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Abstract

The largest eigenvalue of the Hessian, or sharpness, of neural networks is a key
quantity to understand their optimization dynamics. In this paper, we study the
sharpness of deep linear networks for univariate regression. Minimizers can have
arbitrarily large sharpness, but not an arbitrarily small one. Indeed, we show a
lower bound on the sharpness of minimizers, which grows linearly with depth.
We then study the properties of the minimizer found by gradient flow, which is
the limit of gradient descent with vanishing learning rate. We show an implicit
regularization towards flat minima: the sharpness of the minimizer is no more than
a constant times the lower bound. The constant depends on the condition number
of the data covariance matrix, but not on width or depth. This result is proven both
for a small-scale initialization and a residual initialization. Results of independent
interest are shown in both cases. For small-scale initialization, we show that the
learned weight matrices are approximately rank-one and that their singular vectors
align. For residual initialization, convergence of the gradient flow for a Gaussian
initialization of the residual network is proven. Numerical experiments illustrate
our results and connect them to gradient descent with non-vanishing learning rate.

1 Introduction

Neural networks have intricate optimization dynamics due to the non-convexity of their objective. A
key quantity to understand these dynamics is the largest eigenvalue of the Hessian or sharpness S(W)
(see Section 3 for a formal definition), in particular because of its connection with the choice of
learning rate 7). Classical theory from convex optimization indicates that the sharpness should remain
lower than 2 /7 to avoid divergence (Nesterov, 2018). The relevance of this point of view for deep
learning has recently been questioned since neural networks have been shown to often operate at the
edge of stability (Cohen et al., 2021), where the sharpness oscillates around 2/, while the loss still
steadily decreases, albeit non-monotonically. Damian et al. (2023) explained the stability of gradient
descent slightly above the 2/7 threshold to be a general phenomenon for non-quadratic objectives,
where the third-order derivatives of the loss induce a self-stabilization effect. They also show that,
under appropriate assumptions, gradient descent on a risk R” implicitly solves the constrained

minimization problem
2
1%11 RE(W) suchthat S(OW) < =. (1
n
Trainability of neural networks initialized with a sharpness larger than 2/7 is also studied by
Lewkowycz et al. (2020), which describes a transient catapult regime, which lasts until the sharpness
goes below 2/7. These results beg the question of quantifying the largest learning rate that enables
successful training of neural networks. For classification with linearly separable data and logistic loss,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

76848 https://doi.org/10.52202/079017-2445



Wau et al. (2024) show that gradient descent converges for any learning rate. In this work, we address
the case of deep linear networks for regression. As illustrated by Figure 1a, the picture then differs
from the classification case: when the learning rate exceeds some critical value, the network
fails to learn. We further remark that this critical value does not seem to be related to the initial
scale: when the learning rate is under the critical value, learning is successful for a wide range of
initial scales. In Figure 1b, we see that the large initialization scales correspond to initial sharpnesses
well over the 2/n threshold, confirming that training is possible while initializing beyond the 2/7

threshold.
101 10
5
2 107" S s
<) 10
o 107
© — — Initialization
£ . o+ gt
2 10" +/+/+ T 1. rate: 0.005 ﬁ 5
s —«— 1. rate: 0.02 g 10
A —=— |.rate: 0.07 I
g 10 —+— I.rate: 0.1 5
s —e— | rate: 0.2 10
3 10°
K]
E 10,11 ./.\‘/._.\. B —— Initialization
(% 10 I. rate: 0.005
13 —x—|. rate: 0.02
10 3
x x74x xR — x: — o~ —=— | rate: 0.07

0.50 0.55 0.60

0.30

0.35 0.40 0.45 0.50 0.35 0.40 0.45

Scale of initialization

(a) Squared distance of the trained network to the em-
pirical risk minimizer, for various learning rates and
initialization scales. Training succeeds when the learn-
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(b) Sharpness at initialization and after training, for
various learning rates and initialization scales. For a
given learning rate 7, the dashed lines represent the 2/7

threshold. The dotted black lines represent the lower
and upper bounds given in Theorem 1 and Corollary 2.
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(d) Evolution during training of the squared distance to
the empirical risk minimizer and of sharpness, for n =
0.1 and an initialization scale of 0.35. The network
enters edge of stability.

(c) Evolution during training of the squared distance to
the empirical risk minimizer and of sharpness, for n =
0.02 and an initialization scale of 0.35. The network
does not enter edge of stability.

Figure 1: Training a deep linear network on a univariate regression task with quadratic loss. The
weight matrices are initialized as Gaussian random variables, whose standard deviation is the x-axis
of plots 1a and 1b. Experimental details are given in Appendix C.

To understand where the critical value for the learning rate comes from, we characterize the
sharpness of minimizers of the empirical risk. We show that there exist minimizers with arbitrarily
large sharpness, but not with arbitrarily small sharpness. Indeed, the sharpness of any minimizer
grows linearly with depth, as made precise next.

Theorem 1. Let X € R™*% be a design matrix and y € R" a target. Then the minimal sharpness
Smin of any linear network x — Wy, ... Whix of depth L that implements the optimal linear regressor
w* € R? satisfies
* 12— % * 12— % 2 2,2
2[jw*|ly” F La < Swin < 2llw* ;" F V(2L — DA + (L —1)2a2,
where A is the largest eigenvalue of the empirical covariance matrix 3= %X "X, and a :
(w*/[lw* () TS (w* /[lw*]]).

We note that this bound is similar to a result of Mulayoff and Michaeli (2020), although we alleviate
their assumption of data whiteness (X = I). In particular, we do not assume that data covariance
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matrix is full rank. Furthermore, our proof technique differs, since we do not require tensor algebra,
and instead exhibit a direction in which the second derivative of the loss is large.

This result shows that it is not possible to find a minimizer of the empirical risk in regions of low
sharpness. Combined with (1), this suggests an interpretation of the critical value for the learning
rate: gradient descent should not be able to converge to a global minimizer as soon as

2—-2 _
=~ (Jlw*lly” " La)~" .

2

Shin > ” & > S
This is confirmed experimentally by Figure 2, which shows that the critical value of the learning rate
matches our theoretical prediction. We note that this gives a quantitative answer to the observations
of Lewkowycz et al. (2020), which shows the existence of a maximal architecture-dependent learning
rate beyond which training fails. The dependence of learning rate on depth (namely, constant over
depth) also matches other papers that study scaling of neural networks (Chizat and Netrapalli, 2024;
Yang et al., 2024).
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Figure 2: Squared distance of the trained network to the empirical risk minimizer, for various learning
rates and depth. For each depth, learning succeeds if the learning rate is below a threshold, which

. 2-2 . .
corresponds to the theoretical value g2— ~ ([lw*||; £ La)~! of Theorem 1 (dashed vertical line).

To deepen our understanding of the training dynamics, we aim at quantifying the sharpness of the
minimizer found by gradient descent (when it succeeds): we know that it has to be larger than Syin,
but is it close to Sy, Or is it much larger? Inspecting Figure 1b, we see that the answer empirically
depends on the interplay between initialization scale and learning rate. For small initialization scale,
the sharpness after training is equal to a value relatively close to Sy,i, and independent of the learning
rate. As the initialization scale increases, the sharpness of the trained network also increases, and
plateaus at the value 2 /7. The plateauing for large initialization scales can be explained by the edge
of stability analysis (1), which upper bounds the sharpness of the minimizer by 2/7 (see Figure 1d).
However, this gives no insight on the value of the sharpness when the learning rate is sufficiently
small so that the network does not enter the edge of stability regime (see Figure 1c¢).

In this paper, we study the limiting case for vanishing 7, i.e., training with gradient flow. As our
main finding, we bound the sharpness of the minimizer found by gradient flow in the case of
overdetermined regression, meaning that the sample size n is larger that the data dimension d and
the data empirical covariance matrix is nonsingular. In this case, we prove that the ratio between the
sharpness after training and Sy,;;, is less than a constant depending mainly on the condition number
of the empirical covariance matrix $. In particular, the ratio does not depend on the width or depth of
the network. This shows an implicit regularization towards flat minima. Note that the phenomenon
we exhibit is different from the well-studied implicit regularization towards flat minima caused by
stochasticity in SGD (Keskar et al., 2017; Smith and Le, 2018; Blanc et al., 2020; Damian et al., 2021;
Liet al., 2022; Liu et al., 2023). In the present study, the dynamics are purely deterministic, and the
low sharpness is due to the fact that the weight matrices found by gradient flow have (approximately)
the same norm across layers, and that this norm is (approximately) the smallest possible one so that
the network can minimize the risk.
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Link with generalization. Flatter minima have been found to generalize better (Hochreiter and
Schmidhuber, 1997; Jastrzebski et al., 2017; Keskar et al., 2017; Jiang et al., 2020), although the
picture is subtle (Dinh et al., 2017; Neyshabur et al., 2017; Andriushchenko et al., 2023). However,
in this paper, we focus on the link of sharpness with (non-convex) optimization dynamics, rather than
with generalization abilities. Indeed, our implicit regularization result holds in the overdetermined
setting, where all minimizers of the empirical risk implement the same function thus have the
same generalization error, although they differ in parameter space and in particular have different
sharpnesses. We leave to future work extensions to more complex settings where our approach
may link sharpness and generalization, beginning with deep linear networks for underdetermined
regression. We refer to Appendix C for more comments on the link with generalization.

We investigate two initialization schemes, quite different in nature: small-scale initialization and
residual initialization. Let us explain both settings, by presenting our approach, contributions of
independent interest, and related works.

Small-scale initialization. In this setting, we consider an initialization of the weight matrices Wy,
with i.i.d. Gaussian entries of small variance. Initialization scale is known to play a key role in
training of neural networks: small-scale initialization corresponds to the “feature learning” regime
where the weights change significantly during training, by opposition to the “lazy” regime (see,
e.g., Chizat et al., 2019). We show convergence of the empirical risk to zero, then characterize the
structure of the minimizer found by gradient flow, a novel result of interest independently of its
connection with sharpness. At convergence, the weight matrices are close to being rank-one, in
the sense that all their singular values but the largest one are small. Furthermore, the first left singular
vector of any weight matrix aligns with the first right singular vector of the next weight matrix. From
this specific structure, we deduce our bound on the sharpness of the trained network. The bound is
illustrated on Figure 1b, where our lower and upper theoretical bounds on the sharpness are plotted
as dotted black lines. We observe that the sharpness after training, when starting from a small-scale
initialization, is indeed situated between the black lines.

The result and proof extend the study by Ji and Telgarsky (2020) for classification, although the
parameters do not diverge to infinity contrarily to the classification case, thus requiring a finer control
of the distance to the rank-one aligned solution. In regression, implicit regularization towards low-
rank structure in parameter space was also studied by Saxe et al. (2014); Lampinen and Ganguli
(2019); Gidel et al. (2019); Saxe et al. (2019); Varre et al. (2023) for two-layer neural networks
and in Timor et al. (2023) for deep ReL.U networks. This latter paper assumes convergence of the
optimization algorithm and show that a solution with minimal ¢5-norm has to be low-rank. In our
linear setting, we instead show convergence. As detailed below, we impose mild requirements on the
structure on the initialization beyond its scale; they are satisfied for instance by initializing one weight
matrix to zero and the others with i.i.d. Gaussian entries. In particular, we do not require the so-called
“zero-balanced initialization” as is common in the literature on deep linear networks (see, e.g., Arora
etal., 2018; Advani et al., 2020; Li et al., 2021) or a deficient-margin initialization as in Arora et al.
(2019a). Finally, the limit when initialization scale tends to zero has been described for deep linear
networks in Jacot et al. (2021) for multivariate regression. It consists in a saddle-to-saddle dynamics,
where the rank of the weight matrices increases after each saddle. The present study considers instead
a non-asymptotic setting where the initialization scale is small but nonzero, and shows convergence
to a rank-one limit because univariate and not multivariate regression is considered.

We note that sharpness at initialization can be made arbitrarily small, since it is controlled by the
initialization scale, while sharpness after training scales as ©(L). This therefore showcases an
example of sharpening during training (although we make no statement on monotonicity).

Residual initialization. Architectures of deep neural networks used in practice often present resid-
ual connections, which stabilize training (He et al., 2015). A simple non-linear residual architecture
writes hx11 = hg + o(Nihg). Removing the non-linearity, we get hgr1 = (I + Ng)hi, which
prompts us to consider deep linear networks with square weight matrices W), € R?* that are

initialized as
s

VLd

where the N}, € R%*? are filled with i.i.d. standard Gaussian entries and s > 0 is a hyperparameter
tuning the initialization scale. The scaling of the residual branch in 1/ v/d is common and corresponds

Wi(0) = I+

Ni ()]
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for instance to the so-called Glorot and He initializations respectively from Glorot and Bengio (2010)
and He et al. (2015). It ensures that the variance of the residual branch is independent of the width d.
Similarly, as studied in Arpit et al. (2019); Marion et al. (2022), the scaling in 1/+/L is the right one
so that the initialization noise neither blows up nor decays when L — oco. Note that, in practice, this
scaling factor is often replaced by batch normalization (Ioffe and Szegedy, 2015), which has been

shown empirically to have a similar effect to 1/ V'L scaling (De and Smith, 2020).

