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Abstract

Causal Temporal Representation Learning (Ctrl) methods aim to identify the tem-
poral causal dynamics of complex nonstationary temporal sequences. Despite
the success of existing Ctrl methods, they require either directly observing the
domain variables or assuming a Markov prior on them. Such requirements limit
the application of these methods in real-world scenarios when we do not have such
prior knowledge of the domain variables. To address this problem, this work adopts
a sparse transition assumption, aligned with intuitive human understanding, and
presents identifiability results from a theoretical perspective. In particular, we ex-
plore under what conditions on the significance of the variability of the transitions
we can build a model to identify the distribution shifts. Based on the theoretical
result, we introduce a novel framework, Causal Temporal Representation Learning
with Nonstationary Sparse Transition (CtrINS), designed to leverage the con-
straints on transition sparsity and conditional independence to reliably identify both
distribution shifts and latent factors. Our experimental evaluations on synthetic and
real-world datasets demonstrate significant improvements over existing baselines,
highlighting the effectiveness of our approach.

1 Introduction

Causal learning from sequential data remains a fundamental yet challenging task [[1H3]. Discovering
temporal causal relations among observed variables has been extensively studied in the literature [4-
6]. However, in many real-world scenarios such as video understanding [7], observed data are
generated by causally related latent temporal processes or confounders rather than direct causal
edges. This leads to the task of causal temporal representation learning (Ctrl), which aims to build
compact representations that concisely capture the data generation processes by inverting the mixing
function that transforms latent factors into observations and identifying the transitions that govern the
underlying latent causal dynamics. This learning problem is known to be challenging without specific
assumptions [8, 9]. The task becomes significantly more complex with nonstationary transitions,
which are often characterized by multiple distribution shifts across different domains, particularly
when these domains or shifts are also unobserved.

Recent advances in unsupervised representation learning, particularly through nonlinear Indepen-
dent Component Analysis (ICA), have shown promising results in identifying latent variables by
incorporating side information such as class labels and domain indices [L0H19]. For time-series data,
historical information is widely utilized to enhance the identifiability of latent temporal causal pro-
cesses [20H23]]. However, existing studies primarily derive results under stationary conditions [[11}[21]
or nonstationary conditions with observed domain indices [13} 22} 23]]. These methods are limited in
application as general time series data are typically nonstationary and domain information is difficult
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to obtain. Recent studies [15} 24426] have adopted a Markov structure to handle nonstationary
domain variables and can infer domain indices directly from observed data. (More related work can
be found in Appendix [S4]) However, these methods face significant limitations; some are inadequate
for modeling time-delayed causal relationships in latent spaces, and they rely on the Markov property,
which cannot adequately capture the arbitrary nonstationary variations in domain variables. This
leads us to the following important yet unresolved question:

How can we establish identifiability of nonstationary nonlinear ICA for general
sequence data without knowledge of the prior distribution of the domain variables?

Relying on observing domain variables or known Markov priors to capture nonstationarity seems
counter-intuitive, especially considering how easily humans can identify domain shifts given sufficient
variation on transitions, such as video action segmentation [27, 28] and recognition [29-31]] tasks.
In this work, we theoretically investigate the conditions on the significance of transition variability
to identify distribution shifts. The core idea is transition clustering, assuming transitions within the
same domain are similar, while transitions across different domains are distinct. Building on this
identification theorem, we propose Causal Temporal Representation Learning with Nonstationary
Sparse Transition (CtrINS), to identify both distribution shifts and latent temporal dynamics. Specifi-
cally, we constrain the complexity of the transition function to identify domain shifts. Subsequently,
with the identified domain variables, we learn the latent variables using conditional independence
constraints. These two processes are jointly optimized within a VAE framework.

The main contributions of this work are as follows: (1) To our best knowledge, this is the first
identifiability result that handles nonstationary time-delayed causally related latent temporal processes
without knowledge of the prior distribution of the domain variables. (2) We present CtrINS, a
principled VAE-based framework for recovering both nonstationary domain variables and time-
delayed latent causal dynamics. (3) Experiments on synthetic and real-world datasets demonstrate
the effectiveness of the proposed method in recovering latent variables and domain indices.

2 Problem Formulation

2.1 Nonstationary Time Series Generative Model

We first introduce a nonstationary time-series generative model in
our setting. The observational dataset is D = {x;}._;, where
x¢ € R™ is produced from causally related, time-delayed latent
components z; € R" through an invertible mixing function g:

Xt = g(2¢). (D

In the nonstationary setting, transitions within the latent space vary
over time. Define u as the domain or regime index variable, with u,
corresponding to domain variable at time step t. Assuming there are
U distinct regimes, i.e., u; € {1,2,...,U}, each regime exhibits
unknown distribution shifts. Those regimes are characterized by U
different transition functions {m, }/_,, which were originally in-
troduced in [32] through change factors to capture these distribution
shifts in transition dynamics. The ¢-th component of latent variable
Z:, is then generated via ¢-th component of transition function m:

Figure 1: Graphical model for
nonstationary causally related
time-delayed time-series data
generation process with unob-
served domain variables ;.

2t = mi (u, {205 | 2 j € Palzi)}, €ni) 2

where Pa(z;;) represents the set of latent factors directly influencing z;;, which may include
any subsetof z<; = {z,; | 7 € {1,2,...,t —1},i € {1,2,...,n}}. For analytical simplicity, we
assume that the parents in the causal graph are restricted to elements in z;_1. Extensions to higher-
order cases, which involve multistep, time-delayed causal relations, are already discussed in Appendix
S1.5 of [23]. These extensions are orthogonal to our contributions and are therefore omitted here
for brevity. Importantly, in a nonstationary context, Pa(-) may also be sensitive to the domain index
uy, indicating that causal dependency graphs vary across different domains or regimes, which will
be revisited in our later discussion on identifiability. We assume that the generation processes for
each i-th component of z, are mutually independent, given z; and u;. Consistent with the existing
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literature [23} 25]], we further assume that the noise terms ¢, ; are independent both spatially and
temporally. This assumption implies that there is no instantaneous causal influence among the latent
causal processes. The graphical model corresponding to this setting is illustrated in Figure [I]

2.2 Identifiability of Domain Variables and Latent Causal Processes

In this section we introduce the identifiability of both domain variables and time-delayed latent causal
processes in Definitions [2]and 3] respectively. If the estimated latent processes are identifiable at least
up to a permutation and component-wise invertible transformations, then the latent causal relationships
are also immediately identifiable. This follows from the fact that conditional independence relations
comprehensively characterize the time-delayed causal relations within a time-delayed causally
sufficient system, in which there are no latent causal confounders in the causal processes. Notably,
invertible component-wise transformations on latent causal processes preserve their conditional
independence relationships. We now present definitions concerning observational equivalence, the
identifiability of domain variables and latent causal processes.

Definition 1 (Observational Equivalence). Formally, consider {x;}L_, as a sequence of observed
variables generated by true temporally causal latent processes specified by (m,u, p(€), g) given in
Egs. (1) and @). Here, m and € denote the concatenated vector form across n dimensions in the latent
space. Similarly u for time steps 1 to T. A learned generative model (i, 0, p(€), &) is observationally
equivalent to the ground truth one (m,u,p(€),g) if the model distribution pe a5, &({Xt}1—1)
matches the data distribution pm u p. g({X¢}1_1) everywhere.

Definition 2 (Identifiable Domain Variables). Domain variables are said to be identifiable up to

label swapping if observational equivalence (Def. [I)) implies identifiability of domain variables up to
a permutation o for domain indices:

pﬁl,mﬁe,é({xt}tT:l) = pm,u,ps,g({xt}le) = U = U(ut)’Vt € {17 2,... 7T}' 3

Definition 3 (Identifiable Latent Causal Processes). The latent causal processes are said to be
identifiable if observational equivalence (Def. [I) leads to the identifiability of latent variables up to a
permutation 7 and component-wise invertible transformation T :

Prinape.s({XiHe1) = Pmupeg({Xito) = 8 ' (x)) =T omog H(x), Vx, €X, (4

where X denotes the observation space.

