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Abstract

In the rapidly evolving field of deep learning, the demand for models that are both
expressive and computationally efficient has never been more critical. This paper
introduces Orchid, a novel architecture designed to address the quadratic com-
plexity of traditional attention mechanisms without compromising the ability to
capture long-range dependencies and in-context learning. At the core of this ar-
chitecture lies a new data-dependent global convolution layer, which contextually
adapts its kernel conditioned on input sequence using a dedicated conditioning
neural network. We design two simple conditioning networks that maintain shift
equivariance in our data-dependent convolution operation. The dynamic nature of
the proposed convolution kernel grants Orchid high expressivity while maintain-
ing quasilinear scalability for long sequences. We evaluate the proposed model
across multiple domains, including language modeling and image classification,
to highlight its performance and generality. Our experiments demonstrate that this
architecture not only outperforms traditional attention-based architectures such as
BERT and Vision Transformers with smaller model sizes, but also extends the
feasible sequence length beyond the limitations of the dense attention layers. This
achievement represents a significant step towards more efficient and scalable deep
learning models for sequence modeling.

1 Introduction

In modern deep neural networks, attention mechanisms have emerged as a gold standard, pivotal
in domains such as natural language processing, image, and audio processing, and even complex
fields like biology [Vaswani et al., 2017, Dosovitskiy et al., 2020, Dwivedi and Bresson, 2020].
However, despite their strong sequence analysis capabilities, these sequence modeling mechanisms
suffer from their high computational complexity, which scales quadratically with sequence length,
hindering their application to long-context tasks. This complexity has driven a shift towards innova-
tive solutions to overcome this computational barrier, enabling analysis of long sequences in areas
like genomics, DNA sequencing, and the creation of long musical compositions.

In the past years, researchers have explored various strategies to tackle the computational bottleneck
of traditional dense attention layers [Tay et al., 2022]. One key strategy involves sparsifying the
dense attention matrix. Instead of calculating the entire matrix, Qiu et al. [2019], Parmar et al. [2018]
focus on specific local blocks of the receptive fields of sequences by chunking them into fixed-size
blocks. Moreover, Sparse Transformer [Child et al., 2019], Longformer [Beltagy et al., 2020] and
BigBird [Zaheer et al., 2020] use strided attention patterns combined with local sliding windows to
reduce computation. In contrast to using pre-determined patterns, other techniques include learn-
ing to cluster/sort tokens based on a similarity function, thereby enhancing the global view of the
sequence, as seen in Reformer [Kitaev et al., 2020], Routing Transformer [Roy et al., 2020] Sparse
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Sinkhorn attention [Tay et al., 2020]. Another approach involves low-rank approximations of the
self-attention matrix, leveraging the insight that these matrices often exhibit low-rank properties, as
demonstrated by Linformer [Wang et al., 2020] which projects keys and values matrices to lower-
dimensional representation matrices. Another paradigm to reduce quadratic computation cost, is
to replace the dot-product similarity between keys and query matrices of attention mechanism with
a kernel function and avoid explicitly computing the attention matrix [Katharopoulos et al., 2020].
Notable examples in this family include Performers [Choromanski et al., 2020], Random Feature
Attention [Peng et al., 2021] that are based on random feature approximation of the kernel function.
Additionally, some models leverage a combinations of such techniques to design an efficient trans-
former [Zhu et al., 2021, Zhang et al., 2021]. However, while these methods significantly reduce
computational overhead, they may sacrifice expressiveness and performance, often requiring hybrid
approaches that combine them with dense attention layers [Mehta et al., 2022, Fu et al., 2023]. On
the other hand, recent works have aimed at sparsifying dense linear layers, used for feature mixing
in Transformer blocks, to tackle another major source of high computation and memory demand in
large models [Dao et al., 2022, Chen et al., 2021,].

Finding sub-quadratic and hardware-efficient mixing operators that are also expressive remains a
significant challenge. Recent studies have explored attention-free solutions, particularly using state
space models (SSMs) [Gu et al., 2021, Mehta et al., 2022, Wang et al., 2022, Fu et al., 2023, Orvieto
et al., 2023, Gu and Dao, 2023, De et al., 2024], and long convolutions [Romero et al., 2021, Li
et al., 2022, Poli et al., 2023]. A state space model characterizes a dynamical system’s behavior
in terms of its internal state using a state equation, describing the dynamics of the system using
first-order differential equations over the states, and an observation equation, relating state variables
to observed outputs.1 A key insight is that, most of these SSM models can be formulated as a long
convolution model between the input and output sequences [Gu et al., 2021], allowing parallel and
efficient training. However, recent work by Poli et al. [2023] demonstrated that directly parameter-
izing the filter impulse response of the long-convolution leads to an even more expressive sequence
mixing layer.

This paper proposes a novel data-dependent convolution mechanism to tackle the inherent quadratic
complexity of traditional attention mechanisms, while maintaining the model’s ability to capture
long-range dependencies and in-context learning. The data-dependent convolution layer contextu-
ally adapts its kernel based on input data using a dedicated conditioning neural network. We design
two simple yet effective conditioning networks that maintain shift equivariance in the adaptive con-
volution operation. By combining these adaptive mechanisms with gating operations, our proposed
model—named Orchid—achieves high expressivity while offering quasilinear scalability (with a
complexity of O(L logL)) for long sequences. Evaluation across various domains, including lan-
guage modeling and image classification, presented in section 4 and Appendix, demonstrates the
Orchid architecture’s performance and generality, outperforming attention-based architectures, like
BERT and Vision Transformers, with smaller model sizes. Moreover, its allows for handling very
large sequence lengths that are beyond the limitations of the dense attention layers. This achieve-
ment lays the foundation for further advancements in more efficient and scalable sequence modeling
architectures.

2 Background

Self-Attention Mechanism: Given a length-L sequence of embeddings (tokens) x =
(x1, x2, . . . , xL), the self-attention layer generates a new sequence by computing a weighted sum
of these embeddings. To achieve this, it linearly project x into three components: queries (Q),
keys (K), and values (V ), as: Q = xWQ, K = xWK , V = xW V . Each individual atten-
tion mechanism within a multi-head self-attention layer operates as a dense linear transformation,
expressed as:

y = SA(Q,K,V ) = SoftMax
(
QKT

√
dk

)
V = A(x)V ,

where the matrix A(x) contains the normalized attention scores between each pair of tokens. This
description of the attention layer highlights its notable benefits, including its capability to capture

1Notably, state space models, in general, include the recurrent layers such as RNN and LSTM [Hochreiter
et al., 1997] as special cases.
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Figure 2.1: Orchid block architecture. This diagram illustrates the structure of the Orchid block. The core
operation is a convolution (denoted by ∗), efficiently implemented in the frequency domain using FFT. Element-
wise multiplication is denoted by ⊙. On the right side, two different conditioning networks, introduced in
equations (2) and (3) as shift-invariant convolution kernels, are illustrated. In this model, the convolution is
performed efficiently in the spectral domain, so the kernel in the frequency domain, hF = hF

0 + hF
θ (x),

is computed. The block also includes MLPs for linear projection and pointwise mixing of features at the
beginning, that is common design choice used in various sequence modeling architectures.

long-range dependencies using a sublinear parameter count. The attention mechanism enables di-
rect computation of interactions between any two positions in the input sequence, regardless of their
distance, without a corresponding rise in parameter counts. Additionally, the attention layer imple-
ments a data-dependent dense linear filter, which effectively filter the input based on on weights
conditioned by a mapping of the data. This property makes it expressive and flexible enough to en-
code a large family of linear functions. However, these advantages come at the expense of quadratic
computational complexity and memory costs.