In this setting which we refer to as residual initialization, we show global convergence of the empirical
risk. To our knowledge, it is the first time that convergence is proven for a standard Gaussian
initialization of the residual network outside the large width d > n regime. Previous works
considered either an identity initialization (Bartlett et al., 2018; Arora et al., 2019a; Zou et al., 2020)
or a smooth initialization such that ||W1(0) — Wi (0)||r = O(1/L) (Sander et al., 2022; Marion
et al., 2024). The extension to standard Gaussian initialization leverages sharp bounds for the singular
values of the product of W, (0). Our main assumption, in alignment with the literature, is that the risk

at initialization should not be larger than a constant (depending on 3 and s).

We then show that the weights after training can be written

s 1
\/L—dN kT O ,
where the Frobenius norm of the 0}, is bounded by a constant (depending only on s). This structure
finally enables us to bound the sharpness of the trained network. Remark that, to connect this analysis
with our discussion of sharpness in univariate regression, we add to the residual network a final fixed
projection vector p € R?, so that our neural network writes = — p' Wy, ... Wiz, but the proof of
convergence also holds without this projection.

Wi(oo) =1 +

Experimentally, we give in Appendix C plots in the residual case that are qualitatively similar to
Figure 1. The main difference is that the initial sharpness is less sensitive to the initialization scale s.

Organization of the paper. Section 2 details our setting and notations. Section 3 studies the sharp-
ness of minimizers of the empirical risk and proves Theorem 1. Dynamics of gradient flow starting
from small-scale initialization and residual initialization are respectively presented in Sections 4
and 5. The Appendix contains proofs, additional plots, experimental details, and related works.

2 Setting

Model. We consider linear networks of depth L from R? to R, which are linear maps
Z"—)pTWL...Wll‘ (3)
parameterized by weight matrices W1, ..., Wy, where W), € R%**d-1_d, = dand p € R isa
fixed vector. This definition includes both fully-connected networks by setting d;, = 1 and p = 1,
and residual networks by setting d; = --- = dy = d, the Wy, close to the identity, and p to some
fixed (potentially random) vector in R%, We let W = (Wy,..., W) and Wprod = Wi W p.
Given X € R"*? a design matrix and yy € R™ a target, we consider the empirical risk for regression

REOV) =~y = XWT W =~y = Xual3 =5 R ()
The notations RY (W) and R!(wpq) may seem redundant, but are actually practical to define
gradients of the risk both with respect to a single matrix W}, and to the product wpyq. Let 3=
%X T X the empirical covariance matrix, and A and A respectively its smallest nonzero and largest
eigenvalue. For now, we do not assume that 3 is full rank, so there is more than one solution to
the regression problem min,, ,cga R! (Wproa). We denote by w* € R? the smallest norm solution,
and we let Ry, = R!(w*) be the minimum of R! (and RF). In all the following, we assume that

w* # 0. Note that, due to the overparameterization induced by the neural network, there exists an
infinity of parameterizations of the mapping = — w* ' .

Gradient flow. We consider that the neural network is trained by gradient flow on the empirical
risk R”, that is, the parameters evolve according to the ordinary differential equation
AWy ORE

a oW’ )
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An application of the chain rule gives

R
ViRE(W) = W = Wiy . W pVR (wproa) ' WY ... Wy, )
with 5 5
VR (wproa) = —EXT(y — XWprod) = —EXTX(w* — Wprod) - (6)

where the second equality is a consequence of VR (w*) = 0.

Notations. For k € {1,... L}, we denote respectively by oy, uy, and vy, the first singular value
(which equals the /5 operator norm), the first left singular vector and the first right singular vector
of Wy. The ¢ operator norm of a matrix M is denoted by || M ||z and its Frobenius norm by ||M|| p.
Its smallest singular value is denoted by oy,in (M). For a vector v, we let ||v||2 its Euclidean norm.
Finally, for quantities that depend on the gradient flow time ¢, we omit for concision their explicit
dependence on ¢ when it is dispensable.

3 Estimates of the minimal sharpness of minimizers

To define the sharpness of the model, we let D = Zé:l drdy—1 and identify the space of parameters
with RP, which amounts to stacking all the entries of the weight matrices in a large D-dimensional
vector. Then the norm of the parameters seen as a D-dimensional vector can be related to the
Frobenius norm of the matrices by

L
IWIE =D IWklf7-
k=1

This allows us to define the Hessian of the risk H : RP? — RP*P and we denote by S(W) its largest
eigenvalue for some parameters YV, or sharpness. We note that there exists alternative definitions of
the sharpness, but this one is the most relevant to study optimization dynamics. Our results are specific
to this definition. The following result gives estimates on the minimal sharpness of minimizers of the
empirical risk (and is a strictly stronger statement than Theorem 1).

Theorem 2. Let Siin = infyycarg min rE () S(W) and a := (w* /|| w*|)) TS (w* /||w*|). We have

L
21 1 1
Swmin > 2allw*[ly” [T ) o
2 [Willr

and

27 E 1pl1E La < Soin < 2002 E Il V2L — DAZ + (L — 1)%a2
2[w* [l Pl T La < Smin < 2llw*[l;” F [IpI 2 V/(2L — 1)A% + (L — 1)2a2.

The proof of the result relies on the following variational characterization of the sharpness as the
direction of the highest change of the gradient

L L _ L A2
SOV? = lim  sup D k=1 HVkLR (W) V~kRz WIE
Wi — Wil <€ > k=1 Wk — Wi ||

(N

Lower bounds are proven by considering well-chosen directions Wy, for instance Wy, = (14+£8;) Wy
for the first lower bound. The upper bound is proven by constructing a specific minimizer and
bounding its sharpness. The first lower bound shows that the sharpness of minimizers can be
arbitrarily high if one of the matrices has a low-enough norm. More precisely, take any minimizer
W = (Wi, ... Wr) and consider WC = (CW,, Wy /C, Ws, ..., Wp), for some C > 0. Then W
is still a minimizer, and
2aljwt 5~ IplE _ 2a]w*l3" IplEC
S(WC) > 2 p — 2 p C—o0
W2/Cllr W2l r

The fact that a reparameterization of the network can lead to arbitrarily high sharpness is consistent
with a similar result by Dinh et al. (2017) for two-layer ReLU networks.
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Note that the first lower bound is arbitrarily small for minimizers such that the norms ||W} || r are
large. On the contrary, the second lower bound is uniform and asymptotically matches the upper
bound when L — oo: we have Syin ~ 2||w*||3La.

As already noted by Mulayoff and Michaeli (2020), the intuition behind the linear scaling of the bound

with depth can be seen from a one-dimensional example: take f(z1,...,21) = H£:1 x;. Then an
easy computation shows that the sharpness of f at (1,...,1) is equal to L — 1. This showcases a
simple example where the output of f is constant with L while its sharpness grows linearly with L.

4 Analysis of gradient flow from small initialization

In this section, we characterize the structure of the minimizer found by gradient flow starting from a
small-scale initialization. The proof is inspired by the one of Ji and Telgarsky (2020) for linearly-
separable classification, with a finer analysis due to the finiteness of minimizers in our setting.

We consider the model (3) with d;, = 1 and p = 1. Denoting by R the empirical risk when the
weight matrices are equal to zero, we can state our assumption on the initialization.

(A}) The initialization satisfies that RX(WW(0)) < Ry and VR*(W(0)) # 0.

It is satisfied for instance if one of the weight matrices W, is equal to zero at initialization while the
others have i.i.d. Gaussian entries, so that RX(W(0)) = Ry and V;, RX(W(0)) # 0 (almost surely).

Linear networks trained by gradient flow possess the following remarkable property (Arora et al.,
2018) that shall be useful in the remainder.

Lemma 1. Foranytimet > 0andany k € {1,...,L —1},
Wi (OWira(t) = Wil (0)Wisr (0) = Wi ()W (2) — Wi(0)W/ (0).

Define now

1<k<L

L-1
e:=3 max [Wi(0)[7 +2 ) [IWi(0)W, (0) = Wiy (0)Wis1 (0)]2-
k=1

Note that € only depends on the initialization, and can be made arbitrarily small by scaling down the
initialization. The following key lemma connects throughout training three key quantities to e.

Lemma 2. The parameters following gradient flow satisfy for any t > 0 that

s forke{l,....L}, Wi (OIF — IWe@®)]I5 < e,

‘fOVj,kG{l,...,L}, |0i(t)70?(t)|<6)

cforke{l,... L—1}, (vep(t)up(®)?>1— ———.
0k+1(t)

The first identity of the Lemma bounds the sum of the squared singular values of Wy, (t), except the
largest one. In other words, it quantifies how close W (t) is to the rank-one approximation given by
the first term in its singular value decomposition. The second statement bounds the distance between
the spectral norms of any two weight matrices. The last bound quantifies the alignment between the
first left singular vector of Wy, (t) and the first right singular vector of Wy, (¢). In particular, if ¢ is
small and 07, (¢) is of order 1, then vy41(f) and uy(t) are nearly aligned.

We next use this Lemma to show that the neural network satisfies a Polyak-Ff.ojasiewicz (PL) condition,
which is one of the main tools to study non-convex optimization dynamics (Rebjock and Boumal,
2023). A well-known result, recalled in Appendix A for completeness, shows that this implies
exponential convergence of the gradient flow to a minimizer WWS! of the empirical risk.

Theorem 3. Under Assumption (A1), the network satisfies the PL condition for t > 1, in the sense
that there exists some p > 0 such that, fort > 1,

L
S IVRREOVE |7 = m(BEOV(E) = Ruin) -
k=1
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The proof leverages the structure of the gradient of the risk with respect to the first weight matrix,
which relies on the linearity of the neural network and the fact that we consider a univariate output.
More precisely, recall that, by (5),

ViREOW(@)) = (WL(t) ... Wa(t) T VR (wproa(t)) "

d1><1 leO

Therefore the Frobenius norm of the gradient decomposes as the product of two vector norms

IV REWO)[ = WL () ... WbV R (wproa(£) I3
> AN|WL(t)... Wa(D)[3(R*(W(H)) = Ruin) »

where the lower bound unfolds from a straightforward computation. The delicate step is to lower
bound ||Wp,(t) ... Wa(t)||2, which we approach by distinguishing depending on the magnitude of
o1(t) = ||[Wi(¢)||2- If o1 (¢) is large, we use Lemma 2 to deduce both that all oy (¢) are large and
then that the first singular vectors of successive weight matrices are aligned. This implies that the
product of weight matrices has a large norm. To analyze the case where o (¢) is small, we use
Assumption (A7) to bound away RL(W(t)) from Ry for ¢ > 1, and therefore wypod(t) from 0. The
fact that wyoq(t) cannot be too close to 0 while o1 () is small implies that [|[W7,(¢) ... Wa(t)||2 is
large. All in all, this allows us to lower bound ||WL (%) ... Wa(t)]|2, and the PL condition follows.

To characterize the weights at the end of the training, we make the following assumption.

(A2) The data covariance matrix 3 is full rank, and we have ¢ < 1, [lw*|l2 > 1, and 32L+/2 < 1.

The first statement ensures unicity of the minimizer w* of R, and thus, given that the risk goes to 0,
we have wprq — w*. The last condition means that the initialization has to be scaled down as the
depth increases, so that e = O(1/L?). Intermediates conditions are technical. We can then show the
following corollary.

Corollary 1. Under Assumptions (A1)—(As), there exists T > 1, such that, for all t > T and
ke{l,...,L},

x|\ 1/L
<||w2||2> < O'k(t) < (2Hw*||2)1/L

Together with Lemma 2, this result gives a precise description of the structure of the weights at the
end of the gradient flow trajectory. Up to the small factor €, the weights are rank-one matrices, with
equal norms and aligned singular vectors. Since the product of weights aligns with w*, this means
that the first right singular vector of Wy has to align with w*, and then the weight matrices align with
their neighbors in order to propagate the signal in the network.

Combining this specific structure of the weights with the variational characterization (7) of the
sharpness and the explicit formulas (5)—(6) for the gradients, we derive the following upper bound on
the sharpness of the found minimizer.

Corollary 2. Under Assumptions (A1)—(A3), the following bounds on the sharpness of the mini-
mizer WS hold:

SI
SOWsh <4 A .

1<
= Smin A

This result shows that the sharpness of the minimizer is close to Sy, in the sense that their ratio
is bounded by a constant times the condition number of ¥. For example, in the case of white data
(X = I), we obtain that SOVS!) < 48,

5 Analysis of gradient flow from residual initialization

‘We now study the case of residual initialization. We consider a linear network of the form (3) with

S

VLd

1
Wk(t)ZI-‘r Nk+zﬁk(t),
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where each matrix is a d x d matrix and the Ny, are filled with i.i.d. Gaussian entries A(0, 1). We refer
to Section 1 for a discussion of the scaling factor in front of Nj. Following the standard initialization
of residual networks, we assume that the 6, are initialized to zero. Note that the scaling factor 1/L in
front of the 6;, has no impact on the dynamics; it is convenient for exposition and computations, since
we show that, with this scaling factor, the 6}, are of order O(1) after training.

Before stating the main result of this section on the convergence of the gradient flow, recall that
p € R%is a fixed vector appended at the end of the residual network to project its output back in R.