3 Identifiability Theory

In this section, we demonstrate that under mild conditions, the domain variables u; are identifiable up
to label swapping and the latent variables z; are identifiable up to permutation and component-wise
transformations. We partition our theoretical discussion into two sections: (1) identifiability of
nonstationary discrete domain variables u; and (2) identifiability of latent causal processes. We
slightly extend the usage of supp(-) to define the square matrix support and the support of a square
matrix function as follows:

Definition 4 (Matrix Support). The support (set) of a square matrix A € R™*" is defined using the
indices of non-zero entries as:

supp(A) = {(i,) | Ai; # 0} ®)
Definition 5 (Matrix Function Support). The support (set) of a square matrix function A : © — R"*™

is defined as:
supp(A(0)) == {(4,7) | 30 € ©, A(0); ; # 0} . (6)

For brevity, let M and M denote the n x n binary matrices representing the support of the Jacobian
Jm(z:) and Iy, (2,), respectively. The (i, j)-th entry of M is 1 if and only if (7, j) € supp(Im). We
further define the transition complexity using its Fréchet norm as [M| = )", j M, ;, and similarly
for M. In the nonstationary setting, this support matrix becomes a function of the domain index w,

denoted as M, and M «- Additionally, we introduce the concept of weakly diverse lossy transitions
for the data generation process, which is formally defined below:

77100 https://doi.org/10.52202/079017-2453



Definition 6 (Weakly Diverse Lossy Transition). The set of transition functions described in Eq. @)
is said to be diverse lossy if it satisfies the following conditions:

1. (Lossy) For every time and indices tuple (t,1, j) with edge z,_1; — z ; representing a
causal link defined with the parents set Pa(z, ;) in Eq. 2| transition function m; is a lossy

transformation w.r.t. z;_1 ; i.e., there exists an open set St,mﬂ changing z;_1 ; within this

set will not change the value of m;, i.e. V2114 € St ;, % =0

2. (Weakly Diverse) For every element z,_1 ; of the latent variable z,_ and its correspond-
ing children set J;; = {j | z—1,; € Pa(z;),j € {1,2,...,n}}, transition functions
{m;}jeg,.. are weakly diverse i.e., the intersection of the sets Sy ; = Njey, ,St.i,j is not

empty, and such sets are diverse, i.e., Sy ; # 0, and Sy ; ; \ St # 0,Yj € Tp..

3.1 Identifiability of Domain Variables

Theorem 1 (Identifiability of Domain Variables). Suppose that the dataset D are generated from the
nonstationary data generation process as described in Egs. (1) and @)). Suppose the transitions are
weakly diverse lossy (Def.[6) and the following assumptions hold:

i. (Mechanism Separability) There exists a ground truth mapping C : X X X — U determined
the real domain indices, i.e., uy = C(X¢—1,X¢t).

ii. (Mechanism Sparsity) The estimated transition complexity on dataset D is less than or equal

iii. (Mechanism Variability) Mechanisms are sufficiently different. For all u # u', M., # M
i.e. there exists index (i, j) such that [M.]; ; # [Mu']; ;.

to ground truth transition complexity, i.e., Ep| Mg

Then the domain variables w, is identifiable up to label swapping (Def. [2).

Theorem states that if we successfully learn a set of estimated transitions {rn, }U_,, the decoder g,

and the domain clustering assignment C, where 11, corresponds to the estimation of Eq. (2)) for a
particular regime or domain u, and the system can fit the data as follows:

%t =gomg, of '(xi—1) and d = C(xe—1,%t), )
assuming that the transition complexity is kept low (as per Assumption([i). Then the estimated domain
variables 4, must be the true domain variables u; up to a permutation.

Proof sketch The core idea of this proof is to demonstrate that the global minimum of transition
complexity can only be achieved when the domain variables u; are correctly estimated. (1) First,
we consider the case when we have an optimal decoder estimation g* which is a component-wise
transformation of the /ggound tmtll,\ incorrect estimations of u; will strictly increase the transition
complexity, i.e., Ep|M}| > Ep| M. (2) Second, we show that with arbitrary estimations 4, the
transition complexity for any non-optimal decoder estimation g will be equal to or higher than that for
the optimal g*, i.e., Ep| M| > Ep|M?|. Thus, the global minimum of transition complexity can
only be achieved when u, is optimally estimated, which must be a permuted version of the ground
truth domain variables u;. A comprehensive proof can be found in Appendix

3.2 Remark on Mechanism Variability

The assumption of mechanism variability, as stated in Assumption [ii1} requires that the Jacobian
support matrices differ across domains, indicating that the causal graph connecting past states (z;—1)
to current states (z;) must differ by at least one edge. Addressing scenarios where the causal graphs
remain identical but the transition functions associated with the edges vary is generally challenging
without imposing additional assumptions. A more detailed discussion of the difficulties involved in
such cases is provided in Appendix [ST.4.4] To effectively address these scenarios, we extend the
concept of the Jacobian support matrix by incorporating higher-order derivatives. This extension

'We implicitly assume S; ; ; together with Sy ;, St ;. ; \ St,; have non-zero measure.
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provides a more detailed characterization of the variability in transition functions across different
domains. We now present the following definition to formalize this concept:

Definition 7 (Higher Order Partial Derivative Support Matrix). The k-th order partial derivative
support matrix for transition m denoted as MP* is a binary n x n matrix with

[Mk]m =1 < Jze 2z, a;:;j

£0. ®)

We utilize the variability in the higher-order partial derivative support matrix to extend the identifia-
bility results of Theorem[I} This extension applies to cases where the causal graphs remain identical
across two domains, yet the transition functions take different forms.

Corollary 1 (Identifiability under Function Variability). Suppose the data D is generated from
the nonstationary data generation process described in (1) and [@). Assume the transitions are
weakly diverse lossy (Def.[6), and the mechanism separability assumption|[i|along with the following
assumptions hold:

V. (Mechanism Function Variability) Mechanism Functions are sufficiently different. There
exists K € N such that for all v # v/, there exists k < K, Mﬁ #+ Mﬁ/ i.e. there exists
index (i, j) such that [Mﬂ” # [Mﬁ,]”

vi. (Higher Order Mechanism Sparsity) The estimated transition complexity on dataset D is no
more than ground truth transition complexity,

K K
Ep Y [M§| <Ep Y [ME]. )
k=1 k=1

Then the domain variables u, are identifiable up to label swapping (Def-[2).

To prove this corollary, we leverage the property that, for any two distinct domains, there exists an edge
in the causal graph such that the supports of their k-th order partial derivatives differ. This difference
ensures the separability of the two domains. A detailed proof can be found in Appendix [ST.2]

3.3 Identifiability of Latent Causal Process

Once the identifiability of w; is achieved, the problem reduces to a nonstationary temporal nonlinear
ICA with observed domain index. Leveraging the sufficient variability approach proposed in [23],
we demonstrate full identifiability of the data generation process. This sufficient variability concept
is further incorporated into the following lemma, adapted from Theorem 2 in [23]:

Lemma 1 (Theorem 2 in Yao et al., [23]]). Suppose that the data D are generated from the nonsta-
tionary data generation process as described in Egs. (1) and @2)). Let i (u) denote the logarithmic
density of k-th variable in zy, i.e., ng¢ (u) = log p(2t k|Z1—1, w), and there exists an invertible function
g that maps x; to 7y, i.e., z; = g(x¢) such that the components of z; are mutually independent
conditional on z;_. (Sufficient variability) Let

0? 02 02
viou) & (G20 O] 0Tl )T (10)
024 102i—1,1 02 k02112 024 K0Zt—1,n
. P (u P (u P (u T
Vi (u) 2 (a 2”{;“( U T CO R 71C) ) . (11)
an Zt—1,1 8zt7k€)zt,1,2 8zt,kazt,1,n
Pe(2)  Pme(1) P (U) Pt (U — DN T
. nT,... Uyt - - 12
Skt (Vk,t( ) ) 7th( ) ) azik aztgk JRXED) 8Zt2,k azik ) 5 ( )
. . . Okt (2)  Omie(1)  Onie(U) Ot (U = I)NT
e DT, .. o)t — — . 13
Skt (th( ) B 7vkt( ) 5 aquk aZt,k PIREEY) 821‘,7]@ azt,k ) ( )
Suppose x, = g(z;) and that the conditional distribution p(zx|2zi—1) may change across m

domains. Suppose that the components of z; are mutually independent conditional on z;_1 in each
context. Assume that the components of z, produced by g are also mutually independent conditional
on zy_1. If the 2n function vectors sy, and Sy 1, with k = 1,2, ..., n, are linearly independent, then
Z¢ is a permuted invertible component-wise transformation of z;.
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Then, in conjunction with Theorem [T} complete identifiability is achieved for both the domain
variables u; and the independent components z;. See detailed proof in Appendix

Theorem 2 (Identifiability of the Latent Causal Processes). Suppose that the observed dataset D is
generated from the nonstationary data generation process as described in Egs. (1) and @), which
satisfies the conditions in both Theorem[I|and Lemmall} then the domain variables u, are identifiable
up to label swapping (Def.2) and latent causal process z, are identifiable up to permutation and a
component-wise transformation (Def. 3).

Discussion on Assumptions The proof of Theorem I]relies on several essential assumptions that
correspond with human intuition regarding domain transitions. First, the assumption of separability
posits that if human observers are unable to differentiate between two domains, it is improbable that
automated systems will achieve such a distinction. Second, the variability assumption requires that
the differences in transitions between domains be substantial enough to be perceptible to humans.
This often results in changes to the temporal causal structure across domains, indicating that at least
one edge in the causal graph must differ between the domains.