This motivates us to develop an efficient and scalable data-dependent convolution mechanism, fea-
turing an adaptive kernel that adjusts based on the input data. The kernel size of this convolution
layer is as long as the input sequence length, enabling the capture of long-range dependencies across
the input sequence while maintaining high scalability.

Linear Convolution: Discrete-time linear convolution is a fundamental operation in digital signal
processing that calculates the output as the weighted sum of the finite-length input x with shifted
versions of the convolution kernel, h, also known as the impulse response of a linear time-invariant
(LTI) system.2 Formally, it can be written as

y[t] = (h ∗ x)[t] ≜
L−1∑
ℓ=0

h[t− ℓ]x[ℓ].

In this definition, the output is a linear filter of the zero-padded input and convolution kernel. How-
ever, other padding schemes leads to different forms of convolution. A well-known form is circular
convolution, defined as

y[t mod L] = (h⊛ x)[t] ≜
L−1∑
ℓ=0

h[t− ℓ mod L]x[ℓ],

which is equivalent to the linear convolution of two sequences if one is cyclically padded at its edges.

Global Convolution and Fast Convolution Algorithm: Standard convolution layers, explic-
itly parameterized with a short kernel, struggle to capture long-range dependencies in sequential
data. Extending the kernel to match the input length enables modeling such dependencies but
leads to linear growth in parameter counts and quadratic computational complexity. To mitigate
the parameter growth challenge, the kernel of global (a.k.a. long) convolution can be implicitly

2While generally x represents a sequence of D-dimensional embeddings with length L, all the sequence
mixing operators, including data-dependent convolutions, Fourier transforms and depthwise 1D convolutions
(Conv1d) are performed along the sequence dimension. Therefore, for clarity and without loss of generality,
we assume D = 1 and x ∈ RL. For a full list of notation definition, please refer to Appendix A.
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parameterized using a multilayer perceptron (MLP), a technique that has been shown to main-
tain sub-linear parameter scaling [Karami et al., 2019, Romero et al., 2021, Li et al., 2022, Poli
et al., 2023]. Furthermore, a key advantage of convolution operators is that, leveraging the con-
volution theorem, convolution operators can be efficiently computed in the frequency domain us-
ing Fast Fourier Transform (FFT) algorithms, thereby reducing the computational complexity to
O(L logL) [Cooley and Tukey, 1965]. Formally, the linear convolution can be expressed in the
frequency domain as ŷ = F−1(F(ĥ) ⊙ F(x̂)) = T−1(hF ⊙ T x̂), where T is the DFT matrix,
F denotes the discrete Fourier transformation, and x̂ denotes the zero-padded signal, defined as
x̂ ≜ pad2L(x) = [0L; x]. Additionally, the circular convolution can be simply computed as:
y = h⊛ x = F−1(F(h)⊙F(x)).

3 Orchid Operator

This section introduces the Data-Dependent Convolution Filter, a novel operator aimed at increasing
the expressiveness of long convolution operations. This operator serves as the foundational building
block for the Orchid layer, which we will explore later in the section.

3.1 Data-Dependent Convolution Filter

We hypothesize that making the convolutional kernel data-dependent allows the filter to adapt to the
specific characteristics of its input, potentially capturing more complex patterns within the sequence.
Formally, this input-dependent filter is defined as:

y = hθ(x) ∗ x = NNθ(x) ∗ x (1)
The key innovation is to replace the static convolutional kernel with a conditionally generated one
controlled by the input data. This is achieved through a conditioning network, denoted as hθ(x) =
NNθ(x), a neural network parameterized by θ. The conditioning network outputs a vector matching
the input sequence in length. This allows each input token to ’attend’ to the entire sequence with
personalized, adaptive weights derived from its specific representation. Convolving the surrounding
context using this data-dependent weighting scheme can potentially offer more effective sequence
mixing compared to conventional static convolutions.

3.2 Preserving Shift-Equivariance in Data-Dependent Convolution

A fundamental property of discrete convolution is shift equivariance, meaning that shifting the input
by a certain amount leads to a corresponding shift in the output (disregarding boundary effects). This
is formally expressed for circular convolution as: shiftm(y) = h⊛ shiftm(x) [Bronstein et al.,
2021], where this property holds exactly regardless of boundary conditions. The shift operation is
defined as shiftm(x)[t] ≜ x[t+m].

This property is particularly important because it ensures the operator’s response is robust to shift of
features within the input, thereby enhancing the model’s generalization capabilities. This inductive
bias is at the core of the widespread success of convolution operations [Thomas et al.]. Therefore,
it is desirable to design conditioning network in the data-dependent convolution (1) to preserve shift
equivariance property. To maintain this property for data-dependent convolution operations, it is
sufficient to design filter kernel to be shift-invariant, i.e. h(shiftm(x)) = h(x) (refer to Appendix
B for the proof). In the following, we present two conditioning network designs satisfying shift-
invariance.

I) Phase Suppression for Shift Invariance: A circular shift of a sequence u results in a lin-
ear phase shift of its frequency components: F

(
shiftm(u)

)
[ω] = uF [ω] · e− i2π

L ωm [Oppen-
heim, 1999]. Given a shift-equivariant function g(x) (such as a depthwise Conv1d()) (satisfying:
g(shiftm(x)) = shiftm(g(x))). Its frequency components after a spatial shift of its input main-
tain this phase shift:

F
(
g(shiftm(x)

)
[ω] = F (g(x)) [ω] · e− i2π

L ωm.

By taking the magnitude (absolute value or squared) of these complex-valued frequency compo-
nents, we effectively eliminate the phase shift, therefore, defining hF (x) =

∣∣F(
g(x)

)∣∣ satisfies
shift-invariance property: hF (shiftm(x)) = hF (x).
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In our design, we deploy a hybrid spatial-frequency domain conditioning network. This network
consists of a 1D depthwise linear convolution (Conv1d())) with a short kernel length (typically 3-5)
acting at the spatial domain, followed by a short convolution in the frequency domain. By operat-
ing in both spatial and frequency domains, the conditioning network effectively mixes information
from neighboring tokens and spectral components. The resulting conditioning neural network is
formulated as:

hF
θ (x) = Conv1d

(∣∣F (Conv1d(x))
∣∣) (2)

This architecture choice aims to minimize the number of parameters and computational overhead
introduced by the conditioning network within the overall model.

II) Leveraging Cross-Correlation for Shift-Invariance: An alternative approach to achieving
shift-invariance involves computing the cross-correlation between two mapping of the input se-
quence. Let k(x) and q(x) be two shift-equivariant functions, satisfying: k(shiftm(x)) =
shiftm(k(x)) and q(shiftm(x)) = shiftm(q(x)). We define h(x) as the cross-correlation
of k(x) and q(x), given by:

h(x)[t] = (k(x) ⋆ q(x))[t] ≜
L−1∑
ℓ=0

k(x)[ℓ] · q(x)[t+ ℓ mod L].

This operation essentially slides q(x) over k(x) and measures their similarity at different offsets.
Remarkably, the resulting cross-correlation function, h(x), is also shift invariant:

h(shiftm(x)) = k(shiftm(x)) ⋆ q(shiftm(x))

= shiftm(k(x)) ⋆ shiftm(q(x))

= k(x) ⋆ q(x) = h(x)

Furthermore, the convolution theorem enables efficient computation of the cross-correlation in the
frequency domain: hF (x) = F (k(x) ⋆ q(x)) = kF

∗
(x)⊙ qF (x) where kF

∗
denotes the complex

conjugate of kF and ⊙ represents element-wise multiplication.

Remark 3.1. By setting k(x) = q(x) = g(x), we obtain hF (x) = |gF (x)|2, This indicates that the
cross-correlation approach generalizes the magnitude-based approach, demonstrating its versatility.

