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Abstract

The design of interpretable deep learning models working in relational domains
poses an open challenge: interpretable deep learning methods, such as Concept
Bottleneck Models (CBMs), are not designed to solve relational problems, while
relational deep learning models, such as Graph Neural Networks (GNNs), are
not as interpretable as CBMs. To overcome these limitations, we propose Rela-
tional Concept Bottleneck Models (R-CBMs), a family of relational deep learning
methods providing interpretable task predictions. As special cases, we show that
R-CBMs are capable of both representing standard CBMs and message-passing
GNNs. To evaluate the effectiveness and versatility of these models, we designed a
class of experimental problems, ranging from image classification to link prediction
in knowledge graphs. In particular we show that R-CBMs (i) match generaliza-
tion performance of existing relational black-boxes, (ii) support the generation
of quantified concept-based explanations, (iii) effectively respond to test-time in-
terventions, and (iv) withstand demanding settings including out-of-distribution
scenarios, limited training data regimes, and scarce concept supervisions.

1 Introduction

parent(H,B)
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Figure 1: Relational Concept Bottleneck Models
can correctly predict and explain Bart’s (B) citizen-
ship by considering Homer’s (H) citizenship and
his status as Bart’s parent.

Chemistry, politics, economics, traffic jams: we con-
stantly rely on relations to describe, explain and rea-
son on everyday life problems. For instance, we
can easily deduce Bart’s citizenship if we consider
Homer’s citizenship and his status as Bart’s father
(Figure 1). While relational Deep Learning (DL)
models [29, 19, 32, 16] can effectively solve such
problems, the design of interpretable neural mod-
els capable of relational reasoning is still an open
challenge. Among DL methods, Concept Bottleneck
Models (CBMs) [13] are interpretable methods ex-
plaining their predictions by first mapping input fea-
tures to a set of human-understandable concepts and
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then using such concepts to solve the given tasks. However, current CBMs are not well-suited for
addressing relational problems as they can process only one input entity at a time by construction. To
solve relational problems, CBMs would need to handle concepts/tasks involving multiple entities
(e.g., the concept “parent” which depends on both the entity “Homer” and “Bart”), thus forcing CBMs
to process more entities at a time. Moreover, the definition of a suitable relational bottleneck layer is
generally not straightforward, as a task prediction may require complex connections among multiple
relational concepts. On the other side, while existing relational DL methods, such as Graph Neural
Networks (GNN), may effectively solve such problems (e.g., correctly predicting Bart’s citizenship),
they are still unable to explain their predictions as CBMs would do (e.g., Bart is a US citizen since
Homer is a US citizen and Homer is the father of Bart). Hence, a knowledge gap persists in the
existing literature: defining a DL model capable of relational reasoning (akin to a GNN), while also
being interpretable (akin to a CBM).

To address this gap, we propose Relational Concept Bottleneck Models (R-CBMs, Section 3), a
family of concept bottleneck models where both concepts and tasks may depend on multiple entities,
and that have both CBMs and GNNs as special cases. The results of our experiments (Section 4 and 5)
show that R-CBMs: (i) match the generalization performance of existing relational black-boxes, (ii)
support the generation of first-order logic explanations, (iii) effectively respond to test-time concept
and rule interventions improving their task performance, (iv) withstand demanding test scenarios
including out-of-distribution settings, limited training data regimes, and scarce concept supervisions.

2 Background

Concept bottleneck models. A Concept Bottleneck Model (CBM) is a function composing: (i)
a concept encoder g : X → C mapping each entity e with feature representation xe ∈ X ⊆ Rd

(e.g., an image) to a set of k concepts c ∈ C ⊆ [0, 1]k (e.g., “red”,“round”), and (ii) a task predictor
f : C → Y mapping concepts to a set of m tasks y ∈ Y ⊆ [0, 1]m (e.g., “apple”,“tomato”). Each
component gi and fj vehicle the prediction of the i-th concept and j-th task, respectively.

Relational languages. A relational setting can be outlined using a function-free first-order logic
language L = (E ,V,P), where E is a finite set of constants for specific domain entities1, V is a set
of variables for anonymous entities, and P is a set of n-ary predicates for relations among entities.
The central objects of a relational language are its atoms, i.e. expressions p(τ1, . . . , τn), where p
is an n-ary predicate and τ1, . . . , τn are constants or variables. In case τ1, . . . , τn are all constants,
p(τ1, . . . , τn) is called a ground atom. Examples of atoms can be male(Bart) and parent(u, v), with
Bart ∈ E and u, v ∈ V . Given a set of atoms Γ defined on a joint set of variables V = {v1, . . . , vn},
the process of applying a substitution θV = {v1/e1, ..., vn/en} to Γ is called grounding, i.e. the
substitution of all the variables vi with some constants xi, according to θV . For example, given
Γ = [parent(v1, v2), parent(v2, v3)] and the substitution θ = {v1/Abe, v2/Homer, v3/Bart}, we can
obtain the ground list θΓ = [parent(Abe,Homer), parent(Homer,Bart)]. The set of all the ground
atoms of a relational language is called its Herbrand base (HB). Logic rules are defined as usual by
applying logic connectives {¬,∧,∨,→} and quantifiers {∀,∃} on atoms.

Graph neural networks. The architecture of a typical GNN for node-classification tasks consists of
three primary steps. For every node i, 1) an incoming message Mj→i is passed from a neighbor node
j ∈ N (i) to i, where N (i) denotes the set of all the incoming neighbours of i, 2) the embedding
representation of node i is updated by aggregating all the incoming messages from its neighbors, 3) a
readout function is applied to the node embeddings to predict the class label ŷ(i). Steps 1)-2) are
typically repeated multiple times to allow multi-hop information propagation.

3 Relational Concept Bottleneck Models

This work addresses a key research question: how can we bridge the gap between the interpretability
of concept-based models and the reasoning capabilities of relational DL? To answer this question,
we extend the notion of bottleneck to a relational setting (Section 3.1) and classic message-passing to
also update atom predictions during the recursive steps (Section 3.2). Then we illustrate the learning
problem that R-CBMs can solve (Section 3.3), and finally we discuss the connections of R-CBMs
with both standard CBMs and GNNs (Section 3.4).

1Assuming a 1-to-1 mapping between constants and entities allows us to use these words interchangeably.
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3.1 Relational Concept Bottlenecks

The structure of the relational concept bottleneck can be defined as a relational structure, where
each atom corresponds to a node. The dependencies among the atoms are represented as
a directed hypergraph, where each hyperedge is positional, and can have multiple nodes as
head, but only a single node as tail. In this regard, every hyperedge defines a relational
concept bottleneck from (possibly) many source ground atoms to a destination ground atom.

xb

xa

xc

p1(b, a)

p3(b)

p2(a, b)

p1(b, c)

p2(c, b)

p2(a, c)
p3(c)

p3(a)

p4(b)

predictor

predictoratom encoder

Figure 2: The graph represents the de-
pendencies among the atoms. Here, the
atom p4(b) can be predicted either from the
orange [p3(b), p2(a, b), p1(b, a)] or violet
[p1(b, c), p2(c, b)] tuples of neighbours.

