scale2 and Wave1d-C-Scale8.

which are easier to display in the paper. Note that we also support different forms of three-dimensional
plot functionals in our code.
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Figure 22: Visualization of Burgers1d. The left pictures are the prediction of PINN methods. The
right pictures show the error between the prediction and the ground truth.
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Figure 23: Visualization of Poisson2d-C. The left pictures are the prediction of PINN methods. The
right pictures show the error between the prediction and the ground truth.
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Figure 24: Visualization of Poisson2d-CG. The left pictures are the prediction of PINN methods. The
right pictures show the error between the prediction and the ground truth.
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Figure 25: Visualization of Poisson2d-MS. The left pictures are the prediction of PINN methods. The
right pictures show the error between the prediction and the ground truth.
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Figure 26: Visualization of NS2d-C. The left pictures are the prediction of PINN methods. The right
pictures show the error between the prediction and the ground truth. Note that PINN-LRA diverged
in this case.
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Figure 27: Visualization of NS2d-CG. The left pictures are the prediction of PINN methods. The
right pictures show the error between the prediction and the ground truth.
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Figure 28: Visualization of KS. The left pictures are the prediction of PINN methods. The right
pictures show the error between the prediction and the ground truth.
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