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Abstract

We study the performance guarantees of exploration-free greedy algorithms for the
linear contextual bandit problem. We introduce a novel condition, named the Local
Anti-Concentration (LAC) condition, which enables a greedy bandit algorithm
to achieve provable efficiency. We show that the LAC condition is satisfied by a
broad class of distributions, including Gaussian, exponential, uniform, Cauchy, and
Student’s ¢ distributions, along with other exponential family distributions and their
truncated variants. This significantly expands the class of distributions under which
greedy algorithms can perform efficiently. Under our proposed LAC condition, we
prove that the cumulative expected regret of the greedy algorithm for the linear
contextual bandit is bounded by O(poly log T'). Our results establish the widest
range of distributions known to date that allow a sublinear regret bound for greedy
algorithms, further achieving a sharp poly-logarithmic regret.

1 Introduction

In the contextual multi-armed bandit problem [2| |6, 24, 25]], an agent uses revealed contextual
information in each round to decide which arm to pull, receiving a reward corresponding to the
pulled arm. The stochastic version of this problem observes rewards as random samples, with their
expectation tied to the arm’s contextual information. The agent’s goal is to design a sequential
arm-pulling strategy to maximize cumulative rewards, necessitating a balance between exploration
and exploitation. Linear contextual bandits, where expected reward is modeled as a linear function
of contextual information, serve as the fundamental framework for contextual bandits [1} [10, [26].
Various exploration strategies, including upper confidence bound (UCB) [} [11]], Thompson sampling
(TS) [3} 4], and e-greedy [[19]] are widely used and studied in the theoretical analysis for linear
contextual bandits. However, exploration can often be challenging in practice, possibly leading to
over-exploration and performance deterioration. Some domains may find exploration infeasible or
even unethical, and it may appear unfair in applications such as healthcare and clinical domains.
Furthermore, exploration strategies tend to add complexity for algorithm designers and decision-
making systems.

A greedy policy, i.e., pure exploitation without exploration, selects arms greedily based on current
problem parameter estimates. While a greedy policy’s effectiveness cannot be guaranteed in general
since it may fail to find optimality in the worst case, the possibility of its favorable performances in
certain scenarios has been of interest both practically and theoretically. Therefore, understanding when
a greedy policy can perform effectively, i.e., when exploration is not needed, is a fundamental research
question. Recently, a simple greedy policy has been proved to achieve near-optimal regret bounds for
linear contextual bandit problems under some stochastic conditions of contexts [8}, [20} 30} 33} [34].
Such efficient learning is possible if the greedy policy can benefit from suitable diversity in the contexts
(or the features of arms) — so that even with exploration-free action selection, parameter estimation is
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effectively possible. However, distributions known in the existing literature to allow efficient greedy
algorithms are mostly limited only to Gaussian and uniform distributions [8, |20} |30} 33]]. Hence, the
following research questions arise.

Is it possible for a wider range of distributions to allow efficient learning for greedy algorithms?
If so, how can we characterize such distributions?

We answer the above questions affirmatively by proposing a general distributional condition that
allows for a broad range of distributions to achieve provable efficiency of greedy linear bandit algo-
rithms. In this work, we present a new Local Anti-Concentration (LAC) condition for distributions
that encompasses a wider range of context distributions compared to the previous findings. We
demonstrate that the class of distributions that satisfy LAC, which we denote as LAC class, include
Gaussian, exponential, Cauchy, Student’s ¢, and uniform distributions, as well as other exponential
family distributions and their truncated variants. This study provides the first evidence that greedy
algorithms can perform efficiently beyond Gaussian and uniform distributions. Our findings signifi-
cantly expand the class of admissible distributions that are suitable for greedy algorithms for linear
contextual bandits.

Our proposed LAC condition not only broadens the class of permissible distributions for greedy bandit
algorithms but also facilitates a sharper regret guarantee, achieving a poly-logarithmic O(poly log T')
regret for greedy algorithms. Our regret analysis constitutes a distinct improvement over the previously
known results for greedy linear contextual bandit algorithms. The existing results are primarily
categorized into two folds: (i) Gaussian-distributed contexts could only yield O(\/T ) regret for greedy
algorithms for single-parameter linear contextual bandits [20} 130, [33]]; (ii) Context diversity (e.g.,
Assumption 3 in [8]) alone was previously regarded as not sufficient to derive a poly-logarithmic regret
but additionally assuming a margin condition (e.g., Assumption 2 in [8]]) can achieve O(poly log T')
regret In either case, there are limited prior results about context diversity beyond Gaussian and
uniform distributions. As for the margin condition, to the best of our knowledge, no prior work
in greedy contextual bandits has rigorously derived the scaling of the margin constant, rather than
simply treating it as a universal constant. To this end, we establish that Gaussian and uniform
distributions as well as all of the common distributions that satisfy the LAC condition (see Table[I)
induce O(poly log T') regret without having to additionally assume a margin condition.

The key difference between the analysis of greedy algorithms and that of exploration-based algorithms,
such as UCB and TS, for linear contextual bandits lies in the estimation bounds. While UCB [1]]
and TS [4] analyses involve bounding the weighted estimation error of the parameter using self-
normalized martingales, the analysis of greedy algorithms relies on the ¢, estimation bound in all
directions. Ensuring this estimation consistency is more challenging, especially when actions are
chosen adaptively, resulting in non-i.i.d. data.

In this work, we prove that for a broad class of context distributions, \/%-consistency of the estimator
can be guaranteed, enabling poly-logarithmic regret for greedy algorithms. Our newly proposed
class of context distributions represents the largest known class from which v/¢-consistency of
the estimator can be derived, even with adaptively chosen (non-i.i.d.) contexts. To establish this
consistency, we derive two key technical results. First, we show that the minimum eigenvalue of the
Gram matrix increases sufficiently under the LAC condition. Additionally, we demonstrate that under
this condition, the suboptimality gap can be bounded probabilistically—a result derived from our
analysis rather than assumed explicitly.

1.1 Contributions
The main contributions of our paper are summarized as follows:

* We propose a novel condition, called Local Anti-Concentration (LAC) condition, for a
greedy linear contextual bandit algorithm to achieve provable efficiency. The newly proposed

'Tt is important to note that the problem setting of Bastani et al. [§]] (multiple parameters with shared context)
differs from our setting, which involves a single parameter with separate contexts, as is predominantly studied
in the linear contextual bandit literature [[1} 4,120, |30, |33]]. While Bastani et al. [8] demonstrated the diversity
condition and the existence of a margin for Gaussian, uniform, and Gibbs distributions in the two-armed case
within multi-parameter settings, we show in Appendix [K]that the Gibbs distribution does not satisfy the diversity
condition when extended to cases with more than two arms.
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Table 1: Comparisons of Greedy Linear Contextual Bandit Studies

Results

Paper Context Distribution Regret Bound  Problem Setting
Kannan et al. [20] Gaussian O(VT) Single parameter
Sivakumar et al. [33] Gaussian OWT) Single parameter
Raghavan et al. [30]  Gaussian O (T3)t Single parameter
Bastani et al. [§]* Si?fsosrl;? O(polylogT) Multiple parameters

Gaussian

Uniform

Laplace
This work Truncated exponential O(polylogT) Single parameter

Truncated Student’s ¢
Truncated Cauchy

PDF f x exp(—m) with
polynomially growing 7

The regret bound of Raghavan et al. [30] is shown in the Bayesian regret, which is a weaker notion
of regret than the frequentist regret that we consider in our work.

1 The problem setting of Bastani et al. [8]] is a multi-parameter linear contextual bandit, where a
context vector is shared across the arms, but each arm has a separate parameter. Bastani et al. [§]]
show that Gaussian and uniform distributions satisfy their covariate diversity condition
(Assumption 3 in [8]) and the margin condition. For the two-armed case (K = 2), they also show
that Gibbs distribution satisfies those conditions. However, we show in Appendix [K]that Gibbs
distribution fails to satisfy the conditions for the multi-armed cases with K > 3.

LAC condition is satisfied by a wide rage of common distributions, including Gaussian,
exponential, Cauchy, Student’s ¢, and uniform distributions, and many common distributions,
as well as their truncated variants. This significantly expands the class of admissible
distributions that are suitable for greedy algorithms and is, to our best knowledge, by far the
largest class of distributions that induces efficient learning for greedy algorithms.

* Under our proposed LAC condition, we prove that the cumulative expected regret for the
greedy algorithm is bounded by O(poly log T') (Theorem , the sharpest known bound for
greedy algorithms in linear contextual bandits with a single parameter.

* By leveraging the proposed condition, we can guarantee both (i) the growth of the minimum
eigenvalue of the Gram matrix and (ii) a probabilistically bounded suboptimality gap. These
two steps are key technical components for analyzing greedy bandit algorithms and were
explicitly assumed in existing literature [8] to achieve poly-logarithmic regret. Notably,
we do not assume these steps; instead, we prove that distributions satisfying the LAC
condition inherently induce these two technical results (Theorems [2]and [3), which may be
of independent interest.

* Various context distributions have been empirically shown to allow favorable performances
of greey algorithms (see Appendix [M). However, the distributions previously known in the
literature that enable efficient greedy algorithms were primarily limited to Gaussian and
uniform distributions. Our theoretical results offer a significant step toward bridging this gap
between theory and practice, providing insights into why greedy algorithms can be effective
under a wide range of distributions.

1.2 Related Work

Linear contextual bandits and generalized linear bandits have been widely studied [[1} [2 |4, |6l [10]
1141181123127, 132]]. Upper confidence bound (UCB) algorithms for the linear contextual bandit have
been proposed and analyzed for their regret performance [1} 16, 10,11} [32]]. Thompson sampling [35]
algorithms for linear contextual bandits have also been widely studied, with results demonstrating
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their effectiveness both theoretically and empirically [3l 4, 9]. While UCB [1] and Thompson
sampling [3| 4] analyses rely on bounding the weighted estimation error of the parameter using
self-normalized martingales, the analysis of greedy bandit algorithms depends on the /5 estimation
bound in all directions. Ensuring this estimation consistency is more challenging, especially in
adaptive action settings where data are not i.i.d.

Recent studies [8, 20, 130, [33]] have shown that a greedy algorithm can achieve near-optimal regret
performance for linear contextual bandit problems under stochastic contexts by providing sufficient
conditions under which the greedy algorithm can be efficient. These conditions typically focus on the
diversity of the context distribution, ensuring that the greedy policy benefits from sufficient context
diversity for effective parameter estimation even without exploratory actions.

However, the existing literature has mainly limited itself to Gaussian [8, 20,130, |33]] and uniform [8]]
distributions, leaving open questions about broader applicability. Specifically, it is unclear if other
distributions could also support efficient greedy algorithms and what fundamental characteristics
these distributions should have to enable consistent parameter estimation without exploration. Our
work addresses this gap by identifying broader conditions under which diverse distributions can
effectively support greedy algorithms in linear contextual bandits.

2 Preliminaries

2.1 Notations

We use ||z]|, to denote the £,-norm of vector x € R?. For a positive definite matrix A € R4*4,
we define ||z]|a = Vo T Az. We use Apuin(A) to denote the minimum eigenvalue of the positive
definite matrix A. We denote D%, := [-R,R]? and B% := {z € R? : ||z|s < R}. If dis
clear, we just write B}, := Br and D% := Dg. We define [n] for a set [n] := {1,2,...,n}. We
write S9! for a d-dimensional unit sphere. We set || X[y, = sup,>;{p 'EY/?|X|P},| X |y, =
suppzl{p’%]El/ P| X|P} for a random variable X . If X is a d-dimensional random vector, then we
write [| X ||y, = supj,,=1 H~<u,X>||¢2, [ X, = supjy,=1 [[{z, X) ||y, . We use the notation O()

or < to hide constants, and O() to hide constants and logarithmic terms. We use the notation a < b
when a < band b < a. We use ¢, ¢1, ¢a . .. for absolute constant, which may differ from line by line.

2.2 Linear Contextual Bandits with Stochastic Contexts

We consider the linear contextual bandit problem with K arms (K > 2), where in each round
t = 1,2,...,T, the set of context vectors X(t) = {X;(t) € R% i € [K]} is drawn from some
unknown distribution Py (¢). Each arm’s feature X;(t) € X(¢) fori € [K] need not be independent of
each other and can possibly be correlated. The agent then pulls an arm a(t) € [K]. Each context vector
X;(t) fori € [K] is associated with stochastic reward Y;(¢) € R with mean X;(¢) " * where 6* € R¢
is a fixed, unknown parameter. For simplicty, we assume ||6* || < 1. After pulling arm a(t), the agent
receives a stochastic reward Y, ;) (t) as a bandit feedback: Yy ) (t) = Xz (t) T 0* 4 14(1)(£), where
Nat)(t) € Ris a zero mean noise. We assume that there is an increasing sequence of sigma fields
{H:} such that each 7,, (t) is Hs-measurable with E[n,, (¢)|H:-1] = 0. In our problem, H; is the
sigma field generated by random variables of the arms chosen {a(1), ..., a(t)}, their context vectors
{Xa)(1), ..., Xag)(t)}, and the corresponding rewards {Y;,(1)(1), ..., Yo()(t)}. Also, na (L) is
assumed to be conditionally o-sub-Gaussian, i.e., forall A € R, E[e*a®) | 1,_] < exp(A\20?/2)
for o > 0. Observing context vector X (t), let a*(¢) denote the optimal arm in round ¢, that is,
a*(t) = argmax;e (k] X;(t) " 6*. Then the instantaneous expected regret (reg(t)) and cumulative
expected regret (Reg(T")) are defined respectively as
T
Reg(T) := Zreg ZE ar ) (t () o — )(t)TH*]
t=1

which are respectively the instantaneous and cumulatlve differences between the optimal expected
reward and the expected reward of the pulled arms. The expectation is taken with respect to the

stochasticity of history, containing randomness of contexts. The goal of the agent is to minimize the
cumulative expected regret.
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2.3 LinGreedy: Exploration-Free Algorithm for Linear Contextual Bandits

In this work, we focus on identifying sufficient conditions that enable exploration-free greedy
algorithms to efficiently learn the optimal policy. Specifically, we analyze a greedy algorithm for
linear contextual bandits, which we refer to as LinGreedy (Algorithm[I). The LinGreedy algorithm
selects arms greedily based on the OLS estimator, without any exploratory actions.

Algorithm 1 LinGreedy: Greedy Linear Contextual Bandit
Initialize 3(0) = 0 - I, b(0) = 0, 6y € R%.
for ¢ € [T] do
while \yin (S(t — 1)) = 0 do
Choose a(t) = arg max;¢c(x) X; (t) "0y and observe reward Ya)-
Update b(t) = b(t — 1) + Xa) (t)Ya(t) and X(t) =X(t—1) + Xa(t) (t)Xa(t) ).
end while .
Choose a(t) = arg max;e(r] X;(t) " 6;—1 and observe reward Yy ).
Update b(t) =b(t — 1) + Xa(t) (t)Ya(t) and X(t) =3(t—1) + Xa(t) (t)Xa(t) (t)T.
Update 6, = %(t)~'b(t).
end for

Description of Algorithm The algorithm performs a greedy action in each round based on
estimated rewards. In the initial rounds, when the Gram matrix X(¢) is not yet invertible, parameter
estimation is deferred, and the algorithm selects actions based on an initial parameter 6. Once the
Gram matrix becomes invertible—which can be shown with high probability after sufficient time, the
algorithm computes an OLS estimator and performs a greedy action based on the estimated parameter
in each subsequent round. This algorithm is exploration-free. In the following sections, we present a
novel and more general condition that enables efficient learning for greedy algorithms.

3 Local Anti-Concentration Class

In this section, we introduce a new sufficient condition for efficient greedy contextual bandits. This
condition is general and encompasses a wide range of common distributions, including Gaussian,
exponential, uniform, Cauchy, and Student’s ¢ distributions, as well as their truncated variants. To
the best of our knowledge, this is the most extensive class of distributions considered in the greedy
contextual bandit literature [8, 20} 28, 30} 131} [33]], which has primarily focused on Gaussian, uniform
distributions, and their truncated variants.

Our proposed condition centers on the rate of the log density of stochastic contexts, a concept we
term Local Anti-Concentration (LAC). We now formally introduce the novel LAC class.

Definition 1 (Local Anti-Concentration (LAC)) A density function fx of a random variable
X € R" is said to satisfy the Local Anti-Concentration (LAC) condition with a non-decreasing

polynomial L if
IViog fx (7)o < L([|2l)

for all x € R™. We refer to L as the LAC function of X. We denote the class of distributions that
satisfy this LAC condition as the Local Anti-Concentration class.

