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Abstract

For classification models based on neural networks, the maximum predicted class
probability is often used as a confidence score. This score rarely predicts well the
probability of making a correct prediction and requires a post-processing calibration
step. However, many confidence calibration methods fail for problems with many
classes. To address this issue, we transform the problem of calibrating a multiclass
classifier into calibrating a single surrogate binary classifier. This approach allows
for more efficient use of standard calibration methods. We evaluate our approach
on numerous neural networks used for image or text classification and show that it
significantly enhances existing calibration methods. Our code can be accessed at
the following link: https://github.com/allglc/tva-calibration.

1 Introduction

The considerable performance increase of modern deep neural networks (DNNs) and their potential
deployment in real-world applications has made reliably estimating the probability of wrong decisions
a key concern. When such components are expected to be embedded in safety-critical systems (e.g.,
medical or transportation), estimating this probability is crucial to mitigate catastrophic behavior. One
way to address this question is to treat it as an uncertainty quantification problem [2, 12], where the
uncertainty value computed for each prediction is considered as a confidence. This confidence can be
used to reject uncertain decisions proposed by the DNN [13], for out-of-distribution detection [22], or
to control active learning [34] or reinforcement learning based systems [76]. When confidence values
reliably reflect the true probability of correct decisions, i.e., their accuracy, a predictive system is said
to be calibrated. In this case, confidence values can be used as a reliable control for decision-making.

We are interested in producing an uncertainty indicator for decision problems where the input is high
dimensional and the decision space large, typically classifiers with tens to thousands of classes. For
this kind of problem, DNNs are common predictors, and their outputs can be used to provide an
uncertainty value at no cost, i.e., without necessitating heavy estimation such as Bayesian sampling
[15] or ensemble methods [33]. Indeed, most neural architectures for classification instantiate their
decision as a softmax layer, where the maximum value can be interpreted as the maximum of the
posterior probability and, therefore, as a confidence. Unfortunately, uncertainty values computed in
this way are often miscalibrated. DNNs have been shown to be over-confident [17], meaning their
confidence is higher than their accuracy: predictions with 90% confidence might be correct only 80%
of the time. A later study [44] suggests that model architecture impacts calibration more than model
size, pre-training, and accuracy. For ImageNet classifiers, the accuracy and the number of model
parameters are not correlated to calibration, but model families are [11].

These studies show that it is difficult to anticipate the calibration level of confidence values computed
directly from DNNs and exhibit the benefits of a complementary post-processing calibration. This
calibration process can be seen as a learning step that exploits data from a calibration set, distinct
from the training set, and is used to learn a function that maps classifier outputs into better-calibrated
values. This process is typically lightweight and decoupled from the issue of improving model
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performance. A standard baseline for post-processing calibration is Temperature Scaling [17], where
the penultimate logit layer is scaled by a coefficient optimized on the calibration set.

Many post-processing calibration methods have been developed for binary classification models
[50, 69, 70]. Applying these methods to multiclass classifiers requires some adaptation. One standard
approach reformulates the multiclass setting into many One-versus-All binary problems (one per
class) [70]. One limitation of this approach is that it does not scale well. When the number of classes
is large, the calibration data is divided into highly unbalanced subsets that do not contain enough
positive examples to solve the One-versus-All binary problems. Other methods based on Platt scaling
[50] involve learning a set of parameters whose size grows with the number of classes. For problems
with many classes, they tend to overfit, as we demonstrate in this work.

The main idea of our work is to reformulate the multiclass confidence estimation into a single binary
problem. This problem can be phrased as the unique question: "Is the prediction correct?". In this
formulation, the confidence score is defined as the maximum class probability of the binary problem
that outputs 1 if the predicted class is correct and 0 otherwise. The intent is that the confidence
score accurately describes whether the prediction is correct, regardless of the class. We show that
this novel approach, which we call Top-versus-All (TvA), significantly improves the performance
of standard calibration methods: Temperature and Vector Scaling [17], Dirichlet Calibration [29],
Histogram Binning [69], Isotonic Regression [70], Beta Calibration [28], and Bayesian Binning into
Quantiles [46]. We also introduce a simple regularization for Vector Scaling or Dirichlet Calibration
that mitigates overfitting when the number of classes is high relative to the calibration data size. We
conduct experiments on multiple image and text classification datasets and many pre-trained models.

Our main contributions are the following:

• We discuss four issues of the standard approach to confidence calibration.

• To solve these issues, we develop the Top-versus-All approach to confidence calibration of
multiclass classifiers, transforming the problem into a single binary classifier’s calibration.
This straightforward reformulation enables more efficient use of existing calibration methods,
achieved with minimal modifications to the methods’ original algorithms.

• Applied to scaling methods for calibration (such as Temperature Scaling), TvA allows the
use of the binary cross-entropy loss, which is more efficient in decreasing the confidence of
wrong predictions and leads to stronger gradients in the case of Temperature Scaling.
Applied to binary methods for calibration (such as Histogram Binning), TvA significantly
improves their performance and makes them accuracy-preserving.

• We demonstrate our approach’s scalability and generality with extensive experiments on im-
age classification with state-of-the-art models for complex datasets and on text classification
with Pre-trained Language Models (PLMs) and Large Language Models (LLMs).

2 Related work

Calibration There are various notions of multiclass calibration. One can consider confidence [17],
class-wise [28], top-r [19], top-label [18], decision [75], projection smooth [16], or strong [60, 65]
calibration. For recent surveys, we refer to [10] and [63]. In this work, we focus on confidence
calibration and not on the calibration of the full probability vector. Indeed, confidence calibration is
useful for many applications that only require a single confidence value: selective classification [13],
out-of-distribution detection [22], or active learning [34]. For these applications, stronger notions of
calibration are both difficult and useless. Also, class-wise calibration metrics do not appropriately
scale to large numbers of classes, a setting we consider in this work, as explained in Appendix E.

Metrics Several metrics have been proposed to quantify calibration error. The most common is the
Expected Calibration Error (ECE) [46] (see Equation 2). ECE has flaws: the estimation quality is
influenced by the binning scheme, and it is not a proper scoring rule [14, 60, 48]. Despite its flaws, it
remains the standard comparison metric for confidence calibration. Variants of ECE have also been
developed: classwise-ECE [29], ECE with equal mass bins [48, 44], or top-label-ECE, which adds a
conditioning on the predicted class [18]. The Brier score [4] is also used to measure calibration. The
proximity-informed expected calibration error (PIECE) evaluates the miscalibration due to proximity
bias [68]. We mainly use the standard ECE in this work, and the Appendix contains more metrics.
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Training calibrated networks Several solutions have been proposed in the literature to improve
calibration by training neural networks in specific ways, generally by making use of a new loss term
[31, 58, 26, 6, 5]. While these methods directly optimize calibration during the training phase of the
networks, they require a high development time, often compromise accuracy, and are not adapted to
pre-trained foundation models. That is why we prefer to focus on calibrating already-trained models.

Post-processing (or post-hoc) calibration methods Another approach is to calibrate already-
trained models. This lowers the development time by decoupling accuracy optimization and calibra-
tion. In this paper, we divide post-hoc calibration methods into two categories: scaling and binary.
Scaling methods are derived from Platt scaling [50] and optimize some parameters to scale the logits.
Temperature Scaling [17] is a popular simple post-processing calibration method. The logits vector is
scaled by a coefficient, which modifies the probability vector. Vector Scaling [17] is more expressive
and has good performance in many cases [17, 48, 29]. Matrix Scaling can also be considered for more
expressiveness but is difficult to apply without overfitting [17]. Dirichlet Calibration [29] proposes a
regularization strategy for Matrix Scaling. [72] developed Ensemble Temperature Scaling. Scaling
can be combined with binning [30]. Besides logits or probabilities, features can also be used [35].
Another family of methods tackles binary classification. We designate them as binary methods.
Histogram Binning [69] divides the prediction into B bins according to the predicted probability. For
each bin, a calibrated probability is computed from the calibration data. The probability becomes
discrete: it can only take B values. With some modifications, it outperforms scaling methods [18, 49].
Isotonic Regression [70] learns a piecewise constant function to remap probabilities. Bayesian
Binning into Quantiles [46] brings Bayesian model averaging to Histogram Binning. Beta Calibration
[28] uses a beta distribution to obtain a calibration mapping.
Our work reformulates the multiclass calibration problem and allows more efficient use of all these
calibration methods, with little to no change in their algorithms.