Moreover, each hyperedge is assumed to be sufficient to
carry out the prediction for the destination atom, which
can however be collectively improved by merging separate
predictions. Formally, an atom dependency graph for a
node A, is a positional, labeled hypergraph H = (HB,R),
whose nodes are the atoms in the Herbrand Base HB of a
relational language, and each hyperedge r ∈ R is such that
r = ([A1, . . . , Am], [A]), with A1, . . . , Am, A ∈ HB, mean-
ing that inH there is a hyperedge with source [A1, . . . , Am]
and destination A. Each hyperedge is labelled with a type
identifier l(r). Given an atom A, we indicate by R(A)
the set of hyperedges with destination A, and by Nr(A)
the source of the hyperedge r if r ∈ R(A) or the emp-
tyset otherwise. Figure 2 shows an example with two hy-
peredges with destination p4(b), where Norange(p4(b)) =
[p3(b), p2(a, b), p1(b, a)] and Nviolet(p4(b)) = [p1(b, c), p2(c, b)], we used different colors to iden-
tify different hyperedges.

3.2 The Model

Relational Concept Bottleneck Models (R-CBM) merge CBMs and GNNs into an interpretable
relational setting. An R-CBM first processes the atoms of a relational language by an encoder, and
then map them by a predictor (like a CBM). The final prediction is computed by aggregating all the
ones from separate groups of neighbour atoms, according to a given dependency graph (like a GNN).
The pipeline of R-CBMs can be described as follows: (i) the atom encoder and predictor embeds each
atom into a concept embedding and prediction score, respectively (ii) message-passing is performed
to refine the embeddings and scores according to the structure defined by the atom dependency graph,
and (iii) the atom predictions are obtained by aggregating the predictions.

Atom encoder. An n-ary ground atom A is defined by a predicate p and a tuple of entities e =
(e1, . . . , en), such that A = p(e). Like in a GNN, the entities have a feature representation xe =
(xe1 , . . . , xen) ∈ Rd·n, being d the representation size. For each atom A = p(e), the atom encoder
gp computes the atom encoding gp(xe) ∈ RH , being H the embedding size.

Message-passing. Given the relational concept bottlenecks, the updating of the embeddings and
predictions of the atoms can be expressed as a message-passing schema over the dependency graph.
For each A ∈ HB, with A = p(e), the initial embedding and prediction for A are calculated by:

h0(A) = gp(xe), y0(A) = s(h0(A))

where gp is the atom encoder and s : RH → [0, 1] is a learnable predictor function working on the
local (non-relational) embeddings, such as an MLP with sigmoid activation function. Assuming the
message-passing is running for T time steps, for every r ∈ R(A), 1 ≤ t ≤ T , we have the updates:

ht
r(A) = ul(r)

(
ht−1(A),

[
ht−1(B)

]
B∈Nr(A)

)
ytr(A) = fl(r)

(
yt−1(A),

[
ht
r(B), yt−1(B)

]
B∈Nr(A)

)
ht(A) =

∑
r∈R(A) h

t
r(A)

yt(A) =
⊕

r∈R(A) y
t
r(A)

where ul(r) and fl(r) are edge-type specific functions implementing, respectively: a combine/update
operation that provides a refined latent representation ht

r(A), and a local readout operation that
provides a candidate prediction based on a single neighbourhood ht

r(A). The operator
⊕

aggregates
the predictions over all the neighbourhoods r ∈ R(A), e.g, by maximum or summation, whose
selection criterion for interpretable models will be discussed in Section 3.4.
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Relational task predictor. The final task prediction for the atom A is given by yT (A), via the
combination of the aggregation function and the local readout fl(r) at time T . We note that this
formulation unifies and extends the role of the task predictor in CBMs and of a readout function in
GNNs. In practice, each task predictor fl(r) can be implemented by any blackbox-like function, like
the one used in GNN architectures [29] or CBM-Deep [13]. However, an interesting alternative is to
use either a partially interpretable function, like in linear CBMs, or a fully interpretable function,
like in Deep Concept Reasoners (DCR) [1], which constructs a logic rule combining the predictions
of the incoming atoms. Further details on selectable task predictors are in App. A.4.
Example 3.1. Given a local neighbourhood for the atom grandparent(Abe,Bart), such that

Nr(grandparent(Abe,Bart))=[parent(Abe,Homer), parent(Homer,Bart), parent(Homer, Lisa)]

a non-interpretable fl(r) can compute the prediction yTr (grandparent(Abe,Bart)) based on the
neighbourhood. An interpretable fl(r), like the one used by DCR, can also provide an explanation for
the prediction, like e.g. parent(Abe,Homer)∧ parent(Homer,Bart)→ grandparent(Abe,Bart).

3.3 Learning

In this paper, we use a joint (end-to-end) SGD training of the atom encoder and predictor, as the
original CBM paper [13] suggests for generalization. The learning problem can be stated as follows.
Definition 3.2 (Learning Problem). Given: a relational language (E ,V,P) with all the atoms
collected in HB; a set of entities represented by their corresponding feature vectors in X (i.e. the
input); a dataset composed of a subset of supervised atoms D = {(Ai, li) : Ai ∈ HB, li ∈ {0, 1}},
where li is the corresponding ground-truth value for Ai; models gp, s, ul(r), fl(r) with parameters
π and a maximum number of iterations T ; an atom dependency graph determining the relational
structure of all the atoms; a loss function L. Find: minπ

∑
(Ai,li)∈D L(yT (Ai), li).

3.4 Examples of Relational Concept Bottlenecks

To derive specific instantiations of R-CBMs, we introduce the notion of templetized hyperedge
for an atom dependency graph. A templetized hyperedge ρ is defined as a standard hyperedge,
but where the source and/or the destination contain one or more variables. For example, ρ =
([p1(v, u), p2(u, e)], p(v, e)) is a templetized hyperedge, meaning that we have an hyperedge istance
for each possible grounding to the variables occurring in the atoms (i.e. v, u in the example). All
the hyperedges generated by the same template are associated to the same edge label l(r), so that
both model functions ur(l), fr(l), are shared across all instances of the same template. We omit the
subscript in case there is a single templetized hyperedge in the hypergraph (e.g. one single edge type
in the dependency graph).