Theorem 4. There exist C1,...,Cs > 0 depending only on s such that, if L > Cy and d > Cs, then,
with probability at least
1 —16exp(—Csd),

if
CaX?|Ipll3

A b
the gradient flow dynamics (4) converge to a global minimizer WR! of the risk. Furthermore, the
minimizer WX satisfies

RL(W(O)) — Ruyin <

5
v Ld

To our knowledge, Theorem 4 is the first result showing convergence of gradient flow for standard
Gaussian initialization of residual networks without assuming overparameterization. The main
requirement is that the loss at initialization be not too large, as is standard in the literature analyzing
gradient flow for deep linear residual networks (Bartlett et al., 2018; Arora et al., 2019a; Zou et al.,
2020; Sander et al., 2022). Note that our bound on the loss at initialization does not depend on
the width d, depth L, or sample size n. We emphasize that the same proof holds for multivariate
regression, in the absence of the projection vector p. We focus here on univariate regression to
connect the result with the analysis of sharpness for univariate regression in Section 3. Details on
adaptation to multivariate regression are given in Appendix B.7. Finally, the precise dependence of
C to C5 on s can be found in the proof.

1
W =1+ Nﬁze‘;‘ with [0 <Cs, 1<k<L. ®)

The proof is a refinement of the analysis for identity initialization of residual networks (Zou et al.,
2020; Sander et al., 2022). From the expression of the gradients (5), we can show that

AN|p|[3 T L1 13— 11 |3 (R(W) — Runin)
> [V REO)[1F = ANpl300n Mok +1) 0 (Ti—1:0) (ROV) = Runin)
with ., := W ... Wy and I1y.q := Wy ... Wy. Letting
t* = inf {t eRy, ke {1,...,L}|0c(t)||F > 05} ,

the crucial step is to lower bound o2, (II1,.5+1) and 02, (IIx_1.1) uniformly for ¢ € [0, ¢*], in order
to get a PL condition valid for ¢ € [0, t*]. Then, the condition on the loss at initialization is used to
prove that t* = oo, thereby the PL condition holds for all £ > 0. We deduce both convergence and the
bound on the norm of 68!, The lower bound on 02, (I1.x+1) and o2, (IIx_1.1) is straightforward in
the case of an identity initialization. In the case of Gaussian initialization, the proof is more intricate,
and leverages the following high probability bounds on the singular values of residual networks.

Lemma 3. There exist C1q,...,Cy > 0 depending only on s such that, if
L>Ci, d>Cy, ue|CsCilM],
then, with probability at least

1—86Xp(— dUQ>,

3252
it holds for all  such that maxi<k<r, ||0k||2 < g7 exp(—2s* — 4u) and all k € {1, ..., L} that
s 1 s 1 52
I+-—>_N 79)...(1 SN fo)H <4 (7 )
H(+ Td k+Lk + Td 1+L1 ) exp 2—|—u

and

(14 N+ 10) o (T =Nt 100)) > femp (- 25— ).
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The proof of this result goes in three steps. We first study the evolution of the norm of the activations
across the layers of the residual network when 6 = 0, and prove a high-probability bound by
leveraging concentration inequalities for Gaussian and 2 distributions. Then an e-net argument
allows to bound the singular values. Finally, the extension to 6 in a ball around 0 is done via a
perturbation analysis. The proof technique is related to previous works (Marion et al., 2022; Zhang
et al., 2022), but provides a crisper and sounder bound. More precisely, Marion et al. (2022) show a
bound on the norm of the activations with a probability of failure that decays polynomially with the
width d, which is not sufficient to apply the e-net argument that requires an exponentially decreasing
probability of failure. As for Zhang et al. (2022), they provide a similar bound with the purpose of
showing convergence of wide residual networks, however with a less sharp probability of failure that
increases polynomially with depth.! Finally, as previously, the dependence of C; to C; on s can be
found in the proof.

The characterization (8) of the minimizer in Theorem 4 allows to bound its sharpness, as made precise
by the following corollary. It holds under the same assumptions and high-probability bound as the
conclusion of Theorem 4.

Corollary 3. Under the assumptions of Theorem 4, and if the data covariance matrix S is full rank,
there exists C' > 0 depending only on s such that the following bounds on the sharpness of the
minimizer WX hold:
RI
SWH <C é .
Smin A

1

N

As for Corollary 2, the proof relies on the fact that the norms of the weight matrices are close to each
other and to the smallest possible norm to minimize the risk. This result shows again an implicit
regularization towards a low-sharpness minimizer. Experimental illustration connecting the result
with gradient descent with non-vanishing learning rate is provided in Appendix C.

6 Conclusion

This paper studies dynamics of gradient flow for deep linear networks on a regression task. For
small-scale initialization, we prove that the learned weight matrices are approximately rank-one and
that their singular vectors align. For residual initialization, convergence of the gradient flow for a
Gaussian initialization is proven. In both cases, we obtain that the sharpness of the solution found
by gradient flow is close to the smallest sharpness among all minimizers. Interesting next steps
include studying the dynamics at any initialization scale, for non-vanishing learning rates, as well as
extension to non-linear networks. We refer to Appendix C for additional comments and preliminary
experimental results regarding possible extensions.
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Appendix

Organization of the Appendix. Appendix A presents some useful preliminary lemmas. The proofs
of the results of the main paper are presented in Appendix B, while additional plots, discussion, and
experimental details are given in Appendix C. Finally, Appendix D discusses some additional related
work.

A Technical lemmas

Lemmad4. Fora > 0and z € [0,1/2],
1-2)*>21-2az.
For oo > 0 and x > 0 such that ax < 1,
I+2)* <14 20z.
Proof. Regarding the first inequality of the Lemma, we have
(1 —2)* =exp(alog(l —z)) > exp(a(—2z)) > 1 — 20z,
where the first inequality holds for € [0,1/2]. The second inequality of the Lemma is proven by
(1+xz)* =exp(alog(l+z)) < explaz) < 14 2ax,
where the second inequality holds when ax < 1. O

Lemma 5. There exists an absolute constant C' > 0 such that, for L > C and x© > 1,
Lexp(—VLz) < 4dexp(—z).
Proof. Forany z € R,
Lexp(—VLz) < 4exp(—z) < exp((VL — 1)z) > % .
Then, for L > 1 and = > 1, we have
exp(VL —1)z) > 14+ (VL - 1)z + %(\/E —1)%2?

=1+ (VL- 1)x+%(L+1—2\/E)x2

> (ﬁ—l)x+§+%(§+1—2ﬁ)x2
For L large enough, £ + 1 — 2v/L > 0. Thus, since z > 1,

exp((VL —1)z) > (VL — 1)z + L + 1(£ +1-2VL)x

4 2°2
L n (L 1)
=—4+(=—-2)z
4 4 2
L
2 Rl
4
where the last inequality holds for L large enough. This concludes the proof. O

Lemma 6. Ler h € R% N € RY%D with i.i.d. standard Gaussian entries, and
||Nh|\§ hTNh
Yl - 9 Y2 = )
17113 113

Then
Y) ~x*(d) and Yy ~N(0,1).
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Proof. We have, fori € {1,...,d},

d

(Nh); =Y Nijhj .

=1

By independence of the (N;;)1<;j<d. we deduce that (Nh); follows a N(0, ||k||?) distribution.
Furthermore, by independence of the rows of IV, the (N h); are independent. Thus

d

1

M= i
=1

follows a x%(d) distribution. Moving on to Y2, we have

d
1
Vo= —— Ni;hih;j .
? WZ s

ij=1

Thus Y, follows a centered Gaussian distribution, and by independence of the (Nij)lgi’jgd, its

variance is equal to
d
1 272
Al 2,14 =
i,j=1
which concludes the proof. O

The next lemma shows that the PL condition implies exponential convergence of the gradient flow. It
is a well-known fact (see, e.g., Rebjock and Boumal, 2023, for an overview of similar conditions),
proved here for completeness.

Lemma 7. Let f : RP — R be a differentiable function lower bounded by fuin € R, and consider

the gradient flow dynamics

dx

AL

If f satisfies the Polyak-Lojasiewicz inequality for t >
IV f@@)3 = p(f(@() = fuin) »

then x(t) converges to a global minimizer ., and, fort > 0,

F@(t)) = funin < (f(2(0)) = frmin)e ™"

(1)) -

8

Proof. By the chain rule,

& F(0) = (V). 50 = 19 F ()

Plugging in the Polyak-t.ojasiewicz inequality,

L (1) <~ (@0) ~ Foi)-

Thus J
&(f(x(t)) - fmin) < _,Uf(f(x(t)) - fmin) .

To solve this differential inequality, one can for instance use the comparison theorem (Michel Petro-
vitch, 1901), which states that f(z(t)) — fmin is smaller that the solution g of the initial value
problem

d
9(0) = f(2(0)) = fmin , ag(t) = —pug(t).
This shows that

F@(t)) = funin < (f(2(0)) = frmin)e ™"
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To show convergence of the iterates, let F'(t \ffo IV f(z(s))|lds + 24/ f(z(t)) = fin. We
have by the Polyak-Lojasiewicz inequality

F'(t) = |V ()l (Vi - JM) <0

Then

/H Hds—/l\vf )llds < \;) \<ﬁ)

showing that x(t) converges. O
Lemma 8. With the notation introduced in Section 2, the following identities holds
1
REOW) = Ruwin + —[| X (0" — wproa) 3

and

ANRE W) = Runin) < VR (wproo) 13 < 4A(R (W) = Runin) -

Proof. We have

1
RL(W) = ﬁ”y - prrod”g

1 * *
= ﬁ”y_Xw +X(w _wprod)”g
1 * 1 * 2 2 * *
:ﬁ”nyw ||2+E||X(w *wprod)”2+ﬁ<y7Xw 7X(w *wprod)>
1 * 2 * *
:Rm1n+ﬁ||X(w *wprod)“§+ﬁ<XT(y7Xw )aw 7wpr0d>7
where the scalar product is equal to zero because VR (w*) = —2X T (y — Xw*) = 0. This gives

the first identity of the Lemma. Next, denoting ﬂ(wpmd) the projection of wprq on the orthogonal
subspace to the kernel of X, we have

1 *
RL(W) — Ryin = EHX(U) — W(wprod))H%

(w* — w(wprod))TXTX(w* — 7 (Wprod))

1
n
1
< ™ = 7 (wproa) |21 X T X (" = 7 (wproa)) |2 -
By the formula (6) for the gradient of R!,
2
VR (wproa)ll2 = = [[X T X (1" — wproa) |2

*IIXTX(w — T (Wproa))[|2 = 2A[[w” — 7 (wproa) 2,

where the last lower bound holds because both w* and w(wprod) are in the orthogonal to the kernel
of X. Plugging in the formula above, we obtain that

1 1 1
RL(W) — Rmin < ﬁ"VRl(wprod)HQ : i‘IVRl(wprod)H? = EHVRl(wprod)H%'
Finally, to obtain the upper bound on the gradient, note that

4
IV R (wproa) 5 = —3 X7 X (" = wproa) 13

4

= ﬁ(w* — wprod)TXTXXTX(w* — Wprod)
4\ X

\ n (’U.) - wprod) XTX(w - wprod)

= 4A(R*(W) — Ruin) -
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Lemma 9. Take W1,... Wy, € R™9 such that, forall k € {1,... L},
Wi ... Willa < M

and
Umin(Wk e Wl) 2 m

where M > 1 and m € (0,1). Then, for all 0 such that max;<p<r ||0k]l2 < 4JVI2’ letting W), =
Wy + %’“, we have
||Wk R W1||2 < 2M
and ~ ~ m
Umi!l(Wk cee Wl) 2 5
Proof. First note that the assumptions imply that, forany 1 < j < k <
Wi .. . Wipa W, .. W2 HWk...W1||2 M
Wi ...W; < = < —. 9
” k J_H”Q O'min(Wj...Wl) Umin(Wj~-~W1) m ( )

It shall come in handy to extend this formula to the case where j = k, where we define the empty
matrix product to be equal to the identity matrix, which has an operator norm of 1 < %

Now, take any 6 as in the Lemma and any hy € R?. Let, for k > 0,
hiy =Wy ... Wihg,

and . _
h =W ... Wihg
Then
hy = Wihg—1
and 9
hy, = (Wk +7 )hk—l
Thus

3 Or. - 3
hi — hi, = fkhk—l + Wi(he—1 — hi—1) .

Since 710 — ho = 0, we get by recurrence that, for k > 1

>

k
hie — hi :ZWk...Wjﬂfjﬁj_l. (10)

From there, let us prove by recurrence that
k]l < 2| o]l - (11)

This equation holds for £ = 0 since M > 1. Next, assume that it holds up to a certain rank k — 1,
and let us prove it at rank k. From (10), we get that

k
- 1 -
1y = Pllz < 7 > W Wigall2l165]l2]1 - l2 - (12)
j=1
Since M > 1 and m < 1 the bound on ||6;|2 from the assumptions of the Lemma implies in

particular that ||6;]|2 < Utilizing this, as well as (9) and the recurrence hypothesis (11) up to
rank k — 1, we get