Multiclass to Binary Using binary calibration methods for a multiclass classifier requires adapting
the multiclass setting. This is usually done with a One-versus-All approach [70, 17]. The multiclass
setting is decomposed into L One-versus-All independent problems: one binary problem for each
class. [18] introduce the notion of top-label calibration, i.e., confidence calibration with additional
conditioning on the predicted class (top-label). They describe a general multiclass-to-binary frame-
work to develop top-label calibrators. [6] derive L(L− 1)/2 pairwise binary problems. The approach
requires training the classifier from scratch, and its performance decreases with the number of classes.
Our work tackles this multiclass-to-binary research problem. Contrary to [6], the One-versus-All
approach [70] and top-label calibrators [18], our approach works well for problems with many classes.
The methods I-Max [49] and IRM [72] use a shared class-wise strategy to compute a single calibrator.
The calibrator is applied to all class probabilities separately, so the class probabilities ranking and
prediction might change. In contrast, TvA applied to binary methods rescales the confidence after the
class prediction is made. I-Max and IRM consider the full class probabilities vectors, while TvA only
considers confidence values. Also, they build on top of Histogram Binning and Isotonic Regression,
respectively, while we apply our approach to many calibration methods. A concurrent work building
on an intuition similar to ours derives a calibration method based on a Correctness-Aware Loss [38].
Appendix C discusses the differences between our approach and others.

3 Problem setting

3.1 Background

Confidence calibration of a classifier We consider the classification problem where an input x
is associated with a class label y ∈ Y = {1, 2, ..., L}. The neural network classifier f provides a
class prediction from a final softmax layer σ that transforms intermediate logits z into probabilities.
The classifier prediction is the most probable class ŷ = argmaxk∈Y fk(x) with fk(x) referring to
the probability of class k, and the confidence score defined as s = maxk∈Y fk(x). Note that we use
the term confidence to denote the maximum class probability. With y the real label, we consider the
confidence calibration definition from [17] that says that the classifier f is calibrated if:

P (ŷ = y|s = p) = p, ∀p ∈ [0, 1] (1)

where the probability is over the data distribution. Equation (1) expresses that the probability of being
correct when the confidence is around p is indeed p. For instance, if we consider the set of predictions
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with a confidence of 90%, they should be correct 90% of the time. The conditional probability of (1)
is not rigorously defined mathematically (the event {s = p} has zero probability), and interval-based
empirical estimators are often used to define metrics capable of evaluating how well (1) is satisfied.
This is the case of ECE, which approximates the calibration error by partitioning the confidence
distribution into B bins. The absolute difference between the accuracy and confidence is computed
for each subset of data in the bins. The final value is a weighted sum of the differences of each bin.

ECE =

B∑
b=1

nb

N
|acc(b)− conf(b)| (2)

Where nb is the number of samples in bin b, N is the total number of samples, acc(b) is the accuracy
in bin b, and conf(b) is the average confidence in bin b. ECE can be interpreted visually by looking at
diagrams such as those of Figure 1: ECE computes the sum of the red bars (difference between bin
accuracy and average confidence) weighted by the proportion of samples in the bin.

Post-processing calibration methods We are considering the scenario where a classifier has
already been trained, and the objective is to enhance its calibration. Post-processing calibration
methods aim to remap the classifier probabilities to better-calibrated values without modifying the
classifier. They typically use a calibration set different from the training set to optimize parameters or
learn a function. We note the calibration data Dcal = {(xi, yi)}Ni=1. We focus on post-processing
calibration because it enables better utilization of off-the-shelf models and separates model training
(optimized for accuracy) from calibration. These advantages significantly reduce the development
cost of obtaining a well-performing and well-calibrated model, contrary to optimizing calibration
during training. We categorize the post-processing calibration techniques considered in this paper
into two groups: scaling methods and binary methods.

3.2 Issues related to current approaches

Behavior of current scaling methods Scaling methods for calibration optimize one or more
coefficients that scale the logits vector to minimize on calibration data the cross-entropy loss defined
as lCE = −

∑L
k=1 1k=y · log(fk(x)) = − log(fy(x)). Minimizing lCE therefore increases the

probability of the true class. We can distinguish two cases to understand what happens during the
optimization: whether the prediction ŷ is correct or not. In the first case, the confidence score is
s = fy(x): minimizing lCE increases the confidence fy(x). In the second case, the prediction is
incorrect, which implies that fy(x) < s. Minimizing lCE increases the probability of the true class
fy(x) but does not directly change the confidence (because s ̸= fy(x)). Instead, the confidence
(which was attributed to a wrong class) is indirectly lowered through the softmax normalization.

. ↪→ Issue 1: Cross-entropy loss only indirecly lowers confidence in wrong predictions.

We identified another issue of some scaling methods. By design, the number of parameters optimized
by Vector Scaling and Dirichlet Calibration grows with the number of classes. When the number of
classes is high, these methods overfit the calibration set as shown in Figure 2.

. ↪→ Issue 2: Vector Scaling and Dirichlet Calibration overfit calibration sets with many classes.

One-versus-All approach for binary methods The One-versus-All (OvA) calibration approach
[70] allows adapting calibration methods for binary classifiers to multiclass classifiers. To do so, it
decomposes the calibration of multiclass classifiers into sets of L binary calibration problems: one
for each class k. For each problem, the considered probability is fk(x), and the associated label
1y=k ∈ {0, 1}. When calibrating a classifier from data, each binary problem is highly imbalanced
with a ratio between positive and negative examples equal to 1

L−1 if the classes are equally sampled.
For instance, for ImageNet, the ratio is 1/999: out of 25000 examples, only 25 have a positive label.

. ↪→Issue 3: OvA approach leads to highly imbalanced binary problems.

At test time, each of the L class probabilities is calibrated by a separate calibration model. The
resulting probability vector can be normalized to ensure a unit norm. Because each probability is
calibrated independently, their ranking can change, thus modifying the predicted class. In Table 9,
we see that accuracy is often negatively impacted in practice.

. ↪→Issue 4: OvA approach can change the predicted class and negatively impact the accuracy.
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4 Top-versus-All approach to confidence calibration

Algorithm 1 Top-versus-All approach to confidence calibration

Input:
Dcal: {(xi, yi)}Ni=1 the calibration data
f : the multiclass classifier
g: a calibration function ▷ e.g., Temperature Scaling
Preprocessing:
ŷi ← argmaxk∈Y fk(xi) ▷ Compute class predictions
ybi ← 1ŷi=yi

▷ Compute predictions correctness
f b ← maxk∈Y fk ▷ Create surrogate binary classifier
DTvA

cal ← {(xi, y
b
i )}Ni=1 ▷ Build binary calibration set

Learn calibration function:
Learn g to calibrate the surrogate binary classifier f b on DTvA

cal

Inference:
Use g to calibrate the confidences of the original multiclass classifier f

4.1 General presentation

In the calibration definition (1) and the standard ECE metrics, only the confidence, i.e., the maximal
probability, reflects the likelihood of making an accurate prediction. The probabilities of other classes
are not taken into account. However, the standard approach to calibration uses the entire set of
probabilities, not just confidence, which introduces unnecessary complexity. We aim to simplify the
process by reformulating the problem of calibrating multiclass classifiers into a single binary problem.
This problem can be phrased as: "Is the prediction correct?". In this setting, we do not calibrate
the predicted probabilities vector but only a scalar: the confidence. The remaining probabilities are
discarded. This is equivalent to calibrating a surrogate binary classifier that predicts whether the
class prediction is correct. Since this correctness classifier only considers the maximal probability
versus all others, we call our approach Top-versus-All (TvA).