The mechanism sparsity is a standard assumption that has been previously explored in [33} 19} [18]]
using sparsity regularization to enforce the sparsity of the estimated function. The assumption of
weakly diverse lossy transitions is a mild and realistic condition in real-world scenarios, allowing for
identical future latent states with differing past states. The sufficient variability in Theorem[2]is widely
explored and adopted in nonlinear ICA literature [12} 22} 23|25} 26]. For a more detailed discussion
of the feasibility and intuition behind these assumptions, we refer the reader to the Appendix [ST.4]

4 The CtrINS Framework

4.1 Model Architecture

Our framework builds on VAE [34! 35]] architecture, incor- {in, @, . ..,
porating dedicate modules to handle nonstationarity. It en- / . }\
forces the conditions discussed in Sec.[3las constraints. As ~ Sparse Transition | Prior Network

shown in Fig.[2] the framework consists of three primary {m, } (A, 2,24 1)

components: (1) Sparse Transition, (2) Prior Network, and S Lsparse / \\> .
(3) Encoder-Decoder. (i, izf ) EKLDG
Sparse Transition The transition module in our frame- / \ I
work is designed to estimate transition functions {rn, }V_, Encoder Decoder €
and a clustering function C as specified in Eq. (7). As high- {x1,%2 ’f xr) Lrecon (%1, &2} &7}

lighted in Sec. [3] the primary objective of this module is
to model the transitions in the latent space and minimize Figure 2: Illustration of CtrINS with (1)
the empirical transition complexity. To achieve this, we Sparse Transition, (2) Prior Network, (3)
implemented U different transition networks for various Encoder-Decoder Module.

m (4, -) and added sparsity regularization to the transition

functions via a sparsity loss. A gating function with a (hard)-Gumbel-Softmax function was used
to generate 7., which was then employed to select the corresponding transition network my, . This
network was further used to calculate the transition loss, which is explained in detail in Sec.

Prior Network The Prior Network module aims to effectively estimate the prior distribution

o L . . R o,
P(2t,i | #:—1,1¢). This is achieved by evaluating p(; | 2¢—1, 1) = pe, (110; " (Gig, 2e,i, 2e—1)) ’ 8“;:,1_

where ﬁ’Li_l (i, -) is the learned holistic inverse dynamics model. To ensure the conditional indepen-
dence of the estimated latent variables, p(2; | z;—1 ), we utilize an isomorphic noise distribution for €
and aggregate all estimated component densities to obtain the joint distribution p(2¢ | z:—1, 4¢) as
shown in Eq. (T4). Given the lower-triangular nature of the Jacobian, its determinant can be computed
as the product of its diagonal terms. Detailed derivations is provided in Appendix [S3.1}

)

0

A1
m;
0%t

14

logp (2 | Ze—1,1:) = Y _ log p(é: | i) + Zlog‘
1=1 =1

Conditional independence ~ Lower-triangular Jacobian
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Encoder-Decoder The third component is an Encoder-Decoder module that utilizes reconstruction
loss to enforce the invertibility of the learned mixing function g. Specifically, the encoder fits the
demixing function g~ and the decoder fits the mixing function g.

4.2 Optimization

The first training objective of CtrINS is to fit the estimated transitions with minimum transition
complexity according to Eq. (7):

L"sparse = ]EDL(Ihﬁt (it—1)722)+E’D|Mﬁ|a (15)
——
Transition loss Sparsity loss

where L(-,-) is a regression loss function to fit the transition estimations, and the sparsity loss is
approximated via Lo norm of the parameter in the transition estimation functions.

Then the second part is to maximize the Evidence Lower BOund (ELBO) for the VAE framework,
which can be written as follows (complete derivation steps are in Appendix [S3.2):
T T

T
ELBO £ E,, Zlogpdam(xt | z¢) + Z log paaa (2t | Ze—1, ue) — Z log ¢4 (2t | x¢)
t=1

t=1 t=1

(16)

— LRecon —LKLD

We use mean-squared error for the reconstruction likelihood loss Lrecon- The KL divergence L p is
estimated via a sampling approach since with a learned nonparametric transition prior, the distribution
does not have an explicit form. Specifically, we obtain the log-likelihood of the posterior, evaluate
the prior logp (Z¢ | 2:—1, U¢) in Eq. (T4), and compute their mean difference in the dataset as the KL
loss: Lxip = ]Eﬁtwq(z,,\xt) log (J(it\Xt) —logp (2 \ Zi—1, ).

S Experiments

We assessed the identifiability performance of CtrINS on both synthetic and real-world datasets.
For synthetic datasets, where we control the data generation process completely, we conducted a
comprehensive evaluation. This evaluation covers the full spectrum of unknown nonstationary causal
temporal representation learning, including metrics for both domain variables and the latent causal
processes. In real-world scenarios, CtrINS was employed in video action segmentation tasks. The
evaluation metrics focus on the accuracy of action estimation for each video frame, which reflects the
identifiability of domain variables.

5.1 Synthetic Experiments on Causal Representation Learning

Evaluation Metrics For domain variables, we assessed the clustering accuracy (Acce) to estimate
discrete domain variables u;. As the label order in clustering algorithms is not predetermined,
we selected the order that yielded the highest accuracy score. For the latent causal processes, we
computed the mean correlation coefficient (IMCC) between the estimated latent variables z; and
the ground truth z,. The MCC, a standard measure in the ICA literature for continuous variables,
assesses the identifiability of the learned latent causal processes. We adjusted the reported MCC
values in Table[T]by multiplying them by 100 to enhance the significance of the comparisons.

Baselines We compared our method with identifiable nonlinear ICA methods: (1) BetaVAE [36]],
which ignores both history and nonstationarity information. (2) i-VAE [13]] and TCL [[10l], which
leverage nonstationarity to establish identifiability but assume independent factors. (3) SlowVAE
[21] and PCL [[11]], which exploit temporal constraints but assume independent sources and stationary
processes. (4) TDRL [23], which assumes nonstationary causal processes but with observed domain
indices. (5§) HMNLICA [[15]], which considers the unobserved nonstationary part in the data generation
process but does not allow any causally related time-delayed relations. (6) NCTRL [25]], which
extends HMNLICA to an autoregressive setting to allow causally related time-delayed relations in
the latent space but still assumes a Markov chain on the domain variables.

Result and Analysis We generate synthetic datasets that satisfy our identifiability conditions in
Theorems|[T]and 2] detailed procedures are in Appendix[S2.1] The primary findings are presented in
Tablem Note: the MCC metric is consistently available in all methods; however, the Acc metric for
uy is only applicable to methods capable of estimating domain variables u;.
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Table 1: Experiment results of synthetic dataset on baseline models and the proposed CtrINS. All
experiments were conducted using three different random seeds to calculate the average and standard
deviation. The best results are highlighted in bold.

Uy Method z; MCC uy Acc (%)
Ground Truth  TDRL(GT) 96.93 + 0.16 -

TCL  24.19+0.85
PCL 3846+ 685

N/A BetaVAE 4237 + 1.47 )
SIowVAE ~ 41.82 +2.55
i-VAE  81.60 +2.51

TDRL 5345 £ 1.31

HMNLICA 17.82 £30.87 13.67 £ 23.67
Estimated NCTRL 4727 £2.15 3494 +£4.20
CtrINS 96.74 £ 0.17  98.21 + 0.05

In the first row of Table[I] we evaluated a recent nonlinear temporal ICA method, TDRL, providing
ground truth u, to establish an upper performance limit for the proposed framework. The high
MCC (> 0.95) indicates the model’s identifiability. Subsequently, the table lists six baseline methods
that neglect the nonstationary domain variables, with none achieving a high MCC. The remaining
approaches, including our proposed CtrINS, are able to estimate the domain variables u; and
recover the latent variables. In particular, HMNLICA exhibits instability during training, leading
to considerable performance variability. This instability stems from HMNLICA'’s inability to allow
time-delayed causal relationships among hidden variables z;, leading to model training failure when
the actual domain variables deviate from the Markov assumption. In contrast, NCTRL, which
extends TDRL under the same assumption, demonstrates enhanced stability and performance over
HMNLICA by accommodating transitions in z;. However, since they use incorrect assumption
on the nonstationary domain variables, the performance of those methods can be even worse than
methods which do not include the domain information. Nevertheless, considering the significant
nonstationarity and deviation from the Markov properties, those methods struggled to robustly
estimate either the domain variables or the latent causal processes. Compared to all baselines, our
proposed CtrINS reliably recovers both u; (MCC > 0.95) and z; (Acc > 95%), and the MCC is on
par with the upper performance bound when domain variables are given, justifying it effectivess.

100 | U Acc  rmseeee e | Detailed Training Analysis To further validate our the-
“1"™ | oretical analysis, we present a visualization of the entire
training process for CtrINS in Figure[3] It consists of three
+  phases: (1) In Phase 1, the initial estimations for both u;
Phase 3' and z; are imprecise. 2) quing Phgse 2, the accuracy
S of the estimation of u; continues to improve, although
' : the quality of the estimation of z; remains relatively un-
AT changed compared with Phase 1. (3) In Phase 3, as u;
; becomes clearly identifiable, the MCC of z; progressively
improves, ultimately achieving full identifiability. This
three-phase process aligns perfectly with our theoretical
10 10° 10 10" step predictions. According to Theorem |1} phases 1 and 2
) ) o should exhibit suboptimal z; estimations, while sparsity
Figure 3: Visualization of three phase  ¢onstraints can still guide training and improve the accu-
training process of CtrINS. racy for domain variables u;. Once the accuracy of uy
approaches high, Theorem 2] drives the improvement in MCC for z; estimations, leading to the final
achievement of full identifiability of both latent causal processes for z; and domain variables ;.
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5.2 Real-world Application on Weakly Supervised Action Segmentation

Experiment Setup Our method was tested on the video action segmentation task to estimate actions
(domain variables u;). Following [37, 28], we use the same weakly supervised setting utilizing
meta-information, such as action order. The evaluation included several metrics: Mean-over-Frames
(MoF), the percentage of correctly predicted labels per frame; Intersection-over-Union (I0U), defined
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Table 2: Real-world experiment result on action segmentation task. We use the reported value for the
baseline methods from [28]. Best results are highlighted in bold.