Similar to the previous approach, we employ separate 1D depth-wise short convolutions for both
k(x) and q(x), followed by another convolution post cross-correlation in the frequency domain. As
a result, the conditioning neural network is defined as

hF
θ (x) = Conv1d

(
F∗ (Conv1d(x))⊙F (Conv1d(x))

)
. (3)

Both conditioning functions, as defined in (2) and (3), are illustrated schematically in Figure 2.1.

Remark 3.2. For convolution operations, we augment the data-dependent conditioning network by
incorporating a fixed (static) term. This term adds positional encoding to the convolution kernel by
implicitly parametrizing it using a positional embedding, PosEmb(), of time step (token index in the
sequence) and a feed forward networks as h0 = FFN

(
PosEmb(t)

)
[Romero et al., 2021, Li et al.,

2022, Poli et al., 2023]. The final convolution kernel is obtained by summing this positional bias
with the output of the conditioning network, h = hθ(x) + h0.

Remark 3.3 (Data-Dependent Convolution as a Cross-attention Alternative). The kernel of con-
volution hθ(x), defined in equations (2) or (3), is conditioned on the input of the convolution layer,
making it input-dependent. However, we can generalize this concept further. The kernel could be a
function of any arbitrary sequence u, leading to a broader definition of data-dependent convolution:

y(x,u) = hθ(u) ∗ x = NNθ(u) ∗ x
This definition couples the input sequence x with another sequence u, creating a potential alternative
to cross-attention layers in sequence processing tasks. We therefore refer to the proposed layer as
"data-dependent" in a more general sense. When dealing with sequences of different lengths, the
shorter sequence can be zero-padded to match the length of the longer one. Specifically, assuming
x ∈ RL is longer than u ∈ RN (L > N ), we use the zero-padded sequence û = padL(u) ∈ RL

as input to the conditioning network NNθ(û). Since the long convolution is implemented in the
frequency domain, this zero-padding in the time domain translates to interpolation in the frequency
domain [Smith, 2008] ensuring that both sequences have frequency components of the same length.
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3.3 Orchid Block

Unlike attention layers, convolution filters leverage parameter sharing. This means they slide the
same kernel weights and apply them to different positions within the input sequence. Mathemati-
cally, this operation is equivalent to multiplying an input vector with a structured matrix, such as a
Toeplitz matrix for linear convolutions or a circulant matrix for circular convolutions, which results
in computational efficiency [Gray et al., 2006, Karami et al., 2019]. To achieve a location-dependent
filtering scheme, we complement the data-dependent convolution with element-wise multiplications,
allowing the model to emphasize specific tokens within by assigning higher weights prior to apply-
ing the location-invariant convolution. Notably, prior research has demonstrated that a cascade of
circulant and diagonal matrices can effectively approximate dense linear layers [Moczulski et al.,
2015, Cheng et al., 2015]. Building upon these insights, the overall architecture of the Orchid
block, is composed of a chain of M data-dependent convolution and element-wise multiplications
(gated connections). In our experiments, we utilize a simple chain of order 1.5, consisting of data-
dependent convolution sandwiched by two element-wise multiplications: y = (f2

⊙ ◦ f∗ ◦ f1
⊙)(x)

where ◦ denotes composition, f∗(x) ≜ (hθ(x)+h0)∗x, and f i
⊙(x) ≜ Conv1d(x)⊙x. The Orchid

block is illustrated in Figure 2.1 and its basic implementation is presented in appendix D.

Overall Computational complexity. All global convolutions within the Orchid block are computed
in the frequency domain using FFT algorithm, inheriting its computational efficiency with complex-
ity of O(L logL). Furthermore, the element-wise multiplications contribute an additional O(L)
complexity. Consequently, the overall complexity of the Orchid block scales quasi-linearly with
the sequence length, resulting in a total complexity of O(ML logL), where M is the number of
layers in the block. A recent hardware and I/O optimized implementation of FFT, introduced in [Fu
et al., 2023], can speed up the overall computation of Orchid on modern accelerators. Empirical
runtime comparisons against standard attention mechanisms, detailed in Appendix C.5, highlight its
expected scalability, especially for longer sequences.

4 Experiments

Our evaluation of Orchid focuses on three different Transformer-based models to evaluate its ex-
pressivity and generalization capabilities as an alternative to attention layers. Firstly, we conduct
a set of experiments on a synthetic task to assess the in-context learning ability and scalability of
the proposed model. Subsequently, we evaluate the performance of the proposed architecture on
language modeling tasks. Moreover, we extend our experiments to image classification tasks, aim-
ing to evaluate the model’s generalizability across diverse domains. Additional ablation studies on
model architecture and also an experiments on raw speech classification with long sequences are
presented in Appendices C.5 and C.2. Unless otherwise specified, our experiments adopt the phase
supersession (Type I) conditioning network (Equation 2) due to its simpler form. For an overview
experimental details, please refer to Appendix C.

4.1 Synthetic In-context Learning
The aim of the first experiment is to assess how well our model performs on a synthetic reasoning
task. This task, inspired by prior work on language model benchmarking [Liang et al., 2022] and
in-context learning (ICL) [Garg et al., 2022], is known as Associative Recall. It involves generating
a value from a key given a string of key-value tuples from a random dictionary. For instance, given
the input ([a, 1, b, e, f, 3], b), the model is expected to return e, the value associated with the
key b. This task assesses whether a model can effectively retrieve the correct value from a key in
a prompt, essentially applying a data-controlled shift. Attention mechanisms offer this capability
by computing attention scores through token comparisons and then weighting the entire sequence
accordingly [Olsson et al., 2022]. Associative recall has been pivotal in guiding the design of long
convolution models, as demonstrated in [Fu et al., 2023], and a more complex variant of this task
was employed in [Poli et al., 2023].

For these experiments, we benchmark Orchid against several leading long convolution models,
including: I) H3, which utilizes state-space models (SSMs) for implicit parametrization of long
convolution, as proposed in [Fu et al., 2023]. II) CKConv, that employs feedforward networks
(FFNs) and positional embeddings for the implicit parametrization of convolution operations, de-
tailed in [Romero et al., 2021]. III) Hyena, built upon the CKConv framework by incorporating an
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Table 4.1: The performance (test accuracy) of in-context learning
on the associative recall task with different sequence lengths and a
vocabulary size of 20. The results for the baseline models are drawn
from Poli et al. [2023], Fu et al. [2023]. The symbol ✘ indicates that
the Transformer model failed to complete the task within a week or
the model does not fit in memory.

Model 128 512 2K 8K 32K 128K

Transformer 100 100 100 100 ✘ ✘
Monarch-Mixer - 98.7 99.4 99.4 99.4 99.4

Hyena 93 99 99.6 100 100 -
Orchid 100 100 100 100 100 100

Table 4.2: The test accuracy of the
associative recall task with varying vo-
cabulary sizes and a sequence length of
128.

Model 20 30 40

Transformer 100 100 100
CKConv 91 25.7 20.4

H3 71.5 13.2 10.2
Hyena 93 38.8 12.4

Mamba 100 100 35.8
Orchid 100 99.4 99.2

27 29 211 213 215
0

20

40

60

80

100

Sequence Length

Vocabulary Size = 20

Orchid

CKConv

H3

Hyena

27 29 211 213 215
Sequence Length

Vocabulary Size = 30

27 29 211 213 215
Sequence Length

Vocabulary Size = 40

Figure 4.1: Test accuracy of the associative recall task across different long implicit convolution models on
various sequence lengths and vocabulary sizes (number of possible token values).

additional exponential decay modulation into the implicit convolution process, as detailed in [Poli
et al., 2023]. It is further augmented by a multiplication in a chain of order 2.