2]\/1

M m
L,m2M

j=1

[ — hil2 < - 2M ||holl2 < M ||hol2 -

Then
Bkllz < Nhwll2 + 1Pk = hilla < [We ... Wall2llholl2 + M[holl2 < 2M || o2 -
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This concludes the proof of the recurrence hypothesis at rank k. We therefore get that
Wi ... Whla < 2M
To prove the lower bound on the smallest singular value of VNV;C . V~V1, observe that
kll2 = N1bkll2 = (17 — bl

Z Omin(Wi ... Wi)lholl2 = = ZIIWk Wisll2l16;1201fj-1ll2.

by (12). Finally, by (9), the bound on |[|0;]|2 from the assumptions, and the upper bound we just
proved on ||h;j_1]]2, we have

~ 1 k M m? m
h > h - = — . —— - 2M||h, > —|h .
[hkll2 = m||holl2 L; S E 1holl2 = - lIAoll2

This concludes the proof. O

B Proofs

B.1 Proof of Theorem 2

For a twice continuously differentiable function f : R — R, the largest eigenvalue S of its Hessian
H(f):RP — RP*P at some z € RP admits the variational characterization

S) — i sy VLB =V @ls

€20 |- z||<e [ — 2|

In our case, the parameters are a set of matrices and the formula above translates into

L L L

o L
20 Wy — Wil <t 2o W — WkHF
We now take W to be an arbitrary minimizer of R”. To obtain the lower bounds, consider for ¢ < 1
Wie(€) = Wi + EMy

where the M;, € R%* -1 are parameters that will be chosen later (depending on the 17, but not
on &). Then

L L _ LA 2
£-0 §2 2 b [ Mgl|%

To alleviate notations, we drop the dependence of W}, on &. Recall that, for any parameters W0,
VeRM W) = Wil WETpVR (wpog) "W T W

with
Whoa =WPT ... W2 p and VR'(w),q) = —%XTX(w* = wWhoq) -
For minimizers of the empirical risk, V,, R* (W) = 0, so
Ay i= VEREOW) = Vi REOW) = —W,L ... W] pVR (Wprea) "W, ... W (15)

Minimizers of the empirical risk also satisfy that X T X Wprod = X T Xw*. Thus, by adding and
subtracting differences,

. 2 -
VRl (wprod) = EXTX(wprod - wprod)

:4<TX(2W1 . Wg,l(vv;_wmwgﬂ...wgp)
k=1

L
2
- ngXTX(kZ:WlT...WJ_lM,IW,jH...WLTp) +O(E?). (16)
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Here, and in the remainder of this proof, the notation O is taken with respect to the limit when
& — 0, everything else being fixed. In particular, inspecting the expression above, we see that
VR(Wproa) = O(§), and therefore, going back to (15), that

Ay =-W/l .. W pVR (Wpa) Wi ... W +O(E2) =: A + O(€?). (17)

By the inequality of arithmetic and geometric means, and by subadditivity of the operator norm,

L L
Do IAklE = IAE + O
k=1

k=1
L
> Z||7k||§+(9(£3)
k=1 B
L(H 1a00) " + o)
> L(|Ap-A])*" + 0(¢%) . (18)

By definition of Ay,
AL e A1 = (—1)LPVRl (wprod)T wprodVRl ('prrod)—r o wprodVRl ("med)T

L—1 times
= (71)LP(VR1 (wprod)Twprod>L71VR1 (ﬁ)prod)—r
= (_1)LP(VR1 ('ll~)1)r(>d)—|—7~0*)Il_lVR1 ('ljjprO(i)—r s
where the last identity comes from the formulas VR (W) = %X T X (Wprod — Wproa) and
XTprmd = X T Xw*. Thus
82+ Bl = (VR () ) [V B ()2

~ *\L— VRl w rod TU}*
P (le(wPrOd)Tw )L 1||p2|(|wp*||2)
_ (VR (@proa) "w*) " |Ip|2
[[w*]]2 ’
and, by (18),

L - 2/L
ZHAI@H% > L(VR (’w[hrod);l/}L) Pl +O(E3). (19)
— w3

Coming back to (16), we have

L
* ~, * 2
w* VR (tproa) = €D w TEXTXWJ LW MWL W+ 0.
k=1
At this point, the computations diverge for the two lower bounds we want to prove. For the first
inequality, we take M}, = (3, Wj, where the (), are free parameters to be optimized. We have

L
2
w* TV R (tproa) = € Bkw*TEXTXWf W WIWLL W e+ 062)
k=1

L
2
=¢y ,Bkw*TEXTprmd +0(£%)

k=1

L
=y ﬁkw*T%XTXw* +0(&%)

k=1

L
= 26allw|* Y B+ O(E?) .

j=k
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Therefore, by (19),
L

L 2
S Akl > aLea w4 E ) (Zm) Lo,
k=1

k=1
Furthermore,

L L
S OIMeE =D BIWelF -
k=1 k=1

By (14), we get

2
L
4_2 ( Ek:l Bk)
SOW)? > dLa?|wlly” % [Ipl1§ ey T P
E:kzlﬁkHWQHF
The first lower bound unfolds by taking S, = 1/||Wk|| .
Moving on to the second lower-bound, we now take
ukv;
[ ll2llvell2
where again the [3j, are free parameters to be optimized. We therefore have

2
My, = By, uk:Wk_l...WlﬁXTXw*, g =Wii1 .. . Wip,

L

2

w* TV R (Wproa) = Zw*TﬁXTXWf...W,lleT W/l .. W p+0(€?)
k=1 N——

=vg
—ay T g
_uk

L
=¢Y Belluelallonllz + O(€?)

k=1

L
2
=¢ E :,gkuw,jﬂ .. WLTpHQHw*TEXTXWlT Wl + 0%
k=1

L
T 2
> €Y Bl Wil Wilpw™ T =XTXWT WL 2+ O(€%),
k=1
where the last line unfolds from subadditivity of the operator norm. We let A, =
Wl Wopw*T2XTXW" ... W, |, and choose 3; = || Ax||2. Then

L
Wrod VR (tproa) = € Y | Akll3 + O(€?) .

Coming back to (19), we get
L

ngupn“ =
D (ZHA 2)" + o).
k=1
Furthermore,
Z - sy |12 Z =
S IWe = Will7 = 52262 LR =2y pE =62 [l A}
] lulBllvel3 —° = i
Therefore, we obtain, by (14),
2/L L

Lipll3
SOV)? > ”*::Q/LZ (.

We can lower bound the sum similarly to (18):

Z ARIZ > L([ AL - Adll2) ™",
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and

2 2 2
Ap A =pwTZXTX wpmdw*TfXTX e wprodw*TfXTX
n n n

L—1 times
2 L-1 2
:p(w*TfXTXw*) wTEXTX.
n n
Thus, using the Cauchy-Schwarz inequality, we get
* 2 * L—1 * 2
AL - Ayls = (w TEXTXw ) Ipw*T =X X,
2 L-1 2
= (v TEXTxw) pllafle T XXy
n n
9 L
Hp||2 (w*TfXTXw*)

= w2 n

= 2" a®|pll2 w357

Therefore
L
41— 2 2
> 1Akl3 = 4La®w* |, EllplE

We finally obtain

e T
SOW)? = 4L%a®|[w* |y * |pll1F

which gives the second lower bound.

)

To obtain the upper bound on Sy,;,,, We construct explicitly a minimizer, and upper bound its sharpness.
More precisely, let the W}, be rank-one matrices, such that |[Wy||2 = [Jw*||*/*/||p||*/*, successive
matrices have aligned first singular vectors, the first right singular vector of W is aligned with w*,
and the first left singular vector of W7y, is aligned with p. We then have

pTWL...Wl :’LU*,

meaning that the network minimizes the loss. We now upper bound its sharpness using (13), where
we recall that the matrix appearing in the numerator is denoted by A, and satisfies A, = Ay, +O(€?),
where A}, is given by (17). Contrarily to the proof of the lower bounds where we exhibited a specific
direction W, we here seek an upper bound valid for all W. Recall that, by (16), we have

L
N 2 .
VR (Wproa) = EXTX > W W (W = W) WL W p+ O(E7) . (20)
k=1

By subadditivity of the operator norm,

IVER (Wproa) |2 < 2AZ:HVVlIIz Wit Wi = Wllz[Wisillz - [WLlz]p]l2 + O(€?)

L
= 20w | S F Il S W — Wakll2 + O(€2). @1)
k=1

Moving on to bounding the squared Frobenius norm of A}, we observe that A;, decomposes as a
rank-one matrix. We split cases for £ = 1 and k£ > 1. First, for £ = 1, we have, by subadditivity of
the operator norm and by (21),

1AL P = W5 .. WL pllal| VR (@proa) [l2 + O(E?)
< Wl HWL”QHPHQHVRl('LDprod)”Q +0(&%)

* L— L L x
< 20w (55 E | pl |3 anrwkuﬁms?).
k=1
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Then

L
_ N 2
a0 < 482 5Dl (D0 IWe = Walls) ™ + O(€%)

* L— L L T
< ALA w35 o]l Z\\Wk—mn%w(g%
k=1

4(L—1)/L 14/L
< ALA2 |Juw* | 3ED/E ||/ Z\\Wk—WkHFW(fS)
k=1
For k > 1, we have

1AKIE = Wiy - WE Dl VR (@pr0a) "WHT .. Wiy |2 + O(€?)
<Witallz - WL 2Pl [V R (@pr0a) "W |2l Wellz - - [|Wi—1 ]2 + O(€?)
= [ 52 13 IV R (proa) "W ]2 + O(E). (22)
Let us now bound ||V R (Wprea) " W1 ||2. By (20), separating the first term, we have
IV R (@proa) " WA |2

= 2
<pT Wi Wa(Wr = W) = X TXW |

L
- 2
W Wt (W = W) Wi . W= X TX W 2 4 O(€)
k=2

< 2A|pl2 WLl - [Wall2l| W1 — Wi l2][Wa |

L
- 2
P IWL 2 [Wia 2l Wi = Wil Wiz [Wallo | W2 =X X W |+ 0(€)
k=2

= 20w’ ||z Wy — Wi
L
L—-2)/L L 2 =
3t ISl [ S X TXWT|| W - Wz + O(€3).
k=2

Finally, recall that W is rank-one and its first right singular vector is aligned with w*. A short
computation therefore shows that

2 2/L 2/L
w2 27w | = 20w 2 = 2ajur 3 ol
Thus
VR () W < 2 (AT — Wil 0 > i — Will) + O(€?).
k=2

Then, coming back to (22), for k > 1,
L

1Akl < 25 3 (AW = Walls +a > Wi = Will2) + O(€3).
k=2
Thus
~ L ~ 2
JAkIE < 4l 5 plls™ (AW = Walls + a > IWe = Will2) + O(€%)
k=2

L
< Aflw* 35 Il (A% + (L = 1)a?) T [ Wi — Wil + O(€%)
k=1

L
*x14(L—1)/L 4/L 4 ‘
< Aflwr 35 E Iplly F (A2 + a?) S [Wi, = Will3 + O(e%)
k=1
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where the second inequality holds by the Cauchy-Schwarz inequality. Thus, by (13), putting together
the bounds on ||Ag||% for k = 1 and k > 1,

L 2
S(W)2 — lim sup Zk:l ”AkHF

- L 4
20 1wy Wl <e Dope [Wh — Wall%

< Jim 4l 3l (EA2 + (2 = (A + (2 = 1)a?)) +O()

Therefore

wn2—2 2
SW) <2lw*(ly FIpllF V(2L — DA + (L — 1)%a2,
which concludes the proof.
B.2 Proof of Lemma 1
This identity can be shown by noting that the identity is trivially true for ¢ = 0, then differentiating

on both sides with respect to time, and using (5). We refer, e.g., to Arora et al. (2018) for a detailed
proof.

B.3 Proof of Lemma 2

Before proving the three statements of the lemma in order, we let

L—-1
£= max, Wk ()17 + ; Wi 1(0)Wies1.(0) = Wi (0)W, (0) ]2

Note that £ < <.