Case #1: Standard CBMs. A standard (non-relational) CBM can be easily seen as an R-CBM,
by making few assumptions on the relational language and the atom dependency graph it is based
on: (i) all predicates are unary, and can be partitioned into two disjoint sets, i.e. the concepts
c1, . . . , ck and tasks t1, . . . , tm, respectively, (ii) in the atom dependency graph any concept atom
has no parents, i.e. for every atom of the form c(e), we have R(c(e)) = ∅, and for every task t
there is exactly one templetized hyperedge ρ whose source is composed by all the concept atoms,
i.e. Nρ(t(v)) = [c1(v), . . . , ck(v)], (iii) T = 1. Hence, the final prediction on an atom A = p(e) is
obtained as y(A) = s(gp(xe)) if p is a concept predicate, and y(A) = fρ(y(c1(e)), . . . , y(ck(e))),
if p is a task predicate. For instance, given the unary predicates P = {red, round, tomato}, a possible
concept bottleneck is given by the templetized hyperedge N (tomato(v)) = [red(v), round(v)].

Case #2: Node classification via GNNs. R-CBMs allow the modelling of simple relational structures,
such as relation-entity graphs, which are typically used by GNNs to generate and update node
embeddings. For instance, let us consider a node classification task wrt a class p, and let q denotes the
relation in the graph. This can be represented by the templetized hyperedgeN (p(v)) = [q(v, u)]. For
a heterogeneous graph with q1, . . . , qk relations, we can instead consider the templetized hyperedge
N (p(v)) = [q1(v, u), . . . , qk(v, u)]. Message-passing and readout in GNNs are special cases of
R-CBMs, as embeddings do not depend on atom predictions and readout occurs only at step T :

ht(A) = u
(
ht−1(A),

[
ht−1(B)

]
B∈N (A)

)
yT (A) = f

(
hT (A)

)
4
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Figure 3: In R-CBMs (i) the atom encoder g maps input entities to a set of ground atoms (red/green indicate the
ground atom label false/true), (ii) the relational bottleneck guides the selection of concept atoms by considering
all the possible variable substitutions in Θ, (iii) the atom predictor f maps the selected atoms into a task
prediction, and (iv) the aggregator ⊕ combines all evidence into a final task prediction.

Case study #3: Templetized relational concept bottlenecks. The templatization of standard CBMs
can be further generalized, as relational bottlenecks can represent more complex interactions.

Definition 3.3 (Templetized relational concept bottleneck). Given an n-ary predicate p, and an
integer w ≥ 0, we define a templetized relational concept bottleneck of width w as the expression:

N (p(v̄)) = b(v̄, ū) (1)

where v̄ = (v1, . . . , vn), ū = (u1, . . . , uw) are variables and b(v̄, ū) is a list of atoms with predicates
in P and tuples of variables taken from {v1, . . . , vn, u1, . . . , uw}.

For instance, assuming to partition the predicates into two disjoint sets, i.e. concepts and tasks,
similarly to what considered for standard CBMs, Definition 3.3 specifies the input-output interface
of a concept-based task predictor in a relational context, being p a task predicate and the predicates
contained in b the concepts2. The following example grounds this definition in a concrete setting.

Example 3.4. Given the binary predicates grandparent (task) and parent (concept), w = 1 and
b(v1, v2, u) = [parent(v1, u), parent(u, v2)] we get the templetized relational concept bottleneck:

N (grandparent(v1, v2)) = [parent(v1, u), parent(u, v2)]

Figure 3 illustrates the instantiation of a relational concept bottleneck N (US(v)) =
[US(u), parent(u, v)], for E = [Willie,Homer,Bart].

We notice that by replacing the variables v̄ with an entity tuple in Definition 3.3 does not correspond
to an univocal instantiation of a relational concept bottleneck, as the same destination atom is
predicted for every substitution θ of the variables ū. For instance if E = [Abe,Homer,Bart,Lisa] in
Example 3.4, we have different hyperedges having grandparent(Abe,Bart) as tail:

N (grandparent(Abe,Bart)) = [parent(Abe,Abe), parent(Abe,Bart)] (θu = {u/Abe})
N (grandparent(Abe,Bart)) = [parent(Abe,Homer), parent(Homer,Bart)] (θu = {u/Homer})
N (grandparent(Abe,Bart)) = [parent(Abe,Bart), parent(Bart,Bart)] (θu = {u/Bart})
N (grandparent(Abe,Bart)) = [parent(Abe, Lisa), parent(Lisa,Bart)] (θu = {u/Lisa})

Each separate grounding of a relational concept bottleneck corresponds to a separate predicate
prediction, as the same destination atom can be predicted by different bottlenecks. Taking
again Example 3.4, we can assume to have also the bottleneck: N2(grandparent(v1, v2)) =
[grandparent(v1, u), sister(u, v2)] which also adds the hyperedge:

N2(grandparent(Abe,Bart))=[grandparent(Abe, Lisa), sister(Lisa,Bart)] (θu={u/Lisa})

The final prediction is obtained by aggregating all the single predictions with the
⊕

operator.

2App. 3 discusses how to select the atoms input to a relational concept bottleneck.
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Aggregation semantics. In standard CBMs the interpretation of the prediction solely depends on the
task predictor f and there is a single templetized hyperedge from concepts to any task node. However,
the same atom can be predicted by different bottlenecks in R-CBMs. Indeed, different bottlenecks
can represent separate dependency paths for the same atom like: N1(t(v̄)) = b1(v̄, ū1),N2(t(v̄)) =
b2(v̄, ū2), . . . Even when considering a single bottleneck, the same grounding for v̄ corresponds to
multiple dependencies for the same atom if w > 0. Each ground bottleneck corresponds to a separate
hyperedge in the dependency graph and it plays a fundamental role the choice of the aggregation
function

⊕
. In this paper, we select as

⊕
= max, as it guarantees a sound interpretation to R-CBMs’

predictions. Indeed, the max aggregation corresponds to the semantics of an existential quantification
on the variables ū. As a result, the final task prediction is true if the task predictor f fires for at least
one grounding of the extra variables.
Example 3.5. Following Example 3.4, we consider a task predictor f as a logic conjunction (∧)
between concept atoms. If we use

⊕
= max, then the final task prediction is true if at least one

substitution for u is true, i.e. if there exists an entity that is parent of Bart and such that Abe is her/his
parent. Hence, the final task prediction can be interpreted as the logic formula

∃u parent(Abe, u) ∧ parent(u,Bart)→ grandparent(Abe,Bart)

In summary, assuming
⊕

= max and that each f is realized as a logic rule φ, a relational concept
bottleneck with N (p(v̄)) = b(v̄, ū) can be associated with the explanation:

∀v̄ ∃ū φ(b(v̄, ū))→ p(v̄)

where ∀v̄ = ∀v1, . . . ,∀vn and ∃ū = ∃u1, . . . ,∃uw, like done in logic programs [14].