Replacing the standard approach by TvA is straightforward. Given the standard calibration data
Dcal = {(xi, yi)}Ni=1, we add a few data preprocessing steps. First, compute the class pre-
dictions ŷ and their correctness: yb = 1ŷ=y. Second, create the surrogate binary classifier
f b(x) = maxk∈Y fk(x). Finally, build the calibration set for the surrogate binary classifier:

DTvA
cal = {(xi, y

b
i )}Ni=1 (3)

After this preprocessing, we choose a standard calibration function g, e.g., Temperature Scaling, to
calibrate the surrogate binary classifier. The learning of the calibration function follows its original
underlying algorithm but uses the modified calibration data DTvA

cal . The learned calibration function
is then applied to the confidences of the original multiclass classifier. Algorithm 1 describes our
approach. In the Appendix, Algorithm 3 provides more details and highlights differences with the
standard approach of Algorithm 2.

After this general presentation, we explain how TvA impacts the two categories of calibration
methods, scaling and binary, in Subsections 4.2 and 4.3, respectively. We also justify its behavior.

4.2 Top-versus-All approach for scaling methods

Because our Top-versus-All setting reformulates the calibration of multiclass classifiers into a binary
problem, the natural loss is the binary cross-entropy:

lBCE = −
(
yb · log s+ (1− yb) · log(1− s)

)
(4)

Minimizing this loss results in confidence estimates that more accurately describe the probability of
being correct, regardless of the L− 1 less likely class predictions. Using the binary cross-entropy as
a calibration loss makes an important difference compared to the usual multiclass cross-entropy. The
cross-entropy loss takes into account the probability of the correct class, while with TvA the binary
cross-entropy takes into account the probability of the predicted class (i.e., the confidence).
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As for the standard approach, only two cases are possible. When the prediction is correct, lBCE =
− log(s) = − log(fy) = lCE . We get the same result as the cross-entropy loss: minimizing it
directly increases the confidence. But when the prediction is incorrect, lBCE = − log(1− s) ̸= lCE .
Minimizing the loss now directly decreases the confidence. This is a key difference compared to
using the multiclass cross-entropy loss.
The impact of the reformulation can be seen for Temperature Scaling, which optimizes a coefficient
T that scales the logits zk. The reformulation generates stronger gradients when the prediction is
incorrect: ∣∣∣∣∂lBCE

∂T

∣∣∣∣ > ∣∣∣∣∂lCE

∂T

∣∣∣∣ for s > 0.5 (5)

with ∂lBCE

∂T = 1
T 2 · 1

s−1 · (maxk zk −
∑

k zk · fk) and ∂lCE

∂T = 1
T 2 (zy −

∑
k zk · fk). See Appendix

D for the mathematical calculations. Because for interesting problems, the confidence verifies s > 0.5
most of the time (as shown in Figure 1), our approach strengthens the gradients. The optimization
of the temperature T is more efficient as confident incorrect predictions are more heavily penalized.
This effect is not mitigated by the choice of learning rate, which does not vary with s. Applying
standard Temperature Scaling usually results in overconfident probabilities, but our approach limits
this overconfidence. This is verified experimentally in Table 8, which displays the average confidences
for TS without and with TvA.

. ↪→Solution for Issue 1: Use the binary cross-entropy loss resulting from TvA approach.

Regularization of scaling methods Overfitting of Vector Scaling and Dirichlet Calibration can
be reduced with a simple L2 regularization that penalizes the coefficients of the vector v that are far
from the reference value 1.

lreg(v) =
1

L

L∑
i=1

(vi − 1)2 (6)

This regularization allows these methods to take advantage of their additional expressiveness without
being subject to overfitting. The loss for Vector Scaling becomes lBCE + λlreg(v) where λ is a
hyperparameter. The loss for Dirichlet Calibration uses additional matrix regularization terms. λ is
the only additional hyperparameter introduced by our method, and it applies only to Vector Scaling
and Dirichlet Calibration.

. ↪→Solution for Issue 2: Use L2 regularization.

4.3 Top-versus-All approach for binary methods

Our TvA approach replaces the One-versus-All approach to apply binary methods to the multiclass
setting. TvA transforms the multiclass setting into a single binary problem that uses the binary
calibration dataset (3). In this dataset, the proportion of positive labels equals the classifier’s accuracy
a. The ratio between negative and positive examples is (1−a)N

aN = 1
a − 1. For a classifier with 80%

accuracy on ImageNet and a calibration dataset of 25000 examples, there are 5000 negative and
20000 positive examples (ratio of 1/4). This is still a bit imbalanced but orders of magnitude smaller
than the class-wise binary calibration datasets of the One-versus-All approach (ratio of 1/999).

. ↪→Solution for Issue 3: By not dividing the calibration data into class-wise datasets, the TvA
approach yields a much better balanced binary calibration problem.

The Top-versus-All approach operates on confidence alone, not the full class probabilities vector.
This means that the class prediction is already done, and the ranking of the class probabilities does
not change, unlike with One-versus-All. The classifier’s prediction and accuracy are unaffected. This
scheme allows decoupling accuracy improvements (during training time) and calibration (during
post-processing calibration), thus avoiding compromises and reducing development time.

. ↪→Solution for Issue 4: By operating on confidence alone, the Top-versus-All approach does not
impact the classifier’s prediction or accuracy for binary methods applied to the multiclass scenario.
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Figure 1: Reliability diagrams for ResNet-50 and ViT-B/16 when using Temperature Scaling (TS),
Vector Scaling (VS), and Histogram Binning (HB) on ImageNet. The subscript TvA signifies that the
TvA reformulation was used, and reg means our regularization (6) was applied. Red bars show the
differences between bin accuracy (blue bar) and accuracy for perfect calibration (dashed red line).
As the methods improve the calibration, these differences are reduced and the average confidence
(vertical dotted line) will get closer to the global accuracy (vertical dashed line).

5 Experiments

5.1 Setting

Datasets and models For image classification, we used the datasets CIFAR-10 (C10) and CIFAR-
100 (C100) [27] with 10 and 100 classes respectively, ImageNet (IN) [7] with 1000 classes, and
ImageNet-21K (IN21K) [54] with 10450 classes. For text classification, we used Amazon Fine Foods
(AFF) [43] and DynaSent (DF) [51] for sentiment analysis with 3 classes, MNLI [66] for natural
language inference with 3 classes, and Yahoo Answers (YA) [73] for topic classification on 10 classes.
Experiment results are averaged over five random seeds that randomly split the concatenation of the
original validation and test sets into calibration and test sets.
We used the following models for image classification: ResNet [21], Wide-ResNet-26-10 (WRN) [71],
DenseNet-121 [24], MobileNetV3 (MN3) [23], ViT [9], ConvNeXt [41], EfficientNet [56, 57], Swin
[40, 39], and CLIP [52] which matches input images to text descriptions in a shared embedding space,
assigning labels based on the highest similarity score. For text classification, we used the PLMs
RoBERTa [37] and T5 [53].
More details about datasets, calibration sets sizes, and model weights can be seen in Appendix F.