As illustrated in Figure 4.1 and Tables 4.1 and 4.2, Orchid demonstrates superior expressiveness and
outperforms existing long convolution models in associative recall tasks. These tasks become in-
creasingly challenging with shorter sequences and larger vocabulary sizes. This difficulty arises be-
cause specific (key, value) pairs appear less frequently within shorter strings, hindering the model’s
ability to learn and reason on these associations. Remarkably, in such challenging scenarios with
short sequence lengths of 128 and large vocabulary sizes, Orchid significantly improves the model’s
accuracy and closes the gap between Transformer and implicit convolution models. Furthermore,
Orchid successfully learns the task even with extended sequence lengths of up to 131K tokens, a
scale at which Transformer models encounter computational difficulties, which highlights Orchid’s
superior scalability and efficiency in learning long context.

The insights from this experiment guide us in integrating the proposed model into Transformer-
based models for extensive language modeling, suggesting its potential to enhance performance in
natural language processing tasks.

4.2 Language Modeling

We evaluate the Orchid layer in language models. Orchid is designed to integrate seamlessly with
existing BERT-style language models, such as BERT [Devlin et al., 2018], RoBERTa [Liu et al.,
2019], SpanBERT [Joshi et al., 2020], and others [Jin et al., 2020]. In our experiments, we replace
the attention layers in the standard BERT framework in [Devlin et al., 2018] with Orchid layers.
For each Transformer block in the BERT-style model, we replace the attention layers with Orchid
layers for sequence mixing. We also replace the two dense matrices in the MLP layers, used for
dimension mixing in Transformers, with block-diagonal matrices [Dao et al., 2022]. Following [Fu
et al., 2023], we add a residual long convolution to each Orchid layer.

Our BERT-style model, called Orchid-BERT-base, has 12 layers with a hidden size of 768, the same
dimension and depth as BERT-base. The resulting Orchid-BERT-base have 77M parameters, com-
pared to BERT-base’s 110M parameters. We also pretrain Orchid-BERT-large of 254M parameters
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Table 4.3: Average GLUE Score of BERT-base and BERT-large [Devlin et al., 2018] in comparison to Orchid-
BERT-base and Orchid-BERT-base, and M2-BERT-base and M2-BERT-large Dao et al. [2022]. Baseline results
are drawn from [Fu et al., 2023].

Model (size) GLUE Score ∆ Params ∆ GLUE Score

BERT-base (110M) 79.6 - -
M2-BERT-base (80M) 79.9 -27.3% +0.3

Orchid-BERT-base (77M) 80.6 -30.0% +1.0

BERT-large (340M) 82.1 - -
M2-BERT-large (260M) 82.2 -23.6% +0.1

Orchid-BERT-large (254M) 82.7 -25.3% +0.6

with hidden dimensions of 1536 and 12 layers. Orchid models are pre-trained using masked lan-
guage modeling over the C4 dataset [Raffel et al., 2019] with the bert-base-uncased tokenizer.

Finetuning Performance on GLUE Benchmark. We conducted an evaluation of Orchid-BERT
models on GLUE fine-tuning tasks, comparing them against the baseline models: BERT-base
and BERT-large, and the recent long convolution-based models: M2-BERT-base and M2-BERT-
large [Fu et al., 2023]. The fine-tuning process was executed in accordance with the methodology
described by Izsak et al. [2021]. As the results outlined in Table 4.3 show, Orchid-BERT-base is able
to achieve 1.0 points improvement in average GLUE score performance compared to the BERT-base
on the GLUE benchmark with utilizing 30% fewer parameters. Similarly, Orchid-BERT-large out-
performs the performance of BERT-large by .6 points with a 25% reduction in parameter counts.

4.3 Image Classification
We extend the application of Orchid to the Vision Transformer (ViT) architecture, introduced by
Dosovitskiy et al. [2020], by replacing its attention mechanism with Orchid similar to language
modeling task. Similar to language modeling task, we substitute the dense matrices in the MLP lay-
ers, which perform dimension mixing, with block-diagonal matrices and incorporate a residual long
convolution within each Orchid block. We benchmark our model against recent long convolution-
based models, specifically Hyena-ViT-b [Poli et al., 2023] and M2-ViT-b [Fu et al., 2023].

Models are evaluated for image classification on two widely used image datasets: CIFAR-10 and
ImageNet-1K. For CIFAR-10, images are transformed into sequences of 4 × 4 pixel patches and
processed using a ViT architecture composed of 6 Transformer layers with hidden sizes of either 128
and 220 for Orchid-s and Orchid-m, respectively. In the case of ImageNet-1K, we segmented images
into patches of 16×16 pixels, and we trained a ViT-base architecture featuring 12 Transformer layers
and a hidden size of 768.

The results presented in Table 4.4 and 4.5 demonstrate that Orchid significantly outperforms both the
Vision Transformer baseline and long convolution-based models on the CIFAR-10 and ImageNet-
1K datasets. Notably, Table 4.5 shows that utilizing smaller image patches, which lead to longer
sequences, can further enhance performance. This observation underscores the advantage of scalable
sequence models like Orchid. These results confirm the generalizability and effectiveness of the
Orchid architecture beyond the domain of language modeling, highlighting its potential advantage
in broader range of applications such as image processing tasks.

5 Related Work
Previous works have explored various forms of dynamic convolution architectures [Wu et al., 2019,
Karami et al., 2019, Chen et al., 2020, Jiang et al., 2020]. The dynamic convolution in [Wu et al.,
2019] utilizes a short convolution kernel that depends solely on the current time-step, whereas [Jiang
et al., 2020] expands the kernel span to depend on a local window. Meanwhile, Chen et al. [2020]
modeled the convolution kernel as a mixture of short convolution kernels with mixture weights
controlled by average pooling of the input embedding. However, the reliance on short convolutions
and their specific kernel modeling approaches limits their ability to capture long-range dependencies
and scaling their kernel to match the sequence length is computationally impractical. In a different
line of research, Fourier Neural Operator (FNO) [Li et al., 2020] and adaptive FNO [Guibas et al.,
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Table 4.4: Performance comparison of Orchid with ViT-based models on ImageNet-1k. Baseline results are
drawn from [Fu et al., 2023].

Model (size) Top-1 (%) Top-5 (%)

ImageNet-1k

ViT-b (87M) 78.5 93.6
ViT-b+Monarch (33M) 78.9 94.2

Hyena-ViT-b (88M) 78.5 93.6
M2-ViT-b (45M) 79.5 94.5

Orchid (48M) 80.2 94.9

Table 4.5: Performance comparison of Orchid with ViT-based models on CIFAR-10 dataset. Orchid’s perfor-
mance is also evaluated over different patch sizes, 4× 4, 2× 2 and 1× 1 pixels. Orchid-s and Orchid-m refers
to the ViT architecture composed of 6 layers with hidden sizes of 128 and 220, respectively. Cross-Correlation
(Type II) conditioning network (equation 3) is identified with -cc and the rest are using type I (equation 2).
Baseline results are drawn from [Fu et al., 2023] and [Knigge et al., 2023].

Model (size) Top-1(%)

CIFAR-10 (4× 4)
ViT (1.2M) 78.6

ViT+Monarch (607K) 79.0
Hyena-ViT (1.3M) 80.6

M2-ViT (741K) 80.8
Orchid-s (735K) 88.5

Model (size) Top-1(%)

CIFAR-10 (1× 1)
CKConv (1M) 63.74

S4 (7.8M) 91.13
M2-ViT (741K) 91.0

CCNN (2M) 93.08
Orchid-m (2M) 93.0

Model (size) Top-1(%)

CIFAR-10 (2× 2)
Orchid-s (790K) 92.2

Orchid-s-cc (799K) 92.3
Orchid-m (2.1M) 93.33

2021] operate in the spectral domain, applying a dense linear layer or an MLP with a block diagonal
linear layer. However, these models do not explicitly model convolution kernel and do not enforce
shift-equivariance.