3.1 Intuition of LAC Condition

The LAC condition implies that a density is not overly concentrated at any given point, leading to a
gradual decay in density across all directions—hence the term local anti-concentration. A geometric
interpretation of the LAC condition and a rigorous definition of this decay rate are provided in
Appendix [D} Section [3.2]demonstrates that the LAC condition applies to a broad range of common
distributions. To the best of our knowledge, very few distributions have been previously shown to
support efficient performance guarantees for greedy algorithms. However, we prove that the LAC
condition holds for a wide range of distributions, including a variety of exponential families. Note
that £ can be a constant when contexts have bounded support (see Appendix [C). In the following
sections, we further explore the characteristics of the LAC condition.
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3.2 Generality of LAC Condition

We show that the LAC condition is applicable to various distributions, significantly expanding the
class of admissible distributions for greedy linear contextual bandits. The LAC condition is satisfied
when the exponential component in the exponential family has a polynomial scale. Included in
the LAC class are distributions such as Gaussian, exponential, uniform, Student’s ¢, and Cauchy
distributions, along with their truncated variants.

The following proposition demonstrates that the LAC function does not directly depend on the
dimension of X. We further discuss in Appendix [C|that the LAC condition is more closely related
to the correlation structure of X rather than its dimensionality. Therefore, we suggest that the LAC
condition provides a suitable framework for comparing regret when both the number of arms and the
dimension are large.

Proposition 1 Suppose the random variable X = (X, Xs), where X1 € R™ and X, € R"2,
consists of two independent components. If X1 and X5 satisfy the LAC condition with functions L4 (-)
and L(-), respectively, then X satisfies the LAC condition with L(xz) = max(L;(x), La(x)).

This holds because, when we take the logarithm of the density, the independent coordinates decompose
as the sum of each density. Upon taking the gradient and evaluating the /., norm, the expression
decomposes perfectly. Using this proposition, the LAC condition remains robust across dimensions if
the coordinates are independent, making it dimension-free in such cases. Furthermore, this condition
is very accessible because it can be readily computed for a given density function. For many
well-known exponential families, the exponential component of the density often scales polynomially.

Examples of Distributions with LAC Condition
We present a few examples of known distributions satisfying the LAC condition. We provide rigorous
proofs for the examples in Appendix [C]

¢ Gaussian distribution: For a Gaussian random variable X
¥ is diagonal, it satisfies the LAC condition with £(z) =

general (non-diagonal) case of ¥, see Appendix [C|

« Exponential distribution: The exponential distribution’s density fx(z) = } exp(—Az)
satisfies the LAC condition with a constant function £(z) = A.

* Uniform distribution: The uniform distribution has constant density and satisfies the LAC
condition with a constant function £(z) = 1.

* Student’s ¢-distribution: The 1-dimensional Student’s ¢-distribution has density fx (z) =

(\ﬁ ) L(y)-(1+% )_(VH)/ and satisfies the LAC condition with £(x) = ¢, for some

v dependent constant ¢, > 0.

Tl ..y Zpn) ~ N(u,X), if
(|| Hoo+||u||oo) For the

|x;H|)

* Laplace distribution: The Laplace distribution has density f(x) = % exp( — and

satisfies the LAC condition with £(z) = ¢ for some constant ¢ > 0.

If each coordinate’s density independently adheres to one of the aforementioned distributions,
according to Proposition|[T] they all share the same LAC function irrespective of the dimension.

Consider the density f(z) with f(z) o« exp(—V(z)) for some differentiable function V' (z). If
VV (z) has polynomial growth, i.e., is bounded by a polynomial, then the density f(x) meets the
LAC condition. This holds because f(z) = Cexp(—V(x)), Vlog f(z) = Vlogexp(—V(z)) =
—VV(z). If VV(z) exhibits polynomial-scale growth, then the supremum norm confirms that the
LAC condition is satisfied.

This observation makes the LAC condition easily verifiable for exponential family distributions
with density forms fx (z|0) = h(z) exp[n(0) - T'(z) — A(0)], where the exponential part T'(z) has
polynomial growth. In many exponential family cases, 7'(-) indeed exhibits polynomial growth.
Proofs and further details can be found in Appendix [C]

4 Statistical Challenges of Greedy Linear Contextual Bandits

In this section, we outline the key statistical challenges in analyzing greedy algorithms for linear
contextual bandits: (i) ensuring the diversity of the adapted Gram matrix (Section and (ii)

https://doi.org/10.52202/079017-2465 77530



bounding the suboptimality gap to achieve logarithmic regret (Section . For ease of exposition, we
use the vectorized context expression X (t) = (X; (¢),... X (¢)) € R?E of X(¢), which combines
context vectors X;(t) for i € [K]. We define X;;(t) as the j-th coordinate of the context X;(t).

4.1 Diversity of Adapted Gram Matrix

The first key challenge lies in ensuring sufficient ¢5-concentration of the estimator. This requires
sufficient eigenvalue growth of the Gram matrix, constructed from the policy-selected contexts. For
the OLS estimator used in Algorithm |1} if the minimum eigenvalue of the adapted Gram matrix
Amin (2(t)) increases linearly with the number of rounds ¢, we can obtain the high probability o

error bound ||6; — 6* > with a convergence rate of O(1/+/%) using martingale concentration [13}29].
In fact, the growth of A\yin(3(t)) is a necessary condition to obtain v/Z-consistency of the estimator.

However, estimating the covariance of the selected contexts X, ;) (#) is relatively challenging, as its
distribution differs significantly from the overall distribution (before selection) of X (¢). Some studies
have investigated the statistical properties of selected contexts [20, 28]]; however, the known results
are limited to specific distributions, such as arm-independent Gaussian and uniform distributions.
Therefore, it remains an open question whether the growth of A, (X(¢)) can be ensured for a broader
class of distributions and what characteristics such distributions would need to satisfy.

4.2 Bounding Suboptimality Gap: Road to Logarithmic Regret

The next challenge that we face particularly in order to achieve logarithmic regret is to bound the
suboptimality gap. We first denote the suboptimality gap as the difference between the optimal
expected reward and the second highest expected reward:

AX (1) = Xoe () 0" — max X;(t) 767,
i#a*(t)
which is determined by the true parameter 6*. We aim to bound this suboptimality gap probabilisti-
cally, as described precisely in Challenge [2] of Section[4.3]

When this challenge is resolved, along with the growth of the minimum eigenvalue of the adapted
Gram matrix discussed in Section [4.I] we can achieve logarithmic expected regret using analysis
techniques for linear contextual bandit with stochastic contexts [7,19]. A high-level description of
the role of the margin constant in the regret bound is provided in Appendix [D.1} with a rigorous
analysis in Appendix

4.3 Formal Statements of Two Key Challenges

As mentioned above, we encounter two primary challenges: ensuring the diversity of the chosen
contexts (i.e., the growth of the minimum eigenvalue of the Gram matrix of the selected contexts)
and bounding the suboptimality gap. Importantly, we do not assume these conditions to hold a priori;
rather, we will demonstrate that they are satisfied in the stochastic context under the LAC condition.
In this section, we formally define these challenges to be addressed.

Before delving into the formal statements for each of the two challenges, we first define the concept
of the diversity constant, which depends on the minimum eigenvalue of the adapted Gram matrix.

Definition 2 (Diversity Constant) For a linear contextual bandit with contexts X (t) and history
Hi_1, the diversity constant )\, (t) is defined as the value satisfying

E[Xa(t) ()Xo (1) | He1] = At 1, M
Sorall t > 0, where a(t) denotes the arm selected by the algorithm in round t.

Then, the first challenge is to ensure a positive diversity constant A, (¢) > 0, which involves sufficient
eigenvalue growth of the adapted Gram matrix. We explore this further in Appendix

Challenge 1 (Positive Diversity Constant) Our goal is to ensure A (t) > 0.
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Achieving a positive diversity constant is challenging, as it requires analyzing the behavior of a
context selected by the greedy policy in a specific direction rather than relying on the overall context
distribution. In Section[5.3.T} we demonstrate that the minimum eigenvalue of the Gram matrix grows
sufficiently, thereby ensuring a positive diversity constant.

We now formally state our second challenge of bounding the suboptimality gap.

Challenge 2 (Probabilistic Suboptimality Gap) We aim to bound the constant Ca (t), which holds
under the given history H;_, and for any € > 0,
1
PIA(X(t)) <e| <eCalt) + —. )
[A(X() <] < Cal) + =

We also refer to this constant Ca(t) as the margin constant.
Note that Eq. @) is a relaxed version of the margin condition presented in [5} [7, |8, [19]. The
aforementioned literature explicitly assumes this condition to hold. However, we instead show that
the suboptimality gap can be bounded without directly assuming it (Section|5.3.2)). Rigorously, Ca ()
depends on 7', as it is a function of 7. However, we emphasize that our algorithm does not require
prior knowledge of T'; this dependency is needed only for the analysis.

S Regret Analysis

We present the main results of our paper. We prove that the regret of the greedy algorithm (Algo-
rithm E]) for linear contextual bandits can be bounded at a logarithmic scale in the time horizon 7T,
provided that the context distribution satisfies the LAC condition with a polynomial function L.

Assumption 1 (Independently distributed contexts) The context sets X(1),...,X(T) are inde-
pendently distributed across time.

Discussion of Assumption[I} To the best of our knowledge, all analyses of greedy linear contextual
bandits assume the independence and identical distribution (i.i.d.) of context sets [8} 20} 28} [33]]. In
Assumption|[I] we only require context sets to be independent; they may be non-identically distributed.
Additionally, much of the literature on linear contextual bandits that investigates \/Z-consistency
of estimators also assumes independence of context sets [21} 22]]. Note that under Assumption
context vectors within the same round are permitted to be dependent.

5.1 Considerations for Context Boundedness

We first provide detailed considerations on context boundedness. In the linear contextual bandit
setting, {5 boundedness is commonly assumed. However, for light-tailed distributions (such as
Gaussian or exponential), the {2 norm is unbounded. In such cases, a general approach in the
statistical literature is to assume bounded )1 or 15 norms [[14} 17, (37, 138]. Therefore, we divide our
analysis into cases of bounded and unbounded contexts.

Bounded Contexts vs. Unbounded Contexts. In linear contextual bandit studies, boundedness of
the £ norm of contexts is commonly assumed. In this paper, for bounded contexts, we consider both
truncated contexts (e.g., truncated Gaussian, truncated Cauchy distributions) and naturally bounded
contexts (e.g., uniform distribution). For unbounded contexts, we assume a bounded 1 norm, which
is a standard assumption for handling light-tailed distributions (e.g., as in [14} [17], which assume
bounded 15 norms).

Assumption 2 (Boundedness) For unbounded contexts, we assume | X;(t)||y, < Tmax. For
bounded contexts, we assume || X;(t)||2 < Tmax foralli € [K],t € [T].

Discussion of Assumption@] The bounded context assumption is widely used in the literature [1} 7}
81211 22, [28]]. For unbounded contexts, our assumption of 11 boundedness is notably weaker than
the sub-Gaussianity (or 1)2) assumption commonly used in statistical regression literature to handle
random design covariates [14] 39]]. If /5 boundedness holds, it automatically implies boundedness of
the 11 norm. However, as the analysis differs slightly depending on whether the support is restricted
to a bounded ball or is unbounded, we address these cases separately.
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5.2 Regret Bound of LinGreedy for LAC Distribution
We first introduce our main result, the regret bound of the greedy algorithm under the LAC condition.

Theorem 1 (Regret bound of LinGreedy) Suppose X(t) satisfies the LAC condition with the poly-
nomial function L and also satisfies Assumptions[I|and 2| for all t. Then, the cumulative expected
regret of LinGreedy (Algorithm([I)) is bounded by

Reg(T) < O(polylog T),

where O concerns only the dependency on T. Considering the dependency on d and K, for unbounded
contexts, we have _
Reg(T) < O(d>9).

For bounded contexts, refer to Appendix|H\for explicit results, as we consider several cases.

Discussion of Theorem[Il Theorem [T] states that if the contexts are drawn from a distribution in the
LAC class, the regret scales as O(poly log 7). While our primary objective is not solely to achieve
the sharpest regret bounds, attaining poly-logarithmic regret is highly favorable. Our main goal is to
demonstrate that a large class of context distributions satisfies the LAC condition. When they do, a
simple greedy algorithm can suffice or even outperform exploration-based algorithms (see numerical
experiments in Section[6). The worst-case dependence on d and K for bounded contexts is detailed
in Appendix [H} where dependencies remain at most polynomial in d and K. As these dependencies
vary across distributions, refer to Appendix [Hfor precise information. Proofs for unbounded contexts
are provided in Appendix (G| with a proof sketch in Appendix [D} Proofs for bounded contexts are
included in Appendix [l

Theorem I]is the first result to expand the class of admissible distributions for greedy bandit algo-
rithms beyond Gaussian and uniform distributions. Our result demonstrates, for the first time, that
distributions in the LAC class inherently exhibit margin behavior, achieving sharp poly-logarithmic
regret without requiring an additional margin assumption. This finding is of independent interest
beyond the analysis of greedy bandit algorithms.

5.3 Proof Sketch of Theorem /1]

We first present our key results for addressing each of Challenges [I]and 2] stated in Section[4.3]

5.3.1 Ensuring the Positive Diversity Constant

In this section, we present our key result for estimating lower bounds on the diversity constant for
densities that satisfy the LAC condition, therefore addressing Theorem [2]is the analysis
under the case of unbounded contexts, where contexts have full support. A similar result is presented
in Appendix [H|for contexts with bounded or truncated support.

Theorem 2 (Diversity constant for unbounded contexts) If unbounded contexts X (t) has the LAC
condition with L(z) := Ay 4+ Agax® and satisfies Assumption 2|for all t,

/\4(1)> —
ZC : A (R 2)a)2
d ( 1 2( 1 ) )

holds for Ry := coZmax(logd + log K + 2). Here, c1, cq are absolute constants.

Discussion of Theorem Theoremimplies that A, (t) > Q(%), hence ensuring the growth of the
minimum eigenvalue of the adapted Gram matrix. In Appendix we discuss how %(t) factors into

the regret bounds. Note that « is generally small in many distributions. For example, for Gaussian
distributions, oo = 1, and for exponential distributions, o = 0.

5.3.2 Bounding Suboptimality Gap

Next, we present our result addressing [Challenge 2] by computing the suboptimality gap constant
O (t), which satisfies the inequality in Eq.(2) for every € > 0. By combining this condition with the

estimates for \,(¢), we can obtain an O(poly(log T')) regret bound in terms of 7' by applying the
analysis techniques of linear contextual bandits with stochastic contexts [[7, |8, [19]] to our setting.
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Theorem 3 (Suboptimality gap for unbounded contexts) In the same setup as Theorem

1
Ca(t) < esVd(Ay + A23°‘R§‘)m
holds for Ro = ¢4&max(1 + log K + log d + % log T') + 1 and absolute constants cs,c4 > 0.

Discussion of :Theorem 3|. Note that the suboptimality gap constant C () is multiplied linearly in
regret bounds 3} [/, [19]]. For bounded contexts, we present a similar result in the Appendix

5.3.3 Proof Intuitions

We provide a high-level proof overview of Theorem[I]in Appendix [D} Note that once Challenges|T]
and 2] are satisfied, achieving logarithmic regret becomes straightforward, as detailed in Appendix [J|

The remaining task is to address these two challenges, with a particular focus on bounding the
constants A, (t) and Ca(t). A key implication of the LAC condition is that the density decays slowly
at every point. Another useful property is that the LAC condition is preserved under conditioning,
meaning that X (¢) | {X(¢) € A} also satisfies the LAC condition with the same function for any set
A C R¥>4_This can be verified using the fact that log fx (1)|{x(1)e 4} () = log fx(1)(x) —log P[A],
where P[A] is a constant (see Appendix [C.3|for details).

The main challenge of analyzing the statistical concentration in greedy linear contextual bandits lies
in the fact that the distribution of selected contexts X¢)(t) differs significantly from the distribution
of the overall (pre-selected) contexts X (t). The preservation of LAC under conditioning ensures that
LAC still holds when conditioning on the event of selecting arm ¢, enabling our analysis.

The full proofs for unbounded contexts are provided in Appendix (G| For results on bounded contexts,
see Appendix [H] (and their proofs in Appendix [I).

5.4 /t-Consistency of Estimator

In addition to achieving loga{ithmic regret, an independently valuable result is obtained: the /o-
consistency of the estimator #;. This is a property that even typical sublinear-regret algorithms,
such as UCB and TS, do not generally guarantee. Under the same setup as Theorem|[I] we achieve
6, — 6*]2 < O (%) with high probability (see Corollaries@and. This additional result may
also facilitate analysis of sample complexity, such as PAC bounds.