Baselines Our Top-versus-All (TvA) reformulation and regularization (reg) can be applied to different
calibration methods. We have tested the following scaling methods: Temperature Scaling (TS) and
Vector Scaling (VS) [17], and Dirichlet Calibration (DC) [29] with the best-performing variant
Dir-ODIR, which regularizes off-diagonal and bias coefficients. We also tested the following binary
methods: Histogram Binning (HB) [69] using for each case the best-performing variant between
equal-mass or equal-size bins, Isotonic Regression (Iso) [70], Beta Calibration (Beta) [28], and
Bayesian Binning into Quantiles (BBQ) [46]. For comparison, we include methods with state-of-
the-art results on problems with many classes: I-Max [49] and IRM [72]. See Appendix C for more
details on these methods. More details on code implementations can be seen in Appendix F.
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Table 1: ECE in % (lower is better). The subscript TvA denotes that our reformulation was applied to
the calibration method. IRM and I-Max are competing methods. The best method for a given model
is in bold. Methods in purple impact the model prediction, potentially degrading accuracy; methods
in teal do not. Values are averaged over five random seeds. Results are averaged over models of the
same family. Detailed results for all models can be seen in Tables 5 and 6 of the Appendix.

scaling methods binary methods
Dataset Models Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Iso IsoTvA BBQ BBQTvA HB HBTvA

C10 ConvNets 1.77 0.67 0.61 1.20 1.25 1.17 1.17 1.16 1.17 1.12 0.68 1.17 0.77 1.06 0.43
CLIP 5.03 1.03 0.94 0.78 0.73 2.56 1.85 2.56 1.84 1.05 0.86 1.39 0.86 1.82 0.73

C100 ConvNets 6.04 1.30 1.15 4.65 2.96 4.91 2.35 4.89 2.35 5.33 1.38 9.63 1.35 9.56 1.02
CLIP 10.37 2.90 2.57 2.54 2.51 7.78 2.86 7.55 1.84 2.53 1.61 7.48 1.48 7.23 1.39

IN ResNet 15.26 1.31 1.07 2.65 1.89 2.77 1.67 3.59 2.23 3.05 0.79 8.41 0.76 7.49 0.55
EffNet 15.72 0.68 0.48 3.48 2.59 3.67 1.26 3.65 1.23 2.83 0.68 6.55 0.64 4.39 0.43
ConvNeXt 16.46 0.82 0.58 3.67 2.25 4.05 1.37 4.04 1.35 2.97 0.75 7.41 0.68 5.13 0.52
ViT 4.40 0.81 0.61 4.09 2.96 4.31 2.02 4.31 1.99 3.60 0.77 6.64 0.73 6.59 0.52
Swin 5.85 0.75 0.49 3.63 2.91 4.04 1.70 4.03 1.67 3.19 0.74 7.09 0.71 5.39 0.48
CLIP 1.96 1.08 0.72 1.89 1.82 1.63 1.05 32.03 67.65 2.35 0.92 8.31 0.93 7.16 0.80

IN21K MN3 12.34 err. err. 8.69 4.39 2.52 2.40 58.84 81.16 2.00 0.21 err. 0.20 5.50 0.17
ViT-B/16 6.27 err. err. 8.92 6.55 2.38 1.54 8.22 3.20 2.14 0.22 err. 0.24 7.89 0.12

AFF T5 5.47 0.27 0.26 1.10 1.15 1.52 1.42 1.18 1.31 0.37 0.27 0.39 0.28 2.87 0.17
RoBERTa 7.37 0.30 0.28 2.40 2.33 1.41 1.85 1.38 1.68 0.52 0.27 0.75 0.35 4.02 0.20

DS T5 8.86 1.39 1.38 2.19 2.17 6.13 2.00 5.91 2.02 1.50 1.55 1.38 1.58 1.90 1.12
RoBERTa 16.12 1.56 1.50 12.07 12.07 14.66 6.80 13.90 5.57 1.71 1.53 1.64 1.14 1.05 0.91

MNLI T5 7.04 0.72 0.70 2.81 2.80 4.46 1.79 4.31 1.82 0.80 0.74 1.38 0.69 2.09 0.43
RoBERTa 9.22 0.89 0.71 5.72 5.72 6.99 1.92 6.59 1.99 1.00 0.92 1.67 0.84 1.02 0.60

YA T5 7.84 0.80 0.81 1.07 1.35 3.70 1.16 3.75 1.15 1.73 0.82 2.81 0.96 3.65 0.69
RoBERTa 19.59 0.97 0.79 12.39 12.38 16.47 2.52 16.07 2.21 1.92 0.99 5.00 0.75 3.41 0.58

5.2 Top-versus-All

For visual qualitative results, Figure 1 displays reliability diagrams [47]. We observe that initially,
ResNet-50 is highly underconfident and ViT-B/16 a bit underconfident. Applying TS and VS solves
the underconfidence and makes the models slightly overconfident. TvA improves these methods, and
the average confidence gets closer to the accuracy. HBTvA makes the calibration almost perfect.

Table 1 shows the results of applying the Top-versus-All reformulation to several calibration methods.
For clarity, results are averaged over families of models (models based on the same architecture) and
the full results are available in Tables 5 and 6 of the Appendix. In most cases, the TvA reformulation
significantly lowers the ECE by dozens of percent. Without TvA, binary methods often perturb the
prediction and degrade the classifier’s accuracy (see Table 9), making them inapplicable in a practical
setting. TvA solves the issue as it only scales the confidence (after the prediction is made) and makes
binary methods outperform scaling methods.

Improvements due to TvA are consistent across models. However, exceptions are observed for CLIP:
it is the model family with the lowest ECE pre-calibration, but the highest ECE post-calibration for
ImageNet. CLIP’s multimodal training regime, zero-shot adaptation as a classifier, and very large
training dataset might cause this different behavior. CLIP’s low ECE was also observed in [44, 11].
[64] specifically tackles the calibration of fine-tuned CLIP, a setting not considered here.

We also found that DC is sensitive to hyperparameter tuning, and its performance is usually not much
better than VS, which is consistent with [29]. In some cases, the optimization diverges, leading to
very poor results, e.g., for CLIP on ImageNet.

Improvements due to TvA are also consistent across datasets, although they tend to increase with
the number of classes. Improvements on ImageNet are usually better than on CIFAR-100, whose
improvements are usually better than on CIFAR-10. This is notable with e.g., TS or HB. The
magnitude of improvement is usually higher for binary methods, e.g., HB, than scaling methods, e.g.,
TS, especially for many classes. This indicates that Issue 3 is more serious than Issue 1.

For text datasets with only three classes (AFF, DS, and MNLI), TS does not benefit from TvA, but
other methods do, despite the small number of classes. According to [5], TS is among the best
calibration methods for the text classification tasks considered here, even compared to ones that
retrain the model. Even so, our method HBTvA significantly outperforms it.
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Some methods’ current implementations could not handle the large scale of ImageNet-21K, resulting
in out-of-memory errors written as "err." in the Table. For I-Max and IRM, this is because they
consider the full probability vectors while TvA efficiently uses data by considering only confidence
values. Indeed, TvA handles this scale without difficulty.

Additional results are included in Appendix H. Tables 5 and 6 contain the full results for ECE, with
the standard deviations in Table 7. Table 8 reveals that ImageNet networks are mostly underconfident.
This is aligned with [11] and goes against previous knowledge on overconfidence, which was initially
believed to be linked to network size [17]. Table 9 provides the accuracies after calibration. Table 10
exhibits that ECE with equal-mass bins has similar values as standard ECE. Table 11 shows that TvA
mostly lowers the Brier score, except for Iso, which has the lowest score overall.

Calibration methods can also be applied to Large Languages Models (LLMs) using In-Context
Learning (ICL) to tackle text classification tasks [77, 20, 25, 78, 1]. The primary goal of these
methods is to improve model accuracy. TvA was not designed for this objective, but it can still be
applied on top of an existing method that improves the accuracy. TvA then lowers the calibration
error while keeping the accuracy gain. Results for GPT-J [62] and Llama-2 [59] are in Table 12.

To summarize the results for practical use, our experiments show that Histogram Binning (within the
TvA or I-Max setting) is the best calibration method overall, providing ECE values mostly below
1%. This is the method we advise using. However, suppose the underlying application requires a
confidence with continuous values, e.g., to rank the predictions for selective classification. In that
case, we advise using a method that improves the AUROC, shown in Appendix G, such as TS or Iso.