4 Experiments

In this section we analyze the following research questions: Generalization—Can standard/relational
CBMs generalize well in relational tasks? Can standard/relational CBMs generalize in out-of-
distribution settings? 3

Interpretability—Can relational CBMs provide meaningful explanations for their predictions? Are
concept/rule interventions effective in relational CBMs? Efficiency—Can relational CBMs generalize
in low-data regimes? Can relational CBMs correctly predict concept/task labels with scarce concept
train labels?

Data & task setup. We investigate our research questions using 7 relational datasets on image
classification, link prediction and node classification. We introduce two simple but not trivial
relational benchmarks, namely the Tower of Hanoi and Rock-Paper-Scissors (RPS), to demonstrate
that standard CBMs cannot even solve very simple relational problems. The Tower of Hanoi is
composed of 1000 images of disks positioned at different heights of a tower. Concepts include
whether disk i is larger than j (or vice versa) and whether disk i is directly on top of disk j (or vice
versa). The task is to predict for each disk whether it is well-positioned or not. The RPS dataset is
composed of 200 images showing the characteristic hand-signs. Concepts indicate the object played
by each player and the task is to predict whether a player wins, loses, or draws. We also evaluate
our methods on real-world benchmark datasets specifically designed for relational learning: Cora,
Citeseer, [30], PubMed [23] and Countries on two increasingly difficult splits [28]. Additional details
can be found in App. A.1 and App. A.5.

Models. We compare R-CBMs against state-of-the-art concept bottleneck architectures, including
CBMs with linear and non-linear task predictors (CBM-Linear and CBM-Deep) [13], a flat version
(Flat-CBM) where each prediction is computed as a function of the full set of ground atoms,
but also with Feedforward and Relational black-box architectures. We also compared against
DeepStochLog [33], a state-of-the-art NeSy system, and other KGE specific models for the studied
KGE tasks. Our relational models include an R-CBM with DCR predictor (R-DCR) and its direct
variant, using only 5 supervised examples per-predicate (R-DCR-Low). We also considered a non-
interpretable R-CBM version where the predictions are based on an unrestricted predictor processing
the atom representations (R-CBM-Emb). In the experiments, the loss function was selected to be the

3The code to replicate the experiments presented in this paper is available at https://github.com/
diligmic/RCBM-Neurips2024.
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Table 1: Models’ performance on task generalization. R-CBMs generalize well in relational tasks. △ indicates
methods that cannot be applied due to the dataset structure. OOT indicates out-of-time training due to large
domains.

MODEL FEATURES DATASETS
Class Name Rel. Interpr. Rules RPS Hanoi Cora Citeseer PubMed Countries S1 Countries S2

(ROC-AUC ↑) (ROC-AUC ↑) (Accuracy ↑) (Accuracy ↑) (Accuracy ↑) (MRR ↑) (MRR ↑)

Black Box
Feedforward No No No 64.46± 0.63 54.36± 0.25 46.86± 2.94 45.15± 3.79 68.83± 0.85 △ △
Relational Yes No No 100.00± 0.00 98.77± 0.60 76.66± 1.34 68.32± 0.71 74.93± 0.30 91.56± 1.02 87.87± 0.64

Relational + C&S Yes Yes No – – 63.59± 0.95 64.89± 4.01 78.64± 1.42 △ △
NeSy DeepStochLog Yes Yes Given 100.00± 0.00 100.00± 0.00 77.52± 0.58 67.03± 0.97 74.88± 1.24 △ △

CBM
CBM-Linear No Yes No 54.74± 2.50 51.02± 0.14 △ △ △ △ △
CBM-Deep No Partial No 53.01± 1.59 54.94± 0.28 △ △ △ △ △
DCR No Yes Learnt 64.48± 0.64 54.58± 0.25 △ △ △ △ △
R-CBM-Linear Yes Yes No 51.04± 1.99 100.00± 0.00 76.37± 1.80 67.16± 2.05 64.46± 9.53 93.81± 2.42 92.27± 2.84

R-CBM
R-CBM-Deep Yes Partial No 100.00± 0.00 100.00± 0.00 78.42± 1.48 66.92± 0.75 75.36± 1.36 92.75± 2.12 91.81± 2.01

Flat-CBM Yes Yes No 50.74± 0.54 82.91± 5.82 OOT OOT OOT OOT OOT
(Ours) R-DCR Yes Yes Learnt 98.77± 0.31 99.99± 0.01 78.30± 2.10 66.84± 1.52 75.86± 1.74 98.33± 2.05 92.19± 1.52

R-DCR-Low Yes Yes Learnt 98.11± 1.09 90.62± 2.97 △ △ △ △ △

Table 2: MRR and Hits@N metrics on the test set of the WN18RR and FB15k-237dataset. The competitor
results have been taken from Cheng et al. [2] or from the original datasets.

Class Name WN18RR FB15k-237
(MRR ↑) (Hits@1 ↑) (Hits@10 ↑) (MRR ↑) (Hits@1 ↑) (Hits@10 ↑)

DistMult 0.42 0.382 0.507 0.24 0.155 0.419
Black ConvE 0.43 0.401 0.525 0.33 0.237 0.501
Box ComplEx 0.44 0.410 0.512 0.26 0.163 0.452

ComplEx-N3 0.48 - 0.570 0.37 - 0.560
NLIL 0.30 0.201 0.335 0.25 - 0.324

Logic RNNLogic with emb. 0.48 0.446 0.558 0.34 0.252 0.530
Based RLogic 0.47 0.443 0.537 0.31 0.203 0.501

LPRules 0.46 0.422 0.532 0.26 0.170 0.402
LatentLogic 0.48 0.497 0.553 0.32 0.212 0.514

R-CBM R-CBM-Emb 0.49 0.447 0.559 0.35 0.254 0.531
(ours) R-DCR 0.47 0.419 0.563 0.35 0.255 0.533

standard cross-entropy loss. Further details are in App. A.2. Evaluation. We measure generalization
using standard metrics, i.e., Area Under the ROC curve [9] for multi-class classification, accuracy
for binary classification, and Mean Reciprocal Rank (MRR) for link prediction, MRR and Hits@N
for KGE tasks. We use these metrics to measure generalization across all experiments, including
out-of-distribution scenarios, low-data regimes, and interventions. We report additional experiments
and further details in App. A.3.

5 Key Findings

5.1 Generalization

Standard CBMs do not generalize in relational tasks (Table 1). Standard CBM best task per-
formance ∼ 55% ROC-AUC is just above a random baseline. This result directly stems from the
architecture of existing CBMs, which can process only one input entity at a time. The experiments
validate that this design fails on relational tasks that inherently involve multiple entities. Naive
attempts to address the relational setting, like Flat-CBMs, lead to a significant drop in task general-
ization performance (−17% in Hanoi), and become intractable when applied to larger datasets (e.g.,
Cora, Citeseer, PubMed, Countries). In RPS, instead, Flat-CBMs performance is close to random as
the linear predictor for this model can not well approximate the required non-linear combination of
concepts. These findings expose the limitations of existing CBMs when applied to relational tasks
and justify the need for relational CBMs.