6 Experiments

To validate our theoretical findings numerically, we conducted experiments using various context
distributions: Gaussian, Laplace, uniform, and truncated Cauchy distributions. We compared the
performance of LinGreedy with the LinUCB and LinTS algorithms. The results showed that
LinGreedy exhibited significantly superior regret performance compared to the other exploration-
based algorithms, achieving a logarithmic scale of regret. Detailed experimental results are provided

in Appendix [M]
d=20, K=20, Uniform d=20, K=100, Laplace d=20, K=20, Truncated Cauchy

4
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2 2 300 2
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Figure 1: The cumulative regret plots of the numerical experiments. The full results are available in
Appendix [M}
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A Additional Notations

We define additional notation. For v € R?, define
P,:={z |z v =0}
For S C R"™, we define
[Slloo := sup{[|z[|oc, z € S}.
For the intervals I C R and v € R9, define

I:={z|z"vel}

For instance, [—1,1], := {2 | =1 < 2 Tv < 1}. We define 7y (+) as the projection onto the subspace
V. Also, in the appendix, we write B = ]B%g{2 = {z € R?| ||z|]2 < R} with slight abuse of notation.
For a random variable X, we define supp(X ) as the support of X . Recall that we define the expected
regret in round ¢ as reg(t) and the unexpected regret as reg’(t). Also, for Q = J,; F; with disjoint
events F;, we use the following notation

iel

E[E[X | E]| ZIP’ E[X | Ej].

For an event A, we define P[X; A] and E[X; A] as P[X N A] and E[X N A], respectively, following
Durrett [[15]’s notation.

B ||0*||. Dependency of Suboptimality Gap

Throughout the proof, we first bound the margin constant C'a by assuming ||6*||2 = 1. If we obtain
Ca for ||6*||2 = 1, then in the general case where ||6*||2 = &, observe that

Xa* t TQ* (AT p*
IP’XH*(t()H—maX X()T0*<€}:]P’[(t)()—maxw<€ 3)
Jj#a*(t) K jFa*(t) K K
Ca 1
=—e+— 4
T @

holds. Therefore, from now on, we assume ||§*||2 = 1 and adJust for the general case later. Ad-
ditionally, we highlight that we only need to bound Ca for € < 3, since for € > 3, it holds that
Ca =2.

C More Details of LAC: Distributions, Conditioning, & Truncation
In this section, we provide the omitted details of LAC and its properties.

C.1 LAC of Various Distributions

We first provide more details on the LAC of various distributions, as presented in Section 3.2}

LAC of Gaussian contexts. For density f(z) = Cexp (—(z —p) "V (x — p)), z € R", where
V=337,

Vieg f =2V (x —p).
First, when V' is diagonal, after taking the log and gradient, we get

[Viog f(z)]loo < 2Amax(V)[|z = 1llce < 2Amax (V) (|2]loo + |12l o) -

Since V = %Zfl, we obtain the desired results. For general V', we can see that

1V 10g £(2)lloe < 2 (max [V7[l1) ]2 = oo,

where V7 is the i-th row of V.
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LAC of bounded support contexts. If the support of the contexts is bounded within a compact set,
V log f is bounded provided it is continuous. Therefore, in this case, LAC can be a constant function.
Additionally, if ||| < R, we have

IVlog f ()l < L(R)
by the monotonicity of £(-).

LAC and context correlations. We claim that the LAC function £(-) of a random vector z =
(x1,...,xy)isrelated to the correlation structure of x;, x; rather than the dimension n itself. Consider

f(z) < exp(=V (z)). Then,

Viog f(x) = -VV(x)
and

Oilog f(x) = —0iV ()

hold. Since £ is defined in the sense of the supremum norm, to investigate the LAC function, the
maximum value max; ||0;V ()| is important. We claim that it is a dimension-free property, and the
correlation structure is more important than the dimension 7 itself. For instance, if x = (21,...,%,)
is coordinate-wise independent, we have V (x) = Vi (x1) + Va(z2) + - - - + V,,(z,,). Hence,

9V (@) 0 = max |V ()
and we can see it is a dimension-free value.

LAC with shifted mean distribution. Let the mean-zero contexts X have density f(z) with LAC
function £(+). Then, the shifted contexts with mean p have density g(z) = f(z + i), and we observe
that

IViog g(z)llec = [[V1og f(2 + p1)[loc
< L(llz + plloo)
< L([lzlloe + llloo) -

Hence, the density g(z) has LAC with function £'(z) = L(x 4 ||#]|so) and when ||p]|cc = O(1),
it has the same rate. Thus, LAC does not require contexts to be mean-zero and can be defined for
distributions with a general mean.

C.2 Proof of Proposition|[]
If X = (X{', Xy ) and Xy, X are independent, the density fx of X can be decomposed as

Ix((z1,22)) = fx, (71) fx, (72).
Then,

Viog fx((w1,72)) = V(log fx, (z1) +log fx,(2)) = (Va, log fx, (1), Va, log fx, (72))

holds, and taking the supremum norm, we get

IV 1og fx (21, 22))lloc = max (|| Ve, log fx, (#1)[lsc, | Vary 10g fxa (#2) [l c)
< max (L1 (]|71]ls0), La(l|22]l))
< max(Ly([[(#1, 22)[|o), Lo(| (21, 72)[|oc))
where the third inequality holds by the monotonicity of £(-). By the definition of the LAC function,

we finally obtain the desired result: f has LAC with the function £(x) = max(L;(x), L2(z)) for
reR.
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C.3 LAC and Conditioning

First, we observe that the LAC condition is preserved under conditioning.
Let the density of X = (X7 ,..., X 1) € R be f().
For the event F := {X € A} where A C R?% the conditional density of X given F is formulated
as fp(x) = % € R? for x € RIX,
Then, the following holds:
Vlogfig(x) = Vlogf(x) — VP[E] = Vlog f(x).
This means X | E also satisfies the LAC condition with the same function, hence LAC is robust
under conditioning.

Especially, if the event E has the form E = {X; € D and X; = z; for j # i} for some D C R¢,
we define the density of X; | E as

f(xlw"7$i—1axami+1a"'axK)

fig(z) = P(E| for z € RY.
Then,
Viog fig(x) =Viog f (z1,...,%i—1,2,Tit1, ..., 2x) — VP[E]
=Vliog f(x1,...,Ti1,T,Tix1,...,TK)
holds. We have
IVelog fip(2)llee < LIz, Tic1, 2, Tigr, - k) [loo)

which indicates that the conditional density also satisfies the LAC property with £(-).

We summarize the above observations in the following lemma, noting that £(-) is a non-decreasing
function.

Lemma 1 (LAC of conditional contexts) For a random vector X = (X{ ..., X)) € R let
its density satisfy the LAC condition with function L(-). Then, for any event E := {X € A} where
A C R and | Al < R, the conditional random vector X | E satisfies the LAC condition with
the constant function L(R). Specifically, if E has the form E = {X; € D and X; = x; for j # i}
for some D C RY with ||D||oc < R, then the conditional random vector X; | E satisfies the LAC
condition with L(R).

C.4 LAC and Truncation

We introduce the property that can compute the LAC of truncated contexts. Truncating the contexts
X;(t) to a d-dimensional ball B C R? for every i € [K] still satisfies the LAC condition with a
constant function, £L(R).

Lemma 2 (LAC with truncation) Suppose the density of contexts X € R satisfies the LAC
condition with the function E(-).ﬁ Consider the case we truncate X into the region (Br)¥ and define
truncated contexts as X. Then, X satisfies the LAC condition with constant function L(R).

Proof The density of truncated contexts is calculated as

fx(x)
) = .
X P[(Br)*]
Then, when taking the log and gradient, we get
Vlog fx(x) = Vlog fx(x).
Since ||x|| < R forx € (Bg)¥, and L is defined by a non-decreasing function, we get

Viog fx(x) < L(R).
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C.5 LAC and Decay Rate of Density

Next, we rigorously define the decay rate of a density.

Definition 3 (Decay rate) For a density f(z), x € R% and for a set A C R?, we say it has decay
rate M > 0 if

f(z1)
f(z2)

> exp(— M|z — x2|)

forall x1,x5 € A.

We next present a lemma that states a density with a bounded LAC function £ has a bounded decay
rate in every direction. This property is especially useful throughout the paper.

Lemma 3 (Decay rate and LAC) Suppose a density f is defined on a domain D C R? and satisfies
the LAC condition with a constant function L. Then, the decay rate of f in D is bounded by v/dL.

Proof By using the Cauchy-Schwarz inequality, we can bound the directional derivative for any

veSilas
Ouf(@) _ + V@)
f(z) f(x)
V()
< |lv
<ol | 5oy,
_ H V()
flx) i
V()
<+d -
< Vac.
Next, by applying the Gronwall inequality (Lemma[22)), we obtain
f(z + hv)
L2 22 > exp(—VdLh
@) p( )
for any x, x + hv € D. Since h and v are arbitrary, we achieve the desired result. |

For a univariate function, we define a one-sided decay rate, which is a weaker condition than the
standard decay rate.

Definition 4 (One-sided decay rate) For a univariate function g, we say it has a one-sided decay
rate M on set A if for all y,y' € Awithy < y/,

> exp(=M(y' —y)).

Using these observations, we can see that the LAC condition provides an upper bound on the decay
rate of the density. For example, in the one-dimensional case, a density with f(x) o exp(—Mzx)
has a decay rate M. We can then bound the lower bound of the variance as 3> and the maximum
density is bounded by M. Since Challenge I]is related to the variance lower bound and Challenge 2]
is related to the maximum density (of the suboptimality gap), we aim to investigate the decay rate of
the contexts’ density.

We first present our key lemma, which provides a relationship between the one-sided decay rate and
the variance lower bound. In the following parts, we present the rigorous relationships between LAC,
(one-sided) decay rate, variance lower bound, and maximum density.
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Lemma 4 (One-sided decay rate and variance lower bound) Consider the density g(-) of a ran-

dom variable Y € R with support I = [a,b] where b > ﬁfor some M > 0. Suppose g satisfies
9y
9(y)

> exp(—Mly —y'|)
forally,y' € IN[—4, L] withy < y'. Then, we have

]E[YQ] 2 CW

for some absolute constant ¢ > 0.

Proof Using Lemma , we find that the density g is bounded by 3M in the interval [—i i] NI
6] we obtain the desired result. |

X 2M° 2M

By applying Lemma

Next, we present another key lemma that provides a relationship between the one-sided decay rate
and the maximum density.

Lemma 5 (One-sided decay rate leads maximum density) Suppose a real-valued random vari-
able'Y has density g and for yo € R, [yo,yo + ﬁ] C supp(Y') for some M > 0. If g satisfies

9(yo +h)
—— = >exp(—Mh
9(yo) ( )
forany0 < h < ﬁ, then g(yo) < 3M.

Proof Since the integral of the density is 1, we have

1= / 9(y)dy
yE€supp(g)

Yo+ 3ar
2 g(y)
> g(yo / dy
(v0) vo 9(yo)

Yo+ 337
> g(yo)/ exp(—M (y — yo))dy

yoJrﬁ

= 9(yo) [—]\14 exp(—M(y — yo))]

o) (3 (1= (-3)))

1

> g(yo)w~

Yo

Therefore,
g(yo) < 3M.

Lemma 6 (Maximum density leads to variance lower bound) LetY be a univariate random vari-
able with support A = supp(Y'). For an interval I = Pg%wv BLM], if the density of Y in I N A is
bounded by M, then we have

E[Y?] > oL

M2

If I N A =0, above inequality still holds.
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Proof First, since the density is bounded by M,
2 2
PYeANI < — x M = —.
YeAnls g xM=3

Therefore, with a probability greater than 3, Y € AN{|Y| > 33 }. Thus,

1/ 1)\ 1
Ev>=-(—) = ——.
[ ]_3<3M> 27M?

If I N A =0, it means that |Y'| > 5% almost surely, hence we get the wanted result. [ |

D High-Level Proof of Theorem [I] (Unbounded Contexts)

In this section, we briefly outline the high-level proof of Theorem [I] for unbounded contexts. This
overview provides a summary and high-level sketch of the proofs, with full details presented in

Appendices[Fand [G]

We begin by explaining how overcoming the two primary challenges (discussed in Section [ leads
to a logarithmic regret bound in the proof of Theorem [} Next, we provide a sketch of the proofs
for the two key theorems: Theorem [2|for lower-bounding the diversity constant and Theorem [3| for
upper-bounding the suboptimality gap.

For bounded contexts, the result statements are given in Appendix [H] and the full proofs are in
Appendix |I} Since the proof for bounded contexts follows a similar approach to that of unbounded
contexts, we start with a proof sketch for the unbounded case.

D.1 Regret Analysis: Overcoming Two Challenges

In this section, we briefly present our proof sketch for the regret bounds. We describe how we can
achieve logarithmic regret by addressing the two challenges: Challenges [T]and 2]

Addressing Challenge we can obtain the O (%) rate {5 bound of the parameter 6; and 6* by

using the combination of self-normalized concentration [1]] and properties that >; > i/\*t holds
with high probability (by using Corollary [9). The details are in Appendix [J] Hence, by tackling
Challenge 16, — 0% 2 < 07% holds with high probability. The following part describes how

we can achieve logarithmic regret by addressing Challenge [2| First, simply assume the contexts
are bounded, such as ||.X;(t)||2 < Zmax. Later, in our main proof, we also modify it to the relaxed
condition || X;()[ly; < Tmax-

Challenge 1: \/t-rate /5 concentration. Ensuring the first Challengecan lead to the /5 statistical
resolution of the estimator. Hence, we can get

VdlogT
VA x (t—1)
VdlogT
A X (E—1)

|X;r(t)(ét71 - 9*)l S CTmax

|X(1T*(t) (ét—l - 0*)l S CTmax

holds with high probability. Details are in Appendix [J.1]
However, this resolution is insufficient for logarithmic regret; it can only achieve an O(\/T ) regret

bound.

Challenge 2: Towards logarithmic regret. Furthermore, addressing Challenge [2] (margin condi-
tion), we can obtain a logarithmic expected regret upper bound. When the greedy policy selects a(t),
it means that

Xa(t) (t)—rétfl Z X(;r*(t)étfl
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and by the definition of the optimal arm,
Xa(t) (t)TG* S X;r*(t)e*
holds. Ensuring Challenge|[I] we get
VdlogT
VA X (t—1)

Next, we define the event E as the event where reg’(¢) > 0. Under the event E, the suboptimality
gap of X(¢) satisfies

reg’(t) := Xoe(1y(1) 10" — Xo(ny (1) 0% < 2cTpmax

VdlogT
A(X(t)) :== X;i@* — maXXJTO* < 2cxmaxi
j#a*r A X (t—1)
and by overcoming Challenge 2] we get
dlogT 1
P reg’(t) > 0] < Ca X 2¢pmax ————nee— + ——
x(olreg (t) > 0] < Ca Mx(—1) VT

VdlogT
VA X (t=1)

By combining these results, we can bound the expected regret as

S 3CgcmaxctA

VdlogT VdlogT
Ex i reg'(t)] < BmeaxCAiog X ZmeaX70g
A X (E—1) A X (E—1)
dlogT

=6c%2?, O
max AN Tt — 1)

This observation enables us to achieve a logarithmic regret bound. Using this argument, our only

remaining goal is to bound the two constants in Challenges [[] and 2] We summarize our above

observations in the following lemma.

Lemma 7 Assume that || X;(t)||2 < R for some R > 0 for all i € [K]. Also assume that the

estimator ||0,_y — 0*|| < A\/% holds for some constant A > 0. Then the (unexpected) regret in

round t is bounded by reg’ (t) < ZAR\/%. Furthermore, under the margin condition (Challenge @

we have Ex 1)[reg’ ()] < 6RZA%Ca 5.

Using the above observation, we can achieve a logarithmic regret bound when || X;(¢)||2 is bounded.
For the case where ||X;(t)|y, is bounded, we use the peeling technique. Given the history #H;_1,
0,_1 — 0* is a fixed vector, and using the results from Appendix we can bound | X;(t) Tv|, v €
{ét_l — 6*,0*} with high probability. Hence, we can apply similar arguments, and details are
presented in Appendix [J|

D.2 Tackling Two Challenges and Fixed History Arguments

Now, we summarize our proof strategy to prove diversity (Challenge (1)) and suboptimality gap
(Challenge [2). First, we consider the problem with a fixed history setup, which involves analysis
under the given history H;_;. We set history-conditioned contexts as X := X(¢) | H:—1 and
X = (X{,...,X}), where X; € R% We describe more about this history fixing in the next
appendix [F} Under the given event H;_1, ét_l is a deterministic value and no longer random. Thus,
the policy a(t), conditioned on H;_1, is a greedy policy with respect to 0,_1, making it deterministic
as well. To address any 0;_1, we propose an analysis that applies to any § € R?, In Appendix
we argue that it suffices to bound the variance of selected contexts of the greedy policy with respect
to any fixed 6. Since we fix €, which corresponds to the value of 0,1 under the given history H;_1,
we define the policy-selected arm a = arg max X, 0. To address Challenge 1} our first goal is to find
the lower bound of E[X, X |. Next, recall that we defined A(X) := X . 0% — max; .+ X, 6* and
we aim to bound this suboptimality gap. Next, we introduce our two important goals to achieve the
two challenges.
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Goal 1. Forany 6, v € S?~! and a greedy policy with respect to #, we aim to find the lower bound
of

E[v" X, X v].
Goal 2. For a fixed 6*, our aim is to find the upper bound of Cx that satisfies

1
PIA(X) <¢| < Cphe + —.
AX) < €] < Cact
It is straightforward that when we achieve Goal 1, then Challenge T|can be achieved easily since Goal
1 prepares for all greedy policies with 6.