Recent advances in input-dependent state space models (SSMs) have shown promise in efficient
sequence modeling by allowing model parameters to dynamically adapt based on the input [Gu
and Dao, 2023]. However, the input-dependent mechanisms in these models typically rely on the
current token or its local neighbors, preventing them from leveraging the benefits of global con-
volution for efficient parallelizable training Consequently, they heavily depend on hardware-aware
implementations optimized for modern GPUs. While effective in certain tasks, these models have
been shown to struggle with recall-intensive scenarios [Arora et al., 2024]. In contrast, our pro-
posed data-dependent global convolution allows the conditioning network to be influenced by the
entire input context, enabling efficient sequence mixing. Moreover, the current formulation of input-
dependent SSMs is not readily adaptable for efficient cross-attention between sequence pairs. This
highlights a promising future direction for research: exploring how the complementary strengths of
data-dependent global convolutions and input-dependent SSMs can be combined to develop foun-
dation models that excel across a broader range of tasks.

Recent studies have explored sub-quadratic sequence mixing methods using long convolutions or
state space models, leveraging the fast convolution algorithm for computational efficiency. While
utilizing Fast Fourier transform results in O(L logL) computational complexity, FFT algorithms
exhibit suboptimal hardware utilization and suffer from slow I/O between layers of the memory
hierarchy on modern GPUs due to their sequential nature. To address this bottleneck, FlashFFT-
Conv [Fu et al., 2023] utilizes a matrix decomposition to leverage matrix multiply units and enable
kernel fusion resulting in a more hardware and I/O efficient implementation of long convolutions.
Moreover, the Monarch Mixer (M2) [Fu et al., 2023], offers an expressive family of sub-quadratic
structured matrices that generalizes the DFT and other structures. These matrices are parame-
terized as products of block-diagonal matrices, offering sub-quadratic computation costs ranging
from O(L logL) to O(L3/2). By trading-off computational complexity with FLOP utilization, M2
achieves a hardware-efficient alternative for Transformers.
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6 Discussion and Conclusion
In conclusion, our work introduces Orchid, a novel model that addresses some critical challenges of
efficiency and scalability in sequence modeling through the innovative use of data-dependent con-
volution. Orchid successfully mitigates the quadratic computational and memory costs associated
with attention layers, while retaining, and in many cases enhancing, the model performance across
different domains. The introduction of a data-dependent convolution layer represents a significant
step forward, offering a scalable and expressive alternative sequence mixing scheme that adapts its
weights to the input data. Through evaluation across multiple domains, including in-context learn-
ing, language and image processing tasks, Orchid has demonstrated not only its superior perfor-
mance over traditional attention-based models but also its generality and scalability. This positions
the Orchid model not just as a alternative to existing paradigms but as a potential catalyst for innova-
tion, driving the exploration of novel, efficient, and powerful architectures in artificial intelligence.

The superior performance of Orchid compared to traditional transformer-based models raises in-
triguing questions about the current state and future direction of deep learning architectures. One
plausible explanation for our model’s effectiveness could be the over-parameterization prevalent in
transformer-based models. A growing body of evidence indicates that attention mechanisms, despite
their computational complexity, utilize only a fraction of their capabilities for tasks like language
processing. This challenges the common belief that attention is the key ingredient for large-scale
deep learning, leading us to reconsider its role and seek more computationally efficient alternatives.

Limitations and Future Directions

Looking ahead, extending our model to accommodate causal models, particularly for autoregressive
language models akin to GPT, is an intriguing future direction. The current form of the proposed
model is not inherently compatible with these architectures, primarily due to differences in how
data-dependent global convolution handle dependencies and sequence generation.3

Furthermore, exploring the capability of Orchid as an efficient alternative to cross-attention layer,
employed in sequence-to-sequence models, offers another avenue for research. These considerations
open up new possibilities for integrating our model into more advanced foundation models and
cross-domain applications.

Beyond sequence modeling, the Orchid block, with its input-dependent long convolution, local
depthwise linear convolution (Conv1d), and element-wise multiplications, is inherently extendable
to multi-dimensional data. While the primary focus of this work was designing an efficient and scal-
able architecture specifically for sequence modeling, expanding the proposed architecture to include
2D or 3D long convolutional approaches is an interesting future direction.

3Notably, recent works such as [Ding et al., 2023, Bachmann and Nagarajan, 2024] show that auto-
regressive models are not optimal for inference in language models.
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7 Broader Impacts

The introduction of Orchid, with its innovative data-dependent convolution mechanism, can poten-
tially lead to impacts across various sectors of society.

• Accessibility and Democratization of AI: By reducing the computational and memory
requirements traditionally associated with deep learning models, Orchid makes advanced
AI technologies more accessible to a broader range of researchers, startups, and institutions.
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• Environmental Sustainability: The efficiency of Orchid, particularly in terms of compu-
tational and energy demands, aligns with the urgent need for environmentally sustainable
AI practices. Lower energy consumption contributes to reducing the carbon footprint of
training and deploying large-scale models, aligning with global sustainability goals.

• Advancements in Healthcare: In the healthcare sector, Orchid’s ability to efficiently pro-
cess long sequences of data could revolutionize early diagnosis and personalized medicine.
For instance, it could enable more accurate analysis of genomic sequences or continuous
health monitoring data.
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A Notation definition

Notations Brief definition and interpretation

x, y, W x ∈ RL and y ∈ RL are input and output sequence of a layer, while matrices are denoted by
bold uppercase letters, such as layer weight matrix W .

h ∗ x linear convolution: y[t] = (h ∗ x)[t] ≜
∑L−1

ℓ=0 h[t− ℓ]x[ℓ]

h⊛ x circular convolution: y[t mod L] = (h⊛ x)[t] ≜
∑L−1

ℓ=0 h[t− ℓ mod L]x[ℓ]

k ⋆ q cross-correlation: h[t] = (k ⋆ q)[t] ≜
∑L−1

ℓ=0 k[ℓ] · q[t+ ℓ mod L]

h⊙ x element-wise multiplication (Hadamard product): y[t] = (h⊙ x)[t] ≜ h[t] · x[t]

shiftm(x) shiftm(x)[t] ≜ x[t+m]

F(), F−1(), T The forward and inverse discrete Fourier transforms while T represents the DFT matrix.

xF xF = F(x) = Tx

x̂ x̂ ∈ R2L is a zero-padded signal at the left side defined as x̂ ≜ pad2L(x) = [0L; x]

padN (x) padding the vector x ∈ RL with zeros to the target size N , i.e. padN (x) = [0N−L; x] where
[0N−L]: a zero vector of size (N − L).

hθ(x) conditioning network (data-dependent convolution kernel): hθ(x) = NNθ(x) that is a neural
network parameterized by θ.

Conv1d 1D depthwise linear convolution with a short kernel length (typically 3-5) applied to each
feature dimension

FC() dense fully connected layer FC(x) = xW + b

MLP() Multi-Layer Perceptron which is composed of dense fully connected layers

PosEmb() a positional embedding of time step t

h(t) positional encoding part of the convolution kernel: h(t) = FFN
(
PosEmb(t))

)

Remark A.1 (Orchid Combines Global and Local Mixing Operations in Spatial and Spectral
Domains:). The core of Orchid is a long, data-dependent convolution with an adaptive kernel span-
ning the entire input sequence. This means that the convolution operation performed by Orchid
mixes (convolves) the entire sequence globally using the proposed adaptive input dependent ker-
nels. On the other hand, the conditioning networks responsible for generating this adaptive kernel
operate locally in both the spectral and spatial domains.