R-CBMs generalize well in relational tasks (Tables 1 and 2. Relational concept bottleneck
models match the generalization performance of relational black-box models (GNNs and KGEs)
in relational tasks. For example, R-CBMs exhibit gains of up to 7% MRR (Countries S1), and at
most a 1% loss in accuracy (Citeseer) w.r.t. relational black-boxes. In larger KGEs like WN18RR ,
R-DCR beats standard KGEs and is competitive against state-of-the-art custom logic-based solutions,
while being more general. Non-interpretable solutions R-CBM-Emb are admitted by our relational
formulation when fc is selected to be a generic MLP blackbox. Since R-CBM-Emb and R-DCR
only differ for the selection of the predictor (interpretable for R-DCR), a comparison of the results
of these models on WN18RR provides a direct measurement of the performance decay due to
the additional interpretability. Relational CBMs employing a simple linear layer as task predictor
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Table 3: CBMs response to interventions. R-CBMs effectively respond to human interventions.
RPS Hanoi

Before Interv. After Interv. Before Interv. After Interv.
R-CBM-Linear 49.46 ± 1.11 47.83 ± 2.19 49.26 ± 1.01 100.00 ± 0.00

R-CBM-Deep 51.35 ± 2.00 82.02 ± 6.34 50.07 ± 0.74 100.00 ± 0.00

R-DCR 54.47 ± 1.64 100.00 ± 0.00 49.48 ± 0.35 100.00 ± 0.00

CBM-Linear 49.41 ± 0.89 47.75 ± 1.81 50.01 ± 0.16 55.03 ± 0.53

CBM-Deep 50.83 ± 0.93 47.78 ± 1.94 50.44 ± 0.46 60.14 ± 0.46

DCR 51.22 ± 1.26 49.07 ± 1.60 50.00 ± 0.00 50.00 ± 0.00

(R-CBM-Linear) underfit tasks demanding on non-linear combinations of concepts (e.g., RPS). In
such scenarios, a deeper task predictor (e.g., R-CBMs Deep) trivially solves the issue, but it also
hampers interpretability. R-DCRs address this limit providing accurate predictions while generating
high-quality rule-based explanations (Table 4). It also matches generalization performance of neural
symbolic system DeepStochLog [33], which is provided with ground truth rules.

R-CBMs generalize in out-of-distribution settings where the number of entities changes at test
time (Figure 4). R-CBMs show robust generalization performances even in out-of-distribution
conditions where the number of entities varies between training and testing. To assess generalization
in these extreme conditions, we use the Tower of Hanoi dataset, where test sets of increasing
complexity are generated by augmenting the number of disks in a tower. We observe that a naive
approach, such as Flat-CBMs, immediately breaks as soon as we introduce a new disk in a tower,
as its architecture is designed for a fixed number of input entities. In contrast, R-CBMs are more
resilient, as we observe a smooth performance decline from ∼ 100% ROC-AUC (with 3 disks in
both training and test sets) to around ∼ 85% in the most challenging conditions (with 3 disks in the
training set and 7 in the test set).

5.2 Interpretability

3 4 5 6 7
Number of test disks

50

75

100

Ta
sk

A
U

C
(%

)

N/A N/A N/A N/A

R-CBM Rel. Black Box Flat-CBM CBM

Figure 4: Model generalization on Hanoi OOD
on the number of disks. Only R-CBMs are able
to generalize effectively to settings larger than the
ones they are trained on.

R-CBMs support effective interventions (Table 3).

CBM architectures allow human interaction with the
learnt concepts to intervene on mispredicted concepts
during testing to improve the final predictions. In
our experiments we assess CBMs’ response to inter-
ventions on the RPS and Hanoi datasets. We set up
the evaluation by generating a batch of adversarial
test samples that prompt concept encoders to mis-
predict ∼ 50% of concept labels by introducing a
strong random noise in the input features drawn from
the uniform distribution U(0, 20). In our findings,
we note that R-CBMs positively respond to test-time
concept interventions by increasing their task perfor-
mance. This contrasts with standard CBMs, where perfect concept predictions are not enough to
solve the relational task. Notably, the RPS dataset poses a significant challenge for relational CBMs
equipped with linear task predictors, as the task depends on a non-linear combination of concepts.
Expanding our investigation to DCRs, we expose another dimension of human-model interaction:
rule interventions. Applying both concept and rule interventions, we observe that R-DCRs perfectly
predict all adversarial test samples.

Relational Concept Reasoners discover semantically meaningful rules (Table 4). Among CBMs,
a key advantage of DCRs lies in the dual role of generating rules which serve for both generating
and explaining task predictions. Table 4 shows instances of R-DCR explanations, confirming that
R-DCR discovers rules aligned with known ground truths across diverse datasets (e.g., wins(X)←
¬rock(X)∧paper(X)∧¬scissors(X)∧rock(Y )∧¬paper(Y )∧¬scissors(Y ) in RPS). Notably,
R-DCR discovers meaningful rules even in low data regimes (R-DCR-Low) and when the correct
rules are unknown, such as in Cora, Citeseer and PubMed.
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Table 4: Rules extracted by relational DCRs. In Hanoi, we remove negative atoms for brevity.

Dataset Examples of learnt rules

RPS
∀v,∃u. wins(v)← ¬rock(v) ∧ paper(v) ∧ ¬scissors(v) ∧ rock(u) ∧ ¬paper(u) ∧ ¬scissors(u)
∀v,∃u. loses(v)← ¬rock(v) ∧ ¬paper(v) ∧ scissors(v) ∧ rock(u) ∧ ¬paper(u) ∧ ¬scissors(u)
∀v,∃u. ties(v)← rock(v) ∧ ¬paper(v) ∧ ¬scissors(v) ∧ rock(u) ∧ ¬paper(u) ∧ ¬scissors(u)

Hanoi ∀v,∃u1, u2. correct(v)← top(u1, v) ∧ top(v, u2) ∧ larger(v, u1) ∧ larger(u2, v) ∧ larger(u2, u1)
∀v,∃u1, u2. correct(v)← top(v, u2) ∧ top(u1, u2) ∧ top(u2, u1) ∧ larger(v, u2) ∧ larger(u2, v)

Cora ∀v,∃u. nn(v)← nn(u) ∧ ¬rl(u) ∧ ¬rule(u) ∧ ¬probModels(u) ∧ ¬theoru(u) ∧ ¬gene(u) ∧ cite(v, u)
PubMed ∀v,∃u. type1(v)← type1(u) ∧ ¬type2(u) ∧ ¬experimental(u) ∧ cite(v, u)
Countries ∀v1, v2,∃u. locatedIn(v1, v2)← locatedIn(v1, u) ∧ locatedIn(u, v2)

Table 5: Data efficiency (Citeseer dataset). Relational CBMs are more robust than an equivalent relational
black-box when reducing the amount of supervised training nodes.