Dataset Method MoF ToU TIoD
HMM+RNN [41]] - 11.9 -
CDFL [42] 45.0 19.5 25.8
TASL [40] 42.1 23.3 33
Hollywood = 1 oo - 13.9 -
ATBA [28]] 47.7 28.5 44.9

CtrINS (Ours) 529131 327413 5244113
NN-Viterbi 26.5 10.7 24.0

CDFL 319 115 238

TASL [40] 07 145 251
CrossTask POC 28 156 ;

ATBA [28] 506 157 246

CtrINS (Ours)  54.0109 15.7+05 23.6+0s

as [INI*|/|TUI*|; and Intersection-over-Detection (IoD), |INI*|/|1
segment and the predicted segment with the same class.

, I'* and I are the ground-truth

Datasets Our evaluation used two datasets: Hollywood Extended [38]], which includes 937 videos
with 16 daily action categories, and CrossTask [39]], focusing on 14 of 18 primary tasks related to
cooking [40], comprising 2552 videos across 80 action categories.

Model Design Our model is build on top of ATBA method which uses multi-layer transformers
as backbone networks. We add our sparse transition module with the sparsity loss function detailed
in Sec. Specifically, we integrated a temporally latent transition layer into ATBA’s backbone,
using a transformer layer across time axis for the Hollywood dataset and an LSTM for the CrossTask
dataset. To encourage sparsity in the latent transitions, Lo regularization is applied to the weights of
the temporally latent transition layer.

Result and Analysis The primary outcomes for
real-world applications in action segmentation are y
summarized in Table 2] Traditional methods based i i

on hidden Markov models, such as HMM+RNN [41]]
and NN-Viterbi [43]], face challenges in these real-
world scenarios. This observation corroborates our ATBA
previous discussions on the limitations of earlier iden- ours
tifiability methods [[15], 24] 23], which depend on the
Markov assumption for domain variables. Our ap-

proach significantly outperforms the baselines in both
the Hollywood and CrossTask datasets across most
metrics. Especially in the Hollywood dataset, our

method outperforms the base ATBA model by quite a
large margin. Notably, the Mean-over-Frames (MoF)
metric aligns well with our identifiability results for ATBA
domain variables u;. Our method demonstrates sub-
stantial superiority in this metric. For Intersection-
over-Union (IoU) and Intersection-over-Detection
(IoD), our results are comparable to those of the base-
line methods in the CrossTask dataset and show its
superiority in the Hollywood dataset. Furthermore,
our proposed sparse transition module which aligns
with human intuition and is easily integrated into ex-
isting methods like a plug-in module, thus further
enhancing its impact in real-world scenarios.

Ground Truth

|

Time Steps

Ground Truth

Ours

iii

Time Steps

Figure 4: Two illustrative visualizations of the
action segmentation task on the Hollywood
dataset are presented. The colors represent the
ground truth and the predicted action labels
for each frame, as produced by the baseline
ATBA and our proposed CtrINS.

To make the illustration more straightforward, some example segmentation results from the Hol-
lywood dataset are visualized in Figure ] By comparing the number of distinct actions and the
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segmentation boundaries between our method and the baseline, it is evident that our CtrINS estimates
the actions more accurately, demonstrating improved performance.

Table 3: Ablation study on sparse transition Abalation Study Furthermore, we conducted an

module in Hollywood dataset. ablation study on the sparse transition module, as
detailed in Table[3| In this study, we test on a subset

Method MoF 1IoU IoD of Hollywood dataset for computational efficiency.
CtrINS 529 327 524 For methods we compared, “- Complexity” refers to

- Complexity  50.5 31.5 51.5 the configuration where we retain the latent transi-

- Module 477 285 44.9 tion layers but omit the sparse transition complexity

regularization term from these layers, and “- Module”
indicates the removal of the entire sparse transition module, effectively reverting the model to the
baseline ATBA model. The comparative results in Table [3|demonstrate that both the dedicated design
of the sparse transition module and the complexity regularization term enhance the performance.

6 Conclusion

In this study, we developed a comprehensive identifiability theory tailored for general sequential
data influenced by nonstationary causal processes under unspecified distributional changes. We then
introduced CtrINS, a principled approach to recover both latent causal variables with their time-
delayed causal relations, as well as determining the values of domain variables from observational data
without relying on distributional or structural prior knowledge. Our experimental results demonstrate
that CtrINS can reliably estimate the domain indices and recover the latent causal process. And such
module can be easily adapted to handle real-world scenarios such as action segmentation task.

7 Limitations

As noted in Sec.[3.2] our main theorem relies on the condition that causal graphs among different
domains must be distinct. Although our experiments indicate that this assumption is generally
sufficient, there are scenarios in which it may not hold, meaning that the transition causal graphs
are identical for two different domains, but the actual transition functions are different. We have
addressed this partially through an extension to the mechanism variability assumption to higher-order
cases (Corollary[T). However, dealing with situations where transition graphs remain the same across
all higher orders remains a challenge. We acknowledge this as a limitation and suggest it as an
area for future exploration. We also observed that the random initialization of the nonlinear ICA
framework can influence the total number of epochs needed to achieve identifiability, as illustrated
in Figure |3} Also, for the computational efficiency, the TDRL framework we adopted involves a
prior network that calculated each dimension in the latent space one by one, thus making the training
efficiency suboptimal. Since this is not directly related to major claim which is our sparse transition
design, we acknowledge this as a limitation and leave it for future work.

8 Boarder Impacts

This work proposes a theoretical analysis and technical methods to learn the causal representation
from time-series data, which facilitate the construction of more transparent and interpretable models
to understand the causal effect in the real world. This could be beneficial in a variety of sectors,
including healthcare, finance, and technology. In contrast, misinterpretations of causal relationships
could also have significant negative implications in these fields, which must be carefully done to
avoid unfair or biased predictions.
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S1 Identifiability Theory

S1.1  Proof for Theorem 1]
We divide the complete proof into two principal steps:

1. Firstly, assuming access to the optimal mixing function estimation g*, we demonstrate
that under the conditions in our theorem, the estimated clustering result will align with the
ground truth up to label swapping. This alignment is due to the transition complexity with
optimal 4} and g* being strictly lower than that with non-optimal 4 but still optimal g*.

2. Secondly, we generalize the results of the first step to cases where the mixing function
estimation g is suboptimal. We establish that for any given clustering assignment, whether
optimal or not, a suboptimal mixing function estimation g can not result in a lower transition
complexity. Thus, the transition complexity in scenarios with non-optimal g will always be
at least as high as in the optimal case.

From those two steps, we conclude that the global minimum transition complexity can only be
attained when the estimation of domain variables 4; is optimal, hence ensuring that the estimated
clustering must match the ground truth up to label swapping. It is important to note that this condition
alone does not guarantee the identifiability of the mixing function g. Because a setting with optimal
4y and a non-optimal g may exhibit equivalent transition complexity to the optimal scenario, but it
does not compromise our proof for the identifiability of domain variables u;. Further exploration of
the mixing function’s identifiability g is discussed in Theorem [2)in the subsequent section.

S1.1.1 Identifiability of C under optimal g*

We fist introduce a lemma for this case when we can access
an optimal mixing function estimation g*.

Lemma S1 (Identifiability of C under optimal g*). In addi-
tion to the assumptions in Theorem(l] assume that we can also
access an optimal estimation of g, denoted by g*, in which the
estimated Z, is an invertible, component-wise transformation
of a permuted version of z;. Then the estimated clustering ¢
must match the ground truth up to label swapping. Figure S1: Illustration of C incor-

rectly assigning two different domain
Proof. In the first case we deal with optimal estimation g* subsets of inputs A and B into the
in which the estimated z; is an invertible, component-wise same . The black lines represent the
transformation of a permuted version of z,, but inaccurate es- ground truth partition of C and the

timated version of C, Consider the following example (Figure ~orange line represent the incorrect do-
[ST): main partition for set A and B.

With slight abuse of notation, we use C(A) to represent the domain assigned by C to all elements in
A, and all elements in A have the same assignment. The same argument applies to B.

Then, for an estimated C, if it incorrectly assigns two subsets of input A and B to the same @ (Figure
orange circle), i.e.,

C(A)=i#j=C(B) but C(A)=C(B)=k. (17)

Note that if the ground truth C gives a consistent assignment for A and B but estimated C gives
diverse assignments, i.e.