Comparing self-attention to Orchid reveals further insights. The pair of mappings k(x) and q(x) in
the conditioning network of Orchid (equation 3), are analogous to the key k(x) and query q(x) in the
attention mechanism. In both models, these components are modeled using local neural networks:
attention utilizes pointwise linear projections, while Orchid employs local Conv1D operations in
both the spatial and spectral domains. The attention mechanisms calculate the input-dependent at-
tention score matrix A(x) and subsequently compute the output as y = A(x)v. In contrast, Orchid ’s
conditioning network performs a cross-correlation— a global operation—between k(x) and q(x) to
derive the convolution kernel h(x), followed by global convolution y = h(x) ∗ v. Therefore, while
the inner blocks (the input-dependent networks that compute the convolution kernel in Orchid) oper-
ate locally on the inputs, the outer blocks (such as the matrix product in attention, cross-correlation
or convolution in Orchid) perform global sequence mixing. This approach ensures fixed (or sub-
linear) parameter scaling with respect to sequence length, preventing the model size from growing
excessively with sequence length.

Remark A.2 (Model Name:). The name “Orchid” for our model is more than just a label; it carries
a symbolic meaning for our model, reflecting its elegance, resilience, and adaptability. Orchids are
known to thrive in diverse environments and exhibit subtle color variations under specific environ-
mental conditions, including light intensity, seasonal changes, and dyeing. The essence of adaptation
and efficient resource utilization resonates profoundly with our model’s design. Moreover, the pro-
posed model’s computational efficiency aligns with more environmentally sustainable AI practices
by minimizing energy consumption and carbon footprint during training and deployment.
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B Proof

Proof for Preserving Shift Equivariance: Given a circular shift invariant filter kernel, where

hθ(x[t+m mod L]) = hθ(x[t]).

For a circularly shifted input, the circular convolution can be expressed as:

(hθ(shiftm(x))⊛ shiftm(x))[t] =

L−1∑
ℓ=0

hθ(shiftm(x)[ℓ]) · shiftm(x)[t− ℓ mod L]

=

L−1∑
ℓ=0

hθ(x[ℓ+m]) · shiftm(x)[t+m− ℓ mod L]

=

L−1∑
ℓ=0

hθ(x[ℓ]) · shiftm(x)[t+m− ℓ mod L]

= y[t+m mod L]

= shiftm(y)[t]

Therefore, if the filter kernel is shift-invariant, the conditional convolution will also be shift-
equivariant. ■

C Experimental Details

C.1 Synthetic In-context Learning

We used associative recall task to evaluate in-context learning of the proposed model. Given a
string of key-value tuples from a random dictionary, this task involves generating a value from a
key . For instance, given the input ([a, 1 , b, e, 3 , f ], b), the model is expected to return e , the
value associated with the key b. This task assesses whether a model can effectively retrieve the
correct value from a key in a prompt, essentially applying a data-controlled shift. While attention
mechanisms offer this capability by computing pair-wise attention scores and then weighting the
entire sequence accordingly [47], they face computational difficulties for very large sequence.

The model is composed of 2 Orchid block while each Orchid is composed of a chain of order 1.5,
including 2 element-wise multiplications and one data-dependent convolution. The hidden size of
all models in this experiments are set to 64. The conditioning network, defined in (2), was used
which was composed of a 1D depthwise convolution (Conv1d) in the time domain and a Conv1d in
the frequency domain that were applied separately to each feature dimension, both having a kernel
of length 3. Only for vocabulary size of 40 with short sequence lengths of 128 we increased the
depth to 3 layers of Conv1d in the spatial domain and in the frequency domain.

For training, we used Adam optimizer [63] with its standard settings (β1 = .9, β2 = .999), and
learning rate of 5e-4 with linear warmup schedule in 1000 steps. A weight decay of 0.1 was used as
a regularizer. The Orchid models were trained Orchid on a single P100 GPU for small to medium
sequence length and on a single V100 GPU for long sequences.

C.2 Model Architecture Ablation

To better understand the impact of different model components, we conducted several ablation stud-
ies on in-context learning task in section 4.1. First, we evaluated different depthwise linear convo-
lution architectures in the conditioning network, as outlined in Equation (2). This ablation study
compared: I) Spatial then Spectral: applying Conv1D in the spatial domain followed by Conv1D in
the frequency domain (as proposed in Equation (2)), II) Spatial Only: applying two Conv1D layers in
the spatial domain only, and III) Spectral Only: applying two Conv1D layers in the spectral domain
only. The results, presented in Figure C.1, demonstrate that the proposed method of operating in both
spatial and frequency domains (Equation 2) offers the best performance. This approach effectively
mixes information from neighboring tokens in both domains, capturing richer representations.
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Figure C.1: Comparison of Local Conv1D Choices: Evaluation of different local convolution options used
in the conditioning network. Conditioning networks of type I (Equation 2) (1 layer Conv1D in time + 1 layer
in frequency), 2 layer Conv1D in time, 2 layer Conv1D in frequency, and 3 layer Conv1D in time + 3 layer in
frequency.

Second, we compared the two conditioning networks for data-dependent convolution defined in
Equations 2 and 3. We also evaluated various nonlinearity σ() functions used in the Type II (cross-
correlation) conditioning network:

hF
θ (x) = Conv1d

(
F∗ (Conv1d(x))⊙ σ

(
F (Conv1d(x))

))
. (4)

The nonlinearities includes {Tanh(), Sigmoid(), Softsign(), Softshrink(), Identity()},
each applied only to the magnitude of its argument. The results in Figure C.2 indicates that remov-
ing this nonlinearity provides the best performance, slightly exceeding that of Softshrink() and
Tanh(). Notably, among the nonlinearities those that cross zero perform better. Moreover, we ob-
served that Type II conditioning networks (cross-correlation) with Identity() and Softshrink()
exhibit faster convergence compared to Type I (phase-suppression).

Figure C.2: Comparison of different σ() on conditioning network of Type II (cross-correlation in equation 4).

Finally, we evaluated two different Fourier transforms: Discrete Fourier Transform (DFT) and Dis-
crete Cosine Transform (DCT). We considered both orthogonal and orthonormal versions of each
transform. Orthonormal transforms utilize an orthogonal and normalized basis, resulting in a unitary
transform matrix T . The results, presented in Figure C.3, show that Type I conditioning networks
(Equation 2) exhibit faster convergence. Moreover, the DCT surpasses the DFT in terms of learning
speed, likely because DCT corresponds to even-symmetric padding, which smooths the signal at
the boundaries compared to the circular padding of the DFT. Furthermore, the DCT produces real-
valued transforms. Notably, using orthonormal transforms accelerates the learning process. Conse-
quently, we opted for the orthonormal DCT with Type I conditioning networks for data-dependent
convolution in all the experiments.
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Figure C.3: Test accuracy of in-context learning on the associative recall task with a vocabulary size of 20
and sequence length of 128, comparing different model components. Type I refers to conditioning networks
of type I (based on absolute value in Equation 2). Orthonormal indicates transforms that utilize orthogonal
and normalized bases.

C.3 Language Modeling

In our experiments, we replaced the attention layers in the standard BERT framework in [48] with
Orchid layers. For each Transformer block in the BERT-style model, we replaced the attention layers
with Orchid layers for sequence mixing. Each Orchid layer was composed of a chain of order 1.5,
including 2 element-wise multiplications and one data-dependent convolution. The conditioning
network, defined in (2), was used which was composed of a short Conv1d in time domain and
a Conv1d in the frequency domain that were applied separately to each feature dimension, both
having a kernel of length 3. For dimension mixing, we also substituted the two dense matrices in the
MLP layers with block-diagonal matrices of order 1 with b = 4 blocks [21] and also add a residual
long convolution to each Orchid layer, as in [44].