% Supervision 100% 75% 50% 25%
Rel. Black-Box 68.32 ± 0.71 66.02 ± 0.67 46.46 ± 2.01 7.70 ± 0.0

R-CBM-Linear 67.16 ± 2.05 65.96 ± 0.87 57.07 ± 3.74 16.92 ± 4.83

R-CBM-Deep 66.92 ± 0.75 64.08 ± 1.99 56.59 ± 1.05 12.25 ± 3.53

R-DCR 66.89 ± 1.52 66.42 ± 1.66 52.30 ± 3.15 16.52 ± 1.29

5.3 Low data regimes

R-CBMs generalize better than relational black-boxes in low-data regimes (Table 5). The ability
of relational CBMs and relational black box models was compared on the Citeseer dataset as the
number of labeled nodes decreased to 75%, 50%, and 25%. While no significant difference was
observed with ample training data, a growing advantage for relational CBMs over relational black
box models emerged in scenarios of scarce data. The intermediate predictions related to incoming
atoms likely have a crucial regularization effect, particularly in scenarios with limited data.

R-DCR accurately makes interpretable predictions with very few atom supervisions (Table 1).
R-DCR-Low is able to learn an interpretable relational predictor when reducing the training data to
5 labeled atoms for each predicate. Indeed, the supervisions are crucial to establish an alignment
between human knowledge and the model on the semantics of logical explanations. The alignment
can be perfectly achieved in RPS, where the predictions are mutually exclusive. On the Hanoi dataset,
learning the relational binary concepts larger and top from 5 examples is challenging, leading to
slightly decreased overall performance.

6 Discussion

Related work on CBMs. Concept bottleneck models [13] inspired several works focusing on
improved generalization [15, 5, 31], explanations [3, 1] and robustness [17, 10, 36, 11]. Despite
these efforts, the application of CBMs to relational domains remains unexplored. Filling this gap,
our framework allows relational CBMs to (i) effectively solve relational tasks, and (ii) generalize the
explanatory capabilities of these models from propositional to relational.

Related work on GNNs. R-CBMs and relational black-boxes (such as GNNs) share similarities in
considering the relationships between multiple entities when solving a given task. The prediction
computation of R-CBMs is based on a message passing paradigm which is similar to message-passing
in graph neural networks [7], which is a special case of the proposed architecture. However, relational
CBMs can also define aggregations based on a semantically meaningful concepts, allowing the
extraction of explanations, which can not be done by GNNs.

Related work on ILP. Among our considered R-CBMs, R-DCR is the only one learning a set of logic
rules, hence we can draw some parallels with some algorithmic solutions defined in Inductive Logic
Programming (ILP) [21]. R-DCR bottlenecks are connected to ILP mode declarations or metarules
[22], which define the search space. However, while ILP involves searching through a hypothesis
space of possible logical rules, guided by principles like consistency, coverage, and simplicity, R-DCR
is different as it searches this space via gradient descent over a continuous relaxation of the logic, and
the logic formulas are learnt by exploiting neural architectures.

Related work on Neuro-Symbolic AI. Neural Theorem Provers (NTP) [27] and their more scalable
variations [20] combine formal proof proving with neural networks for efficiency via a trainable
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heuristic search. However, R-CBMs are more general than NTP –or other specific rule learners–
indeed their interpretability is not restricted to rule learning, but rather rely on concept interventions.
Moreover, unlike NTP, when dealing with logic rules the R-CBM framework is not limited to Horn
clauses, and it can be applied in classic CBMs setups where inputs are not symbolic, but images.
Moreover, R-CBMs’ templates can represent all the rules using a (subset of a) specified list of atoms
in the body at the same time, and the embeddings will be used to determine which actual rule to
instantiate in each given context (like in R-DCR). On the other hand, NTP’s approach to rule learning
is to enumerate all possible rules and let the learning decide which rules are useful. Please note that
this approach is not scalable to larger KGs because of the combinatorial explosion of the number of
rules when there are many predicates in the dataset.

Limitations. A limitation of relational CBMs consists in their limited scalability to very large
domains. This limitation is shared with all existing relational systems, and most relational models
have to rely on simplifying heuristics to scale to large relational structures like knowledge graphs
[37, 26]. Another limitation of R-CBMs lays in the need for the definition of a relational concept
bottlenecks, which acts as an architectural inductive bias, restricting the search space. Future
extensions of relational CBMs can relax the need of an external template definition by including an
automatic calibration of template widths, the construction of reduced set of variables’ substitutions,
or the automatic generation of the relational templates.

Conclusions. This work presents R-CBMs, a family of concept bottleneck models designed for
relational tasks. The results of our experiments show that R-CBMs: (i) match the generalization
performance of existing relational black-boxes, (ii) support the generation of quantified concept-
based explanations, (iii) effectively respond to test-time interventions, and (iv) withstand demanding
settings including out-of-distribution scenarios, and low data regimes. R-CBMs represent a significant
extension of standard CBMs, and pave the way to further investigations using CBMs to improve
interpretability in GNNs and to explain KGE predictions.
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A Appendix

A.1 Datasets

A.1.1 Rock-Paper-Scissors

We build the Rock-Paper-Scissors (RPS) dataset by downloading images from Kaggle:
https://www.kaggle.com/datasets/drgfreeman/rockpaperscissors?
resource=download. The dataset contains images representing the characteristic hand-
signs annotated with the usual labels "rock", "paper", and "scissors". To build a relational dataset we
randomly select 200 pairs of images and defined the labels wins/ties/loses according to the standard
game-play. To train the models we select an embedding size of 10.

A.1.2 Tower of Hanoi

We build the Tower of Hanoi (Hanoi) dataset by generating disk images with matplotlib. We randomly
generate 1000 images representing disks of different sizes in [1, 10] and at different heights of the
tower in [1, 10]. We annotate the concepts top(u, v), larger(u, v) using pairs of disks according to
the usual definitions. We define the task label of each disk according to whether the disk is well
positioned following the usual definition that a disk is well positioned if the disk below (if any) is
larger, and the disk above (if any) is smaller. To train the models we select an embedding size of 50.