C(A)=i#j=C(B) but C(A)=C(B)=k, (18)

it is nothing but further splitting the ground truth assignment in a more fine-grained manner. This
scenario does not break the boundaries of the ground truth assignments. Consider two cases in the
estimation process:

1. If the number of allowed regimes or domains exceeds that of the ground truth, such more

fine-grained assignment is allowed. The ground truth can then be easily recovered by
merging domains that share identical Jacobian supports.
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2. If the number of regimes or domains matches the ground truth, it can be shown that the
inconsistent scenario outlined in Eq. (I7)) must occur.

Given that these considerations do not directly affect our approach, they are omitted from further
discussion for brevity.

00 1 0 101 0 1 01 0
1 1 0 0 11 0 0 o 11 0 0
Mi=19 00 1] M=o o0 1] M=]o o0 01
0 0 1 0 0 0 1 0 0 010
Figure S2: Comparison of matrices M;, M, and M k. The elements in red highlight the differences

between them.

Then considering the case in Eq. the estimated transition must cover the functions from both A
and B, then the learned transition ri, must have Jacobian J 4, with support matrix M;, = M;+M;
which is the binary addition of M; and M, such that for all indices in M;, M if any of these
two is 1, then the corresponding position in M, must be 1. That is because if that is not the case,

for example, the (a, b)-th location for M;, M, and M, are 1, 0, and 0. Then we can easily find
an input region for the (a, b)-th location such that a small perturbation can lead to changes in m;
but not in m; nor my,, which makes 1y, unable to fit all of the transitions in A U B which cause
contradiction. See the three matrices in Figure[S2]for an illustrative example.

By assumption fii1} since all those support matrix differ at least one spot, which means the estimated
version is not smaller than the ground truth.
My = |M;| and  [My| > [ M, (19)
and the equality cannot hold true at the same time.
Then from Assumption (i), the expected estimated transition complexity can be expressed as:
ED|M’&‘ = /XXXPD(Xt_l, Xt) . |Mé(xt71,xt) ‘ dXt_l ClXt. (20)

Similarly for ground truth one:
BolMul = [ pplxio1,xi) - [Mogs, .o ki1 dxi @
XxX

Let us focus on the integral of the region A U B, the subset of X x X mentioned above. If for some
area pp(x¢—1, X¢) = 0, then the clustering under this area is ill defined since there is no support from
data. Hence we only need to deal with supported area. For area that pp(x;—1,%;) > 0 and from
Eq. the equality cannot hold true at the same time, then the estimated version of the integral is
strictly larger than the ground-truth version for any inconsistent clustering as indicated in Eq. (T7).

For the rest of regions in X x X, any incorrect cluster assignment will further increase the M with
same reason as discussed above, then the estimated complexity is strictly larger than the ground truth
complexity:

ED|M{L| > ED|MU| (22)

But assumption (1)) requires that the estimated complexity be less than or equal to the ground truth.
Contradiction! Hence, the estimated C must match the ground truth up to label swapping. O

S1.1.2 Identifiability of C under arbitrary g
Now we can leverage the conclusion in Lemma|[ST|to show the identifiability of domain variables
under arbitrary mixing function estimation.

Theorem S1 (Identifiability of Domain Variables). Suppose that the data D are generated from the
nonstationary data generation process as described in Egs. (1)) and @)). Suppose the transitions are
weakly diverse lossy (Def.[6) and the following assumptions hold:
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i. (Mechanism Separability) There exists a ground truth mapping C : X x X — U determined
the real domain indices, i.e., uy = C(X¢—1,X¢)-

ii. (Mechanism Sparsity) The estimated transition complexity on dataset D is less than or equal

iii. (Mechanism Variability) Mechanisms are sufficiently different. For all u # u', M., # M
i.e. there exists index (i, j) such that [M.]; ; # [Mu]; ;.

Then the domain variables u is identifiable up to label swapping (Def- [2).

Proof. To demonstrate the complete identifiability of C, independent of the estimation quality of g,

we must show that for any arbitrary estimation C # o(C), the induced M, for inaccurate estimation
g has a transition complexity at least as high as in the optimal g* case. If this holds, from Lemma [ST]

we can conclude that the transition complexity of optimal C*r = o(C) and optimal g* is strictly
smaller than any non-optimal C and any g.

Suppose the estimated decoder and corresponding latent variables are g and Z;, respectively, then the
following relation holds:

g"(z) = 8(2¢). (23)
Since g is invertible, by composing g~ on both sides, we obtain:
gl og (m) =8 0 &) 24
Let
h=g log* (25)
we then have:
h(z}) = 2. (26)

We aim to demonstrate that under this transformation, if h is not a permutation and component-wise
transformation, the introduced transition complexity among estimated z will not be smaller than the
optimal g*.

Proposition S1. S Suppose

dimensions from Mo /\/l* there must exist an index pair (i, j) such that ./\/l i,j = Oand M
1.

o(i),0() —

Proof. An intuitive explanation for this proposition involves the construction of a directed graph

G = (Vg Exgp.). where Vi, = {1,2,...,n} and Eq. = {(i,j) | M}, = 1}. A similar

construction can be made for G ;. It is straightforward that |/\7*| = |E i |, which represents
the number of edges. Consequently, M | < |.K4\*| implies that G g7, has more edges than G 5.
Since there is no pre-defined ordering information for the nodes in these two graphs, if we wish to
compare their edges, we need to first establish a mapping. However, if |E K/t\| < |E . |, no matter
how the mapping o is constructed, there must be an index pair (3, j) such that (7, j) ¢ E g but
(a(i) o(j)) € Eg.. Otherwise, if such an index pair does not exist, the total number of edges
in G 57 would necessarlly be greater than or equal to that in G g7, contradicting the premise that

M| < [ M. 0

Lemma S2 (Non-decreasing Complexity). Suppose transitions are weakly diverse lossy as defined
in Def. @and an invertible transformation h maps the optimal estimation Z} to the estimated Z., and
it is neither a permutation nor a component-wise transformation. Then, the transition complexity on
the estimated z. is not lower than that on the optimal zy, i.e.,

(M| = [M7].
Proof. The entire proof is based on contradiction. In Figure [S3] we provide an illustrative example.

Note that the mapping from ground truth z; to optimal estimation z; is a permutation and element-
wise transformation, it does not include mixing, and hence e; exists if and only if € exists. Therefore,

| M*| = | M|. The core of the proof requires us to demonstrate that | M| < | M| cannot be true.
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(a) Transition graph for ground truth z; and opti- (b) Transition graph for ground truth z; and arbi-
mal estimation z; trary estimation Z;

Figure S3: A partial observation of the transition graph among ground truth z;, optimal estimation
z; and arbitrary estimation z;. For brevity, the index permutation is assumed to be identity, i.e.,
o(i) =1.

Suppose the transitions are weakly diverse lossy as defined in Def. @, then for each edge z;,; — 2415
in the transition graph, there must be a region of z;; such that only z;41 ; is influenced by 2 ;.
Consequently, the corresponding ;11 ; and 2,41 ; are not independent, since no mixing process can
cancel the influence of z; ;. Therefore, the edge 2; ; — 2¢11,; in the estimated graph must exist.

Note that without the weakly diverse lossy transition assumption, this argument may not hold. For
example, if 2,11 ; can be expressed as a function that does not depend on z; ;, then even though the
edge z;; — 2141,5 exists, the estimated edge 2, ; — £¢11,; may not exist. This could occur if, after
the transformation h, the influences in different paths from z; ; to Z;41 ; cancel out with each other.

Necessity Example An example that violates the assumption is as follows:

Zt41,4 = Zti t €41,
Zt41,j = 2t T €t41,5
ZA“i = Z;
ZA,’j =2~ Zj
Here, the mapping from z to z is invertible. Writing down the mapping from z; to z, 1, particularly
for 2411 5, yields:

Ziv1,; = (2 + e41,4) — (20 + €041,5)

= €t+1,5 — €t+1,5

Clearly, this is independent of Z; ;. Hence, in this scenario, the edge on the estimated graph does not
exist. This explains the necessity for the weakly diverse lossy transition assumption. Furthermore,
it can be seen that violating the weakly diverse lossy transition assumption would require a very
specific design, such as the transition in an additive noise case and the transition on z being linear,
which is usually not the case in real-world scenarios. Generally, this requires that the influences from
different paths from z; ; to Z; 1 ; cancel each other out, a condition that is very challenging to fulfill
in practical settings.

Permutation Indexing One may also ask about the permutation of the index between z; and z;.
Since the transformation h is invertible, the determinant of the Jacobian should be nonzero, implying
the existence of a permutation ¢ such that

(i,0(2)) € supp(Jn), Vi € [n].

Otherwise, if there exists an ¢ such that [J];. = 0 or [Jn].; = 0, such a transformation cannot be
invertible. We can utilize this permutation ¢ to pair the dimensions in z; and z;.