5.3 Solving overfitting with regularization and TvA

On ImageNet, VS and DC overfit the calibration set, degrading the calibration on the test set. The
lower performance of VS relative to TS indicates this overfitting. As visualized in Figure 2, combining
the binary cross-entropy loss used in the TvA reformulation and an additional regularization term
prevents overfitting. We fixed the value λ = 0.01 as it works well across models. Initializing the
vector coefficients to 1

T with T obtained by TSTvA helps further improve performance.

5.4 Influence of the calibration set size

The size of the calibration set influences the performance of the different methods, as seen in Figure 3.
TS and TSTvA do not benefit from more data due to their low expressiveness. VS does not improve
the ECE because of the overfitting problem. In contrast, VSreg_TvA benefits from more calibration data.
With enough data (≈ 15000), it outperforms TSTvA. Binary methods using the standard One-versus-All
approach have poor performance and need a large amount of data to be competitive. Using TvA, they
get excellent performance with little data.
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6 Limitations

Our approach tackles confidence calibration and is unlikely to improve performance for stronger
notions of calibration, such as class-wise calibration. However, confidence calibration is useful for
many practical cases, such as selective classification [13], out-of-distribution detection [22], or active
learning [34]. Also, calibration improvements are less significant for problems with few classes
(≤ 10) than for problems with many classes, but our approach still provides the best results.

7 Conclusion

Reducing the miscalibration of neural networks is essential to improve trust in their predictions.
This can be done after the model training with an optimization using calibration data. However,
many current calibration methods do not scale well to complex datasets: binary methods under
the One-versus-All setting do not have enough per-class calibration data, and scaling methods are
inefficient. We demonstrate that reformulating the confidence calibration of multiclass classifiers as a
single binary problem significantly improves the performance of baseline calibration techniques. The
competitiveness of scaling methods is increased, and binary methods use per-class calibration data
more efficiently without altering the model’s accuracy. In short, our TvA reformulation enhances
many existing calibration methods with little to no change in their algorithm. Extensive experiments
with state-of-the-art image classification models on complex datasets and with text classification
demonstrate our approach’s scalability and generality.
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A Appendix contents

B discusses the broader impacts of the work.
C discusses the proposed approach in more details, and compares with other methods.
D contains a theoretical justification for Top-versus-All in the case of Temperature Scaling.
E discusses the limits of classwise-ECE and top-label-ECE for a high number of classes.
F describes implementation details, including the computing time in Table 3.
G shows the impact of different calibration methods on selective classification.
H provides additional results: full ECE results in Table 5 and 6, standard deviations in Table 7,
confidences in Table 8, accuracies in Table 9, equal-mass bins ECE in Table 10, Brier score in Table
11, experiments for in-context learning of LLMs in Table 12.

B Broader impacts

Our reformulation of the confidence calibration of multiclass classifiers as a binary problem is both
simple and general. It has several benefits. On the theoretical side, it might lead to new perspectives
on the confidence calibration problem and the development of new calibration methods. On the
practical side, existing calibration methods can be adapted to our problem reformulation by adding
just a few lines of code. This is an easy and quick way to improve the calibration of classification
models. Better-calibrated models are more trustworthy: potential incorrect predictions are more
easily identifiable and preventable. However, this also comes with potential risks. The knowledge
that a model is well-calibrated might lead to undue trust in the system and the tendency to overlook
prediction errors. Even well-calibrated models are not entirely reliable, and developers and users
must remember this. Post-processing calibration requires data not included in the training set, which
leaves less data available for a thorough evaluation of the model. Calibration does not fix biases in
the data. Finally, we tested the calibration improvement only on in-distribution data, but real systems
might receive out-of-distribution data (e.g., an image of a new class) or adversarial examples. For
such inputs, the classifier predicted probabilities (and thus the confidence) are unreliable, even for
well-calibrated models, and a pipeline to filter such data is necessary.

C Details on the method

Algorithm 2 Standard approach
Input:
Dcal: {(xi, yi)}Ni=1 the calibration data
f : the multiclass classifier
g: a calibration function ▷ e.g., Temperature Scaling
Learn calibration function:
if g is scaling method then

loss l := Cross-Entropy
Learn g to calibrate f by minimizing l on Dcal

else if g is binary method then
for k = 1 to L do ▷ One-versus-All approach

Dk
cal ← {(xi, yi) | yi = k}Ni=1

Learn gk to calibrate f on Dk
cal

end for
g ← (g1, g2, . . . , gL)

end if
Inference:
Use g to calibrate confidences from f

Algorithm 3 Top-versus-all approach
Input:
Dcal: {(xi, yi)}Ni=1 the calibration data
f : the multiclass classifier
g: a calibration function ▷ e.g., Temperature Scaling

Preprocessing:
ŷi ← argmaxk∈Y fk(xi) ▷ Compute class predictions

yb
i ← 1ŷi=yi ▷ Compute predictions correctness

fb ← maxk∈Y fk ▷ Create surrogate binary classifier
DTvA

cal ← {(xi, y
b
i )}Ni=1 ▷ Build binary calib. set

Learn calibration function:
if g is scaling method then

loss l := Binary Cross-Entropy
if g is vector or Dirichlet scaling

loss l← l + λlreg ▷ Add regularization
end if
Learn g to calibrate fb by minimizing l on DTvA

cal

else if g is binary method then
Learn g to calibrate fb on DTvA

cal

end if
Inference:
Use g to calibrate confidences from f
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Comparison with the standard approach Algorithm 2 describes the standard approach to post-
processing calibration, and Algorithm 3 describes our approach in more details and shows in blue
the differences with the standard approach. Our approach adds a preprocessing step to keep only the
confidences instead of the full probabilities vector. It can be seen as creating a surrogate "correctness"
classifier and its associated calibration data. The calibrator is learned for the surrogate classifier
and applied to the original classifier at inference time. Also, we add regularization for some scaling
methods and we have only one binary calibrator instead of one per class.

Comparison with IRM and I-Max IRM [72] and I-Max [49] are, like TvA, multiclass-to-binary
reductions. This is why TvA cannot be applied on top of them: they already transform the multiclass
problem into a binary one using a different strategy.

The shared class-wise strategy of [49] and the data ensemble strategy of [72] are described very briefly
in subsections 3.2 and 3.3.2 of their respective papers and not rigorously justified. Our understanding
is that these two strategies do exactly the same thing. To build the calibration set, they concatenate
all the class probability vectors so that we get a big probability vector of size N.L (N samples and
L classes) as predictions and similarly concatenate the one-hot embedding of the target class (a big
vector with N ones and N.(L− 1) zeros) as targets. Then, they learn a single calibrator. For each
example, this calibrator aims to simultaneously increase the probabilities for the target class (target is
1) and decrease all the other class probabilities (target is 0). The single calibrator is applied to each
class probability separately, meaning that the ranking of class probabilities can change, modifying
the classifier prediction.

Our strategy derives from transforming the multiclass calibration into a single binary problem. The
intuition is to learn the calibrator on a surrogate binary classifier and apply this calibrator to the
original classifier. This binary classifier is built on top of the original classifier (by applying the
max function to the class probabilities vector). They thus share their confidence. However, the
binary classifier aims to solve a different task: predicting the correctness of the original classifier. To
build the calibration set, we concatenate all the confidences (a vector of size N) as predictions and
concatenate all the correctnesses as targets (also a vector of size N). The correctness value of a given
example is 1 if the class prediction is correct; otherwise, it is 0. Then, we learn a single calibrator,
similar to the strategy above. However, there is a key difference: this calibrator aims to increase
the probabilities for correct predictions and decrease them for incorrect predictions. Note that our
probabilities are all confidences (the maximum class probabilities), meaning we only consider the
confidences, which the calibrator directly increases or decreases. In the strategy from [49] and [72],
the calibrator has to manage all class probabilities (L times more), even the ones that do not matter,
including the lowest class probabilities close to 0. This is less efficient (actually, while this can surely
be fixed, the original implementations of IRM and I-Max could not run on ImageNet-21K). This point
is closely linked to the analysis of the binary cross entropy loss for scaling methods in Subsection 4.2:
when the prediction is incorrect, increasing the probability of the correct class indirectly decreases
the confidence (strategy from [49] and [72]) while our strategy directly decreases the confidence.