D.3 Starting with Truncation

Before we tackle the two above goals, we start by truncating our contexts X to high-probability
regions. Since X; has a bounded 1/, norm as .y, roughly speaking, there exists a set D C R? with

[ID]loo = O(1) and
P[X € DX]~ 1.
We can view X as a mixture of X | {X € DX} and X | {X € (D*)¢} and with high probability,

X is sampled from the distribution X | {X € DX}. In this section (Appendix [D)), since we are
providing a proof sketch, we simply regard X as sampled from the distribution with bounded support

DX where || Do = O(1). In Appendix we observed that X | {X € DX} also has LAC,

and since || D||sc = O(1), it has a constant LAC with £(||D||os) = £(O(1)) = O(1) since L is
polynomial.

Therefore, for this section only, we assume that X has bounded support DX and it has a bounded

constant LAC function £ = O(1). For a rigorous proof and justification, we provide them
throughout Appendix [Fland Appendix [G]

D.4 Event Decompositions

Next, we start to bound the constants in the two challenges. Before that, we present event decomposi-
tions for our analysis.

Definition 5 (Event decomposition 1) We define the event {a = i} as Q; and Q;({x;}j2i) =
{a =1} N{X; =z; forall j #i}.

Pick any v € S?~!. We can decompose the variance term as
Ev' XX, v] =E[E[v" X. X, v | Q]]

=E[E[v X, X, v | Q]]

=E[E[v' XX, v | Q({z;}2)]] -
For notations E [E [- | -]], please refer to Appendix |Al From now on, we aim to bound

E[v" XiX; v | Qi({x;};2)] ©)
for any ¢, {x; } ;. Hence, we investigate the property of the conditional density
Xi [ ({z5}20)

and especially we are interested in the density of projected conditional contexts

X' | Qi({xs}jz) (6)

We define new event decompositions for bounding the suboptimality gap. Under the fixed history, set
a* 1= argmaXe (x| X, o
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Definition 6 (Event decomposition 2) We define the event {a* = i} as Q0 and ¥ ({x;}j2i) =
{a* =i} n{X; =z, forall j #i}.

Next, we aim to bound C'a, which is another key constant in Challenge [2] Define the optimal arm
a* = arg max X' 0* and the suboptimal arm a’ = arg max; .+ X, 0*. By definition, for any £ > 0,
we have to calculate

PA(X) < ¢] = P[X.60" — X 0" <¢]

=E[P[X,.0" - X, 0" <e|Q]]

=E[P[X,.0" — X,).0" <e | ({x;};2)]]

=K [IF’ [X;H* —maxz] 0" <¢| Qf({x]}ﬁgt)” .

JFi
Then, we aim to bound
P [mgx:r;@* <X 0% < mgxwﬁ* +e Q;({xj}j#)}
JFT JIFT

and hence we investigate the properties of the conditional density
X0 1 Q5 ({25} 4)- ™

It is sufficient to bound the maximum density of X" 0* | Q7 ({z;} ;) since if it is bounded by U,
we can see that

P mjﬁ(m}@* <X/o* < r;_l;xx?&* +e| Qi ({z;} )| <Ue

holds, and we can set Cap = U.

D.5 Conditional Contexts are Still in LAC Class

In the previous Appendix [C.3]and Lemmal[l} we saw that LAC is preserved under conditioning. Our
conditioned contexts of interest, X; | ©;({z;}) and X; | QF({z,}), involve conditioning on events

such as X; | {X; = z; forall j # 4, X, > max;; x] 6}, which meet the conditions of Lemma
Then, we can apply Lemma [I]and conclude that these two conditional densities

Xi | Q({zj}izi), X | Q5 ({x;})

also have LAC with a bounded constant function L.

D.6 Remaining Goal: Bounding Decay Rate of Projected Contexts

Lemmafd]tells us that a bounded one-sided decay rate of a density guarantees a lower bound on the
variance. Lemma [3]tells us that a bounded one-sided decay rate of a density guarantees a bound on
the maximum density.

In summary, we need to find the lower bound of equation (6)) and the maximum density of (7). We
present Lemma ] and[5] which tells us that if we can bound the one-sided decay rate, then we can
bound the variance of (6) and the maximum density of (7). By the property that LAC is preserved
under conditioning, we can bound the decay rate of X; | Q;({z;};2:) and X; | Q7 ({z;},2:) by
V/dL, by combining Lemma and the LAC property of conditional contexts. However, our interests
are projected contexts, defined as

X v | Qi({as}i20),
and
X1 0% | ({2 }44)-

These are projected contexts with some direction v and 6*. In the remaining part, we aim to bound the
one-sided decay rate of these projected random variables’ densities to apply Lemmald]and Lemma 3]
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Support of conditional densities. We first observe the support of the conditional density X; |
Q;({z;};2:). By the definition of €2;, the arm ¢ should be optimal under the greedy policy 6 in this

event. Therefore, its support is restricted to {z € D | z "6 > max;; xJTQ}

Next, we consider the density of projected contexts, X; v | €;({x;};). Since the support of
Xi | Qi({x;}jzi) is of the form {z € D | 270 > max;; x; 0}, our projected density is an
integrated form:

PX 0 =y | (o)) = [ PIX: =2 | Qulfa) )] do
{z€D|zT>max;x; :L’_;'—G}ﬁ{:da:TU:y}

Geometrically, this represents the total density at the intersection of the hyperplane {z | z"v = y}

and the set {x € D | #760 > max;; ijQ} We refer to these as section densities, as they represent

the total density of sections sliced by the hyperplane {z | z v = y}. Further discussion is provided
in Appendix [E]

Conclusion. Later in Appendix [Fland Appendix|G] since X; | €;({x;};:) has a bounded decay
rate v/dL = O(+/d), we prove that the projected densities also have a bounded one-sided decay rate
of O(v/d). Lastly, by applying Lemma we can prove the quantity

1
E[o" XX, o | Qi({z;}2)] > 7

for some ¢ = 6(1) Also, using Lemma we can prove that the density of (7)) has a bounded density
V/dL and we can prove that Cx = O(\/d).

To summarize, we proceed with the following steps:

1. Event decomposition by conditioning.

2. We know X; | Q;({z;};2i) and X; | QF({x;};i) have a bounded decay rate vdL =
O(Vad).

3. We aim to bound the decay rate of the projected densities X;' v | Q;({z;};:) and X, 6* |
O (i)

4. If we are able to bound the decay rate of the above projected densities, we can bound the
two key constants in the two challenges using Lemma 4] and Lemma 3]

For step 3, the remaining important task is to bound the decay rate of the projected densities, which
we address in Appendix [E] Appendix [F| and Appendix [G|

E Sections, Section Densities and Decay Rate

In this section, we define sections and section densities and investigate their properties. Previously in
Appendix [D] we discussed decomposition by conditioning, and our interest became the properties
of conditioned contexts, the form of X; | Q;({z;};2:) and X; | QF({z;};x:). Our first goal is to
bound the variance of projected contexts, such as X, v | Q;({z;} ;) for all v € R%. To do that, we
investigate the projected density of X;"v =y | Q;({z;};i). To apply Lemmaand Lemma we
only need to bound the one-sided decay rate of that projected density. We saw that its density is the
total density of intersections with { | 20 > max;; 2 0} and hyperplane {x | 2"v = y}. We
can view it as sections sliced by hyperplanes, and we provide some theory related to sections and
section densities.

E.1 Motivation

In the proof strategy (Appendix D)), we aim to bound the one-sided decay rate and maximum density
of projected conditional density, X, v | ;({x,};.i) and X;"0* | QF({x,},.i). Recall that we
define one-sided decay rate of univariate density g (Definition ) at Appendix [D]as a constant M/
satisfying

> exp(—M(y' —y))
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forally < y'.

Then, how to bound the (one-sided) decay rate of section density? We present a technique to bound
the (one-sided) decay rate of section densities defined in equal and expanding sections.

E.2 Sections and Section Densities

Our remaining goal is to bound the one-sided decay rate of section density. To build some general
theory, we first define sections and section densities explicitly.

Definition 7 (Sections) For the set A C R and v € S*~1, we define sections as
Sec(A,v,y) :=An{z|z"v =y}
fory e R.

This means that a section is the intersection of region A and hyperplane {z € R? | zTv = y}.

Definition 8 (Section density) We define the section density of the region A. Let f be the density
defined in the region A C RY. Then we define g(y) as the section density of Sec(A,v,y) as

= dx.
g(y) /wESec(A,v,y) f(x) v

Remark 1 If the density of X € R% is f, the section density corresponds to the density of X " v for
v e S

Next, we define the areas with special section structures: equal sections and expanding sections. First,
we define equal sections, the area whose section with direction v is equal.

Definition 9 (Equal sections) We define the set A to have equal sections with v € S?~' when
Sec(A,v,y) is congruent in shape for y > 0.

Next, we define expanding sections, where the sections of A with direction v expand when y increases.

Definition 10 (Expanding sections) We define the sections of A with direction v as expanding
sections when
Sec(A,v,y) + hv C Sec(4, v,y + h)

for every b > 0. Technically, equal sections are included in expanding sections.

Figure 2: Illustration of expanding section’s example. The section with direction v is expanding when
y increases: y to y + h.
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E.3 Decay Rate of Section Density

Recall that we define the one-sided decay rate of univariate density g (Definition[d) at Appendix [D]as
a constant M satisfying

> exp(—M(y' —y))

forall y < y'.

Then, how to bound the (one-sided) decay rate of section density? We present a technique to bound
the (one-sided) decay rate of section densities defined in equal and expanding sections.

Lemma 8 (One-sided decay rate: equal and expanding sections) For A C R% v € R%, and y €
R, a density f has support A and has a bounded decay rate M. Assume that the sections of A with
direction v are expanding sections. We define the section density of Sec(A,v,y) as g(y), then we
have for any y; < ya:

983 > exp(—Mly: — ps]).

<

Proof Since the section is expanding with the direction v, we can observe for any h > 0,

g(y + h) o fSec(A,v,y-i,-h) f(‘r) dx

‘g(y) - fSec(A,v,y) f(x) dzx
> fSec(A,v,y) f(x) eXP(—Mh) dx
- R fSecaoy £ (@) da
> exp(—Mh).

The second inequality holds since the section is expanding and using Lemma[3] Since equal sections
are also expanding sections, we end the proof.

Lemma 9 (Maximum density: equal and expanding sections) The density f(-) has support A C
R? and has a bounded decay rate M. Furthermore, sections with direction v are expanding sections
and define the section density of Sec(A, v,y) as g(y). If the support of g(-) contains an interval [a, b],
then g(y) < 3M fory € [a,b— Q—le}

Proof This can be obtained directly by applying the result of the previous Lemma [§]and Lemma[5] l

6 A1 SeC(Al,v,y) v

\< NN

Figure 3: Illustration of A; and expanding sections of v or —v. A; is the area above the green line.
In this case, sections with direction +wv are expanding! If a cylindrical set is cut by some hyperplane
(which is A1), at least one direction makes expanding sections.
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F Two Key Propositions in Fixed Histories (Unbounded Contexts)

This section aims to provide key propositions to prove Theorem [2Jand Theorem[3] Our two challenges
aim to bound

and

PA(X(t)) < e]. ®)

We define X () = (X1(t)7,..., Xx(t)T) € R¥. Under the given event H,_1, 0, is a determin-
istic value and is no longer random.

F.1 Details for Diversity Constant (Challenge [T)

In the definition of the diversity constant, we recall that the expectation is taken with respect to X(¢)
and the history H;_;. In round ¢, for any fixed history H;_;, we perform the greedy policy with the

estimator ;1. Hence, when the entire set of contexts X () = (X1 (t)7,..., Xx(t)) is revealed,
a(t) is determined immediately, given the history #;_;. Then the exact statement is:

“In round t, for any given history H;_1,
Ex (1) [Xa(e) &) Xawy () 7] = Al
holds with some A\, > 0.”

In the proof, we proved a stronger statement:

“For any greedy policy with any # € R and selected arm a(t) with that policy,

Ex(t) [Xat) ()Xo ()] = Ml
holds with some A, > 0.”

We prove a stronger quantity (second argument). For any given parameter 6 € R¢, define ag(X(t)) :=
argmax;c i) X;(t) " 0 and define

- ; . T
Ae(t) = Hg”l;gl Amin (]Et[Xag(x(t))Xae(X(t))]) .

Since 6;_; can be an arbitrary value, we prepare for all greedy policies w.r.t. § € S*~!. Then the
newly defined )\, (¢) satisfies equation (I)), and we discuss this in Appendix@

Thus, the policy a(t), conditioned on H;_1, is a greedy policy with respect to Op_1, making it

deterministic as well. To address any 0,_1, we propose an analysis that applies to any # € RY, aiming
to bound the variance of the selected contexts. In Appendix [FI] we argue that it suffices to bound
this variance for any fixed 6.

(Pn A (E[Xaqx(0) (1) Xag(x(0) (1) T])

Note that ag(X(t)) is defined as arg max;c(x) X;(t) " 6. This quantity is equal to

i E [lvTX o2
1olla=1llolla=1 e[ Xaoxen ()]7]

and we prove this lower bound for any 6 and v. In summary, our aim is to prove that for any history
H;_1 and @, v, we can bound

E[|v" X, xy) ()] )

To bound the margin constant, our aim is to prepare for all §*, since the true model parameter 6* can
also be arbitrary. For simplicity, when contexts are clear, we write ag(X) = a (when we fix 6).
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F.2 The Setup of Fixed History Analysis

We aim to find a class of densities F such that if X(¢) € F, then equation (9) is lower bounded for
any 6, v. Similarly, we aim to find a class of densities G, such that if X(¢) € G, then equation (8) can
be upper bounded for any 6* € R

1. We first prove that for a fixed 0, v, for densities with LAC and supports satisfying certain
geometric conditions, we can bound equation @])

2. We also prove that for a fixed 6*, for densities with LAC and supports satisfying certain
geometric conditions, we can bound equation (8).

3. Next, we prove that the densities with LAC and bounded v); norm, for any given 6, v, can
be truncated (with high probability) to densities contained in class 1.

4. Lastly, we prove that for densities with LAC and bounded ¢; norm, for any given 6*, we
can truncate it (with high probability) to densities contained in class 2.
In this section, we provide the results of 1 and 2. In the next Appendix |G we proceed to 3 and 4.

Now, we build the theory with the assumptions that , v and H;_; are fixed. We assume that random
vectors Z = (Z] ... Z}), where Z; € R%, arise from some distribution with LAC £(-). We fix an
arbitrary # € R? and define the random index variable

a = argmin Z;' 0.
i

We also fix v € S4~1 and first aim to bound E[v " Z,Z v]. Our goal is to find the lower bound of
E[v" Z,Z ) v] for any v € S¥=1; from now on, we fix an arbitrary v € S¥~1. We then aim to bound

Ew'Z,Z, v]

for fixed 6 and v. Proposition 2] below shows that when the support of Z satisfies certain geometric
conditions, E[v " Z,Z ] v] can be effectively bounded.

We next define C'a as the margin constant of Z with the parameter 8*, which satisfies

1
PIA(Z) < ] < Cpe + —.

[A(Z) <e] < Ca NG
where A(Z) is a suboptimality gap, defined similarly in Section |4, Proposition [3| below shows
that when the support of Z satisfies certain geometric conditions, the margin constant of Z can be
effectively bounded.

Same as previous definitions, we define the event
Qi = {a = ’L}

and
Ql({Zj}];ﬁl) = {a = Z} n {ZJ = Zzj for all ] 7é Z}
Simiarly, we define

and

O ({z}2i) ={a" =i} N{Z; = z; forall j #i}.
F.3 Key Proposition for Diversity Constant
Recall that we define [—1, 1] ,=lr | -1< xTv < 1} forany v € RY,

Proposition 2 (Key proposition for diversity constant) The random vector Z = (Z; ...Z}),

Z; € RY, satisfies the following conditions:
1. Z has LAC with L(-) and || supp(Z)||oc < R.

2. Foralli € [K], supp(Z;) is identical for some subset A C RY. That is, supp(Z) = A¥ for
some A C R%.
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3. The support AN [—1,1], has equal sections with direction v.