Since each ground-truth edge is preserved in the estimated graph, by Proposition[ST] the inequality
| M| < |M*| cannot hold true. Thus, the lemma is proved. O
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Then, according to this lemma, the transition complexity | M

of the learned m should be greater

than or equal to | M|, which is the complexity when using an accurate estimation of g*. This
relationship can be expressed as follows:

(Mal| > | M.

By Lemma the expected complexity of the estimated model ED|M7§| is strictly larger than that
of the ground truth Ep|M,,|. This implies the following inequality:

Ep|Mg| > Ep|M%| > Ep|M,|. Q27)

However, Assumption (i) requires that the estimated complexity must be less than or equal to the
ground-truth complexity, leading to a contradiction. This contradiction implies that the estimated

€ must match the ground truth up to label swapping. Consequently, this supports the conclusion of
Theorem 11 O

S1.2  Proof of Corollary ]|

Corollary S1 (Identifiability under Function Variability). Suppose the data D is generated from
the nonstationary data generation process described in (1) and (2). Assume the transitions are
weakly diverse lossy (Def.[6)), and the mechanism separability assumption[ijalong with the following
assumptions hold:

V. (Mechanism Function Variability) Mechanism Functions are sufficiently different. There
exists K € N such that for all u # v/, there exists k < K, M~ £ MF, i.e. there exists
index (i, j) such that [./\/lfﬂ” # [Mﬁ/]”

vi. (Higher Order Mechanism Sparsity) The estimated transition complexity on dataset D is no
more than ground truth transition complexity,

K K

Ep Y | M| <Epy_ M. (28)

k=1 k=1

Then the domain variables u; are identifiable up to label swapping (Def-[2).

Proof. With a strategy similar to the proof of Theorem [, we aim to demonstrate that using an

incorrect cluster assignment C will result in Zf: 1 M Z being higher than the ground truth, thereby
still enforcing the correct u;.

Differing slightly from the approach in Theorem 1] in this setting, we will first demonstrate that under
any arbitrary C assignment, the estimated complexity is no lower than the complexity in the ground

truth, i.e.. S5 |MF| > K IMEL

First, we address the scenario where two different domains have the same transition graph but with
different functions, as otherwise, the previous lemma still applies. In cases where the same
transition causal graph exists but the functions differ, assumption [v| indicates that there exists an
integer k such that M% # M¥, meaning the ground truth support matrices are different. However,
due to incorrect clustering, the learned transition must cover both cases. To substantiate this claim,
we need to first introduce an extension of the non-decreasing complexity lemma.

Lemma S3 (Non-decreasing Complexity under Mechanism Function Variability). Suppose there
exists an invertible transformation h which maps the ground truth z, to the estimated z,, and it is
neither a permutation nor a component-wise transformation. Then, the transition complexity on the
estimated 7, is not lower than that on the ground truth z,, i.e.,

K e K
SO = T mE

k=1 k=1
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Proof. We can extend the notation of the edges e to the higher-order case e” to represent the existence

k
68 ;:kh .
transition assumption, it is always possible to find a region where the influence in e” cannot be
canceled in é*. In this region, the mapping from z; to 2; can be treated as a component-wise
transformation, since the influence of z other than z; is zero due to the lossy transition assumption.
It is important to note that there is also an indexing permutation issue between z; and Z;; the same
argument in the permutation indexing part of the proof of lemma[S3|applies.

Under the weakly diverse lossy
k

of a non-zero value for the k-th order partial derivative

Since MP represents the support of the k-th order partial derivative, this implies that [M*]; ; = 1
implies [M*];; = 1 for all ¥ < k. We aim to show that if for the transition behind edge
Ztj — Zt+1,» there exists a K such that [Mﬁ]l ; are different for two domains, then one of them
must be a polynomial with order K — 1. For this domain, [M¥]; ; = 1whenk = 1,2,..., K — 1
and [MZ¥]; ; = 0 when k > K.

To demonstrate that the non-decreasing complexity holds, we need to show that after an invertible

transformation h to obtain the estimated version, [MZ¥]; ; cannot be zero for k < K — 1, which can
be shown with the following proposition.

Proposition S2. Suppose f is a polynomial of order k with respect to x. Then, for any invertible

smooth function h, the transformed function f := h~' o f o h cannot be expressed by a polynomial
of order k!, when k' < k.

Proof. Let’s prove it by contradiction. Suppose f = h™! o f o h can be expressed as a polynomial
of order k' < k. It follows that the function f(x) = C has k' roots (repeated roots are allowed), since

h is invertible. Therefore, h o f(x) = h(C) also has the same number of &’ roots. By definition,

ho f = foh,whichmeans foh = h(C) has k' roots. However, since h is invertible, or equivalently
it is monotonic, the equation f o h = h(C) having &’ roots implies that f(z) = C’ has roots k’.
Yet, since f is a polynomial of order k, it must have k roots, contradicting the fundamental theorem
of algebra, which means that they cannot have the same number of roots. Hence, the proposition
holds.

The advantage of support matrix analysis is that, provided there exists at least one region where the
support matrix is non-zero, the global version on the entire space will also be non-zero. Based on the
definition of diverse lossy transition in Def.[6] it is always possible to identify such a region where
for an edge z;; — z¢+1,j, the mapping from z;41 ; t0 2311 ; can be treated as a component-wise
relationship. This is because no other variables besides z;41,; change in conjunction with 2; ; to
cancel the effect. Therefore, proposition [S2) applies, and as a result, the complexity is nondecreasing.
Thus, the lemma is proved. O

With this lemma, we have shown that for an arbitrary incorrect domain partition result, the induced
ground-truth transition complexity is preserved after the invertible transformation h. This partition
effectively combines two regions, as illustrated in Figures[ST|and [S4] Consequently, the transition
complexity has the following relationship:

ME = MF 4+ ME,.

Here, u and v’ represent the ground-truth values of the domain variables, and @ denotes the estimated
version, defined as the binary addition of the two ground truths.

By assumption the two ground truth transitions’ complexity M*, M ﬁ/ are different, then with the
same arguments in the proof of the lemma|[ST] we can show that the expected transition complexity
with wrong domain assignment over the whole dataset is strictly larger than the ground truth com-
plexity with correct domain assignment. And it is easy to see that when the estimated latent variables
are equal to the ground truth, z, = z, then the lower bound is achieved when the estimated domains
are accurate. Note that this argument is not a sufficient condition to say that the estimated z; is
exactly the ground truth z; or an optimal estimation of it, since there can be other formats of mapping
from z; to z, that generate the same complexity. But this is sufficient to prove that by pushing the
complexity to small, the domain variables u, must be recovered up to label swapping. This concludes
the proof. O
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S1.3  Proof of Theorem 2]

Theorem S2 (Identifiability of the Latent Causal Processes). Suppose that the data D is generated
from the nonstationary data generation process (1), (2), which satisfies the conditions in Theorem([l|
and Lemmal(l| then the domain variables u, are identifiable up to label swapping (Def.[2) and latent
variables z; are identifiable up to permutation and a component-wise transformation (Def. 3).

Proof. From Theorem [T} the domain variables u; are identifiable up to label swapping, and then use
the estimated domain variables in Lemma the latent causal processes are also identifiable, that is,
z; are identifiable up to permutation and a component-wise transformation. O

S1.4 Discussion on Assumptions

S1.4.1 Mechanism Separability

Note that we assume that there exists a ground truth mapping C : X x & — U, gives a domain
index based on x;_1,x;. The existence of such mapping means that the human can tell what the
domain is based on two consecutive observations. If two observations are not sufficient, then it can be
modified to have more observation steps as input, for example X< or even full sequence x[;.7y. If the
input has future observation, which means that x; is included, then this is only valid for sequence
understanding tasks in which the entire sequence will be visible to the model when analyzing the
time step t. For prediction tasks or generation tasks, further assumptions on C such as the input
only contains x; should be made, which will be another story. Those variants are based on specific
application scenarios and not directly affect our theory, for brevity, let us assume the two-step case.

S1.4.2 Mechanism Sparsity

This is a rather intuitive assumption in which we introduce some form of sparsity in the transitions,
and our task is to ensure that the estimated transition maintains this sparsity pattern. This requirement
is enforced by asserting an equal or lower transition complexity as defined in Assumption i} Similar
approaches, grounded in the same intuition, are also explored in the reinforcement learning setting,
as discussed in works by Lachapelle et al. [18] and Hwang et al. [45]. The former emphasizes
the identifiability result of the independent components, which necessitates additional assumptions.
In contrast, the latter focuses on the RL scenario, requiring the direct observation of the latent
variables involved in the dynamics, which leaves significant challenges in real-world sequence-
understanding tasks, where the states are latent. Some studies have also explored the application of
sparsity constraints on the estimated latent representations [46]. And it is also extensively discussed
in the nonlinear ICA literature [33}19], in which such a sparsity constraint was added to the mixing
function.

S1.4.3 Mechanism Variability

The assumption of mechanism variability requires that causal dynamics differ between domains,
which requires at least one discrete edge variation within the causal transition graphs. This assumption
is typically considered reasonable in practical contexts; humans identify distinctions between domains
only when the differences are substantial, which often involves the introduction of a new mechanism
or the elimination of an existing one. Specifically, this assumption requires a minimal alteration, a
single edge change in the causal graph, to be considered satisfied. Consequently, as long as there are
significant differences in the causal dynamics among domains, this criterion is fulfilled.