A.1.3 Cora, Citeseer, PubMed, Countries

For the experiments in Table 1, we exploit the standard splits of the Planetoid Cora, Citeseer and
PubMed citation networks, as defined in Pytorch Geometric https://pytorch-geometric.
readthedocs.io/en/latest/modules/datasets.html. The classes of documents are
used both for tasks and concepts

The Countries dataset (ODbL licence) 4 defines a set of countries, regions and sub-regions as basic
entities. We used splits and setup from Rocktaschel et al. [28], which reports the basic statistics of
the dataset and also defines the tasks S1, S2 used in this paper.

A.2 Baselines

A.2.1 Exploiting prior knowledge

Additionally, we can use prior knowledge to optimize the template and the aggregation by excluding
concept atoms in b(v̄, ū) and groundings in Θ that are not relevant to predict the task. This last
simplification is crucial anytime we want to impose a locality bias, and it is also at the base of the
heuristics that are commonly used in extension of knoweldge graph embeddings with additional
knowledge [26, 37, 4].

A.2.2 Cora, Citeseer, PubMed

Slash notation a/b/c indicates parameters for cora/citeseer/pubmed when different.

R-CBMs exploit the same concept encoder gi, which corresponds to an MLP with 2 hidden layers
of size 32/16/16 followed by an output layer of size 6/7/3 classes. Activation functions are
LeakyReLu. The blackbox feedforward network is equivalent to the one of the CBM models. The
blackbox relational model is a GCN with 2 layers of size 16. Node features for R-CBM models
are initialized with the last embeddings of the GCN. R-CMB Deep task predictor exploits a 2
layer MLP with 1 hidden layers of size 32/16/16 followed by an output layer of size 1. Activation
functions are LeakyReLu. R-DCR exploits, as filter and sign functions a linear layer of size
32/16/16. DeepStochLog exploits the same concept encoder as neural predicate. It exploits also
the pretraining using a GCN. As task predictor, it exploits a SDCG grammar implementing the rule
cite(v1, v2)→ classi(v1) ⇐⇒ classi(v2).

4https://github.com/mledoze/countries

13

77675 https://doi.org/10.52202/079017-2468

https://www.kaggle.com/datasets/drgfreeman/rockpaperscissors?resource=download
https://www.kaggle.com/datasets/drgfreeman/rockpaperscissors?resource=download
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://github.com/mledoze/countries


A.2.3 Countries

The DistMult Knowledge Graph Embeddings (KGE) [34] was used as BlackBox relational
baseline for the Countries S1 and S2 datasets. We varied the embedding sizes in the set
{10, 20, 50, 100, 200, 300} and selected the best results on the validation set. The DistMult KGE was
used as a basic concept encoder for CMBs. The R-CBM-Linear computes the concepts via linear
layer followed by the KGE output layer. The R-CBM-Deep computes the concepts via an MLP with
2 hidden layers followed by a KGE output layer. Activation functions are ReLu.

A.3 Experimental Details and Additional experiments

All experiments have been carried out on a machine with a Intel i7 CPU, 128GB RAM. Running
times for all experiments are within 1 hour, with the exception of the link prediction experiment on
WN18RR, which took 14h:20m.

A.3.1 Training Hyperparameters

In all synthetic tasks, we generate datasets with 3,000 samples and use a traditional 70%-10%-20%
random split for training, validation, and testing datasets, respectively. During training, we then set
the weight of the concept loss to λ = 0.1 across all models. We then train all models for 3000 epochs
using full batching and a default Adam [12] optimizer with learning rate 10−4. KGE experiments
have used the Complex and Rotate KGE encoder and scorer function for gr, s in the Countries and
WN18RR datasets, respectively.

A.3.2 Data Efficiency

As explained in Section A.2.2, the relational CBMs exploits the features obtained by pretraining on a
GNN on the same data split. Such pretraining is beneficial only in high-data settings (i.e. 100%, 75%
and 50%). On low data regime (i.e. 25%), pretrained features are worse than original features. In
these cases, we train the different baselines from scratch by using directly the low level features of
the documents.

For training R-CBM models on the WN18RR dataset, we used the heuristic, commonly employed in
the NeSy community, of instantiating only hyperedges where all source atoms are observed in the
training set [37].

A.3.3 Countries

The task consists of predicting the unknown locations of a country, given the evidence in form of
country neighbourhoods and some known country/region locations. The entities are divided into
the C,R,W domains referring to the countries, regions and continents, respectively. The predicate
locIn(v1, v2) determines the location of a country in a region or continent, with the variables
(v1, v2) ∈ C × R ∪W or (v1, v2) ∈ R ×W . The country neighbourhoods are determined by the
predicate neighOf(v1, v3) with the variables v1, v3 ∈ C.

The entities in the dataset are a set of countries, regions and continents represented by their corre-
sponding feature vectors as computed by a DistMult KGE (see baselines). The concept datasets
are respectively the set DclocIn = (C ×R) ∪ (R×W ) and DcneighOf

= C × C. The task dataset
DylocIn

= C ×W is formed by queries about the location of some countries within a continent. The
templetized relational concept bottleneck is defined as:

N (locIn(v1, v2)) = [locIn(v1, u1), locIn(u1, v2), neighOf(v1, u2), locIn(u2, v2)] .

Finally, the cross entropy loss was used both for functions for concepts.

A.3.4 Hard-to-classify samples

R-CBMs can also be used to find easy/hard samples, similar to what done for standard CBMs in
[6]. In our framework, we consider as hard examples the ones whose prediction is highly uncertain
when using a CBM with a propositional template (see CBM-Deep rows in Table 6. When using a
relational template, instead, we verified that the distribution of the prediction uncertainty significantly
decreases. We show this in Figure 5, where the prediction uncertainty decreases when transitioning
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from a propositional to a relational template. Table 6 shows the concept/task activation for the
hardest example to classify using the propositional template (high uncertainty) and the corresponding
predictions when using the relational template (low uncertainty).

Figure 5: Distribution of class prediction uncertainty comparing CBMs using relational vs propositional
bottlenecks.

Table 6: Examples of hard to classify examples using a propositional bottleneck (used by CBM-Deep) which
become easy to classify when using a relational bottleneck (used by R-CBM-Deep).