First statement. The claim is true for £ = L since W, is a (row) vector. For k € {1,...,L — 1},
taking the 2-norm in Lemma 1, we have

W Wi lle = [IWaW,! + Wil (0)Wiga (0) — Wi ()W, (0)]]2
< WiWy 2 + [IWy 1. (0)Wit1 (0) — Wi (0)W, (0)]|2 -
Thus, using [| AT Al]s = [[AAT |2 = [|A]3,
[Wiiall5 = (W1 (0) Wiyt (0) = Wi (0)W,](0) 12 < [|Wilf5 - (23)
We now take the trace in Lemma 1 to obtain
WiiallF = [Wira (017 = [[WllF — [Wk(0)[|% -
Combining with the inequality above, we have that

IWellF = IWell3 < Wi = Wi 13 + Wi (0) |7 — Wit (0) 7
+ W1 (0)Wit1 (0) = Wi (0)W3 (0)]|2
Summing from k to L — 1 and telescoping, we have

IWell% = Wal3 < IWLlE = WL + W (0)[[F — [WLO)]F

L-1
+ > W1 (0)Wir1(0) = Wi (0) W) (0) o -
k'=k

The first two terms compensate since W, is a vector, and the remainder of the terms is less than
€ < ¢ by definition. This gives the first statement of the Lemma.
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Second statement. Assume without loss of generality that j > k. By recurrence over (23), we
obtain that

0} <op+ Y IIWi 1 (0 W1 (0) = Wir ()WL ()2 < o + €.

k'=k
The reverse inequality can be shown similarly: by considering again Lemma 1 and taking the 2-norm,
we get
IWiWi 2 < W Witz + [[Wi 1. (0) Wit (0) = Wi (0)W3 (0)]|2
Thus .
IWill3 < [IWisall5 + Wikt (0)Wig1 (0) — Wi (0)W3(0)]f2 -

As previously, we get by recurrence that
J,% a +£.
Combined with the reverse bound above, this gives the second statement of the lemma.
Third statement. Let us lower and upper bound u;] W[, 1+ 1Wk41ug. We have on the one hand, by
Lemma 1,
ug Wia Wieprug = wl Wi Wyl wy — ug Wi (0)Wy (0)ug + wg Wiy (0) Wi (0)uy

> up WiW, g, — u Wi (0)W,] (0)uy,

> op — [Wi(0)]]3 -
On the other hand,

up Wil i Wipaw, = w), (W Wit — Uk 1 0 Vgt ) Uk U, Vg4 10741 Vg1 Uk
< ||WJ+1WI<+1 - Uk+1‘71%+1vl—cr+1||2 + (Vk41, uk>2‘713+1

The 2-norm above is equal to the second largest eigenvalue of W,;r +1Wk+1, which is the square of the

second largest singular value of Wy 1. In particular, it is lower than | W41 % — ||[Wk41 |3 which is
the sum of the squared singular values of W}, except the largest one. We obtain

up Wiy Wi < (Wit 17 — [Wig 13 + (Org1, )04y < &+ (U1, ur)op gy

by the first statement of the Lemma. Combining the lower and upper bound of uZI/VkT 1 Wet1ug, we
get

&+ (i, )0k 1y = o — [Wi(0)]3.
e 2 s—c o We(0)]3
o7 — |[Wg(0 —& _ O —&—||[Wi(0 — £
ey > B IVROIB —¢ ok, —e= WO =2
Ok+1 Tk+1
by the second statement of the Lemma. We finally obtain
22 + ||Wi(0)]|3 £
(O, ug)? > 1— ||2 KOlE S <
Tk+1 Tht1

by definition of € and €.

B.4 Proof of Theorem 3
We lower bound the first term in the sum of the left-hand side. Recall that, by (5), we have
ViRF(W(#)) = (Wi(t)... Wa(t)) " VR (wprea(t)) ",

dy x1 1xdo

thus . ) )
IV REW @) = WL (#) ... Wa )13 VR (wproa() - 24)

We show that ||W(¢) ... Wa(t)||2 is large by distinguishing between two cases depending on the
magnitude of o1 (t) = ||W1(t)]|2. To this aim, let C' > +/2¢L.

76872 https://doi.org/10.52202/079017-2445



Large spectral norm. We first consider the case where

o1>C >V2L. (25)
By Lemma 2, for k € {1,...,L — 1},
0']% 20%,€>€’

where the second inequality unfolds from (25). Then, again by Lemma 2, for k € {1,...,L — 1},

2 g
(Vg1 ug)” =1 — >— >0.
Tk+1

It is always possible (without loss of generality) to choose the orientation of the uy and vy, such that
(Ug+1,ug) = 0forany k € {1,... L — 1}. Making this choice, the equation above implies that

[ves1 — urll® = 2 = 2(vpqr, ur)

<2(1— 1—25>.
Ok+1

2e
[vpg1 — urll3 < 55— (26)
Ok11

Forz € [0,1], /1 — 2 > 1 — z, and thus

Let us show that this implies a lower bound on |, ... W3]|2. To do so, let us denote recursively
1 = V2, xk+1:Wk+1xk for kG{l,...,L*l}.
We then have z;, = W, ... Wsx, thus

|zL]2

212

Our goal is thus to lower bound ||z, ||, which entails a lower bound on |W, ... W3]|2. To this aim,
first note that, forany k € {1,...,L — 1},

[WL...Wal2 > = [zLll2-

(Thr1, Upr1) = (Whi1Tg, Ugy1)
= Op11(Th, V41)
= Ot 1{Th, U + Vg1 — Uk)
Okr1(Th, uk) — oktrl|kll2l|vis1 — ukll2
Uk+1<xk,uk> \/QEHIL'kHQ. (27)

where the last equation stems from (26). Denote o, = (
shows that

H;ﬁ ,ug). Then the previous equation

2
s > IEAP (Crs10p — VZE) = | zkll20k41 (ak Y 5) .

[EaY P [Eey P Oh+t1

Further note that ||zx11]|2 < og+1||2k||2, thus

V2e

Qg1 2 Qf — .

Ok+1

By recurrence,
= 1 V2e(k — 2)
S VEY oy VEY g, VEEZD

o Okl ol —¢ Vo?—¢

Coming back to (27), we have

|Zkt1ll2 2 (Th1, ubs1) 2 [[okll2(okr100 — V2€),
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thus by recurrence,

I8 Fod VaE(k — 2)
L2 2 ||z2]l2 Opr10k — V2e) = |22l 02 —elag — "2 ) —V2e
ol > leall [T (s = v22) > flall TT (/o =< )~ VE)

L—-1
> a2 [ ] ( 0} —eas — \/QEk) :
=2

Finally, by definition, ag = (”fﬁ, ug). Since xo = Waxy = Wave = oous, we obtain that ay = 1,
and thus

[WL...Wall2 > |lzr]2
> ﬂ( 2 _ —ﬁk)
= 02 [ £ £

k=2

> ot (e —vEL 1)
> (Yot = e v —n)

> (o~ VEL)"

We finally get
-1
IWe...Wallo > (C = V2eL)" (28)
which is a positive quantity by definition of C.

Small spectral norm. We now inspect the case where (25) is not satisfied, that is, o1 (¢) < C. First
note that, by the formula (6) for the gradient of R',
||VR1(wprod)||2 QAHU) - wpr0d||2 2A(||w*||2 + ||wpr0d|| )

Thus, for [|[wprodll2 < [|w* |2, Wprod — R (Wproa) is 4A||w* ||2-Lipschitz. Let us use this property to
lower bound ||wproa(t)||2 by a constant independent of ¢, for ¢ > 1. Either we have ||wproa(t) |2 >
[lw* |2, or ||wproall2 < [|w*||2, but then, by the Lipschitzness property,

|R1(wprod(t)) - RO| < 4A|"‘U*||2prrod(t) - 0”2 = 4A||w*||2|‘wprod(t)H2 )
where we recall that R is the risk associated to the null parameters. Furthermore, for ¢ > 1,

Rl (wprod(t)) = RL (W(t))

< REOW(1)) (The risk is decreasing along the gradient flow)
< RE(wW(0)) (VRE(W(0)) # 0 by Assumption (A1))
< Ry. (by Assumption (A;))

Thus, fort > 1
| R (wproa(t)) — Ro| > Ry — R*(W(1)) > 0.

To summarize, we proved that, fort > 1,

[ wproa (£)2 > min (Ro - R*(W(1))

T AL * > 07
AN [Jw*][2 [|w H2>

where we recall that ||w*||2 > 0 by assumption (see Section 2). Furthermore,

[wproa()ll2 < WL () ... Wa)|l2[[Wi()ll2 = [WL(E) ... Wa(t)[201(2) -
Then, fort > 1,

1 /Ry-R'WQ) , ,
IWet). Wa®)le 2> = min (S 5= lela)
1 . (Ro—R-WQ)) , .
> min (—MW”2 el - (29)
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Conclusion. Combining (28) and (29), we obtain that, for ¢t > 1,

(Ro= EXOV) i)

11
(IWL(t) ... Wa(t)|l2 = min ((C’—\/ZEL)L 1,—min . =/,
AA[lw* ]l

C
where 11 > 0 by the proof above. Then, for ¢t > 1, by (24),
2
ViR (W ()] = 11l VR (wproa(t))[|3 -

By Lemma 8,
IV R (wproa (£))[I5 = 4A(R*(W(t)) — Runin) -
Thus, taking p = 4pus A > 0, for ¢t > 1,

L
S IVEREV @) |5 = [[VARE VD)5 > n(REOV(E)) — Rusin) -
k=1

B.5 Proof of Corollary 1

We first show that Assumption (As) implies a number of estimates that are useful in the following.
Since ||w*||2 > 1, we have

Hw*||2)1/L (1)1/L 1
( 2 2 2 (30)
thus ) . L

8Le <BLVES ;< (““’2”2) < @lwrf2) " (31)
Moreover,

(Illy?e 1
2 4

so we also have

[[w*]|2) 2/~
52)
Let us now prove the Corollary. We first note that Theorem 3 implies exponential convergence of the
empirical risk to its minimum by Lemma 7. This also implies the (exponential) convergence of wprod
to w*, since the covariance matrix X ' X is full rank, so w* is the unique minimizer of R', and, by
Lemma 8,

8Le < ( (32)

1
RY(W) = Ruyin = —l1X (w? ~ Wprod) |13 = Allw™ — wprad|l ,
Furthermore,
T T L L

lwpmoalls = WA W 2 < [Walls - [ W2 < (miixon )
Let us show that, for ¢ large enough,

*||\ 1/L
max oy, > (M) te. (33)
If it were not the case, then

L L
lwpoall> < (max o)

2
s 2 Uiy
=550 () )
2 [Tl
Jw*

||2< 2 1/L
1+2L5( ) )
2 [[w* (|2
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where the last inequality holds by Lemma 4 since

) 1/L * 1/L
(=) <1 o e (L2l
[[w*l2 2

which holds by (31). Then, we obtain

el < 212712,
since
1+2L5( 2 )UL <3 o ule< (M)M,
[[wl2 2 2
which also holds by (31). The inequality prmd||2 < M contradicts the fact that wp0q converges

to w*, thus proving (33). Then, we have

* 2/L * 1/L * 2/L
whxo? > (Hw IIz) +2€(Hw IIz) > (Ilw Hz) ve
) 2 2 2

where the last inequality holds by (30). Furthermore, by Lemma 2, for all k € {1,..., L},

L
0,% > Aafca?—a.
=

This brings the first inequality of the Corollary. We now show the second inequality of the Corollary.
First note that, by Lemma 2,

Wi — oruvg |5 = [Wellz — Wil <e,

since both quantities are equal to the sum of the squared singular values of W}, except the largest one.
Then, adding and substracting,

W, . W —o1..opvu] .. oopug ||

L
< Z W W (W = o) Yok - o vkt - v |2

e
—

< IWalla - Weallol|W = onuroy [l2ok41 - o

L
L./e
< 1/L 0j s
1Kl i—1
3 J

by the first inequality of the Corollary. Moreover, using again the first inequality of the Corollary and
Lemma 2, we have that

(Vg1 up)? > 1— ——
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Since uy, = 1, we deduce that

L L-1
HUI . (7L1}1U,1r . 'ULU—£||2 = H Uk||U1||2 H U;'UIH»I
k=1 k=1

L—1

L c 2
P (nw;uz)

where in the last step we used Lemma 4 which is valid since

c <l ac< 1<||w*H2)2/L
(nw*nz)m 2 2\ 2
2

which holds by (32). By the triangular inequality, we now have

L
L—1)
Hak (1 - ()> <oy ..opviug .. vpug |2

(nw* l2 )M
2

< ||W1TW;||2+||W1TW;—Ulo'L’UlUI’ULUIHQ

L
L\/e
k=1

(IIwQ*Hz)

Thus
L
[Ton(1- (L=De  IVE ) T wy s,
- (nw*uz)“ (nw*uz)l“
k=1 == =
Using (31) and (32),

. (L=De L./e >1_1_1
(i)™ ()T

Moreover, the product of the singular values can be lower-bounded by the smallest one to the power L,
so

3(min oy) ¥
Let us show that, for ¢ large enough,

/L _

min oy < (2f|w*||2) €.

If it were not the case, we would have

3((2f|w*||2)/F — )"

Wi W2 >

4

= 2t (1~ i)
2l U 2w o) VL

3 2Le
> Slwl2(1 - 51t

llw I ( <2||w*||2>1/ﬂ)

9
> gllw*Hz, (34)
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where the second inequality holds by Lemma 4 since

—_

€
- < -,
2llw*[l2)/E 2
by (31), and the third since

2Le 1 (2||w*]|2)/E
e o K s & Le<
w7 S 4 i g

also by (31). Since 9/8 > 1, the inequality (34) is a contradiction with the fact that |W;" ... W/ || =
lwprodll2 = ||w*||2, showing that, for ¢ large enough,

min oy, < (2]|w*]|2)E — €.

Thus
min o}, < (2[|w*2)** +&* = 2e(2[w*(|2) /" .