S1.44 Mechanism Function Variability

In this section, we will further discuss the mechanism function variability introduced in Corollary [I]
One might question the necessity of this assumption. To illustrate this issue, we claim that if we only
assume that the mechanism functions differ across domains but without this extended version of the
variability assumption, i.e., for u # ', m,, # m,, then under this proposed framework, the domain
variables u; are generally unidentifiable.

In Figure [S4} we present a simple example of the space of z,,; given a fixed z;. For the sake of
brevity, assume that there are two domains. By the mechanism separability assumption|i, the space Z
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of z;41 is divided into two distinct parts, each corresponding to one domain. In this illustration, C
denotes the partition created by the ground truth transition function:

ml(zt,e) ifutJrl = ].,
= 29
e {mg(zt, €) ifuppq =2. 29)

Then the question arises: when the domain assignment
is incorrect, that is, C # C, can we still get the same
observational distributions, or equivalently, can we obtain
the same distribution for z; 1 ?

The answer is yes. For the ground truth transition,
my(z;,e) € AUC and my(zs,¢) € BU D. In the
case of an incorrect partition C, it is sufficient to have
m; (z,,€) € AU B and (2, €) € C'U D. Ensuring that
the conditional distribution p(z¢+1 | z;) is matched every-
where, we can create two different partitions on domains, Figure S4: Correct domain separation
yet still obtain exactly the same observations. That makes C and incorrect domain separation C of
the domain variables u; unidentifiable in the general case. z;,;, given a fixed z;.

How does the previous mechanism variability assumption work? In the assumption of mecha-
nism variability (Assumption i), the support matrices of the Jacobian of transitions across different
domains differ. Consider a scenario where the ground truth partition is C, denoted by A, C' | B, D. If

an incorrect estimation occurs, where our estimated partition is C, represented as A, B | C, D, then
the estimated transition in domain one should cover the transitions in both A and B, and similarly for
the second domain. This leads to an increase in complexity within the estimated Jacobian support
matrix, as discussed in the previous sections. Consequently, this complexity forces the sets B and C'

to be empty, resulting in C converging to C.

How about mechanism function variability? Roughly speaking, and as demonstrated in our
experiments, the mechanism variability assumption previously discussed is already sufficient to
identify domain changes in both synthetic and real-world settings. This sufficiency arises because the
assumption only requires a single differing spot, even though some transition functions behind some
edges may persist across different domains. As long as there is one edge spot that can separate the
two domains, this condition is met. In the relatively rare case where all edges in the causal dynamic
transition graphs are identical across two different domains and only the underlying functions differ,
we can still demonstrate identifiability in this scenario by examining differences in the support of the
higher-order partial derivative matrices.

S1.4.5 Weakly Diverse Lossy Transition

The weakly diverse lossy transition assumption requires that each variable in the latent space can
potentially influence a set of subsequent latent variables, and such transformations are typically
non-invertible. This implies that given the value of z;, 1, it is generally challenging to precisely
recover the previous z;; equivalently, this mapping is not injective. Although this assumption requires
some explanation, it is actually considered mild in practice. Often in real-world scenarios, different
current states may lead to identical future states, indicating a loss of information. The “weakly diverse”
of this assumption suggests that the way information is lost varies between different dimensions,
but there is some common part among them, hence the term “weakly diverse”. In the visualization
example shown in Figure [d we can clearly see this pattern, in which the scene is relatively simple
and it is very likely that in two different frames, the configuration of the scene or the value of the
latent variables are the same but their previous states are completely different.

S2 Experiment Settings

S2.1 Synthetic Dataset Generation

The synthetic dataset is constructed in accordance with the conditions outlined in Theorems [I]and 2}
Transition and mixing functions are synthesized using multilayer perceptrons (MLPs) initialized with
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random weights. The mixing functions incorporate the LeakyReLU activation function to ensure
invertibility. The dataset features five distinct values for the domain variables, with both the hidden
variables z; and the observed variables x; set to eight dimensions. A total of 1,000 sequences of
domain variables were generated. These sequences exhibit high nonstationarity across domains,
which cannot be captured with a single Markov chain. This was achieved by initially generating two
distinct Markov chains to generate two sequences of domain indices. Subsequently, these sequences
were concatenated, along with another sequence sampled from a discrete uniform distribution over
the set {1, 2,3, 4,5}, representing the domain indices.

For each sequence of domain variables, we sampled a  Taple S1: Synthetic Dataset Statistics
batch size of 32 sequences of hidden variables z; begin-

ning from a randomly initial.ized initial state zg. .These Property Value
sequences were generated using the randomly initialized

multilayer perceptron (MLP) to model the transitions. Npmber. of State 5
Observations x; were subsequently generated from z; Dimension of z; 8
using the mixing function as specified in Eq.[I] Both Dimension of x; 8
the transition functions in the hidden space and the mix- Number of Samples 32,000
ing functions were shared across the entire dataset. A Sequence Length 15

summary of the statistics for this synthetic dataset is pro-
vided in Table[ST] For detailed implementation of this data generation process, please refer to our
accompanying code in Sec. [S3.3]

S2.2 Real-world Dataset

Hollywood Extended The Hollywood [38] dataset contains 937 video clips with a total of 787,720
frames containing sequences of 16 different daily actions such as walking or sitting from 69 Hol-
lywood movies. On average, each video comprises 5.9 segments, and 60.9% of the frames are
background.

CrossTask The CrossTask [39] dataset features videos from 18 primary tasks. According to
[40], we use the selected 14 cooking-related tasks, including 2552 videos with 80 action categories.
On average, each video in this subset has 14.4 segments, with 74.8% of the frames classified as
background.

S2.3 Mean Correlation Coefficient

MCC, a standard metric in the ICA literature, is utilized to evaluate the recovery of latent factors.
This method initially computes the absolute values of the correlation coefficients between each
ground truth factor and every estimated latent variable. Depending on the presence of component-
wise invertible nonlinearities in the recovered factors, either Pearson’s correlation coefficients or
Spearman’s rank correlation coefficients are employed. The optimal permutation of the factors is
determined by solving a linear sum assignment problem on the resultant correlation matrix, which is
executed in polynomial time.

S3 Implementation Details

S3.1 Prior Likelihood Derivation

Let us start with an illustrative example of stationary latent causal processes consisting of two time-
delayed latent variables, i.e., z; = [#1,4, 22,4], i.€., 2;x = m;(z;—1, €;¢) with mutually independent
noises, where we omit the u; since it is just an index to select the transition function m;. Let us write
this latent process as a transformation map m (note that we overload the notation m for transition
functions and for the transformation map):

21,t—1 Z1,t—1
22,t—1 22,t—1
A = m -t . (30)
21,t €1,t
22t €2t
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By applying the change of variables formula to the map m, we can evaluate the joint distribution of
the latent variables p(21,1—1, 22.t—1, 21,1, 22.¢) aS:

P(21,1-15 22,41, 21,45 22,4) = P(21,4-1, 22,1—1, €1,¢, €2,¢)/ |det Tm | , (31)

where Jy, is the Jacobian matrix of the map m, which is naturally a low-triangular matrix:

1 0 0 0
0 1 0 0
Jm = 0z1 4 Oz1 ¢ Oz1,t
Oz1,4—1  Oza4_1 €1t 0
822‘t 322,t O 3z2,t
Oz1,t—1 Oza,t—1 Oea,t

Given that this Jacobian is triangular, we can efficiently compute its determinant as [ [, gz: . Fur-

thermore, because the noise terms are mutually independent, and hence ¢; ; L €; for j # ¢ and
€ L z;_1, we can write the RHS of Eq.[31]as:

(21,01, 22,0—1, 21,05 22,¢) = P(21,0-1, 22,0—1) X D(€1,¢, €2,¢)/ |[det Tp|  (because €, L z;,_1)
=p(z1,4-1, 22,1-1) X Hp(ei,t)/ |det Jpm| (because €14 L €a)
i
(32)

Finally, by canceling out the marginals of the lagged latent variables p(z1 ;—1, 22 ¢—1) on both sides,
we can evaluate the transition prior likelihood as:

Pz 220 | 2101, 220-1) = [ [ pleir)/ |det Tm| = [ [ plein) x [det T (33)
i i

Now we generalize this example and derive the prior likelihood below.

Let {rn; l}i:1’273m be a set of learned inverse transition functions that take the estimated latent
causal variables, and output the noise terms, i.e., € ; = m;l (i, Zit, Ze—1).