I-Max is more complex because it modifies the Histogram Binning algorithm, while our approach
does not. Additionally, [35] found that I-Max produces unusable probability vectors. Indeed, they do
not sum up to 1, and normalizing them degrades the method’s performance.

We wrote our paper with practicality and generality in mind. Contrary to [49] and [72], we demon-
strate the generality of our strategy by applying it on top of existing calibration baselines of different
natures (scaling and binary). One of our main goals is that practitioners can easily and quickly try
our TvA approach, using just a few lines of code, which can significantly improve the calibration
performance of their existing calibration pipeline while having no impact on the predicted class by
design (except for VS and DC).

Comparison with ProCal Another recent calibration method is ProCal [68]. However, its primary
objective differs from ours: it "focuses on the problem of proximity bias in model calibration, a
phenomenon wherein deep models tend to be more overconfident on data of low proximity". Its goal
is to lower the difference in the confidence score values between regions of low and high density,
i.e., to make the confidence score independent of a local density indicator called "proximity." There
is no theoretical guarantee, however, that minimizing the proximity bias improves the confidence
calibration, the focus of our work. Theorem 4.2 about the PIECE metric is a direct consequence
of Jensen’s inequality and is true for any random variable D, not necessarily a proximity score.

17

77702 https://doi.org/10.52202/079017-2469



Theorem 5.1 is an interesting bias/variance decomposition of the Brier score. However, as this type
of decomposition usually states, the error may come from bias (here, a wrong initial calibration) or
high estimation variance (which can be related to low density but is not expressed as such in the
decomposition). We experimentally compare our approach to the ProCal algorithm using the code
provided by its authors and observe in Table 2 that our approach gives much better ECE confidence
calibration and, for half of the models, also better PIECE values.

ProCal aims to achieve three goals: mitigate proximity bias, improve confidence calibration, and
provide a plug-and-play method. We share the last two goals. Concerning improving confidence
calibration, our approach has better results, as shown in Table 2. Both approaches are plug-and-play,
but they apply very differently. ProCal is applied after existing calibration methods to further improve
calibration. It thus does not solve any of the four issues we identified (e.g., cross-entropy loss is
still inefficient, and One-versus-All still leads to highly imbalanced problems). Our Top-versus-All
approach is a reformulation of the calibration problem that uses a surrogate binary classifier. Existing
approaches are applied to this surrogate classifier, which is how the four issues are solved. We do
not propose a new method but a new way of applying existing methods. Our approach does not
introduce new hyperparameters (except in the particular case of regularizing scaling methods). ProCal
introduces several new hyperparameters, such as the choice of the distance, the number of KNN
neighbors, or a shrinkage coefficient.

Comparison with Correctness-Aware Loss A concurrent work [38] builds a calibration method on
top of an intuition similar to ours: binarize the calibration problem. However, what the authors do with
this intuition differs vastly from our approach. They derive a Correctness-Aware Loss (Eq. 7 of their
paper), which is almost the standard binary cross-entropy loss we use for scaling methods but without
a logarithm. They use this loss to learn a separate model that predicts a sample-wise temperature
coefficient. This is a new calibration method, which is not straightforward to implement due to the
numerous hyperparameters (network architecture, image transformations...). It also requires multiple
inferences at test-time, which can be problematic in some production models. Our approach is, again,
not a calibration method but a general reformulation of the calibration problem that enhances existing
methods. By looking at their Table 1, they get an ECE of 2.22 on ImageNet (in-distribution), while our
approach achieves values around 0.5 for most models in our paper’s Table 1. Their method, contrary
to TvA, improves the AUROC, but in our understanding, it seems mostly due to the use of image
transformations, not from their proposed loss. Their method seems to work best in out-of-distribution
scenarios, which is not the main objective of our paper. However, these good results for AUROC and
out-of-distribution scenarios make this method complementary to our approach, and combining the
two in some way could be promising.
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Table 2: ECE, MCE, ACE, and PIECE in %. The experimental setting is the one used for Table 4 of
[68]. The baselines are no calibration (conf), Temperature Scaling (TS), Multi Isotonic Regression
(MIR), and Histogram Binning (HB). The ProCal calibration method [68] is applied after one of
the baselines, as symbolized by the "+" symbol. Our approach, Top-versus-All, changes what the
baselines optimize and is symbolized by "TvA". We apply it for TS, Isotonic Regression (Iso), and
HB. The best values for each model and metric are in bold.
Overall, HBTvA is the best calibration method as it always gets the lowest ECE and ACE. Our TvA
approach lowers PIECE and even achieves the lowest value for half of the models.

Model Method ECE (↓) MCE (↓) ACE (↓) PIECE (↓)
BeiT conf 3.60 1.52 3.58 4.26

TS 2.99 0.76 3.08 3.56
MIR 0.59 0.14 0.64 1.88
HB 4.96 1.83 6.13 7.20

conf+ProCal 1.02 0.33 0.94 1.69
TS+ProCal 1.52 0.76 1.45 2.05
MIR+ProCal 0.61 0.15 0.71 1.41
HB+ProCal 5.53 4.13 5.81 6.39

TSTvA 2.10 0.49 2.20 2.88
IsoTvA 0.65 0.14 0.68 1.92
HBTvA 0.44 0.19 0.58 1.70

Mixer conf 10.78 5.00 10.78 10.86
TS 4.81 1.92 4.72 5.57
MIR 1.14 0.25 1.29 3.41
HB 9.65 4.00 9.97 13.09

conf+ProCal 2.64 0.94 2.55 3.23
TS+ProCal 1.32 0.38 1.22 2.13
MIR+ProCal 0.83 0.14 0.88 2.08
HB+ProCal 6.57 4.43 7.32 7.83

TSTvA 2.51 0.74 2.50 4.32
IsoTvA 0.86 0.15 0.86 3.18
HBTvA 0.64 0.19 0.75 3.17

ResNet50 conf 8.59 4.58 8.50 8.74
TS 5.03 2.48 5.01 5.34
MIR 0.75 0.18 0.82 1.79
HB 7.63 2.61 9.32 10.17

conf+ProCal 2.63 1.31 2.61 3.26
TS+ProCal 1.66 0.66 1.53 2.50
MIR+ProCal 0.76 0.17 0.74 1.78
HB+ProCal 6.32 4.38 7.52 7.65

TSTvA 6.89 1.17 6.95 7.13
IsoTvA 0.76 0.19 0.73 1.79
HBTvA 0.55 0.21 0.59 1.35

ViT conf 1.14 0.33 1.09 1.83
TS 1.46 0.46 1.41 2.03
MIR 0.64 0.13 0.75 1.54
HB 4.59 2.32 7.07 7.20

conf+ProCal 0.81 0.22 0.81 1.71
TS+ProCal 0.83 0.25 0.84 1.74
MIR+ProCal 0.78 0.14 0.76 1.59
HB+ProCal 6.80 4.72 7.42 7.55

TSTvA 1.08 0.25 1.05 1.86
IsoTvA 0.51 0.11 0.62 1.46
HBTvA 0.37 0.17 0.51 1.20
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D Theoretical justification for Top-versus-All in the case of Temperature
Scaling

We define L the number of classes, fk(x) the classifier estimated probability for class k and data
sample x, y the correct class, and the confidence s(x) := maxk fk(x). The cross-entropy loss is
lCE(x, y) = −

∑L
k=1 1{k = y} · log(fk(x)) = − log(fy(x)). Because the last layer of the classifier

is a softmax function, fy(x) = ezy∑
k ezk with z the logits vector. Note that we omit the writing variable

x in the following for clarity.