Dataset Model Concept activations Task activations
RPS CBM-Deep rock(X) = .00, paper(X) = 1.0, scissors(X) = .00 wins(X) = .31, ties(X)

= .32, loses(X) = .36
R-CBM-Deep rock(X) = .00, paper(X) = 1.0, scissors(X) = .00,

rock(Y) = .01, paper(Y) = .00, scissors(Y) = .96
wins(X) = .01, ties(X)
= .01, loses(X) = 1.0

Hanoi CBM-Deep Position0(X) = .00, Position1(X) = .00, Position2(X)
= .02, Position3(X) = .65, Position4(X) = .35, Po-
sition5(X) = .00, Position6(X) = .00, Size0(X) =
.00, Size1(X) = .20, Size2(X) = .47, Size3(X) =
.19, Size4(X) = .01, Size5(X) = .00, Size6(X) = .00,
Size7(X) = .00, Size8(X) = .00, Size9(X) = .00

correct(X) = .50

R-CBM-Deep top(X,Y) = 1.0, top(Y,X) = .00, top(X,Z) = .00,
top(Z,X) = .00, top(Y,Z) = 1.0, top(Z,Y) = .00,
larger(X,Y) = .00, larger(Y,X) = 1.0, larger(X,Z) =
.00, larger(Z,X) = 1.0, larger(Y,Z) = .00, larger(Z,Y) =
1.0

correct(X) = 1.0

A.3.5 Completeness scores

While Table 5 reported an evaluation of concept efficiency, here we report the completeness scores of
each concept-based model wrt the relational baseline, following Equation 1 in [35]. The results are
shown in Table 7.

RPS Hanoi Cora Citeseer PubMed Countries S1 Countries S1
CBM-Linear 32.44 2.09 N/A N/A N/A N/A N/A
CBM-Deep 29.86 10.12 N/A N/A N/A N/A N/A
DCR 46.98 9.39 N/A N/A N/A N/A N/A
R-CBM Linear 26.92 102.52 98.91 93.66 58.00 105.41 111.61
R-CBM Deep 100.00 102.52 106.60 92.35 101.72 102.86 110.40
R-DCR 98.16 102.50 106.15 91.92 103.73 116.28 111.40

Table 7: Completeness scores of each concept-based model wrt the relational black-box baseline.

A.4 Relational Task Predictors

In standard CBMs, a wide variety of task predictors f have been proposed on top of the concept
encoder g, defining different trade-offs between model accuracy and interpretability. In the following,
we resume how we adapted a selection of representative models for f to be applicable in a relational
setting (fixing for simplicity o = 0). These are the models that we will compare in the experiments
(Section 4 and 5).
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Relational Concept Bottleneck Model Linear (R-CBM-Linear) The most basic task predictor
employed in standard CBMs is represented by a single linear layer [13]. This choice guarantees a
high-degree of interpretability, but may lack expressive power and may significantly underperform
whenever the task depends on a non-linear combination of concepts. In the relational context, we
define it as following:

f(θūb(x̄, ū)) = Wθūb(x̄, ū) + w0 (2)

Deep Relational Concept Bottleneck Model (Deep R-CBM) To solve the linearity issue of
R-CBM, one can increase the number of layers employed by the task predictor (as also proposed in
[13]). In the relational context we can define a Deep R-CBM as following:

Deep R-CBM: f(θūb(x̄, ū)) = φ(θūb(x̄, ū)), (3)
where we indicate with MLP a multi-layer perceptron. However, the interpretability between concept
and task predictions is lost, since MLPs are not transparent. Further, the ability of a Deep R-CBM to
make accurate predictions is totally depending on the existence of concepts that univocally represent
the tasks, hence being possibly very inefficacy.

Relational Deep Concept Reasoning (R-DCR) [5] proposed to encode concepts by employing
concept embeddings (instead of just concept scores), improving CBMs generalization capabilities,
but affecting their interpretability. Then [1] proposed to use these concept embeddings to generate a
symbolic rule which is then executed on the concept scores, providing a completely interpretable
prediction. We adapt this model in the relational setting:

R-DCR: f(θūb(x̄, ū)) = φ(θūb(x̄, ū)), (4)
where φ indicates the rule generated by a neural module working on the concept embeddings. For
further details on how φ is learned, please refer to [1]. Since the logical operations in R-DCR are
governed by a semantics specified by a t-norm fuzzy logic [8], whenever we use this model we
require the aggregation operation ⊕ used in Eq. 3.2 to correspond to a fuzzy OR. The max operator
corresponds to the OR within the Gödel fuzzy logic.

Relational Deep Embedding Reasoning (R-CBM-Emb) [18] proposes a latent relational process,
which computes the atom representations using the presentations of other atoms that co-occur in the
same ground formula. The final readout is based on an MLP processing the final atom representation.
This model can exploit the rich reletional representations developed as atom embeddings, but it acts
as a blackbox in terms of explanations of how the decision process takes form. This model can be
implemented in our general model structure by restricting the fc function to only process the ht

c
embeddings as input, such that:

ht
c(A) = ur(l)

(
ht−1(A),

[
ht−1(B)

]
B∈Nc(A)

)
ytc(A) = MLP

(
ht
c(A)

)
.

R-DCR-Low R-DCR-Low is a version of R-DCR that is trained by providing the atom supervisions
for only 5 incoming hyperedges. Its architecture and learning is entirely identical to DCR except for
two variants:

• Since DCR strongly depends on crisp concepts prediction for learning good and interpretable
rule, in absence of sufficient supervision, we need a different way to obtain crisp predictions.
To this end we substitute the standard sigmoid and softmax activation functions for concept
predictors gi with discrete differentiable sample from a bernoulli or categorial distributions.
The differentiability is obtained by using the Straight Through estimators provided by
PyTorch.

• Since the backward signal from DCR can be very noisy at the beginning of the learning, we
add a parallel task predictor (and a corresponding loss term), completely identical to the one
of a R-CBM-Deep model. Such predictor only guides the learning of the concepts during
training by a cleaner backward signal but is discarded during test, leaving a standard DCR
architecture.

Flat Concept Bottleneck Model (Flat-CBM) assumes each prediction to be computed as a function
of the full set of ground atoms. This model has limited scalability but it is introduced for comparison
reasons in the experimental section.

16

77678https://doi.org/10.52202/079017-2468



A.5 Code, Licences, Resources

Libraries For our experiments, we implemented all baselines and methods in Python 3.7 and relied
upon open-source libraries such as PyTorch 1.11 [24] (BSD license) and Scikit-learn [25] (BSD
license). To produce the plots seen in this paper, we made use of Matplotlib 3.5 (BSD license). We
will release all of the code required to recreate our experiments in an MIT-licensed public repository.

Resources All of our experiments were run on a private machine with 8 Intel(R) Xeon(R) Gold
5218 CPUs (2.30GHz), 64GB of RAM, and 2 Quadro RTX 8000 Nvidia GPUs. We estimate that
approximately 50-GPU hours were required to complete all of our experiments.

Ethical Statement

There are no ethical issues.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claimed contributions in the abstract and introduction reflect the main
contributions of the paper in terms of model definition, analysis and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
[Yes]
Justification: This is done in the discussion section (6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Limited details are given in Sections 4 and 5, with the remaining details
provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We will make the code public after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are given in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the standard-deviations over multiple seedsall for most experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported the details of the machines exploited in the experiments in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not raise any ethical issue.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not involve an immediate societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We mentioned and respected all the licences of software and data in the
Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The code and the related licenses will be released upon publication of the
paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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