By Lemma 2, forall k € {1,...,L},

<
< @llw*[|2)*F +e? — 2e(2]|w*[|2)/F + e
< (2llw*ll2)**,

since
e2 — 22w ||2) Y +e <0 & e < 22w )E -1,

which holds true by Assumption (As) since

e< 122w )" ~1
since [|w*]|2 = 1.
B.6 Proof of Corollary 2

The lower bound unfolds by definition of S, since WS is a minimizer of the empirical risk. To
obtain the upper bound, we proceed similarly to the proof of Theorem 2. For simplicity, we denote
W = W5l in the remainder of the proof. We have, as in the proof of Theorem 2,

Sr_ IVEREW) — Vi REOV)|I2

s
SOV = R i Wi = Wiel3 7 G
with
Ap = ViLRE(W) — VL RE(W)
= -Wyi1 .. . W VR (Wpoa) W, ... W, +0(€2),
and

L
] 2 -
VR (Gyroa) = ﬁXTX(E WL WL - W w ..W[) o).
k=1

We recall that, as in the proof of Theorem 2, the notation O is taken with respect to the limit when
& — 0, everything else being fixed. By subadditivity of the operator norm and by Corollary 1, we
have

L
IV R (tproa)ll2 < 20 ) Willa - Wi 2 Wh = Will2[Wagallz - - [[Will2 + O(E?)
k=1

L
< 202flw o) FTIEY W = Wallz + O(€7) - (36)
k=1
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Moving on to bounding the Frobenius norm of Ay, we observe that the dominating term of this matrix
decomposes as a rank-one matrix. Thus, again by subadditivity of the operator norm, equation (36)
and Corollary 1,

1AKF = Wiy WL 2 VR (@proa) "W, ... W4 [|2 + O(€7)
< Wigallz - WLl VR (@proa) 2 Wil - - [Wh—1ll2 + O(£?)

L
< 20 (2/|w*[|2)*F S Wy = Wil + O(€2) .
k=1
Then

L . 2
JAIE < 48222} B E (Y [We = Will2)” + O(€%)
k=1

L
SALA? (2w [[2)* EDEN Wi — Will3 + O(%)
k=1

L
< ALA?(2|jw*[|2)* F VBN W — Wil|3 + 0(€%).
k=1
Thus, by (35),
SOV < lim AL (2w )07 /E + O() < PLA w3 F

—

Therefore )
SOWV) < SLA|jw* [ *

which concludes the proof by the second lower bound on S,;,, of Theorem 2, where here ||p|| = 1
anda > A > 0.

B.7 Proof of Theorem 4

To alleviate notations, we omit in this proof to write the explicit dependence of parameters on time.
Starting from (5), since the gradient decomposes as a rank-one matrix, we have

IVRREOM)1F = Wyl - WEDIBIIV R (wproa) "W - W4 |13

> 0 Wiy - W PI30 0 (WL - W DI VR (wproa) 3

By Lemma 8,
VR (wproa)[|5 = 4A(R* (W) = Ruin) -

Recall the notation introduced in Section 5

HL:k = I/VL...I/V]C and Hk:1 = Wk...Wl.
Then

IV REOM) |7 = ANplI30 0 (ML 1) O (M- 1:0) (R (V) — Runin) - 37)
We now let u > 0 (whose value will be specified next), and
1
#* = inf {t €Ry 3k € L. L}, Il > o exp(—25 - 4u)} .

Let us lower bound the minimum singular values of IIx. and IL.; uniformly for ¢ € [0, ¢*] by Lemma 3.
By definition of ¢*, for ¢ < ¢* and forany k € {1,..., L}, [|0x]|2 < g5 exp(—2s* — 4u). Therefore,

renaming C to Cy the constants of Lemma 3, and taking u = Cs, we get that, if

- /O3\4 ~
> = > )
L > max (C1, (04) ). =G (38)
then, with probability at least
dC?
L~ 8exp ( - 3232> ’
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it holds for ¢t < ¢t* and forall k € {1,..., L} that

2
S ~
Ieall> < 4exp (5 + ). (39)
and ,
2 ~
Umin(szl) Z — exp ( - i — 03) .

By symmetry, the same statement holds for I1; ., instead of II;.; with the same probability. By the
union bound, the event

52 ~
El = ﬂ {”Hk:le HHL:kHQ g 4eXp (5 + 03)
NS

1 252 ~
and Umin(Hk:l); Umin(HL:k) 2 1 €xXp ( - 7 C3>

holds with probability at least

dC?
1-1 ( _ ) .

bop ( ~ 3552
Let now

2 2
Ey = {RL(W(O)) — Rpin < C‘*A”p”?}

A

and F3 the event that the gradient flow dynamics converge to a global minimizer WWR! of the risk
satisfying the statement (8). We show next that, if £; and F hold, then E5 must hold, which shall
conclude the proof of the Theorem with

Ci=max (00 (2)), Cmta =S
(40)

1652

2

. 1 B
_ 2003) . COs = — exp(—252 — 4Cs).

Cy =23%exp ( —4s? — ol

Under E4, we have

1 8s ~
U?nin(HLik‘Fl) mm(Hk 1: 1) Z €xXp ( - T 403) )

28
thus by (37)

1 852 -

> S5 exp (= = = 4C ) AIpI3(ROV) — Ru)
Therefore we get the PL condition, for ¢ < t*,

IViREW)|1%

L
Z HVk-RL (W)Hi‘ = M(RL(W) - Rmin) )

with . 22
pi= o5 eXp ( - % - 4C’3>A||p||2L.
By Lemma 7, this implies that, for ¢ < t*
RY(W) = Ripin < (R*(W(0)) — Ruin)e ™" . (41)

Let us now show that t* = co. We have, since #(0) = 0 and by definition of the gradient flow,

164l = 1165 — 6k (0)]] < / IV RE(W(r))| pdr “2)

We now upper bound the gradient as follows: starting again from (5),
IVRREOMF = Wiy - W pll2 VR (wproa) "WAT .. Wiy |12
<Wilga - WL 2 llpll2 W37 Wil 12V R (wproa) |2

76880 https://doi.org/10.52202/079017-2445



By Lemma 8, we get

IVEREOW)[p < 2VAIWiiy o WL alipll2lWT . Wiy 20/ REOY) = Runin . (43)

By (39) and (41), for t < t*,

Lt

IV RE W) F < 16 exp(s? + 2@3)\/X|\p||2\/RL(W(O)) — Rye 5t (44)

Plugging this into (42), we get, for t < ¢,

t
100l < 16 exp(s? + 2C5) VA Ipll2r/RE (W(0) — RmmL/ e 4dr
0

32 exp(32 + 26’3)\/K||p”2\/RL(W(O)) - RminL
1%
211 6Xp($2 + % + 603)\/K\/RL(W(O)) - Rmin
Allpllz ’

where the last equality comes from the definition of i. By F» and by definition (40) of Cy, for t < t*,

N

852 - 1 N
164 ]|+ < 2% exp(s? + % +6C5)v/Cy < g exp(—2s% — 4Cy).

If we had t* < oo, we would have, by definition of t*, [0 (t*)||r > &; exp(—2s? — 4C3). This
contradicts the equation above, showing that t* = co. By (41), this implies convergence of the risk to
its minimum. We also see by (44) that V;, RL' (W) is integrable, so W has a limit as ¢ goes to infinity.
This limit WR! is a minimizer of the risk and satisfies the condition (8) by definition of t* = oo.

Extension to multivariate regression. We emphasize that a very similar proof holds in the case of
multivariate regression, where the neural network is defined as the linear map from R? to R?

.’1?'—>WL...W1.’L‘,

and we now aim at minimizing the mean squared error loss
1
L T
REOV) =~V =Wp... WX 13,

where X, Y € R™*?, In this case, as shown in Zou et al. (2020); Sander et al. (2022), the following
bounds on the gradient hold:

IVERE V)% = 4205 (Mriks 1) 0min (M- 1) (ROV) = Runin)

and
IVER* W) < 4AT Lk 31Tk - 11 [[3(ROV) — Runin) -

Comparing with (37) and (43), the only difference is the absence of ||p||2 here. From there, the same
computations as above hold (taking ||p||2 = 1), and give the following result.

Theorem 5. There exist C1,...,C5 > 0 depending only on s such that, if L > Cy and d > Cs, then,
with probability at least
1 —16exp(—Csd),

if
CaX?|plI3

A )
the gradient flow dynamics (4) converge to a global minimizer WR! of the risk. Furthermore, the
minimizer WX satisfies

RL(W(O)) - Rmin <

S

VLd

1
W =1+ Nk+ze}§l with [0]Yr <Cs, 1<k<L.
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B.8 Proof of Lemma 3

We begin by proving the result when 6 = 0, then explain how to extend to any 6 in a ball around 0.
Recall that IIj.; denotes the product of weight matrices up to the k-th. Let

2 1 22
MS;u:2exp(%+u)7 ms,u:*eXp(—i—u),

and denote by A the event that for all &, ||TIj.1 ||z < M., and B the event that for all &, ouin (k1) >
ms .. We begin by bounding the probability of A, then bound the probability of B N A.

Useful identities. To this aim, we first introduce some notations and derive some useful identities.

We let F}, the filtration generated by the random variables Ny, ..., Ni. For some hy € RY, we let
s s
hy, = W1 ho = (1 n ﬁNk) (I+ le)ho
In particular, hyy1 and hy are related through
s
hit1 = (I + meH)hl«

Taking the squared norm, we get

2 2s
B |2 = 1hell2 + = [ Npaahill2 + —oe b Nyws b -
lhksillz = |l k||2+Ld” kr1hellz + JTd " k+110

Dividing by ||h||2 and taking the logarithm leads to

82“Nk+1hk|‘2 2ShTNk+1hk
i 3) = () + 1 (14 b, 20 fende)
? ? Ld|h 3 V/Ld]|hi I3
Let
Yk L= 82HN]€+1th% = 28h;Nk+1hk
’ Ld|hell3 7 " VLd|h|3
and Yj, = Yj, 1 + Yj 2. Then, by Lemma 6,
YirlF s 2(d) and Yio|F N(o 4—82) (46)
k11 E LdX k2| k "Td)
This shows in particular that Y, ; and Y}, » are independent of V1, ..., Ny, and depend only on Ny .
Then, letting
k—1 k—1
Sk = Z Y1 and Sko= ZYJ‘,Q,
3=0 j=0
both are sums of i.i.d. random variables. In particular,
2 2
5% 4 4s
~ 2 \(Ld) and ~ ( —)
SL,l LdX ( ) an SL72 N 0 d

Bound on P(A). We first bound the deviation of the norm of hy, = IIj.; ho for any fixed hg € R9,

then conclude on the operator norm of II;.; by an e-net argument. For any (fixed) hy € R? and
u > 0, we have

Il )
]P’( > exp(s® + 2u )
B g = SR T2

2y 2) 5 2 )
s () = (o) > 5 +2u

k—1 2 2 TN. ,
Nii1hs 2sh; Nii1h
:IP’( max 1n<1—|—s I g+l j”2+ gl J)>52+2u>

Ld||hy3 VLd|h; 2

[ Njahsl3 | 2sh] Njsih; o2 )
|12 2 t2ul,
1<k<L 4 Ld||h,ll5 V'Ld||h;]|3
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h 2
IP’( max I k”g > exp(s2 + 2u)> < IP’( max, Sk + Sk2 = 2+ 2u>

M

< }P’( max Sk = 52 +u) —HP’( max S = u)
1<k<L 1<k<L

by the union bound. We now study the two deviation probabilities separately. Beginning by the
first one, recall that %S 1,1 follows a XZ(Ld) distribution. Chi-squared random variables are sub-
exponential, and more precisely satisfy the following property (Ghosh, 2021): if X ~ x?(c) and

u > 0, then
2

P(X>c+u)<exp(—h). 47)

Since the S}, ; are increasing, we have, for v > 0,

]P( max Si1 > s° —|—u) =P(Sp1 > 52+ u)
1<k< ’

= \L
Ld Ld
—P( 5501 > Ld+ Z5)
S S
< ( L2d%u? ) ( Ldu? )
<exp| ————— ) =exp| ——F——— ).
TP L (La+ L)) TP\ T i us?

Moving on to S}, 2, we have, for u, A > 0,

IED( max, Sk,2 = u) = }P’( max, exp(ASk,2) = exp()\u)) .

Furthermore, exp(ASk,2) is a sub-martingale, since Sk 2 is a martingale and by Jensen’s inequality:
E(exp(ASk41,2)|Fk) = exp(AE(Sk41,2|Fk)) = exp(ASk.2) -

Thus, by Doob’s martingale inequality,

P( max Sk2 = u) < E(exp(ASL2)) exp(—Au) .

<k<L

. 2
Furthermore, since S, » ~ N (0, %)’

45%)\?
E(exp(ASL,2)) = exp ( 7 ) .
Therefore,
452)\2
> < — .
Pz, See 2 ) <o (e =)
This quantity is minimal for A = 5?7“2. We get, for all u > 0,
du?
> < — .
P( 1I<nka<XL Sk2 2 u) S &P ( 1632> “48)

Therefore, for any u > 0,

173

2
m.
(225, Tl

o) o0 (- qta) @

> exp(s? + QU)) < exp ( —

To conclude on the operator norm of Ilj.;, consider ¥ a 1/2-net of the unit sphere of R, By
Vershynin (2018, Corollary 4.2.13), it is possible to take such a net of cardinality 5%. Let us show
that, for any v € R,

2

52 s

. > —_ < . > — .