Then there exists an absolute constant ¢ > 0 such that

B 2,270 > — .
v ZeZa ]2 Gr Ry

Remark 2 For unbounded contexts X (t) in the original bandit problem, we truncate to some region
C, with positive probability and make the truncated contexts satisfy the condition of the above
proposition.

F.3.1 Proof of Proposition

Since supp(Z) < R, it has bounded decay rate v/dL(R) by Lemma By the established event
decomposition, we see
Q= J u{z}in),
{3}z
and by applying the tower property, we get
Elo" Z,Z]v] = E[EIZ.2) | Qu({z}i20)]
=E[E[ZZ] | Q%({z};2)]]-

Hence, we only need to bound

Elv' Z;Z v | Qu({z}4)]- (10)
for every Q;({z;};»i). Recall that we defined [-1,1] := {2 | 2"v € [-1,1]}. Then we
decompose it as

Elv' ZiZ] v | Qi({z}2)]
=E[v' ZiZ v | Q({z}j2) N {Zi € [-1, 11} P[Zi € [-1,1], | ({2} )]
+E[v" Z:Z v | Qi({z} ) N {Zi € (-1,1],)}] P[Zs € ([-1,100)° | Qi({z5}50)]
>E[v' Z:ZT v | Qi({z}i2) N {Z:i € [1,1]}].

The last inequality holds because E[v" Z; Z v | u({z;},2) N {Z;i € ([-1,1],)°}] > 1 and
From now on, we focus on the conditional density of Z; | ;({z;};2) N {Z; € [-1,1],} and its
projected density v Z; | Q;({2;},2) N {Z; € [-1,1],}. For simplicity, we set the conditional
density of Z; | Q({z;};2) N {Zi € [-1,1],} as fi(-) and the projected density of v'Z; |
Qi({z;}j#:) N{Zi € [-1,1],} as g1(-). Using Lemmal[l} the density f1(-) has LAC with constant
function £(R), and it has bounded decay rate v/dL(R) by Lemma

[1] Investigating the support of f; and g;. First, we examine the support of f;. Since arm i is
optimal with estimator 6, all z in the support of f; must satisfy z ' § > max;£; z;—(‘). Also, because

—1 < 2Tw < 1 holds, this support is the intersection of these two areas. Define

Ay i=supp(Z; | Qi({z}2) N{Zi € [-1,1],}) ={z€ A| 270> msz]—-rf), —1<zTvw <1}
VE]

Recall that A := supp(Z;) is designed to have equal sections with direction v. Hence A N [—1, 1],

has equal sections with v. Therefore, the support of Z;'v | Q;({z;};2) N {Z; € [-1,1],} is an
interval by our design of A.

[2] Bounding one-side decay rate of section density in [—1,1]. We aim to apply Lemma 4] to
bound the variance E[v" Z; Z v | Qi({z;};2:) N {Z; € [-1,1],}]. It tells us that it is enough to
bound the one-side decay rate of the section density g; (-) in the interval [—1/2,1/2].

Claim 1 One of Sec(A1,v,y) or Sec(A1, —v,y) consists of expanding sections when y increases
Sfory e [-1,1].
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Proof of Claim 1 Choose one of v, —v such that (-, §) > 0. We want to use the result of Lemma
Since [—1, 1], has equal sections with direction v, by rotating the axis, we can satisfy the condition
of Lemma|[I0] Then Lemma[I0]implies that at least one direction among v or —v yields expanding
sections. See Figure 5 for intuition. [

9 Al SeC(Alv’U?y) v

\< N

Figure 4: Tllustration of A; and expanding sections of v or —v. A; is the area above the green line.
In this case, sections with direction +v are expanding. If a cylindrical set is cut by some hyperplane,
at least one direction produces expanding sections.

Claim T]tells us that we can apply Lemma(8] and thus bound the one-side decay rate of the section
density g; (-). Without loss of generality, assume Sec(A1,v,y) is expanding when y increases. Then
the support of Z, v | Q;({z;};2) N {Z; € [-1,1],} is an interval of the form [c, 1] with some
-l<e<l

Claim 2 The one-side decay rate of Plv" Z; = y | Qi({z;};:) N [~1,1],] is bounded by v/dL(R)
forye[-1,1].

Proof of Claim 2 To bound the one-side decay rate, we apply Lemma([§] By Claim[I} without loss
of generality, sections with direction v, i.e., Sec(A4, v, y), form an expanding section. By Lemma
we obtain the desired result. ™

[3]1 Bounding the desired variance. We now see that the support of g (-) has the form [¢, 1] for
some ¢ < 1. Hence, by LemmaE[, we conclude

c

Ev" ZiZ v | Qu({z} %) N {Zi € [-1,1],}] > dL(R)?

for some absolute constant ¢ > 0.

Below, we prove Lemma [0} which is used in the proof.

Lemma 10 Consider the (cylindrical-shaped) set S = U x I for U C R4 and an interval I C R.
For 0 € R% with 0" e,, > 0 and any b € R, define the set S’ := SN {x | 70 > b}. Then S’ yields
expanding sections with direction e.,.

Proof To prove that they are expanding sections, we need to show that for any A > 0, x¢ + he,, €
Sec(S’, en,y + h) for any zg € Sec(S’, en,y). By the definition of sections, clearly xg + he,, €
{x e R¢|zTe, =y + h}. Next, we must show xq + he,, € {x | 70 > b}. Since e, § > 0,

(zo+he,) 0 >2j0>0

holds. |
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U

Figure 5: Illustration of S and expanding sections with direction e,. Blue lines are sections
Sec(S’, en,y). If a cylindrical-shaped set is sliced by some hyperplane, at least one direction
forms expanding sections.

F.4 Key Proposition for Suboptimality Gap

Next, we provide a fixed-history analysis to bound the margin constant of Challenge 2}

Before we start, we define the cylindrical set used to characterize the support of densities.

Definition 11 (Cylindrical region) We define A C R? as a cylindrical region with direction v €
S and length 2H if
A={B+tv|—-H<t< H}

for some subset B C {z | z"v = 0}. We denote this set by cyl(B,v, H).

A

Figure 6: Illustration of a cylindrical region A.
Next, we show that if the support of each context Z; is a cylindrical set, we can bound the margin
constant. We state our key result on bounding the margin constant in the fixed-history setup.
Proposition 3 (Key proposition: suboptimality gap) Assume that the random vector Z =

(Z] ... Z}), Z; € RY, satisfies LAC with function L(-) and ||supp(Z)||«c < R. Additionally,
suppose it satisfies the following conditions:
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1. Foralli € [K], supp(Z;) C RY is identical for some set A C RY. That is, supp(Z) = AX.

2. For some H > 0, Z;’s support supp(Z;) = A = cyl(B,0*, H + 1) for all i € [K], and
P[Z € (cyl(B,0*, H))X] > 1 —4.

Then
P[A(Z) < €] < 3VdL(R)e + 6.
Remark 3 For the original bandit problem with contexts X (t), we truncate to a high-probability

region Co and set the truncated contexts to satisfy the conditions of the above proposition. We provide
the analysis in the next Appendix|G|

Figure 7: llustration of supp(Z;). It has equal sections with 6* and ||.Z; o0 < R.

F.4.1 Proof of Proposition 3]

Define Z;'6* = U, for all i € [K]. With a slight abuse of notation, define the optimal arm
a* = arg max; Z;' 0* and the suboptimal arm a' = arg max;_z,+ Z,' 0*.

[1] Decomposition by conditioning. We can bound the margin probability by conditioning as

P[Ua* — Uaf < E]

=E[1(Ua+ — Uyt < ¢)]

=E[L(Up — Uyt <€) | Uyt < HIP[Uyt < H|+E[1(Uys — Uyt <€) | Uyt > HIP[U,+ > H]
<E[Q(Ug — Uyt <€) | Uyt < HP[U,+ < HJ+3  (By the second condition of the proposition)
<EQUs — Uyt <€) | Uyt < H]+6

SE[EL(Usr — Uat <€) [ {Uat < H} N Q7 ({2})]] +9

<E[E[1(0 < U; - max 2] 0* <e)| {r?ifzjo* < H}NQ ({2}2)]] +9

= E[E[l(%lif 2;0* <Zlo*<e+ Iglizcz;rﬁ*) | {%1225(2;0* < HINQ({z}2)]] +6.

We set the density of Z; | {max;; 2] 0* < H} N Qf({z};2) and Z0* | {max;; 2] 60* <
H} N ({2}2) as f2 and gs.

Our goal is to bound the maximum density of go, which is a density of

A {max 2 00 < H} N Q5 ({2} j1)-
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[2] Support of f2(+), g2(-) and their geometry. We examine the support of the conditional density
f2, which is
Zi == | {max2/ 0" < HY 0 Q7 ({z}0)-

V)
Under the event 2} ({2;},i), we have 2" 6* > max;; ZJTG* by the definition of Q7 ({z;};:).
Since max;; z}—e* = b < H, the support of f; becomes

{zc A| 276" > b}
Recall A := supp(Z;) and it has equal sections with direction #*. Using Lemmal[l] f>(-) has LAC
with £(R), and it has bounded decay rate v/d£(R) by Lemma

[3] Bounding one-side decay rate. Next, we aim to bound the one-side decay rate of Z;' 0* = y |
{max;.; 2 0* < H} 0} ({2;}). Define the (conditional) density of

zZor =y | {mixz]—-re* < H}n 7 ({z})
JF
as go(y). Its support is restricted to the region {y | b <y < H + 1}.

Claim 3 The one-side decay rate of
210" =y {max] 0" < HY 195 ({5,))
JF

is bounded by \/dL(R) in the interval [b, b+ 3].

Proof of Claim First, we observe that the support of
Zi | {max 2] 07 < HY N Q7 ({z})
VE2

is an interval [b, H + 1]. This follows from the definition of Q7 ({z;}) and our design of A. Moreover,
this support has equal sections with direction 6*. Since b < H, Lemma §|applies, yielding the desired
result. n

3) Bounding maximum density of g> by applying Corollary[5] From Lemmal5] the maximum
density is bounded by 3v/dL(R) in the interval [b, b+ 1]. Hence,

E[l(mjx z;—@* <Zz'or< max z]-rf)* +¢) | {mjx ijo* < HYNQi({z})] < 3VdL(R)e
J7F VE:I j#i

for any € < %

G Proofs of Results for Unbounded Contexts

In this section, we prove our main theorems stated in Section[4.3] We aim to apply the key propositions,
Proposition 2] and 3] To apply them, we first truncate our contexts to an appropriate region to fulfill
the conditions of the propositions. First, we present ways to construct a truncation set, which is used
to prove Theorems [2]and 3] After that, we prove the two Theorems [2]and [3| by applying Proposition 2]
and[3

G.1 Constructing Truncation Sets

This section presents operations to construct truncation sets that will be used in the proof of our main
results. In the proof, we first truncate our contexts X € R4 to a truncation set C = Hszl D, where

D c R<, and work with the truncated contexts. If the supremum norm of the set is bounded, by
combining it with LAC, we can bound the decay rate of the truncated contexts.

First, we define the directional completion of v. For a set A and a vector v, we define the process
of filling A in the direction of v. This process expands A so that its cross-section remains the same
when cut by a hyperplane orthogonal to v. This procedure ensures that all sections of A along the
direction v are equal. Recall that mg(A) denotes the projection of A onto the subspace S. If S is the
subspace spanned by a vector v, we write 7, (A), which is a subset of a straight line.
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Definition 12 (Set completion) For A C R% and v € S~ 1, we define
C[A,v] := Ty (A) +vmy(A).

After this completion, the section sliced by the normal hyperplane of v is the same.

C[A, ]

=

Figure 8: Illustration of C(A, v). This is the operation of filling the area A in the v-direction. Then,
all sections in the v-direction become equal.

Lemma 11 Suppose a set A € R and a unit vector v satisfy 7,(A) is an interval with length ¢.
Then,

IC[A, v][loe < [[Alloo + £-

Proof For all p € C[A, v], there exists ¢ € A and some h with |h| < ¢ such that p = ¢ + hv. Hence,
[Plloe < llglloc + [[h0]loe < [ Alloc 4 £.
|

Next, we define partial completion, which makes the section with direction v in the region of
C(A,v)N[-1,1], equal.

Definition 13 (Partial completion) For a set A C R and a unit vector v € RY, define

P(A,v):=CAN{z ||z -v| <1} 0] UA.
Recall that 7,(+) is a projection onto the direction v.

P(A,v)

Figure 9: Tllustration of P(A,v).
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P(A,v) has the same section with the direction v within the region [—1, 1],. Equivalently,
PAvN{z |z v=u}=PAv)N{z |z v=muy}

for every u; # ug € [—1, 1]. The partial completion operator has a bounded supremum norm, as
shown in the following lemma.

Lemma 12 (Sup norm bound of P(A,v)) Forany A C R? andv € S471,
IP(A,0)]loo < [|A]lco + 2
holds.

Proof For any y € P(A,v), there is ¢ € A such that y = y’ + tv for some [¢| < 2. Hence,

[Ylloe < 11y'lloe + lItvlloe < [|Alloo + 2.

G.2 Proof of Theorem 2]
Our goal is to prove

E[Xa,(x(t)) () Xagxe (1) ] = Au(t) > 0

for any ¢ and 6. Fix an arbitrary history H;_; and any § € S?. For simplicity, define (X;',..., X})
as the conditioned random variable of (X1 (¢)T,..., X (¢t)T) | H;_1. Under the history H;_1, we

aim to apply Propositionfor any 0 and v. We also set a = arg max X;' 6. For any fixed v € R?
with ||v|| = 1, our goal is to calculate the lower bound of

Ev' X, X, v].

We view it as a fixed history random variable, and we aim to use arguments developed in Section|[F

To use Proposition we first truncate our contexts (X', ..., X;-) into some region CY, then apply
Proposition [2| to the truncated contexts. To satisfy the geometric conditions of Proposition [2, we
construct the truncation as follows.

G.2.1 Constructing Truncation Sets

We define the truncation set as follows:
1. Define Ry = ¢p Tmax(2 + log dK).
2. Define D := [~ Ry, Ry]%
3. Define DV := P[D, v].

4. Set the truncation set C¢ := (D)%,

9]

. Then [|CY||oc < R1 + 2 holds (by Lemma|12).
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e 2

Figure 10: Illustration of the set DV. The red rectangle is D, and D" is the union with the green
boundary rectangle and D. We force the sections in the direction v within [—1, 1], to be equal. Hence,
we can apply the previous results from Proposition@

Claim 4 For any X satisfying Assumption P[X € CY] > 1.

Proof First, we show P[X € D¥] >
we get

%. Since CY D DX, it suffices to prove the latter. Using (T4),

K K d
11
P[X € (D¥)]] < ) PIX; € D" ZZ X3 > Ba] < dE % 5z = .

i=1

Define the truncated contexts W = X | {X € CY} := (W, ,... ., W}).
Claim 5 The truncated contexts W satisfy

1
E[WTXQXQTU} > §E[UTWG(WQ)TU}.

Proof Recall a = arg max;c(x) X;' 0. Note that
Efv' X, X, v] > E[v' XX vxwy] + E[v’ XX, v Iixewy]-
Since [{xsw) < 1, and P[X = W] > 1, we get
1
Ev' X, X, v] > E[v" Xo X, v]ixowy] > E[o W, W, 0| X =W]PX=W] > 5JE[vTWaVVaT v].

Hence, we only need to bound the diversity of the truncated contexts W = (W;", ..., W}). |

G.2.2 Properties of Truncated Contexts W

We need to check two conditions: (i) The sections of supp(W;) in the direction v within [—1, 1], are
the same for all i. (ii) W has a bounded decay rate v/d £(R; + 2).

Since X satisfies LAC with functions £ and ||C1 || < Ry + 2, it follows from Lemma 3] that X has
a bounded decay rate of v/d £(R; + 2).
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Claim 6 The truncated contexts W have LAC with L(-), and || supp(W)||co < Ry + 2.

Proof By Appendix conditioning on the event {X € C?} preserves LAC with the same
function L. Also, by construction of C} and Lemma([l1] || supp(W)||oo < Ry + 2. |

Claim 7 For every i € [K], the support supp(W),) is identical for all i, and supp(W;) N [-1,1],
has equal sections in the v-direction.

Proof Since we set DV as the partial completion of D with direction v, the sections in [—1, 1],
become equal by construction. |

G.2.3 Applying Proposition
We have verified that our truncated contexts W satisfy the conditions of Proposition[2] Hence, by
Proposition for some absolute constant ¢’ > 0,

Cl

EW. W, ] = I
[ Iz d(A; + Ay(Ry +2)2)2 ¢

Combining with Claim[5] we get
E[X, X, ] - Iy

-
- d(A1 + AQ(Rl + 2)0‘)2

for some absolute constant ¢ > 0 and it ends proof.