Our BERT-style model, called Orchid-BERT-base, was composed of 12 layers with a hidden size
of 768, the same dimension and depth as BERT-base resulting in Orchid-BERT-base having 77M
parameters, compared to BERT-base’s 110M parameters. We also pre-trained Orchid-BERT-large
of 254M parameters with hidden dimensions of 1536 and 12 layers.

For pre-training, we used decoupled Adam optimizer with β1 = .9, β2 = .98, and learning rate
of 8e-4 with linear warmup schedule within first 6% of the steps and then decay with linear rate.
A weight decay of 1e-5 is used as a regularizer. Orchid models were pre-trained using masked
language modeling with 30% masking over the C4 dataset [52] with sequence length of 128 and the
bert-base-uncased tokenizer. Models were pre-trained on a node of 4xA100 GPUs for 70k steps
with batch size of 4096.

Finetuning on GLUE Benchmark: To evaluate the performance of Orchid-BERT models, we
finetuned the pre-trained models on GLUE fine-tuning tasks, comparing them against the base-
line models: BERT-base and BERT-large, and the recent long convolution-based models: M2-
BERT-base and M2-BERT-large [44]. The fine-tuning process was executed in accordance with
the methodology described by Izsak et al. [53].

For all tasks, the sequence length was 128. For some of the tasks, we applied average pooling on the
embeddings of all the non-padding tokens and use it as the model output. We followed [53] in fine-
tuning small dataset tasks: RTE, MRPC, and STS-B are initialized from the fine-tuned checkpoint
of MNLI dataset. Models were fine-tuned on a node of 4xA100 GPUs.

In contrast to [44], which performed a hyperparameter search for learning rate, weight decay, and
number of epochs, we used the reported hyper-parameters in [44] and didn’t perform a thorough
search for them. As noted in [53], hyperparameter search can result in substantial improvements in
the performance. In particular for CoLA task, whose results are bellow M2-BERT, we anticipate
that fine tuning the parameter will improve its performance. The detailed hyperparameters for each
task is reported in Table C.2.
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Table C.1: A summary of the Fine-tuning results on GLUE benchmark [64]. Following the the methodology
outlined in [53], we use the standard evaluation metrics: Spearman’s correlation for STS-B, Matthew’s corre-
lation for CoLA, F1 scores for QQP and MRPC, and accuracy for the other tasks. For MNLI, the average of
multiclass accuracy (m) both multiclass accuracy of mismatched set (mm) is used.

Model MNLI (m / mm) RTE QNLI QQP SST2 STS-B CoLA MRPC Average

M2-BERT-base (80M) 78.4 / 78.6 68.5 84.6 86.7 92.0 86.3 53.0 89.8 79.9
Orchid-BERT-base (77M) 79.53 / 80.52 70.4 86.16 87.2 92.05 86.63 51.76 90.53 80.6

M2-BERT-large (260M) 81.7 / 81.9 72.8 84.7 87.8 93.3 88.0 59.2 90.0 82.2
Orchid-BERT-large (254M) 81.82 / 82.74 76.32 87.02 88.18 92.8 88.29 56.97 89.24 82.65

Table C.2: Hyperparameters for Orchid-bert-base (77M) and Orchid-BERT-large (254M) on Various GLUE
Tasks. D-AdamW stands for Decoupled AdamW optimization algorithm. For QNLI task in Orchid-bert-base
(77M) we applied everage pooling.

Hyperparameter MNLI RTE QNLI QQP SST2 STSB CoLA MRPC

Orchid-bert-base (77M)
Optimizer D-AdamW AdamW AdamW AdamW D-AdamW AdamW D-AdamW AdamW

Learning Rate 5e-5 5e-5 5e-5 3e-5 3e-5 7e-5 5e-5 5e-5
Weight Decay 5e-6 0.01 1e-5 0.01 3e-6 0.01 5e-6 0.01

Epochs 3 6 10 10 3 10 10 10

Orchid-bert-large (254M)
Optimizer D-AdamW D-AdamW D-AdamW D-AdamW D-AdamW D-AdamW AdamW D-AdamW

Learning Rate 5e-5 1e-5 5e-5 3e-5 3e-5 7e-5 5e-5 8e-5
Weight Decay 5e-6 1e-6 1e-5 3e-6 3e-6 3e-6 5e-6 8e-6

Epochs 3 3 10 5 3 10 10 10

C.4 Image Classification

We extended the application of Orchid to the Vision Transformer (ViT) architecture, introduced
by Dosovitskiy et al. [2], by replacing its attention mechanism with Orchid similar to language
modeling task. The sinusoidal positional embeddings and global average-pooling were employed
for the class token, following [65, 66]. We compared the performance of our model against recent
long convolution-based models, specifically Hyena-ViT-b [31] and M2-ViT-b [44]. We evaluated
the models on two widely used image classification datasets: CIFAR-10 and ImageNet-1K.

Each Orchid layer consists of a chain of order 1.5, involving 2 element-wise multiplications and one
data-dependent convolution. The conditioning network (defined in Eq. 2) employs a combination of
Conv1d layers in both the time and frequency domains, applied separately to each feature dimension
with a kernel length of 3 and 5 for CIFAR-10 and ImageNet-1K, respectively.

CIFAR-10: For CIFAR-10, images were transformed into sequences of 4 × 4 pixel patches and
processed using a ViT architecture composed of 6 Transformer layers with hidden sizes of either
128 and 220 for Orchid-s and Orchid-m, respectively. For training, we used Adam optimizer with
its standard setting (β1 = .9, β2 = .999), and learning rate of 3e-4 with linear warmup schedule
within first 500 steps. For the experiments on Orchid-s (4 × 4), we tuned base learning rate over
(1e-3, 5e-3, 1e-2). A weight decay of 0.05 was used as a regularizer. Orchid was trained on a single
P100 GPU for 500 epochs with batch size of 512.

ImageNet-1K: We segmented images into patches of 16 × 16 pixels, and we trained a ViT-base
architecture featuring 12 Transformer layers and a hidden size of 768. We incorporated a residual
long convolution within each Orchid layer and substituted the dense matrices in the MLP layers
responsible for feature mixing with block-diagonal matrices of order 1 with b = 4 blocks, reducing
their computational complexity and the total model’s size.

For training, we used Adam optimizer with its standard setting (β1 = .9, β2 = .999), and base
learning rate of 1e-3 with linear warmup schedule within first 10 epochs and then decay with Co-
sine schedule. For data augmentation, we adopted the T2T-ViT pipeline [67], including Random
erasing with rate=0.25, CutMix with α=1.0, Mixup with α=0.8, AugMix, and RandAugment with
[magnitude=9, magnitude-std=0.5, layers=2]. We trained Orchid on 4xA100 GPUs for 300 epochs
and batch size of 1024.

Table C.3 summarizes architecture and training settings.
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Table C.3: Architecture and training settings for Orchid models.

ImageNet-1k CIFAR-10

Number of Orchid blocks 12 6
Hidden dimension 768 128, 220

Short Conv1d kernel size 5 3
PosEmb dimension 33 5

Patch size 16× 16 4× 4
Batch size 1024 512

Training epochs 300 500
Weight decay 0.05 0.05

Learning rate schedule Cosine decay with linear warmup Constant with linear warmup
Base learning rate 1e-3 (1e-3, 5e-3, 1e-2)

Warmup 10 epochs 500 steps
Label smoothing 0.1 0.1

Table C.4: Accuracy on the Speech Commands dataset with 10 classes. S4-M2 refers to the S4 model [24]
where dense matrices in the MLP layers are replaced with block-diagonal matrices. Baseline results are sourced
from [44], and ✘ indicates that the Transformer model could not fit in GPU memory.