P(lglkagL |[Tg.1]|2 = 2exp ( 5 + u)) < ]P’(h ). 1I<n]?<xL k.1 holl2 > exp ( 5 + u)) (50)
0
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Indeed, assume that there exists & such that ||[ITj.1]|2 > 2 exp( + u). By definition of the operator
norm, there exists  on the unit sphere of R? such that

Mgz = [z -
But then, by definition of %, there exists ho € ¥ such that ||z — ho||2 < 1/2. Then

[Tk (7 — ho)ll2 < §||Hk:1||2 :

Therefore, by the triangular inequality,

1
IMeatolle > Mgzl = [Mea (@ = ho)ll2 > 5 [Tz
Then
1 52
[Tk:1holl2 > §HH;€:1||2 > exp (5 + u) ’

which proves (50). By the union bound, we conclude that

P(A):P( max |[Hgalle > 2exp (8—22+u))

1<k<L
2

s
o holl > e (5 +u))
U 1211?ngHHk'1h0”2 exp (5 +u

ho€eX

32
|z|1p>( o [[Miaholls > eXp(?—&-u)),

where now hg denotes any unit-norm fixed vector in R%. Thus, by (49),

P(A) < 5P ( max [[giholl3 > exp(s® +2u)

1<k

< (o0 (~ ) o )
< X — ).
P 1652 *P 45% + us?

This upper bound will be simplified in the conclusion of the proof.

Bound on P(B N A). We now move on to proving the lower-bound on o, (1.1 ). We again use
an e-net argument, as follows. Let ¥ be an e-net for € = x[“ . Then

P(Aﬂ { min_ ompin (k1) < ms’u}) < IP’( U &r}gigL M1 kol < 2ms’u) .

1<k<L

Indeed, assume that A holds, that is ||IIx.1]|2 < Ms y. and that there exists & such that
OTmin (k1) < Mgy -
By definition of the singular value, there exists = on the unit sphere of R? such that
[Hgazll2 = omin(Hg:1) -
But then, by definition of 3, there exists hy € X such that ||x — ho||2 < €. Then
Mgt (2 = ho)ll2 < &[Tk l2 -
Under A, the right-hand side is smaller than e M ,,. Therefore, by the triangular inequality,
M1hollz < [Heaxllz + g1 (ho — 2)ll2 < M + My = 2mg ., -
By the union bound, we conclude that

P(Aﬁ { min_ oy (Mg1) < ms’u}) < P(Aﬁ { U 1I<r}cigL M1 kol < QmS’u})

1<k<L
( U Hlll’l ||Hk' 1hOH2 2ms,u)

|E\IP’< min [Mxaholl2 < 2msu>
_ (2M5’u

M

d
+1) ]P’( mm ITTg.q holl2 < 2msu)»
1<k<
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where the cardinality of the net is given by Vershynin (2018, Corollary 4.2.13). We now take a fixed
ho € R%, and compute

bz IRl o
IED( <9 ) — IE”( <4 ) .
12 [[holl; S T V2L g S A

Denote by E the event

We have, by (45),

]P’( min Nolls o )
1<kt [[holld ="

P( min W(|hwl3) — n(lholl3) < In(am?,,))

1<kLL

o

—1

'ﬁ

s,u

(]!

( min In(1+7Yj2) <In (4m2 ))
1<k<L 4

.

Mw‘é

P({ 12}% n(1+Y;,) <ln (4m§7u)} mE) +P(E).

7=0
Using the inequality In(1 + z) > = — 22 for x > —1/2, we obtain
k—1
IP’(HhLH% < 4m? ) gp({ min 3 (V2 - Y7) < In(4m? )}mE) +P(E).
[1oll3 o e A
=

Thus, by the union bound,

P(min P22 gz ) < B min SO0 - V) < am2,) + 30 B(Via < —1)

1<k<L ||hol|3 1<k<L 4

=: P1 + PQ .
We handle both terms separately. Beginning by the second term, we have, for k € {1,... L},
1 Ld
P(tc < -3) <om( - 28,
R2S T ) SR\ T 50

where we used (46) and the tail bound P(N > u) < e /i N ~ N(0,1). Moving on to the first
term, we have

P = ]P( min Sk,2 - Sk,3 < ln(4m§ u)) ’
1<k<L ’

where we let Sy, 3 = Zf é Yj 5. By definition of m_,,, we have

4
ln(4m§’u) = —% —2u.

Thus we can split the probability into two parts by the union bound:

452
o< #{ i, 5= )+ 5> 15 )
L <P mip, Ska < ) +P( g, Sks > S+
Let us bound each probability separately. We have, for u > 0,

du? )

]P’( min_ Sio < u):IP( max —Sg2 = u):IP’( max S o > u)gexp(—@

1<k<L 1<k<L 1<k<L
by symmetry of S, » and by (48). Moving on to S} 3, we have that

452 45
VEIF ~ 0.0 = 2.
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thus

Ld
@Sk’?’ ~ XZ(L) .
By monotonicity of S 3 and by (47),
452 452
> - >
P(%ﬁé Ska 2~ + “) P(SL’?’ S “)
Ld Ldu
= IP(—S > L —)
452713 * 452
< ( L2d%u? ( Ld?u? )
<exp|—-———F+ ) =exp| - ————) .
PUT Gasi(z 1 L)) = P\ 160452 + du)
Putting everything together, we proved that
— 2MS u d 2M5 u
P(B N A) < (7 n 1) (P, + Py) = exp (dln (7 + 1))(131 Py,
Msy Msy
with
P o<e ( dU2>+e ( Ld?u? )
<exp| — Xp| — ————5——
LS OPUT 1652 P\7 16(452 + du)
and Id
Py < Lexp (= o5 ).
2 xp 3252

Bounding the probability of failure. Putting together the two main bounds we showed, we have
P(AUB) =P(A)+P(BUA)
2

d du Ldu?
ok (exp(f 1682) +€Xp(7 434—|—u32>)

+ exp (dln (QYZZ‘:L —l—l))(exp(— 1d6152) —I—exp<— 16(fi2fdu)) —l—Lexp(— 3[21—;‘[2))

This expression is valid for all w, s > 0 and L, d > 1. We now simplify the expression of our upper
bound by algebraic computations using the assumptions of the Theorem. To somewhat alleviate the
technicality of the computations, we stop at this point tracking some of the explicit constants and
let C' denote a positive absolute constant that might vary from equality to equality. We show next that
the conditions

L>C, d>C, u>Cmax(s® s %%, u<CLY* (51)

imply that
- du?
P(AUB) < 8exp ( — 3252> .

This shall conclude the proof of the Lemma with
Ci=0C, Cy=C, C3=Cmax(s®> s %), Cy=C.
First note that the conditions (51) imply that

u>Cs and u>=C. (52)
We study the terms of the bound on P(A U B) one by one. First, we have by (52) that
du? du? du?
o (- ) o 1)~ 5 < (- )
5T exp ( 1652) P (dln(5) 1652) P 3252
Next,
Ldu? Ldu?
e (= i) <5ew (- 57
xp 4s* 4 us? P Bus?
Ldu
_ rd
=" exp ( 852 )
Ldu
= exp (dln(5) - @>
<e ( _ Ldu)
S P 1652/

76886 https://doi.org/10.52202/079017-2445



Lu

where the first inequality uses u > s2 by (51), and the last one uses that £% > C. This is true since

L > C and u > Cs? by (51). Then we can bound this term by

du?
oxp ( - 3252> ’

since u < C'L which is implied by the assumption « < CLY/* in (51). Next,

2Ms ., 2 242
ln( : +1):ln(8exp(s—+i+2u)+1)
Ms,u 2 d
2 282
< R I
<In <9exp( 5 + d +2u))
where we used that the exponential of a positive term is greater than 1. Then
2M; 2 282
1n( +1) <In(9) + 2 + 2% 1 ou <34 3u, (53)
mS u 2 d

since u > s2, d > 4 by (51). Thus we can bound the three remaining terms appearing in the bound
of P(AU B), as follows:

2M o, du? du? du?
exp (dln ( Mo 1)) b ( - 1652) S exp (3d+ Sdu = 163 2) S exp ( - 3232) :
since
u? > Cs*(1+u).
This is the case by (52), which implies that
1 1 c?, C c*+C
2 _ S & Py= 2 Y2 .
u 2u+2uu/23—|—2 u 5 s“(1+u)
Next, by (53),

Ld2 2 )

exp (dln (27]:25; + 1)) exp ( _ m Ld?u? )

16(4s2 + du)

Ld?u?
exp (3d—|—3du— 3900 ) ,

(3d + 3du —

since du > u > Cs? by (51). Thus
exp (dln( T]r\iu +1))eXp(_16(isCffaW)> exp(3d+3du—L3—d2u) <exp(—%),

where the second inequality uses that L > C by (51), and Lu > C since L > C' and u > C by (51)
and (52). We can also bound this term by

du? >
3252

since L > Cu/s?, using first that L > Cu? then that u > C's~2/3, by (51). Regarding the last term
of the bound of P(A U B), we have by (53) that

exp<f

Lexp (dln ( WJZ - + 1)) exp ( — %) Lexp <3d—|— 3du — 3[2/d2) (54)
Let us show that this implies that
Lexp (dln( WJZu +1))exp(—3[2/—j2) gLexp(— \/326:52) (55)

This statement is true because the three terms appearing inside the exponential of the right-hand side
of (54) can be bounded by %ﬂ“z. More precisely, we have

Ld _ CvLdu?

3252 2 52 eVLz o,
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which holds by (51);
C+/ Ldu?
3du < g & 0s% < \/Zu,
which is implied by L > C and u > C's? by (51); and

Cv Ldu?
3d<7\/;u <:)052<\/Zu2,

which is implied by L > C and v > C's by (51) and (52). Finally, we use Lemma 5 to bound the
right-hand side of (55) by
du?
4 exp ( — —) .

3252
chis implied by d > C' and u > C's, by (51) and (52).

This is possible for L > C' and d“ > 1, whi
Collecting everything, we bounded IP’(f_l B) by

. ( du? )

e _

AT 522

which concludes the proof when 6 = 0.

Summary when § = 0. In summary, we proved so far the following result: there exist

C1,...,Cy4 > 0 depending only on s such that, if
L>Cy, d>Cy, wuelCsCil"],

then, with probability at least

du?
1 _8QXP(_ 3232> ’

it holds for all k € {1,..., L} that

Nk)...(1+iN1)H < Man s
2

H(”x/% Jid :

i ( (1 + \/%Nk) (1 \/%Nl)) > M,.,.

Conclusion for arbitrary 6. The conclusion is a direct application of Lemma 9, with W, =
I+ WN’“ The size of the admissible ball for 4 is

and

mi, 1 ( ,  4s? )

1 2
e, - 61 — exp(—2s° — 4u)

64

for d > 4, which concludes the proof.

Comparison with the bounds of Zhang et al. (2022). Theorem 1 of Zhang et al. (2022) gives an
upper bound on the singular values of residual networks at initialization, and their Theorem 2 gives
a lower bound on the norm of the activations. Comparing with our results, we note two important
differences. First, their probability of failure grows quadratically with the depth, whereas ours is
independent of depth. This is achieved by a more precise martingale argument making use of Doob’s
martingale inequality. Second, their lower bound incorrectly assumes that x? random variables are
sub-Gaussian (see equation (21) of their paper), while in fact they are only sub-exponential (Ghosh,
2021). Finally, their upper bound holds for the product

s s 1
(T =N+ 1))
( VLd ) ( VLd 7 L
for any 1 < j < k < L, which could seem stronger than our result stated for j = 1. In fact, both
statements are equivalent, because it is possible to deduce the statement for any j by combining the

upper bound and the lower bound for j = 1. The precise argument is given in the beginning of the
proof of our Lemma 9.
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B.9 Proof of Corollary 3

The beginning of the proof is very similar to the one of Corollary 2. Denoting W := WX, we have

SOV —tim  sup et |VEREOV) - ViRE OV 56)
20 Wi — Wil r<e >kt Wi = Wi |7
with
Ay = ViLRE(W) — Vi RE(W)
= —Wiii .. . W DVR (pea) WY ... W, +0(62),
and

L
- 2 =
VR (Wpr0a) = EXTX(Z W LW (W WO W WLTp) +OE).
k=1
At this point, the proofs diverge. We have, by subadditivity of the operator norm,

IVR (proa) |2 < 2Az:IIWk L Wal2[[We = Wil W - . Wieall2lpllz + O(€2) .

Let us now briefly recall the outline of the proof of Theorem 4, which will be useful in bounding
the quantity above. The proof shows the existence of C3 depending only on s such that, with high
probability (which is exactly the probability in the statement of the Theorem), we have for all £ > 0
and k € {1,..., L} that

82 ~ 82 ~
IWier (8) .. WA (D)2 < 4exp(5+03> and  |[Wr(t)... Wit (8)]2 < 4exp<§+03),

as well as
252

1 ~
Omin(Wilt) .. Wi(1) > ] exp ( - 03) . (57)

Under this high-probability event, the proof of Theorem 4 shows convergence of the gradient flow
to W = WXL, In particular, this means that V also verifies the bounds on the operator norm of the
matrix products. We therefore obtain

2
S ~
I VR (oa)2 < 2A24exp( 4 ) Wi~ Waladesp (5 + ) Ipll + O(€2)

L

= 32exp(s” +2C3)Allpllz Y Wi — Wil + O(€?).
k=1

Moving on to bounding the Frobenius norm of Ay, we have
1AKIF = Wiiq - W pl2l| VR (@proa) "WY ... W4 [l2 + O(€7)

< W Wi llzllpll2lV B (@proa) 2 Wie—1 ... Wall2 + O(€?)
L
< 2%exp(25” + 4C3)Al|p|3 > I[Wi — Wiz + O(&?),
k=1
by bounding the three norms by the expressions given above. Then

~ L ~ 2
JAKIF < 2% exp(4s® + 8C) A2l (D IWi = Will2) ™ + O(€?)