G.3 Proof of Theorem[3
We now use the result of Proposition First consider the case ||6*||; = 1. For the general case, we
can adjust via the argument in Appendix

Truncate our contexts X = (X{ ... X ) to some region Co = DX, where D C R?, with a slight
abuse of notation. Define the truncated contexts as W = (W;,..., Wl). Note that the support
of W; is D. To satisfy the conditions of Proposition [3} we want the sections of supp(W;) in the
direction 6* to be the same.

G.3.1 Constructing Truncation Sets

We construct the truncation set Cy as follows. First, set Rz = ¢o Zmax (1 + log dK + % log T') and
Ry =R3+ 1.

s Set Dy := ([~ Ry, Ry])? C R4,

s SetDy :={r cRY| —Ry <2"6* < Ry} C R

e Set D3 := Dy N Ds.

« Set D := C[D3, 6"].

* The final truncation set is Co = DX,

Claim 8 The sup norm of the truncation set satisfies || D|| s < 3Rg. Also, W has bounded LAC with
L(3R2).

Proof By Lemma the LAC of W is the same as the original, £(-). By Lemma D)oo < 3R2

since g« (D2) is an interval with length 2R5. Since L(-) is increasing and || D||o < 3R2, W has
bounded LAC with £(3Rz). [ |

Claim 9 The region Cy has equal sections in the direction 0* and P[X € Cg] > 1

_ L
T
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Proof By Assumption , PXi;] < Ry > 1 — W holds for all 4,5. Hence,
PX € DX] > 11— 5= BY the same assumption, IE)[X € D] > 1 - ﬁ Thus,
]P’[XeD:,If]zl—ﬁ.SmceDDDg,P[XeCz]zl—ﬁ. [ |

G.3.2 Truncation with a High-Probability Region

We truncate X into the high-probability region C, and define the truncated contexts W =
(Wi, ..., Wy). We then work with W.

The following calculation shows that it suffices to bound the suboptimality gap of W:

PIA(X) <¢] :/ LA <eyf(x) dX:/ LA <y f(x) dX+/ LA <eyf(x) dx
RKd C» C3

< / H{A(x)gg}f(x) dx + I[D[X € C;]
C,

f(x) 1
=PXeC / Iiax)<el =—————dX + —
[ 2] C, {AtI=e} pX e Cy) VT

1

=P[X e C|PIA(W) <¢g|] + —

X € CIPIAW) <] +

1
< PIAW) <¢gl+ —. 11
< P[A(W) <¢] Wi (11)
Therefore, if we find the constant C' satisfying

PIA(W) <ée] < Che, (12)

we get Ca < Ci.

Lemma 13 The truncated contexts W = X | {X € Cz} meet the condition of Proposition[3|with

H:Rg—l—landé:ﬁ.

Proof Let D = cyl(B, 0*, Ry) for some set B C Py+, and define D' = cyl(B,6*, R, — 1). By a
similar argument to Claim9} P[X € D'] > 1 — ﬁ Hence,

. PXeDn{XeC,} P[X € D'| - = 1
W = > > =1- —.
PW € D] P[X € C,] T PXeCy — 1 ! VT

Thus, the condition of Propositionis satisfied with § = -1 |

VT

G.3.3 Applying Proposition
By Proposition 3] we can ensure that (T2) holds for
Ch = 3VdL(Ry) = 3Vd (A1 + As(3R»)").
Hence,
Ca < 3Vd (A1 + A2(3R2)*) = O(Vd).
G.4 Proof of Theorem[I: Unbounded Contexts Case

Combining Proposition [9] with our results from Theorems [2]and 3] we get

1
Reg(T) < ¢cCada?,, —

max A
*

(log T)*.
By substituting our bounds on C'a and A,, we have

Reg(T) < cCad*®al,y (A1 + As(Ry + 2)a)2(A1 + A2 2°RS) (log T)* < O(d*?).

max
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H Results for Bounded Contexts

Now, we present our main result for bounded contexts.

H.1 Two Cases of Bounded Contexts

In the linear contextual bandit setting, {5 boundedness is widely used. However, for light-tailed
distributions (such as Gaussian or exponential), the /5 norm is unbounded. Therefore, we divide
our analysis into two cases: unbounded and bounded contexts. While our previous focus was on
unbounded contexts, here we summarize and present results for bounded contexts.

We classify the analysis into two cases: the first is for truncated contexts, and the second is for
naturally bounded contexts, which include cases where the uniform distribution on the ball By or a
distribution with bounded density on the ball.

1) Truncated contexts. Truncated contexts refer to cases where the context distribution is truncated
from the original distribution. Examples include truncated Gaussian and truncated exponential
distributions.

2) Naturally bounded contexts. Naturally bounded contexts include uniform distributions on a
ball or distributions with bounded density defined on the ball.

H.2 Regret Bounds for Bounded Contexts

Next, we present our result for the regret bound. The first case is when we receive truncated contexts,
generated by truncating unbounded contexts to (B )%, where By, is a d-dimensional ball of radius
R. For the ¢5-bounded case, R may depend on the dimension d when we choose a large R, so we do
not hide the R term in our main regret bound. Corollary [T]and 2] gives the regret bound for truncated
contexts. Corollary [3| gives the regret bound for naturally bounded contexts.

Corollary 1 (Regret bound: truncated contexts) Ler X (t) be unbounded contexts with the same
condition as TheOrem For R’ > 0 with P[X(t) € (Br/)®] = p > 0, we receive truncated contexts
X(t) | (Brryr)X for some r > 0 each round t > 1. In this case, for R = R' + r, the regret of
Algorithm[l|is bounded by

Reg(T) < 5(d2'5R2£(R)2%).

whenr < R’.

Corollary 2 (Regret bound: high-prob truncated contexts) Ler X(t) be unbounded contexts with

the same condition as Theorem We receive truncated contexts X (t) | (Br)X for L > v/damax (1 +
log d + log K) each round t. In this case, the regret of Algorithm|l|is bounded by

Reg(T) < O(d*®).

Discussion.  For Corollary [I] when we receive truncated light-tailed distributions (e.g., Gaussian,
exponential, Laplace), this theorem states that they enjoy a logarithmic regret bound. It has a
poly(log T') regret bound for T and depends on R, the truncation radius. Corollary [2|states that
when we choose a sufficiently large truncation radius, the bound becomes radius-free, matching the
unbounded case (Theorem|[I]). Proofs for these corollaries are presented in Appendix [I}

Next, we introduce the regret bound results for naturally bounded contexts. Here, new parameters c,
and p, are introduced, along with Condition[I] This condition will be discussed in Appendix [H.3]
where we clarify that both uniform distributions and bounded-density distributions satisfy it. We
will provide detailed explanations and state the range of c,, p, for several distributions, including the
uniform distribution.

Corollary 3 (Regret bound: naturally bounded contexts) Let naturally bounded contexts X (t) €
(Br)X satisfy the LAC condition with function L(-) and Condition |I| holds with concentration
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parameters c., p, each round t. Under Assumption[I|and[2] the regret of Algorithm|[l|is bounded by

1
p*(l - C*)Q).

Reg(T) < O(Kd*°R*L(R)?
Discussion.  Corollary [3|applies to the uniform distribution and any distribution with bounded
density on the ball. It also covers the truncation of heavy-tailed distributions. For Corollary [3
the polynomial dependency on K is due to boundedness, and it matches the asymptotic result of
the uniform distribution studied in [12]] when d = 1. Combining with Lemma for a uniform

distribution or a bounded density distribution in the ball, we have Reg(T) < o (K 25 d*?®). For
Condition[I]and parameters c, and p,, we deeply discuss it in the following part. Proofs for these
corollaries are presented in Appendix

Comparison with known results.  For truncated contexts, to the best of our knowledge, there
are no known results for greedy bandits. For naturally bounded contexts, Oh et al. [28] studied the
case of a uniform distribution on the sphere, where each context X; for arm i is independent across
arms, and they only considered the case K < d. Their work assumes the minimum eigenvalue of the
context covariance matrix is constant; however, for a uniform distribution, it scales as < %. Taking

this into account, their regret bound is (’5(d3 \/T) when K < d. When K < d, our result has the

~ 54 4t5 . C . .
bound O(d*>T @1) for the uniform distribution. Moreover, for the multi-parameter shared context
setup, Bastani and Bayati [7]], Bastani et al. [8]] studied the uniform context case, and their worst-case
regret bound is O(K*d*), considering that the minimum eigenvalue of the context covariance scales
as %. In conclusion, our result is the sharpest among known previous results.

H.3 Concentration Parameters for Bounded Contexts

We introduce a new condition that defines two concentration parameters measuring sufficient con-
centration for bounded contexts. We will show that truncated contexts satisfy this condition, as do
naturally bounded contexts with bounded density. This condition does not need to be assumed for
truncated contexts, as it is automatically satisfied.

Condition 1 (Concentration parameters for bounded contexts) For the random vectors (con-
texts) X = (X{ ... XJ%) € R where X; € Bg, there exist 0 < ¢, < land 0 < p, < 1
such that for every n with ||n)|2 = 1,

P[maXXiTn < c Rl > p.
i€[K]

We call py, ¢4 the concentration parameters.

Discussion. Two parameters, ¢, and p,, must exist if X is random. Below, we discuss 1 — ¢, and
Py« =< 1 for truncated contexts truncated into the positive-probability region. Additionally, we show
that a uniform distribution within the ball, as well as any distribution within the ball with bounded
density, satisfies this condition, and we explicitly calculate the range of these two parameters. For our
regret bound, we have a dependence on a _7’;*)2 .

Example: truncated contexts. The next lemma states that truncated contexts satisfy Condition I]
with 1 — c,, p, < 1. If contexts are generated by truncating the original distribution into a positive-
probability region, then the parameters in Condition [T} c,, p., are well-defined and do not harm the
regret bound when we choose a sufficiently large truncation set.

Lemma 14 (Concentration parameters for truncated contexts) Suppose the unbounded contexts
X € RX satisfy

PX € (Bp)X]=p >0,
for some R’ > 0. Then, if we truncate each X; to Bg: . for any r > 0,i € [K], the truncated

~ =l <~ . .. . /
contexts X = (X, ,..., X ) satisfy Condltlonwzth Dx =P, Ci = RF;-H-'
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Proof Recall that we truncate X to (Br4,.)%. If P[X € (Bgr/)X] = p > 0 and we truncate to
BR/—‘,-T"

} _ P[{max X;"n < R’} N{X € (Brr4,)*}]

—T
P X, n<R
el = P[X € (B 4r)X]

1€[K]

Therefore, we can set p, = p and ¢, = |

R
Ritr-
Example: Bounded Density Distributions The lemma below tells us that a uniform distribution
or a bounded density distribution on B, satisfies Condition [T] and provides the range of the two
parameters. Without loss of generality, we prove it for a distribution defined on the unit ball B;.

Lemma 15 Consider a random vector X; € By,1i € [K|, each with density upper-bounded by ETZ'

Here, wgy is the volume of the d-dimensional unit ball By. (Recall that the density of the uniform
distribution in Bq is w%.)

1. When X1 = --- = X (strongly correlated), Conditionholds with
1
p*zi, 1—c, 2 1.
2. When X1, ..., Xk are independent (not correlated), we have
1
p*:§7 170*20}—(7%“-

Proof We use the result of Claim [I0] below.

Correlated Case. If X; = X, = --- = X[, then the {-quantile c, of X,"n satisfies

1 _2
201 —¢,) > (— d )‘”1.

2¢y wg—1
2

Since (w‘;’j - ) T < 1, it follows that

1—c. 2 1.
Independent Case. If X|',..., X are independent, then for a certain c, with

1 wg \ @t _ 2
217*>1f2:( ) = K@,
(1-ci) > cy Kew on

we have P[X," n < ¢,R] <1 — + foralli € [K]. By independence, p, = (1 — +)¥ <

Claim 10 Consider a random vector X € R¢ defined in B, with density upper-bounded by Sd For
anyn € ST1, let the (1 — p)-quantile of X ' be a.. Then

pwd>ﬁ

201-a) > 1-a® > (
Cy Wd—1

2
Proof We show that a with 1 — o = (2 ﬁ) T gatisfies

]P’[XTn >a] < p.
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Since the density of X "5 = r satisfies
PIXTn=r] < ws1(1—r})F

we have

<71 o)1 - a?) T
wd

<o 2l —a?)F
wa

H.4 Results for Two Challenges: Bounded Contexts

Now, we present results related to two challenges for bounded contexts. Proofs are provided in
Appendix I}

Proposition 4 (Diversity constant: naturally bounded contexts) Suppose X(t) is a random vec-
tor supported in (Br)¥, its density satisfies the LAC condition with constant function L(R), and
Condition[l|with p,, ¢, holds. Then

X 1
At) > e

d (L(R) + ﬁ)Q

for some absolute constant ¢ > 0.

Proposition 5 (Diversity constant: high-prob truncated contexts) Suppose X (t) € R¥X sqt-
isfies LAC with L(-) and Assumption Then we truncate X(t) to (Bp)X for some L >

cVdmax (1 + log(‘“{j\”%)) and define these truncated contexts as X (t) = (X1(t),..., Xk (t)).

Then X(t) has a diversity constant (Challenge with £\, (t), where X\ (t) is the diversity constant
of X(t).

Proposition 6 (Suboptimality gap: truncated contexts) Let X (t) be a truncated random variable
of X(t) into (Br)X with P[X € (Br)X] > 1 — 6 for some § > 0. Let Ca(t) be the margin constant
of the contexts before truncation. Then the margin constant of truncated contexts X(t), denoted by
Ca(t), satisfies

— 1

CA(t) < ——Calt).

alt) < 7—5Cal)

Proposition 7 (Suboptimality gap: naturally bounded contexts) For naturally bounded contexts
X (t) with LAC function L(-), the margin constant is bounded by

Ca(t) < ¢KVdL(R)

for some absolute constant c > 0.

Discussion of Proposition It has a linear factor in K, which can worsen the regret bound
compared to LinUCB and LinTS when the number of arms K is large. Nevertheless, this factor arises
in the logarithmic regret bound, which is still advantageous compared to algorithms that achieve
O(VT) regret when T >> K. Also, if every X;(t) follows a uniform distribution independently, then
extreme value theory [12] implies there should be dependence on K. Hence, our result matches the
lower bound for the uniform distribution, which indicates it cannot be improved.
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I Proofs of Results for Bounded Contexts

We provide proofs for Appendix [Hl For simplicity, we assume R > 1. Using the observation of
Appendix any density defined in B with LAC £(-) has a bounded decay rate v/d£(R) by
combining Lemma 3]

I.1 Fixed History Arguments

We fix again the time step ¢ and the history #;_1 and derive the fixed history results for the diversity
and suboptimality gap. We use the same fixed history arguments in Appendix [F} We set the history-
conditioned contexts as X := X(¢) | H;_1,and X = (X|,..., X o), X; € R% To address any

greedy policy with respect to 6;_1, we propose an analysis that applies to any greedy policy with
an arbitrary 6 € R, In Appendix we already argued that it suffices to bound this variance for
any fixed 6. Since we fix 6, which is the corresponding value of 6,_; under the given history H;_1,
we define the policy-selected arm a = arg max X, 6. Following the previous definitions, define the
event ; := {a =i} and Q;({z;},+;) = {a = i} N {X; = x; forall j # i}. Similarly, define
QO :={a* =i} and QF ({z;};2:) == {a* =i} N {X; = x; forall j # i}.

Event decomposition and conditional density. We first define b = max;, X ;10. Similar to the
unbounded contexts, we decompose our diversity as

Ev" X, X v] =Pb< c,R|E[v" XX v |b<c R +Pb>c,RIE[v X, X v|b>c,R
a a a
> p.E[o" Xo X, v | b < c.R]
> p*E[E [T XX 0| {b< R} N Qi({xj}#i)]}.

Therefore, our next interest is the projected contexts, defined as
X[ 0| Qu({a;}iz0) 0 {0 < e.R).

Let us define this projected context’s density as g(-). We first investigate the support of the conditional
random vector,

X

Qi({z;}j2) N {b < e R}

and define its density as g(-). The projected context’s density g is the integration of f within the section
{r €Br|2"0>0b} N {xr €Bgr|a"v=uy} Hence, the density of X, v | Q;({z;}) N {b < c.R}
is a section density of {z € Br | 276 > b} with direction v.

1.2 Sections of the Ball

Next, we aim to bound the one-side decay rate of the section density in the ball. Unlike the previous

sections, the sections corresponding to §2;({z, },-;) no longer make expanding sections due to the
boundary of Br. To deal with sections for bounded contexts, we define several sections of the ball.

Definition 14 (Sliced ball) We define the sliced ball Sg(v,y) as

Sr(v,y) :=={z € B |z v =y}
Also define the double sliced ball

Sr(0,b,v,y) :={r €Br |z v=y, 2" 0>b}.
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SR(97 ba v, y)

SR(9> b)

Figure 11: Tlustrations of various sections in the ball Br. The red line is Sg(6, b, v, y) and the green
line is Sr (6, b).