Design transformation A — B with low-triangular Jacobian as follows:

I, 0
[it,hit}T mapped to [itfhét]T, withJasp = | | di om; ; . (34)
T T ag 924

Similar to Eq.[33} we can obtain the joint distribution of the estimated dynamics subspace as:

logp(A) =logp (2:-1) + »_ logp(éie) +log (|det (Ja—B)|)- (35)

Jj=1

Mutually independent noise

) R n A n 8
logp (2 | 2e—1,us) = Y logpléie | ue) + Zlog)
=1 i=1

-1
m;
0Zi

. (36)

S3.2 Derivation of ELBO

Then the second part is to maximize the Evidence Lower BOund (ELBO) for the VAE framework, which can be
written as:
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T T T
=Ez, | Y logpasa(xe | 2e) + Y log paa(ze | 2e-1,ue) — ) log oz | x2)
t=1

t=1 t=1

— LRecon —LKkLD

(37

S3.3 Reproducibility

All experiments are performed on a GPU server with 128 CPU cores, 1TB memory, and one NVIDIA L40 GPU.
Our code is also available via https://github. com/xiangchensong/ctrlns. For synthetic experiments,
we run the baseline methods with implementation from https://github.com/weirayao/leap and https:
//github.com/xiangchensong/nctrll For real-world experiments, the implementation is based on https:
//github.com/isee-laboratory/cvpr24_atbal

S3.4 Hyperparameter and Train Details

For synthetic experiments, the models were implemented in PyTorch 2.2.2. We trained the VAE network
using the AdamW optimizer with a learning rate of 5 x 10~* and a mini-batch size of 64. Each experiment was
conducted using three different random seeds and we reported the mean performance along with the standard
deviation averaged across these seeds. The coefficient for the L» penalty term was set to 1 x 10~%, which
yielded satisfactory performance in our experiments.

the most accurate way to enforce sparsity is through the Lo norm. However, since calculating the gradient for
it is challenging, L, norms are commonly used as approximations. We also tested alternative settings such as
L penalty or larger coefficients for L2 norm, and we found that the setting we used in this paper (L2 with
coefficient 1 x 10~ %) provided the best stability and performance.

All other hyperparameters of the baseline methods follow their default values from their original implementation.
For real-world experiments, we follow the same hyperparameter setting from the baseline ATBA method. In
the Hollywood dataset, we used the default 10-fold dataset split setting and calculated the mean and standard
derivation from those 10 runs. For the CrossTask dataset, we calculate the mean and standard derivation using
five different random seeds.

S3.5 Enforce Invertibility

In our experimental setup, using reconstruction loss already provides strong identifiability results (MCC>0.95),
and it is widely used in the identifiability literature. During our experiments, we found that flow-based methods
are usually less efficient and typically take longer to converge. Since our main contribution is to address the
challenge of unknown domain variables, this choice is orthogonal to our theoretical contribution. Therefore,
we followed the existing work for the design of the estimation for the mixing function. As also mentioned in
[47], the reconstruction loss-based framework can definitely be extended to flow-based methods, especially in
environments where invertibility is a critical issue and computation is not a top priority in the estimation process.

S3.6 Encode Domain Variables

As introduced in[d] we utilize U distinct networks to capture the different transitions. One may question whether
this choice introduces redundant parameters and suggest employing parameter-sharing networks, as in [22} 45]].
However, our decision to use separate transition networks is based on the assumptions regarding the complexity
of the transition functions, which we regularize through the sparsity of the Jacobian matrix. Implementing
parameter-sharing techniques would significantly complicate the optimization process, as updating parameters
for one domain would immediately alter the Jacobian matrix for another domain.

Despite using individual transition networks, they remain lightweight compared to the entire framework. Even
in synthetic scenarios where the framework is relatively small, each transition network accounts for only
approximately 2.3% of the total parameters. This proportion becomes even smaller in real-world applications
with larger encoder-decoder frameworks.
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S4 Extended Related Work

S4.1 Causal Discovery with Latent Variables

Various studies have focused on uncovering causally related latent variables. For example, [48H50] use vanishing
Tetrad conditions [S1] or rank constraints to detect latent variables in linear-Gaussian models, whereas [52-55]]
rely on non-Gaussianity in their analyses of linear, non-Gaussian models. Additionally, some methods seek to
identify structures beyond latent variables, leading to hierarchical structures. Certain hierarchical model-based
approaches assume tree-like configurations, as seen in [56H59]], while other methods consider a more general
hierarchical structure [S5,150]. Nonetheless, these approaches are restricted to linear frameworks and encounter
increasing difficulties with complex datasets, such as videos.

S4.2 Causal Temporal Representation Learning

In the context of sequence or time series data, recent advances in nonlinear Independent Component Analysis
(ICA) have leveraged temporal structures and nonstationarities to achieve identifiability. Time-contrastive
learning (TCL) [10]] exploits variability in variance across data segments under the assumption of independent
sources. Permutation-based contrastive learning (PCL) [11]] discriminates between true and permuted sources
using contrastive loss, achieving identifiability under the uniformly dependent assumption. The i-VAE [13]
uses Variational Autoencoders to approximate the joint distribution over observed and nonstationary regimes.
Additionally, (i)-CITRIS [60} 61] utilizes intervention target information to identify latent causal factors. Other
approaches such as LEAP [22] and TDRL [23] leverage nonstationarities from noise and transitions to establish
identifiability. GCIM [62] builds on the theoretical insights from LEAP by implementing a clustering algorithm
to address the challenge of unobserved domain indices. However, it does not achieve identifiability of the
domain variables. CaRiNG [63] extended TDRL to handle non-invertible generation processes by assuming
sequence-wise recoverability of the latent variables from observations.

All the aforementioned methods either assume stationary fixed temporal causal relations or that the domain
variables controlling the nonstationary transitions are observed. To address unknown or unobserved domain
variables, HMNLICA [15] integrates nonlinear ICA with a hidden Markov model to automatically model
nonstationarity. However, this method does not account for the autoregressive latent transitions between latent
variables over time. IDEA [26] combines HMNLICA and TDRL by categorizing the latent factors into domain-
variant and domain-invariant groups. For the variant variables, IDEA adopts the same Markov chain model as
HMNLICA, while for the invariant variables, it reduces the model to a stationary case handled by TDRL. Both
iMSM [24] and NCTRL [25] extend this Markov structure approach by incorporating transitions in the latent
space but continue to assume that the domain variables follow a Markov chain.

Moreover, causal temporal representation learning has been explored in the reinforcement learning literature [64}
435]. These works primarily focus on the relationship between states and actions, typically relying on direct state
observations. In contrast, our setting involves recovering meaningful latent causal variables from observational
data.

S4.3 Weakly-supervised Action Segmentation

Weakly-supervised action segmentation techniques focus on dividing a video into distinct action segments
using training videos annotated solely by transcripts [38 165} 43| 66, 42| 67 41| 68H74]. Although these
methods have varying optimization objectives, many employ pseudo-segmentation for training by aligning
video sequences with transcripts through techniques like Connectionist Temporal Classification (CTC) [63]],
Viterbi [41} 143114270, 71} 73], or Dynamic Time Warping (DTW) [67,169]]. For instance, [65] extends CTC to
consider visual similarities between frames while evaluating valid alignments between videos and transcripts.
Drawing inspiration from speech recognition, 71141} 73] utilize the Hidden Markov Model (HMM) to link
videos and actions. [66] initially produces uniform segmentations and iteratively refines boundaries by inserting
repeated actions into the transcript. [43] introduces an alignment objective based on explicit context and length
models, solvable via Viterbi, to generate pseudo labels for training a frame-wise classifier. Similarly, [42] and
[[70] propose novel learning objectives but still rely on Viterbi for optimal pseudo segmentation. Both [67} 69]]
use DTW to align videos to both ground-truth and negative transcripts, emphasizing the contrast between them.
However, except for [66]], these methods require frame-by-frame calculations, making them inefficient. More
recently, alignment-free methods have been introduced to enhance efficiency. [68] learns from the mutual
consistency between frame-wise classification and category/length pairs of a segmentation. [44] enforces the
output order of actions to match the transcript order using a novel loss function. Although POC [44] is primarily
set-supervised, it can be extended to transcript supervision, making its results relevant for comparison.
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Guidelines:
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sketch is also provided in the main text, and the complete proof is provided in the appendix.
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Guidelines:
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reproduce that algorithm.
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a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code and the data to reproduce the experiment and the figures are provided as
mentioned in Appendix[S3.3]
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¢ While we encourage the release of code and data, we understand that this might not be possible,
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guides/CodeSubmissionPolicy) for more details.
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the raw data, preprocessed data, intermediate data, and generated data, etc.
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* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
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recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details
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how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
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* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
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Answer: [Yes]

Justification: The synthetic experiments were supported by mean values and one standard derivation
from the mean, with analysis on the stability of the training. For real-world setting, we report the error
bars for our model. We run the experiments following existing setting on the data splitting or random
seeds to calculate the mean and std.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
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* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

77128 https://doi.org/10.52202/079017-2453


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: See Appendix [S3.3]for details.
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* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: The broader impact is discussed in Appendix [§]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
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the quality of generative models could be used to generate deepfakes for disinformation. On the
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11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
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* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: The codebase together with the datasets used in our paper are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?
Answer: [Yes]

Justification: Details about the code together with the synthetic dataset can be found in anonymized
url provided in Appendix [S3.3]

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
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etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
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the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA|
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
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* We recognize that the procedures for this may vary significantly between institutions and
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