Transformer Performer CKConv WaveGan-D S4 S4-M2 Orchid

✘ 30.8 71.7 96.3 97.5 97.9 97.7

C.5 Speech Classification

To evaluate the ability to learn long-range dependencies in real-world time-series data, we con-
ducted experiments on the speech classification task using the SC10 subset of the Speech Commands
dataset, which contains 10 classes. Following [29], we use the raw speech dataset with 1-second du-
ration sampled at 16000 Hz for this task. The performance results shown in Table C.4 highlight that
Orchid performs on par with the state-of-the-art model on this long sequence modeling task.

C.6 Runtime Benchmark

To assess the computational efficiency of Orchid, we benchmarked its runtime against both tradi-
tional attention layers and the optimized FlashAttention mechanism [68].The evaluation was con-
ducted on an NVIDIA A100-40GB GPU with models featuring a hidden dimension of 768 and a
batch size of 1. The empirical runtime comparisons in Figure C.4 highlights Orchid’s high scal-
ability, especially for longer sequences. Here, FlashAttention utilizes float16 precision, while
Attention and Orchid use float32. It’s worth noting that Orchid’s convolution operators utilize the
standard FFT implementation in PyTorch, and further speed improvements are anticipated with the
integration of fused CUDA kernels or FlashFFT [43].
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Figure C.4: Forward and backward runtime comparison of different attention mechanisms (FlashAttention,
Attention, and Orchid) with varying sequence lengths.
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D Implementation

1 import torch
2 import torch.nn as nn
3 from torch_dct import dct , idct
4 from einops import rearrange
5

6 class DiscreteTransform(nn.Module ):
7 def __init__(self , mode="dct", norm="ortho", dim =1):
8 super (). __init__ ()
9 self.dim = dim; self.mode = mode; self.norm = norm

10

11 def forward(self , x):
12 if self.mode == "dct":
13 return dct(x, dim=self.dim , n=x.shape[self.dim])
14 # return rearrange( dct(rearrange(x,"b l d -> b d l"), norm=self.norm), "b d l -> b l d")
15 elif self.mode == "fft":
16 return torch.fft.rfft(x, dim=self.dim)
17

18 def inverse(self , x):
19 if self.mode == "dct":
20 return idct(x, dim=self.dim , n=x.shape[self.dim])
21 elif self.mode == "fft":
22 return torch.fft.irfft(x, dim=self.dim)
23

24

25 class OrchidOperator(nn.Module ):
26 def __init__(self , d, L, d_filter =64, l_conv1d=3, dxt_mode="fft", to_out_proj=True):
27 super (). __init__ ()
28

29 self.d_model = d
30 self.seq_len = L
31

32 # setup projections
33 self.in_linear = nn.Linear(d, 3*d)
34 if to_out_proj:
35 self.out_linear = nn.Linear(d, d)
36

37 # setup short conv filter
38 width = d * 2
39 self.short_filter = nn.Conv1d(width , width ,
40 kernel_size=l_conv1d , groups=width , padding=l_conv1d -1)
41

42 # setup static conv
43 """ The implementation of static conv in Hyena (inspired by CKConv) was used.
44 A basic implementation is:
45 nn.Sequential(PositionalEmbedding(emb_dim , l),
46 nn.Linear(emb_dim ,d_filter), Sin(), nn.Linear(d_filter ,d_filter),
47 ExponentialModulation ())"""
48 self.static_conv = CKConv(d, order=d_filter , seq_len=L)
49

50 # Setup conditioning network. See shift invariant model: I
51 self.conditioning_nn = nn.Sequential(
52 nn.conv1d(d, d, l_conv1d , d, padding=l_conv1d -1),
53 DiscreteTransform(mode=dxt_mode , dim=1),
54 nn.abs(),
55 nn.conv1d(d, d, l_conv1d , d, padding=l_conv1d -1),
56 )
57

58 self.transform = DiscreteTransform(mode=dxt_mode , dim=-1)
59

60 def forward(self , x, ** kwargs ): # x is (b, l, d)
61 x = self.in_linear(x)
62 _, _, v = torch.split(x, self.d_model , dim=-1)
63 h_adapt_f = self.conv_kernel_nn(v) # Input -dependent Kernel
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64 h_0 = self.static_conv.filter(self.seq_len)
65 h_0 = rearrange(h_0 , "c l d -> c d l")
66

67 # short conv1d () filter
68 x = rearrange(x, "b l d -> b d l")
69 x = self.short_filter(x)[..., :self.seq_len]
70

71 s1 , s2 , v = x.split(self.d_model , dim =1)
72

73 y = v * s1
74 y = self.adaptive_conv(y, h_0=h_0 , h_adapt_f=h_adapt_f)
75 y = y * s2
76 y = rearrange(y,"b d l -> b l d")
77 if self.to_out_proj:
78 y = self.out_linear(y)
79 return y
80

81 def adaptive_conv(self , x, h_0 , h_adapt_f ): # x is (b, d, l)
82 h_0_f = self.transform(h_0)
83 x_f = self.transform(x)
84 y = torch.fft.irfft(x_f * (h_0_f + h_adapt_f ))
85 return y[..., :self.seqlen]

Listing 1: A basic implementation of the Orchid layer.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification:

The main claims made in the abstract and introduction are supported by the evidence pre-
sented in the paper.

Effectiveness: The experiments on in-context learning (Section 4.1), language modeling
(Section 4.2), image classification (Section 4.3), and speech command classification (Ap-
pendix C.5) demonstrate the effectiveness of Orchid.

Long sequence modeling capability: The in-context learning experiments evaluate the
model’s ability to handle long sequences, and the speech command classification task fur-
ther confirms this capability on real-world data.

Scalability: The analysis in the main text and the empirical runtime comparison in Ap-
pendix C.6 provide evidence for Orchid’s quasi-linear scalability, supporting the claim of
improved scalability compared to attention-based models.

Guidelines:
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: The paper addresses the limitations of the proposed Orchid model in several
sections. Section 6 discusses the general limitations of the model. Section 5 details the spe-
cific bottlenecks of FFT algorithms, such as suboptimal hardware utilization and slow I/O
between layers, and discusses potential solutions. Sections 3.3 and 2 discussed the com-
putational efficiency of the model. Empirical runtime comparisons with standard attention
mechanisms, presented in Appendix C.5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: The paper clearly states the assumptions and provides a proof for the shift
invariance in conditional convolution in Appendix B. We also provided the references to
relevant theorems and lemmas.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The paper provides a comprehensive description of the Orchid model ar-
chitecture, including the conditional global convolution layer and the two shift-invariant
conditioning networks, in the main text and Appendix C. Additionally, a basic Python
implementation code for the model is provided in Appendix D, further facilitating repro-
ducibility. Experimental details sufficient to reproduce the main results are also included
in the experimental section and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: We provide a basic Python implementation of the Orchid model in Appendix
D. While we did not generate new datasets for this study, we utilized publicly available
datasets that have been used in relevant baseline studies. We have cited the original sources
of these datasets and provided a detailed description of the preprocessing steps applied
in the supplemental material. This should allow others to faithfully reproduce our main
experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: the paper provides a comprehensive description of the experimental setup and
details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
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Answer: [NA] .

Justification: As in most baseline studies, the paper does not compute error bars due to
the computational constraints associated with large language models and image datasets.
However, for GLUE tasks, the performance is reported as an average across tasks, following
the methodology used in the baseline studies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We provided the compute resources used for the experiments in the Appendix
C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: We respected NeurIPS Code of Ethics.

Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: Broader impacts is included after the reference section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This work doesn’t involve data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: We used open source codes and packages together with publicly available
datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA] .

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer:[NA] .

Justification: Our work doesn’t involve research with human subjects and crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA] .

Justification: Our work doesn’t include research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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