For bounded contexts, we need to bound the one-side decay rate of the section density, where the
sections are sliced balls. Recall that we set b = max;., ij@. We aim to obtain the lower bound of

Eflv" Xi|* | Qi({x;}2) N {b < e.R}] (13)
for any €; ({25} ;), b. Observe that the support of v X; = y | Qi({z;};2) N {b < c. R} is the

section of a double sliced ball, Sk (6, b, v, y). Here, we aim to bound the one-side decay rate of these
section densities to apply Lemmaf]

L3 Linear Section Maps

To deal with varying sections, we define linear section maps, and using linear section maps, we can
bound the one-side decay rate of the section densities. We first define a projection map, a projection
to the center of similarity.

Definition 15 (Projection map) We define the projection map between A C R? and P € R? as a
map ®© : A — P, which is an affine point projection with the center of similarity at P. Furthermore,
we call P the projection point.

A

Figure 12: Illustration of a projection map.

Remark 4 A projection map means a homothety toward some point P.
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Definition 16 (Linear section maps) We define linear section maps between sections. For two
sections of A, Sec(A, v,y) and Sec(A,v,y + h), we define the linear section map fI)Z as

@Z() : Sec(A,v,y) — Sec(A,v,y + h)

which satisfies @Z (Sec(A,v,y)) C Sec(A,v,y + h) and @Z is a part of some projection map with
center P.

Sec(4,v,y)

Sec(A,v,y + h)

Figure 13: Ilustration of linear section maps. A projection map of Sec(A, v, y) to P induces a linear
section map Sec(A, v, y) to Sec(A, v,y + h). We also use H as the length between Sec(A, v, y) and
P.

L4 One-side Decay Rate of Linear Section Maps

Our subgoal is to bound the one-side decay rate of the section density, and we use linear section maps
to achieve this. Previously, we dealt with expanding or equal sections; hence section maps directly
gave the lower bound of the density. However, for general linear section maps, they are no longer
expanding sections due to boundaries. Assume the density f is defined in By and it has a decay rate
M. If f has LAC with function L(-), we already studied in Lemmathat it has a decay rate with

M = /dL(R). We can set L(R) > 10.

Slope of linear section maps. We first bound the maximum length between @Z(x) and z. Itis
related to the slope of the section maps, and we define s > 0 such that

1@ (x) —zll2 < sh

for any = € Sec(A,v,y). We call s the slope of the linear section map @Z()

Volume element. We define |det(V®}(x))| := u,(h). This value is the same for any z €

Sec(A,v,y), since we use linear section maps. Using that, we can calculate the lower bound of
g(y + h) as follows:

9(y +h) =/ f(z)dx
Sec(A,v,y+h)

> / F(@2(x)) | det (VOL(2))|dx
Sec(A,v,y)

> / F() exp(~M s h) u, (h) da
Sec(A,v,y)

= exp(—M s h)uy(h) g(y).
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The third inequality uses the Gronwall inequality, Lemma 22} applying that the decay rate is bounded
by M and the length between = and CI)Z(x) is bounded by s h. This formula tells us that to bound
the one-side decay rate of the section density, there are two quantities: slope s and volume element

A way to bound u,(h). Letus define H as the distance between Sec(A, v, y) and P. The volume
element can be calculated as
H—h\*

H—h

since " is the ratio of similarity. Then,
gy +h) H—-h
——— >exp| —Msh—| —dlog(—=—)| ).
0 (v v )
When h < g, we have log (HTfh) >1-— %, SO
gy + h) 2d
—_— > eXp(—Msh— —h).
9(y) H

This implies that when we can find the linear section map <I>Z, we can bound the one-side decay rate
of the section density by Ms + %.

L5 Linear Section Maps between Sliced Balls, S (v, y)

Sr(6,y)

Figure 14: Illustration of the linear section map between two sections of the ball. The linear section
map is constructed with the center P.

Lemma 16 (One-side decay rate of Sp(v,y)) The projected density g(y) of sections Sg(v,y) sat-
isfies

9(y)
9(y)
for any *ﬁ <y<y < %.

>exp(— 3vVd L(R) (v —v))

Proof Lety =y +h € [—ﬁ, ﬁ] Set P as the similarity center of Sg(v,y) and Sg(v,y + h).
We aim to apply the arguments of Appendix Using this P, we can form section maps <I>Z First,

the slope of @Z is bounded by s < ——L— < 2 for |y| < L. The volume element of @Z

\/R2—(y+h)2 — Vd
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can be interpreted as the ratio of similarity. Let H be the distance of P and Sg(v,y). Note that

R?—(y+h)®
Hz =50
rate in | — %, %] is bounded by

and hence H > 2h holds. By applying the result in Appendix , its one-side decay

2d 2d (y + h)
2Vd — < 2Vd — 2 < 3Vd .
fc(R)+H < 2VdL(R) + B hE S 3VdL(R)
This holds for all —% <y<y+h< %, since L(R) > 10. [ ]

L6 Linear Section Maps for Double Sliced Balls, Sz (6, b, v, y)

Goal. We investigate the one-sided decay rate of section densities with sections Sg (6, b, v, y) for
fixed 6, v, b. For density f(x) defined in Br with LAC function £(-), we define the section density

of Sg(0,b,v,y) as g(y). We set M = 4v/d L(R) + Rr}a@*). We prove that the one-side decay rate
1 1

of gaty € [ — 35, 7z is bounded by M. Also, we define a small angle 79 := sin™" (15)-

1.6.1 Casewv L 6.

For this case, the sections Sg (6, b, v,y) are no longer expanding sections when (6, v) is close to 7.
In that case, we can construct a linear section map, and the following figure illustrates the procedure.
In each section Sg(6, b, v,y) and Sg(0, b, v,y + h), assume the highest coordinate with respect to
direction 6 is @) and @Q);,. Assume the directed half-line starting from connecting @ to @, and the
hyperplane {z | 276 = b} meets at some point P. Then we can set the intersection point P as
the center of the projection map and we can construct the linear section map using P. Please see
Figure [I3]for the intuition.

SR(H; b,U,y) SR(07b7U7y+h)
Q

Qn

Figure 15: Illustration of section maps between S (6,b,v,y) and Sg(0,b, v,y + h). We connect

two points @ and Qy,. Let P be the intersection with {z | 276 = b}. Then, using P, we can set the
section maps between Sg(6,b,v,y) and Sg(6,b, v,y + h).

Lemma 17 (One-side decay rate of double sliced ball) Suppose b < aR for some v < 1. If
v L 0, suppose we construct a linear section map by the sliced balls between Sg(0,b,v,y) and

Sr(6,b,v,y + h) for b < aR in the way described above. By setting M = 2v/d L(R) + _Svd

R2(1—a)’
the one-side decay rate of the section density g(-) in the interval —ﬁ <y<y+h< ﬁ is bounded
by

h
M > exp(—M h).
9(y)
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Proof We aim to estimate s and H to apply the arguments in Appendix To bound s, we can
easily see that s < R < 2, since it is related to the slope of the tangent line at y + h.

V R2=(y+h)?

To bound H, with some elementary calculations, we have

H=H'x ( ‘ szytz&R)

for

R? — (y + h)?

H >
- y+h

H' is defined in Figure[15] Then we see

i<d y+h ( R2 — 2 )
H™  R-(y+h)?*\\/RZ—y2—aR
2dy 2

forany y,y + h € [f L ﬁ].Then,

8dy

2\/EL(R)+2—; < 2\/&5(3)+m <

The remaining part is proved by the argument from Appendix [[.4] |

162 Case§ — 79 < Z(v,0) <3

_ 6—v(v' )
BRCESCHIIE
using v and 6’. For new sections, S (¢’, b, v, y), we can make section maps as described in Lemma
We can see that these section maps also become section maps between Sg(6,b,v,y). By using

Lemmafor awithl —a = % and 0, v, we have

In this case, we define 6’ : and we aim to define section maps between Sg(6, b, v,y)

gy +h)

g(y) > eXp(_M h)a

holding for M = 2v/d L(R) + ﬁ andany —3; <y <y+h < g;.

163 Case0 < Z(v,0) <% —1p

In this case, the natural section map between Sg (v, y) and Sg (v, y + h) for any —ﬁ <y<y+h<

ﬁ can be an expanding section map for y,y + h € [ — ﬁ, ﬁ] . We already proved that the one-side

decay rate of the section density is bounded by
h
9y +h) > exp(—M h)
9(y)

using Lemma
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SR(07 b7 v,y + h’)

SR(€7 b7 v, y)
\ (X702 1) «

04 0

d

SR('U, Y+ h’)
SR(Uay)

Figure 16: For the case where 6 and v do not form too large an angle, we first define a linear section
map between S(6, y) and S(6, y + h). This section map can also be the linear section map between
S(8,b,v,y) and S(0, b, v,y + h). Using this map, we can bound the one-side decay rate of section
densities of S(6,b, v, y) by Lemma

L7 Proof of Proposition[d]

We first fix 6 and v with the same argument as in the proof of Theorem 2] For fixed history contexts

X = (X{,...,X}) and fixed 6 and v, define b as the second largest value of (X 0, ..., X6). By
Condition[T} we first bound

Ep" Xo X, 0] =Pb < e, R|E[v' X, X v |b< c,R]+Pb>c,RIEv" X, X v |b> c.R]
>p, E" X, X v | b<eR]
> p BB X X0 | {6 < e R0 ({2, }i0)]]
> p*E[E[UTXiXZ‘TU | {b <c.R}N Qi({zj}#i)]}
Then, we aim to bound
Eo" X X; v | {b < exR} N Qi({x;} )]
Further observe the density of
X'v=y | Q({z;};) 0 {b < euR}.
It is a section density of sections Sg(6, b, v, y).

Casel: T — 79 < Z(,v) < T. By applying results from Appendixand LemmaEI, we have

1
Ep"X; X, v | {b<c,RYNQi(x;)] > ¢ M

Case2: 0 < Z(0,v) < § — 0. By applying results from Appendixand Lemma we have
1
Ep" XX, v | {b<cR}NQ(x;)] > c B

Case 3: Z(0,v) > 5. When we replace v with —uv, it falls into Case 1 or 2.
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1.8 Proof of Proposition

Proof Using a similar argument, we use the fixed history arguments. Write X = (X1,...,Xg) =
X(t) | Hi—1 and we first fix 6 and consider the greedy policy a with estimator §. We define A, as
a diversity constant of X. Also, we define L,, := cgV/d Tmax (1 + log dK + nlog~) and set the
event B, := {X; € B(0, L,,) for all i € [K]}. We determine y > 0 later. By Lemma[I9] we have

PB,]>1- 71” . We apply the peeling technique to bound the truncated contexts:

E[XoX, ] =E[X.X); Bi]+ Y E[X,X); Bnj1\B,l.
n=1
By setting & = ¢oV/d Zmax, 3 = 1 + log dK, observe that

00 > 1
D EIXa X[ Buit \Bu) 23 Ly - L
n=1 n=1

oo

Z (a(ﬁ—i—nlogv))z ’Yi”Id

n

IA
ﬂ

M8

1
= 2042(52 + n?log? ’y) — 1.
Y

Il
-

n

If~y> 3a2ﬁ2%, we have

- 1
D E[X.X.; Bni1 \ By = 5 M La
n=1
Using Theorem 2] we get
1
Ada < B[Xo X3 Ba] + 5 Ao,
and hence
1
E[X,X,; Bi] > 3 M La-

Finally, we get

E[X.X, | Bi] > I

[\

1.9 Proof of Proposition 6]

Define A(X) as the suboptimality gap of X and denote its density as fx(z), z € (R?)X. By direct
expectation, we get

_ / fx(@)
(aX)<eynp PIX € D]

Jx()
: /{A(X)<5} P[X € D] &

1 5 P[A(X) < €],

<

which holds.
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1.10 Proof of Proposition 7]

By conditioning on H;_1, we define fixed history contexts X = (X,,..., X ), similar to previous
proofs in Appendix [G} We decompose the probability of the suboptimality gap as

P[A(X) <e] = ZP[{A(X) <e}n Q]

I
LMN

s
Il
_

]E{]P’[{A(X) <e}nQf[{X; = ﬂfj}#z”

Il
.MN

]E{]P’[{maxm;ré* < X;'0" < maxx;-rﬂ* +e}| {X; = xj}j#]],
— i i
the last equality holds by the definition of {27. Next, we aim to bound

P[{maxa] 0" < X, 0" < maxa 0" + e} [ {X; = ;)]
VE) V)

Similarly, we only need to bound the maximum density of
and it is enough to bound its one-side decay rate by Lemmal[5] Since the conditional density of
Xi [ {X; = 2},
say f3(-), has the same LAC with constant function £(R), it thus has a bounded decay rate v/d £(R)
by Lemma Also, the density P[X;"0* = y| {X; = x;};] is a section density of Sg(6*,y)

for y € [—R, R]. Then we observe that in at least one of the directions of 8* or —8*, the sections
Sr(6*,y) are expanding sections in Br. By applying Lemma we can bound the one-side decay

rate of the section density X;"0* | {X;(t) = 2;},; by Vd L(R), and finally we can bound the
maximum density by 3v/d L(R) using Lemma Therefore, by the decomposition above, we finally

get
PAX(t) <e] < Y 3VAL(R)
1€[K]
< 3K VdL(R).
L11 Proof of Corollary/[l]
We have A\ (t) > c§ — 1 withl—¢, = R% = 1 by using Proposition 4and Lemma |14
(£®+ mrter)

Hence, we get A\, (t) > ¢ W := A«. Also, using Proposition [6, we have the margin constant of
truncated contexts C'a bounded by ﬁ Ca, where Cy is defined in Theorem We can see that

Reg(T) < co®?dR*Ca Ai (log(T))?
1
o)

< O(d*® R* L(R)?
holds.

L12 Proof of Corollary 2]

If L > +d €0 Tmax (3 + log dK), we can use the same proof as in Theorem [2| For the diversit
constant of truncated contexts, it is lower bounded by % A« (t), where X, (t) is defined in Theorem

Also, using Proposition|6, we have the margin constant of truncated contexts Ca bounded by ﬁ Ca,

where Ca is defined in Theorem[3] Combining these observations, we can finally apply Proposition[9]
since truncated contexts also have bounded 1 -norm by x,,x, and we get the desired result.
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I.13  Proof of Corollary[3|

We can prove it directly by combining the results of Proposition 4 and Proposition[7] This can be
obtained directly by combining those results with Proposition [§]

J Analysis After Challenges|[I| and 2] are Satisfied

We now present the results and proofs to obtain an exact regret bound after the two challenges are
addressed. Recall that we define the (unexpected) regret as reg’ () := Xy (1) (£) T 0% — Xy (t) 76
and the expected regret as reg(t) = Ey, | x(#)[reg(t)]. We can achieve logarithmic regret bounds
if the contexts meet Challenges [T]and 2}

We first present our regret analysis for bounded contexts.

Proposition 8 (Regret analysis: bounded contexts) For bounded contexts where || X;(t)||2 < R,
suppose that B[ X,y Xo) | He1] = AT and Cax(1y) < Ca forallt € [T] and H;—1. Under
Assumption[l] the expected regret of Algorithm[l|is bounded by

Reg(T) < CUQRQdC’A)\i(log T)? = (5(R2d%)_

*

Next, we present the regret bound result for unbounded contexts, under the satisfaction of the two
challenges.

Proposition 9 (Regret analysis: unbounded contexts) For  unbounded  contexts  where

| Xi(D)lyy < Tmax, suppose that B[ X,y Xawy | Hi-1] = Ml and Caxryy < Ca for all
t € [T) and Hy—1. Under Assumption the expected regret of Algorithm is bounded by

1 ~
Reg(T) < co?z?, dCA—(logT)* = O(x? d%

max )\* max )\* ) :

J.1 Proof of Proposition

Firstly, set Tj := ﬁR(?) log T+ log d) for the constant ¢; defined in Corollaryl?} Before starting

the proof, we define the good events that satisfy the sufficient concentration of the estimator 6;.
Definition 17 From now on, in this section, we define the event E; by
Ax

This is the event that the Gram matrix has sufficiently large minimum eigenvalue. The event E, holds
with high probability according to Corollary 9

Corollary 4 Fort > Ty, the following holds:

1
> —.
PIE] > 50

Proof Using Corollary[9] with probability 1 — 1, E; holds. [

Definition 18 (Self-normalized bound of OLS estimator) Next, we define the event F; as

F; = {Hét = ls@ < 20\/dlog (T(1 + tR?)) + 1} ’

which satisfies the self-normalized concentration of the estimator.
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Lemma 18 (Concentration of OLS Estimator) For anyt > /\%,

1
PIFNE) 21— =

holds.
Proof Under E;, we have X(t) > i)\*tl 4- Then the concentration of the OLS estimator satisfies

||ét - 9*”2(15) = (Z Xa(T)(T)nT)(E(t))_l(Z Xa(‘r) (7—)77 )
T7=1 =1

t

< (Z Xa(r)(T)n‘r)(%Z(t) + Id)_l(z Xa('r)(T)n‘r)

T=1

t
2(2Xa('r)(7—)777 +Id ZXa('r
T=1

I

To bound I, we use Lemma [24] from Abbasi-Yadkori et al. [T]] and obtain the desired result. |

Next, we introduce an important lemma used to obtain the concentration of the minimum eigenvalue
of the Gram matrix. We define G, := ﬂtT:TO E.NF,.