L
< 2% exp(4s® + 8C3) LA |Ipll3 ) W — Will3 + O(£7).
k=1

< 2" exp(4s® + 8C3) LA®(|p|l3 Z Wi = Wil[3 + O(&%).
k=1
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Thus, by (56),
SW)? < %in%) 218 exp(4s? + 8C5) L2A?||p||3 + O(¢) .
—

Therefore _
SW) < 27 exp(2s” + 4C3) LA|p|]3 - (58)
To conclude, we need to upper bound ||p||2 by a constant times ||w*||2. To this aim, we leverage the
bound from the assumptions of Theorem 4 on the risk at initialization, to show that ||p||2 cannot be
too far away from |lw*||o. More precisely, by Lemma 8, since the covariance matrix X ' X is full
rank,
L 1 *\ (12
RZXW(0)) = Rumin = —[| X (wproa(0) — w)|l3

_ %(wpmd(o) — ") XX (wproa(0) — w*)

2 /\”wprod(o) - w*Hg .

Thus

V/REOW(0)) — Rusin > VA [proa(0) — 2.
Then, by the triangular inequality,

[[w*ll2 = [[wproa(0)[l2 — l[wproa(0) — w™|l2

> W (0)- W5 Ol — OO = P
= Omin(Wr(0) ... W1 (0)|Ipll2 — \/RL(W(Oz\) — Ruin
> o (=5 = Ca) bl - @\fjnpz,

by (57) and by the assumption of Theorem 4 on the risk at initialization. We now note that the value
of Cj is given by (40) as
1652 ~
Cy =2"30exp ( 4 % 2003) ,
Cy

where Cy < d by (38). Thus

A _ 852 ~ 1 252 ~
V 34/ N <VC03=2 18exp(72$2 — 02 —10Cs) < Zexp(f o 03) .

Denoting

2
C’:iexp(—%—é’g)—\/c%, € (0,1),

we therefore obtain that || w*||2 > C’||p||2. Therefore, by (58),
SOW) < 2° exp(2s? +4C5)(C) " LA I3 F )
Thus, by the second lower bound on Sy,;, from Theorem 2, and since a > A > 0,
SW)
Smin
which concludes the proof by setting

C:= 2 exp(2s” +4C5)(C") 7> > 2% exp(25” + 4Cy)(C") T

< 2% exp(25? 4 4C5)(C) "2 E

)

>| =

C Experimental details, additional plots, and additional comments
Our code is available at https://github.com/PierreMarion23/implicit-reg-sharpness.

Our framework for experiments is JAX (Bradbury et al., 2018). The experiments take around 3 hours
to run on a laptop CPU.
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Setup. We take n = 50, d = 5, L = 10. The design matrix X is sampled from an isotropic
Gaussian distribution. The target y is computed in two steps. First, we compute yo = X We + ¢,
where wyye and ( are standard Gaussian vectors. Then, we compute w{ as the optimal regressor of
yo on X. Finally, we let y = yo/||wg]|| and w* = w}/||w]|. This simplifies the expressions of our
bounds by having w* of unit norm. All Gaussian random variables are independent.

Details of Figure 1. We consider a Gaussian initialization of the weight matrices, where the scale
of the initialization (x-axis of some the graphs) is the standard deviation of the entries. All weight
matrices are d x d, except the last one which is 1 x d. The square distance to the optimal regressor
corresponds to ||wprod — w* ||3. The largest eigenvalue of the Hessian is computed by a power iteration
method, stopped after 20 iterations. In Figures 1a and 1b, the 95% confidence intervals are plotted.
The number of gradient steps and number of independent repetitions depend on the learning rate, and
are given below.

Learning rate Number of steps Number of repetitions

0.005 40,000 20
0.02 10,000 20
0.07 4,000 20
0.1 4,000 20
0.2 2,000 80

For large values of the initialization scale, it may happen that the gradient descent diverges. Figure 3
shows the probability of divergence depending on the initialization scale and the learning rate.

1.0 1. rate: 0.005 —t
—x— I rate: 0.02 /:7'47+
—a— 1. rate: 0.07 7 p /
—+— I rate: 0.1 &
—o— l.rate: 0.2

o
®

Probability of divergence
° o o
o = >
.\ R

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Scale of initialization
Figure 3: Probability of divergence of gradient descent for a Gaussian initialization of the weight
matrices, depending on the initialization scale and the learning rate.

When the probability of divergence is equal to one, no point is reported in Figure 1. When it is strictly
between 0 and 1, the confidence intervals are computed over non-diverging runs.

Figures 1c and 1d show one randomly-chosen run each. The plots are subsampled 5 times for
readability, due to the oscillations in Figure 1d.

Residual initialization. We now consider the case of a residual initialization as in Section 5. Results
are given in Figure 4. The scale of the initialization now corresponds to the hyperparameter s in (2).
The projection vector p € R? is a random isotropic vector of unit norm, which does not change during
training. For each learning rate, we use 4, 000 steps of gradient descent, and perform 20 independent
repetitions. The plots are similar to the case of Gaussian initialization, apart from the fact that the
sharpness at initialization is better conditioned.

As previously, for large values of the initialization scale, it may happen that the gradient descent
diverges. Figure 5 shows the probability of divergence depending on the initialization scale and the
learning rate.

Details of Figure 2. The setup is the same as for the residual initialization. For each learning rate,
we use 1, 000 steps of gradient descent, and perform 50 independent repetitions. We take s = 0.25.
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(a) Squared distance of the trained network to the em-
pirical risk minimizer, for various learning rates and
initialization scales. Training succeeds when the learn-
ing rate is lower than a critical value independent of the
initialization scale.
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(c) Evolution during training of the squared distance to
the empirical risk minimizer and of sharpness, for n =
0.02 and an initialization scale of 0.5. The network
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Scale of initialization

(b) Sharpness at initialization and after training, for
various learning rates and initialization scales. For a
given learning rate 7, the dashed lines represent the 2/7
threshold. The dotted black line represents the lower
bound given in Theorem 1.

G

3,

™

Sharpness
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3
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3
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100 300 400
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200
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(d) Evolution during training of the squared distance
to the empirical risk minimizer and of sharpness, for
1 = 0.1 and an initialization scale of 0.5. The network

does not enter edge of stability. enters edge of stability.

Figure 4: Training a deep linear network on a univariate regression task with quadratic loss. The
initialization is a residual initialization as in Section 5.

10 . rate: 0.005 —————s
—x— 1. rate: 0.02 /
—— 1. rate: 0.07 / 7
08 —+— lrate:0.1 P
—o— I rate: 0.2 /+

Probability of divergence

0.50 0.75 1.00

Scale of initialization
Figure 5: Probability of divergence of gradient descent for a residual initialization of the weight
matrices, depending on the initialization scale and the learning rate.

Underdetermined regression and link to generalization. Although this is not our original moti-
vation, we note that a simple change to our setting allows to make appear the connection between
sharpness and generalization. To this aim, we consider the underdetermined case, where the number
of data is lower than the dimension (while keeping the rest of the setup identical). Figure 6 shows in
this case a correlation between generalization and sharpness. This suggests that the tools developed
in the paper could be used in this case to understand the generalization performance of deep (linear)
networks, and we leave this analysis for future work. We also qualitatively observe in Figure 6 a
similar connection between learning rate, initialization scale and sharpness as in the case of full-rank
data (Figure 1b). We take here n = 15,d = 20, L = 5. The number of gradient steps and number of
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independent repetitions depend on the learning rate, and are given below. Other technical details are

as Figure 1.
Learning rate Number of steps Number of repetitions
0.001 40,000 100
0.004 10,000 20
0.01 4,000 20
10t 3162 —

Sharpness
Generalization gap
w
>

Initialization

10 —e— |. rate: 0.001
—x— |. rate: 0.004
—=— l.rate: 0.01

0.32

0.10 0.15 0.20 0.25 0.30 0.35 17 31 56 100 177 316 562 1000 1778
Scale of initialization Sharpness after training

(a) Sharpness at initialization and after training, for (b) Link between generalization and sharpness. Each

various learning rates and initialization scales. We qual- dot corresponds to one realization of the experiment

itatively observe a similar connection between learning (where the randomness comes from the random initial-

rate, initialization scale and sharpness as in the case of ization of the neural network). The plot is shown in

a full rank data matrix (Figure 1b of the paper). log-log scale. The line corresponds to the linear regres-
sion of the log,, of the generalization gap on the log;
of the sharpness after training (slope=0.42 + 0.01, in-
tercept = —0.96 £ 0.03).

Figure 6: Experiment with a deep linear network and a degenerate data covariance matrix, where the
number of data n is less than the dimension d.

Non-linear MLPs. As a first attempt to extend our results to non-linear networks, we consider
the case of non-linear MLPs. The non-linearity is GELU (Hendrycks and Gimpel, 2016), a smooth
version of ReLU, which we chose because smoothness is necessary in order to compute the sharpness.
We qualitatively observe in Figure 7 a similar connection between learning rate, initialization scale
and sharpness as for deep linear neural networks (Figure 1b). For large initialization, the sharpness
after training plateaus at 2/7, as in the linear case. For small initialization, the sharpness after training
is less that 2/7), and is close to the bounds in the linear case (dotted black lines). For this experiment,
we consider noiseless data, meaning that yo = X wy.e (see paragraph “Setup” above for notations).
We perform 20 independent repetitions of each experiment. The number of gradient steps depends on
the learning rate, and is given below. Other details are as for Figure 1. Finally, we also performed
the same experiment in the case of noisy data yg = Xwyye + ¢ (no plot reported). We observed that
the sharpness of the network reaches 2 /7, for every learning rate and initialization scale reported in
Figure 7. We suspect that this is because the network (over)fits the noise in the data, resulting in a
high sharpness.

Learning rate Number of steps

0.005 160, 000
0.02 40, 000
0.07 16, 000

Comments on the connection between gradient flow and gradient descent. In this paper, we
show that gradient flow from a small-scale initialization is driven towards low-sharpness regions.
This should imply that gradient flow and gradient descent up to a reasonably large learning rate
should follow the same trajectory when starting from small-scale initialization, because they do not
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— |Initialization
. rate: 0.005

—x*— | rate: 0.02

—=— |. rate: 0.07

0.45 0.50 0.55 0.60 0.65 0.70
Scale of initialization

Figure 7: For a non-linear MLP, sharpness at initialization and after training, for various learning
rates and initialization scales. For a given learning rate 7, the dashed lines represent the 2 /7 threshold.
The dotted black lines represent the lower and upper bounds given in Theorem 1 and Corollary 2 of
the paper.

go in regions of high sharpness where the difference between gradient flow and gradient descent
would become significant. This intuition is supported by Figure 1b where we see that, for small
initializations, the sharpness after training is independent of the learning rate. We leave further
investigation of these questions for future work.

D Additional related work

Progressive sharpening. Cohen et al. (2021) show that the edge of stability phase is typically
preceded by a phase of progressive sharpening, where the sharpness steadily increases until reaching
the value of 2/7). Our setting of small-scale initialization presents an example of such a progressive
sharpening (although we make no statement on the monotonicity of the increase in sharpness). Other
works have proposed analyses of progressive sharpening. Wang et al. (2022) suggest that progressive
sharpening is driven by the increase in norm of the output layer. MacDonald et al. (2023) assume
from empirical evidence a link between sharpness and the magnitude of the input-output Jacobian,
and show that the latter has to be large for the loss to decrease. Finally, Agarwala et al. (2023)
propose and analyze a simplified model with quadratic dependence in its parameters, which exhibits
a progressive sharpening phenomenon.

Connection with deep matrix factorization. Regression with deep linear networks can be seen
as an instance of a matrix factorization problem. There is a well-established literature studying
the implicit regularization of gradient descent for this class of problem (see, e.g., Gunasekar et al.,
2017; Arora et al., 2019b; Li et al., 2021; Yun et al., 2021). However, this line of work study
under-determined settings where there are an infinite number of factorizations reaching zero empirical
risk, and study the implicit regularization in function space. On the contrary, we consider an over-
determined setting where there is a single optimal regressor, and study the regularization in parameter
space.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims regard the theoretical analysis of sharpness of deep linear networks.
The corresponding results are given in Sections 3, 4, and 5, and proven in Appendix B.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper presents work of theoretical nature, and explains clearly the setting
and assumptions (e.g., linear activation function) in which the results are applicable.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions are stated in the main paper, and all proofs are given in
Appendix B.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experimental details are given in Appendix C.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is given in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental details are given in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All plots have error bars (except the plots showing the trajectory of gradient
descent along one run, for illustration).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments are small-scale and run on a laptop CPU. The runtime is
given in Appendix C.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics, and attest that this
paper conforms to the Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a foundational research paper, not tied to particular applications, let
alone deployments.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the papers for code we are using in Appendix C.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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