Temperature scaling optimizes a coefficient T > 0 that scales the logits vector. Predicted probabilities
become fy(x) =

ezy/T∑
k ezk/T .

Let us first develop the standard cross-entropy loss when temperature scaling is applied:

lCE = − log(fy) = − log(
ezy/T∑
k e

zk/T
) = −

(
log(ezy/T )− log(

∑
k

ezk/T )

)
= −zy

T
+log(

∑
k

ezk/T )

Let us compute its gradient:

∂lCE

∂T
=

zy
T 2

+
∂ log(

∑
k e

zk/T )

∂
∑

k e
zk/T

·
∂
∑

k e
zk/T

∂T
by application of the chain rule on the second term.

=
zy
T 2

+
1∑

k e
zk/T

·
∑
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∂ezk/T

∂T

=
zy
T 2

+
1∑
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·
∑
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∂(ezk)1/T

∂T

=
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T 2

+
1∑
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·
∑
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log(ezk)

−T 2
(ezk)1/T

=
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T 2

+
1∑

k e
zk/T

·
∑
k

zk · ezk/T

−T 2

=
1

T 2

(
zy −

∑
k zk · ezk/T∑

k e
zk/T

)
=

1

T 2

(
zy −

∑
k

zk · ezk/T∑
j e

zj/T

)

=
1

T 2

(
zy −

∑
k

zk · fk

)
(7)

For our TvA approach, the problem becomes binary. The classification output becomes the confidence
s(x) = maxj∈Y fj(x) and the ground truth label becomes a binary representation of the prediction
correctness: yb = 1ŷ=y with ŷ(x) = argmaxk∈Y fk(x) and 1 the indicator function. The loss we
use is the binary cross entropy lBCE(x, y) = −

(
yb · log s(x) + (1− yb) · log(1− s(x))

)
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Let us compute the gradient:
∂lBCE

∂T
=

∂lBCE

∂s
· ∂s
∂T

= −
(
yb

1

s
+ (1− yb)

−1
1− s

)
· ∂s
∂T

= −
(
yb(1− s)

s(1− s)
− s(1− yb)

s(1− s)

)
· ∂s
∂T

=
s− yb

s(1− s)
· ∂s
∂T

=
s− yb

s(1− s)
·
∂ ezm/T∑

k ezk/T

∂T
because s = max

j

ezj/T∑
k e

zk/T
=

ezm/T∑
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with zm = max

k
zk

=
s− yb
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·
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∑
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- First case, the prediction is correct: yb = 1 and zm = zy. Let us inject these in (8): ∂lBCE

∂T =
1
T 2 · (zy −

∑
k zk · fk) =

∂lCE

∂T . We thus get the same gradient as the standard cross-entropy loss.

- Second case, the prediction is incorrect: yb = 0 and zm > zy. (8) becomes: ∂lBCE

∂T =
1
T 2 · s

s−1 · (zm −
∑

k zk · fk). By comparing to (7), we have the term 1
T 2 · (zm −

∑
k zk · fk) >

1
T 2 (zy −

∑
k zk · fk) =

∂lCE

∂T and the remaining part of (8) | s
s−1 | > 1 when s > 0.5.

So to recapitulate, |∂lBCE

∂T | > |∂lCE

∂T | when s > 0.5, which corresponds to the vast majority of data
points as the classifier gets better calibrated. This is shown in Figure 1.
We also have lims→1 | s

s−1 | = ∞. In practice, s is not close enough to 1 to generate exploding
gradients, so it just means that as confidences for wrong predictions gets higher, so does the gradient
to reduce the confidences.

The conclusion is that for correct predictions, our approach does not change the optimization, but
for incorrect predictions, the gradient is stronger and penalizes more heavily confident predictions
that are wrong. This is also proven experimentally by looking at Table 8 where we see that average
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confidences of temperature scaling with the TvA approach (TSTvA) are lower than the ones using the
standard approach (TS), for almost all networks. This makes the average confidences closer to the
accuracy, showing reduced overconfidence.

E Limits of classwise-ECE and top-label-ECE for a high number of classes
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Figure 4: Histogram of class probabilities for 3 random classes, for ViT-16/B on ImageNet.

Let us define the ECE for class j:

ECEj =

B∑
b=1

nb

N
|acc(b, j)− conf(b, j)|

The difference compared to (2) is that now acc(b, j) corresponds to the proportion of class j in the
bin. Also, conf(b, j) now is the average probability given to class j for all samples in the bin.
Then, classwise-ECE [29] takes the average for all classes:

ECEcw =

L∑
j=1

ECEj

Classwise-ECE considers the full probabilities vectors: all the class probabilities for each prediction.
However, this metric does not scale to large numbers of classes. Let us see why with an example.

Let us use a test set of N samples, N/L for each of the L classes (the dataset is balanced), and a
high-accuracy classifier fairly calibrated. The classifier predicts N probability vectors of length L.
Predicted probabilities for class j are all the values of the vector at dimension j. Because the classifier
has a high accuracy and is fairly calibrated, around N/L values are close to 1 (corresponding to
mostly correct predictions), and the remaining ones, around N −N/L, are close to 0 (because the
predicted class is not class j, and the predicted probability is high for another class).

To compute ECEj with equal size 15 bins, the predicted probabilities for class j are partitioned into
15 bins. The first bin (with probabilities close to 0), contains n1 ≈ N −N/L samples while the last
one (with probabilities close to 1) contains nB ≈ N/L samples. The remaining bins are usually even
more empty. That means that the calibration error in the first bin is weighted n1/nB = L− 1 times
more than the last one. For the 1000 classes of ImageNet, L− 1 = 999. Figure 4 shows the number
of samples (nb) in each bin for an ImageNet classifier.

Because the impact of the calibration error in the bin with the high probabilities is negligible relative
to the bin with the low probabilities, the classwise-ECE mostly measures whether probabilities close
to 0 are calibrated. We argue this is not what we are interested in: what matters more is the calibration
of higher values of the probabilities.

Top-label ECE [18] is another interesting metric that does not scale to large numbers of classes either.
Top-label-ECE divides data into subsets according to the predicted class, computes the ECEs of these
subsets, and averages them. For an ImageNet test set of 25000 samples (25 per class), data is divided
into 1000 subsets of ≈ 25 samples each (the classifier is high-accuracy, most of the time the predicted
class is equal to the true class). The ECE is computed for each subset containing only 25 samples.
To compute the ECE, samples are typically partitioned into 15 bins. The number of samples per bin
does not allow a correct estimation of the average confidence or accuracy.
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F Implementation details

F.1 Models weights

• Model weights for CIFAR are from [45].

• Model weights for ImageNet come from torchvision [42].

• Model weights for ImageNet-21K are from [54].

• CLIP weights are from OpenAI’s Hugging Face.

• Original weights for T5 and RoBERTa come from the Transformers library [67]. The models
are fine-tuned for each task using prompt-based learning [36]. For more details, see [5].

• We used the model GPT-J https://huggingface.co/EleutherAI/gpt-j-6b (Apache-
2.0 license) and Llama-2 https://huggingface.co/meta-llama/Llama-2-13b (li-
cense).

F.2 Datasets

• CIFAR-10 (C10) and CIFAR-100 (C100) [27] contain 60000 32x32 images corresponding to
10 and 100 classes, respectively. Data is split into subsets of 45000/5000/10000 images for
train/validation/test. We concatenate the original validation and test sets, and randomly split
that into a calibration set of size 5000, and a test set of size 10000.

• ImageNet (IN) [7] contains 1.3 million images from 1000 classes. Following [17], we
randomly split the original validation test of size 50000 into a calibration set and a test set,
both of size 25000.

• ImageNet-21K (IN21K) [54], in its winter21 version, contains 11 million images in the train
set, and 522500 in the test set (50 for each of the 10450 classes). We randomly split the test
set into equal-sized calibration and test set (261250 samples each, 25 per class).