Corollary 5 (Good events) For the event G, defined above, for any Ty <t < T,

1
PG > 1~

holds.

Proof Straightforward from the previous observations. |

Then, under the event G, we have the following corollary by the definition of event E; and F}:
Corollary 6 ({5 concentration: bounded contexts) For anyt > Ty, under the event Gy, we have

. JdTog T
16, — 6*||2 < co Y282
oW

for some absolute constant ¢ > 0.

Proof of the Proposition. We are now ready to prove Proposition[8] First, for time ¢t > Ty, the
history H;_ is contained in G;_; with probability 1 — T The expectation of reg’(¢) is calculated
with respect to the randomness of the whole history #;_1 and the distribution of contexts X (t). We
can observe the following for v(d) := 40+/dlog(T + T?R?):

Elreg'(t)] = Ex, , [Ex(ylreg’(t) | Hi-1]]

= EX(#) [reg'(t) | Gt_l]]P[Gt_ﬂ + R]P)[Gg_l]
2

< GC’A’Y(d)ZW + RP[G{_;] (by Lemmal[7)
R? R
<6CAY(d)? —— 4 —.
S 6O G T T
By summing these inequalities until 7', we obtain the desired result. |
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J.2 Concentration of Sub-exponential Contexts

We now provide regret analysis for unbounded contexts. To do that, we first provide some known
facts for sub-exponential vectors. Under Assumption X;(t) has )1 norm with x,,x. Using a result
from Wainwright [38], for any v € S?1, there exists an absolute constant ¢y > 0 such that

P[|X;(t) "v| > cotmax (1 + u)] < exp(—u) (14)

holds for all u > 0. If we setv = ¢; = (0,0,...,1,...,0), then we get the concentration for each
coordinate,
Pl X5 (t)] > comax(l + u)] < exp(—u).

First, we investigate the concentration of the /5 norm of the contexts.

Lemma 19 (High probability /> bound of the contexts) Suppose the contexts X(t) satisfy As-
sumption 2} then

1
max || X;(t)]l2 < coVdmax(1 + log(dK <))
i€[K] 1)

holds with probability at least 1 — 0.

Proof For any v € S?1, we know
PIX,(1) o] > cotmax(l + )] < exp(—u)
by the result from Appendix Then, we get

P{there exists ¢ € [K] such that || X;(¢)||2 > \[ :cmax(l + log(dKé))}

K d 1 1
< ZZ [|X,] > (1 log(ng))}
5

J.3  Proof of Proposition 9]

We now prove Proposition[9] It consists of three steps. First, we investigate the concentration of the
Gram matrix for unbounded contexts. Next, we define several high-probability good events. Finally,
we bound the regret using the peeling technique.

J.3.1 Gram Matrix Concentration

For bounded contexts, we can apply Lemma[23]and Corollary [J]to ensure the linear growth of the
Gram matrix. However, for unbounded contexts, we cannot apply Lemma 23] directly since it requires
{5 boundedness. We apply the same technique used in Kannan et al. [20], who also deal with Gaussian
contexts, which are not bounded. They use a truncation technique to guarantee the growth of the
Gram matrix: interpret it as the mixture of truncated contexts and large ¢, norm contexts. We apply

similar arguments here. In this section, we set our truncation radius L = ¢v/dZmax (14 3log ( dKTY)
and define T} := ZT(Q log T + log d).
Lemma 20 For any t > T4, the following holds with probability 1 — %

1
B(t) = SAt

Proof We prove it using a similar argument to Kannan et al. [20] to bound the Gram matrix. We
view X;(t) given the history H;_; as a mixture of X;(¢) | By and X;(¢) | BS. Consider an invisible
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coin toss ¢, for every time s € [t], and if ¢, = 1, the contexts are drawn in X (¢) | (B)%;if ¢s = 0,
they are drawn from X(t) | (BS)¥. By our choice of high-probability region radius L, for any c;,

Plcs = 1] > 1 — 5. Define () as the Gram matrix of the contexts sampled from the truncated
distribution for all 1 < s < t. For truncated contexts, Proposition [5] tells us that it has diversity
constant f)\ under our choice of L. Then, by our independence assumption and Lemma

IF’[/\min(Z(t)) > §)‘*t] < P[Ci = 0 for some i € | ] [ min(2(1)) > §)\*t]
At

<75 )
Hence, if we choose ¢ > T7, we get the desired result. |

Recall that L = ¢ d:rmax(l +3 log(dKTA%)).

x T+ d exp(—c

J.3.2 Good Events

We present 4 concentrations and define good events that satisfy the concentrations.

Concentration 1. For any ¢ > 1, with probability 1 — 7, || X;(¢)[2 < L holds for all i € [K].

Then, under that event, )
TL
det(Z(t)) < (1+—-)"

and
2

TL
log det(3(t)) < dlog(1 + T)

Concentration 2. Forany 1 <t < T, with probability 1 — %, using Lemma we get

t

(Z Xy (T)n)(3(t) + Id)—l(z Xary(T)nr) < 0\/2 log(TQdet(Z(t))l/Q).
T=1

T=1

Concentration 3. In the previous section, we showed that for any ¢t > 77,

1
B() = At

holds with probability 1 — %

Combining these three concentrations, we get the following result: with probability 1 — % for any
t 2 Tla

t

||ét - Q*HE(t) = (Z Xa(T) (T)UT)E(t)_l(Z Xa(r) (7)77
T=1

T=1

t

< 2(2 Xa(T) (T)UT) (Z(t) +Id)71(ZX (7')( )777)

T=1

< o/2log(T2det(S(1))1/2)

< 20\/10g(det(2(t))1/2) +logT

< 20\/3 log(1+ TL?) +logT
< CUW-

The second inequality holds since, under Concentration 3, 3(t) = $(X(t) 4 I,). We finally obtain
the following ¢5-concentration result:
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Corollary 7 ({5 concentration: unbounded contexts) For anyt > T, we have

\/dlogT

||ét —0*||2 < co

1
VAL
for some absolute constant c with probability 1 — %.

We define event GG; as the event in which Corollaryholds and set G; = Ui:Tl G-.

Finally, we present a key analysis to bound the regret. Recall that we set T} := % L l)f’*g d (1+21ogT).

Corollary 8 (Good events) For the event Gy defined above, forany Ty <t < T,

4
P[G] > 17?

holds.

Proof Straightforward by the previous arguments. |

J.3.3 Bounding Regret by the Peeling Technique

Lemma 21 Fort > T, under the good event G;_1, and if || X;(t)||y, < Tmax then

Exc(olreg'(1)] < cda,p, — 2

max (T 1)n, (log T)*

holds for some absolute constant ¢ > 0.

Proof Under any history contained in G;_1, by using (T4), with probability 1 — % we have

A Jdlog T
max | X; ()T (-1 — 0%)] < cotmax—e2Sl (1 +log KT) := e
i€[K] (t =1

for some absolute constant ¢ > 0. We define this event as K;. Then, the (unexpected) regret is
bounded by

reg’(t) < 2e.
We now bound the expected regret:

Elreg'(t); Gi—1] = E[reg(t); Gi—1 N K] + Efreg’ (t); G4—1 N K]
< 2ePlreg'(t) > 0; G¢—1 N K¢] + E[reg' (t); Gi—1 N K]
< 2eP[A(X(t)) < 2¢] + Efreg'(t); Gi—1 N K]
< 6Cae? + Elreg/(t); Gi_1 N K¢

In the last inequality, we use the definition of Challenge [2]and Lemma[7]

Peeling technique for tail events. Next, we bound E[reg’ () | G;—1NK{] using the peeling technique.

Let L, = ¢ \/&xmax(l + logdK + nlog~) forn > 1, where we will determine v > 0 later. Then,
by results from Appendix [J.2}

1

Plmax |X;(t) 0| > Ln] < Y P[IXi(t)" 0" > L] < >

ielK] i€[K]
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We define the event V;, as {max;e(x|X;(t)"0*| € [Lyn,Ln41]}. Then P[V,] < 2 and

< e
E[reg’(t); Va] < 2L, 41. Seta = coVdZmax, B = 1 + log dK. The regret can be decomposed as
Efreg!(t); Gi—1 N Kf] < Efreg/(t); Gi—1 N Kf N Vil + Y Efreg'(£); Kf N (Voga \ Vo))
n=1

< 2L P[Gy oy N Kf] + Y Efreg/(t); Kf N (Viga \ Vo))

n=1

1 St 1
<2L1—=+2)» Lpi1—

T

1
< 3L1T

1 - 1
<2L;— +2Za(,@+nlog7)’y—n

when v > (af)® + T2
Now set v = (a3)% + T?. Then we have

VdlogT

e (1); Gona] < O (0max 10

log(KT)) < co?Cada? log T)3.

max m(

Main proof of Proposition[9] We apply the result of Lemma[21] For ¢ > T}, we get

E[reg’ (t)] < cCada?, (log T)? + E[reg/(t); G¢_,]

;
1
< -
cCAdxmax)\ i) (log T)3 + Efreg’(t); G§_,].

Next, we examine E[reg’(t); G¢_,]. We also bound this using the peeling technique. We define the
same L,, and V}, as in the previous Lemma 2T}

Elreg/(t); Gi_y] < Elreg/(t); Vi N G{_y] + Y Efreg/(t); (Va1 \ Vo) N Gy

n=1

< 2L1HD Vl ﬂG +Z]Ereg ) n+1 \Vn)mGg—l]

1
<2L;—+2 Lypy1—
= 1T+ nz;l +1’y"

Ly
< c—.
_CT

for some absolute constant ¢ > 0. Thus,

E[reg’ (t)] < cCada? (log T)3.

1
max )\ (t _ 1)
By summing up, we get the desired result. For ¢ < T7, using a peeling technique shows E[reg(t)] <

cL. Hence

Reg(T)) < ¢ Ty < co®Cada? (log T)*.

max A

Then we can get wanted result easily.
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K Discussion on Discrete-Supported Contexts
In this paper, we considered only context distributions with differentiable densities.

Single-Parameter Linear Contextual Bandits. To the best of our knowledge, no study has
addressed the greedy algorithm for linear contextual bandits with discrete-supported stochastic
contexts.

Multiple-Parameter Linear Contextual Bandits. For multi-parameter linear contextual bandits,
Bastani et al. 8] proved that the Gibbs distribution, which has discrete support, satisfies the mar-
gin condition and their diversity condition, achieving logarithmic regret for the greedy algorithm.
However, their proof applies only to the two-arm case.

We assert that, for the K-armed multi-parameter linear contextual bandit with K > 3, Gibbs
distribution can fail under the greedy policy. For example, the two-dimensional Gibbs distribution
has support points (1,1),(1,—1),(—1,1),(—1,—1). However, if three parameters are given as
By =(1,1),85 = (1,-1), 85 = (—1,1), the diversity assumption of Bastani et al. [8] is violated.

We further claim that for multiple-parameter linear contextual bandits, the effectiveness of discrete-
supported contextual bandits with an arbitrary number of arms K has not yet been thoroughly
studied.

L Dicussions, Limitations and Further Ideas

* Since our LAC class primarily includes differentiable densities, examining the performance
of the greedy bandit with discrete valued contexts would be a valuable future direction. For
discrete valued contexts, the only existing result by Bastani et al. [§] establishes performance
for a Gibbs distribution in a 2-arm (shared-context) bandit, but this generally fails when
K>3 E] and also it differs somewhat from our setup. In our setup, the linear contextual
bandit, no results are currently known for discrete contexts. Given that Bastani et al. [§]
studied a shared contexts setup, our work represents the largest class of distributions for
which the greedy bandit shows efficient performance in the linear contextual bandit problem.

* To derive the concentration of minimum eigenvalue, the boundedness of contexts (random
variables) is required. However, for heavy tail contexts, the upper bound of the contexts’
norm can be large, so it leads to poor concentration. Dealing with non-truncated heavy tail
contexts can be another interesting problem.

M Numerical Experiments

We conducted numerical experiments to evaluate the performance of the greedy algorithm and
compare it with existing bandit algorithms, LinUCB from Abbasi-Yadkori et al. [1] and LinTS
from Agrawal and Goyal [4]. We conducted experiments for three cases with varying parameters:
d=20,K =20,T <1000, d =100, K = 20,7 < 1000, and d = 20, K = 100,77 < 1000, and
five different distributions of contexts: Uniform in a ball, truncated Student’s t, Laplace, Gaussian,
and exponential. The experiments were repeated 10 times for each case, and the deviation was also
displayed on the graph.

We note that the results were obtained as v/d times larger than the actual size because of the absence
of dimensional correction. For the uniform distribution, we used Unif(B(0, v/d)). The Laplace
contexts were generated by independently sampling each component of a Laplace distribution with
parameters ;4 = 0,b = 1. The Gaussian context was created so that each element of the feature
vectors was drawn from a multivariate Gaussian distribution with a covariance matrix V with V; ; = 1
and V; ; = 0.7 for any ¢ # j. The truncated Cauchy contexts were generated by independently
sampling each component from a truncated Cauchy with loc 0, scale 1 and truncation range [—5, 5].

In most cases, the greedy algorithm produced the best results. Our theory predicted a polynomial
scale dependency on dimension for the regret of the greedy algorithm, and the experimental results

2Further details on discrete contexts are in Appendix
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confirmed good performance even with an increased dimension. This discrepancy is due to the fact
that we considered the worst case. The experimental results for the three cases are listed. El
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Figure 17: Results For d = 20, K = 20
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Figure 18: Results For d = 20, K = 100

3We used jupyter notebook to run the experiments.
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Figure 19: Results For d = 100, K = 20

N Technical Lemmas
Lemma 22 (Gronwall Inequality) For g(y) € R satisfies %(y) > —Miny,y + h], then

gy +h)

) > exp(—MHh).

Proof See classic PDE books like Evans [[16]]. |

N.1 Concentration Inequalities

Lemma 23 (Matrix Chernoff : Adapted Sequence from [36]) Consider a finite adapted sequence
{ Xy} with filtration {F, }+>0 of positive-semi definite matrices with dimension d, and suppose that

Amax (Xx) < R almost surely.

Define the finite series

Y = Zxk and W = ZE,HXk
k k
Forall p > 0

o0 w/R
P{min(Y) < (1 —08)p and Apin(W) > p} <d- [(1—5)15] fordo €1]0,1)

Corollary 9 (Eigenvalue Growth of Adaptive Gram Matrix) If || X;]|2 < Tmax and
Amin(B[X: X, | Hi_1]) > No, then with probability 1 — d exp(—cy 2oL )

Tmax

t
A
Amin( Y X X[ > Z%
=1

holds for some absolute constant c;.
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Proof Put§ = 2, 1 = A\ot, R = Zyax at the[Lemma 23] [ |

Lemma 24 (Theorem 1 from [1l) Let {F;},° ) be a filtration. Let {n;}," | be a real-valued stochas-
tic process such that n is Fy-measurable and n; is conditionally R-sub-Gaussian for some R > 0
ie.

2 p2
VieR E[e)‘”‘ |Ft_1] Sexp(A2R )

Let {Xt}fil be an R-valued stochastic process such that X, is F,_1-measurable. Assume that V is
a d x d positive definite matrix. For any t > 0, define

t t
Vi=V+> X.X] S=> nX.
s=1 s=1

Then, for any § > 0, with probability at least 1 — 0, for all t > 0,

det (V)" det(V)—1/2>

S0+ < 2R?log ( .

Lemma 25 (Lemma 10 from [1]) Suppose X1, Xo,..., X, € R and forany1 < s < t,
L. LetVy =\ + Zi:l XX/ for some \ > 0. Then,

Xslly <

det (V) < (A +tL2/d)".
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we think our abstract and introduction well reflect the whole paper’s
contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We wrote it in Appendix [[]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, we state whole assumptions and provide rigorous proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully provide informations about experiments in Appendix [M}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

https://doi.org/10.52202/079017-2465 77588



Answer: [Yes]
Justification: We provide code in supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, we provide whole details in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, we provide whole details in Appendix [M]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we provide whole details in Appendix [M]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, we checked.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we include them in Introduction and Appendix [C}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not relevant.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Not relevant.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Not relevant.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not relevant.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not relevant.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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