• Amazon Fine Foods [43] is a collection of customer reviews for fine foods sold on Amazon.
Reviews are categorized into bad, neutral, and good. The original validation set size is 78741
and test size 91606. We randomly split them into 78741 samples for calibration and 91606
for test.

• DynaSent [51] is a dynamic benchmark for sentiment analysis consisting of sentences
annotated as positive, neutral, and negative. The original validation set size is 11160 and
test size 4320. We randomly split them into 11160 samples for calibration and 4320 for test.

• MNLI [66] contains pairs of sentences labeled as contradiction, neutral, and entailment. The
original validation set size is 19635 and test size 9815. We randomly split them into 19635
samples for calibration and 9815 for test.

• Yahoo Answers (YA) [73] contains question-answers pairs corresponding to 10 different
topics. The original validation set size is 14000 and test size 60000. We randomly split them
into 14000 samples for calibration and 60000 for test.

• TREC [61] contains questions categorized into 6 classes. The training set contains 5500
labeled questions, and the test set contains another 500.

• SST-5 [55] contains 11855 sentences corresponding to 5 sentiments (from very negative to
very positive).

• DBpedia [74] contains text for topic classification with 14 classes. The training set contains
560000 samples, and the test set 5000.

F.3 Code

• We used the library netcal [32] (Apache-2.0 license) for their implementation of binary
methods for calibration and adapted their reliability diagrams code. For HB, we tested equal-
size and equal-mass bins, and chose the best variant for each case. All hyperparameters
were kept at their default values (10 bins for HB).

• We took inspiration from the official implementation of temperature scaling: https://
github.com/gpleiss/temperature_scaling (MIT license).
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• We took inspiration from the official implementation of Dirichlet calibration: https:
//github.com/dirichletcal/experiments_dnn (MIT license).

• We used the official implementation of I-Max: https://github.com/boschresearch/
imax-calibration (AGPL-3.0 license).

• We used the official implementation of IRM: https://github.com/zhang64-llnl/
Mix-n-Match-Calibration (MIT license).

• For evaluation, we used codes from https://github.com/JeremyNixon/
uncertainty-metrics-1 (Apache-2.0 license) and https://github.com/IdoGalil/
benchmarking-uncertainty-estimation-performance (MIT license).

• We used PyTorch 2.0.0 [3] (BSD-style license).
• We used CIFAR models from [45] https://github.com/torrvision/focal_
calibration (MIT license).

• We used ImageNet-21K models [54] https://github.com/Alibaba-MIIL/
ImageNet21K (MIT license).

• We used CLIP models from HuggingFace’s Transformers library [67] (Apache-2.0 license).
• We used pretrained language models from Transformers [67] and calibration codes from [5]
https://github.com/lifan-yuan/PLMCalibration (MIT license).

• We used code from https://github.com/mominabbass/LinC for the calibra-
tion of LLMs using ICL, itself built upon https://github.com/tonyzhaozh/
few-shot-learning (Apache-2.0 license).

Table 3: Computing time (in seconds) of the calibration on ImageNet, using one NVIDIA V100 GPU.
The first column denotes the data preprocessing time, which includes computing the model logits for
all calibration examples. Post-hoc calibration methods do not usually require much computing power
compared to classifier training.

Model Preproc. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA HB HBTvA Iso IsoTvA Beta BetaTvA BBQ BBQTvA

ResNet-50 141 2021 543 215 218 214 217 226 226 129 1 66 1 873 22 1156 2
ViT-B/16 151 7119 524 225 226 217 222 232 235 127 1 61 1 917 23 1169 2

G Impact on selective classification

Selective classification aims to improve a model’s prediction performance by trading-off coverage: a
reject option allows to discard data that might result in wrong predictions, thus improving the accuracy
on the remaining data. A strong standard baseline uses thresholding on the maximum softmax
probability outputted by the classifier [13]. Improving confidence calibration means uncertainty is
better quantified and should result in better selective classification.

Results in Table 1 show the superiority of Histogram Binning (applied with the right framework) in
reducing the calibration error ECE. Unfortunately, it does not translate into improvements in selective
classification. AUROC is a standard metric for selective classification [11]. Table 4 shows that
Histogram Binning actually degrades the AUROC, while the best method is Isotonic Regression. Our
TvA framework does not significantly impact the AUROC.

This paper addresses confidence calibration, usually measured by ECE. AUROC is a global rank-
based metric for selective classification: it relies on the relative values of the scores, not their absolute
values. Even though calibration and selective classification are related, improvement in calibration
does not directly translate to better selective classification. This has been clearly demonstrated
experimentally by [11].
A good example of that difference is the behavior of HBTvA: it is the best calibration method overall
but actually degrades the AUROC in most cases. Such a difference can be explained by the fact that
selective classification benefits from a continuous score able to discriminate between certain and
uncertain examples finely, but HB quantizes the confidences into, e.g., 10 different values.
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Table 4: AUROC in % (higher is better). Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Improvements from the uncalibrated model are colored
in blue and degradations in orange.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 92.09 91.79 91.30 92.01 91.98 92.71 92.76 92.71 92.76 90.94 92.09 92.29 91.87 75.63 85.53 75.78 84.69
ResNet-110 92.26 92.25 91.53 92.19 92.18 92.18 92.31 92.16 92.30 91.33 92.26 92.40 92.20 73.44 85.01 74.46 84.56
WRN 91.17 91.17 90.36 91.21 91.19 91.80 92.32 91.82 92.31 90.45 91.17 92.28 91.18 75.99 86.62 73.91 85.38
DenseNet 90.46 90.15 89.68 90.48 90.45 90.84 91.40 90.84 91.39 89.98 90.46 91.46 90.12 77.07 87.07 74.61 83.07
CLIP (ViT-B/32) 89.85 89.72 89.73 89.97 89.97 90.73 91.07 90.95 91.14 90.58 89.85 90.28 89.66 88.86 89.41 88.01 88.76
CLIP (ViT-B/16) 91.00 90.96 90.72 91.10 91.10 91.79 91.99 91.88 92.06 91.75 91.00 90.69 90.83 89.36 90.57 89.12 89.97
CLIP (ViT-L/14) 93.22 93.15 94.32 93.32 93.31 93.69 93.78 93.79 93.87 93.17 93.22 92.78 93.05 87.29 91.73 88.65 91.33

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 85.80 85.78 85.03 85.73 85.62 85.92 86.50 85.91 86.51 85.49 85.80 87.19 85.69 81.21 85.31 81.90 83.90
ResNet-110 85.03 84.99 83.76 84.94 84.85 84.82 85.34 84.84 85.33 84.57 85.03 86.32 84.97 80.54 84.47 81.40 82.93
WRN 87.59 87.52 87.02 87.59 87.48 87.83 88.17 87.85 88.14 87.45 87.59 88.65 87.46 83.59 86.46 83.77 85.69
DenseNet 86.17 86.02 85.64 86.12 86.00 86.60 86.79 86.59 86.79 86.01 86.17 87.09 86.11 83.02 85.42 83.47 84.86
CLIP (ViT-B/32) 83.06 83.14 82.99 83.74 83.70 83.95 85.16 83.99 85.02 84.17 83.06 84.61 82.95 85.59 83.00 85.61 82.82
CLIP (ViT-B/16) 82.57 82.55 82.51 83.65 83.66 83.95 85.29 84.04 85.76 84.18 82.57 84.45 82.51 85.76 82.46 85.62 82.24
CLIP (ViT-L/14) 84.26 84.22 84.14 85.51 85.50 86.56 87.57 86.62 87.50 85.64 84.26 86.94 84.11 86.92 84.12 86.67 84.07

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 85.73 85.70 85.37 85.64 85.65 85.63 85.88 85.30 85.39 84.39 85.73 86.12 85.69 83.19 85.40 83.73 85.03
ResNet-34 86.18 86.19 85.78 86.11 86.10 86.25 86.38 85.86 85.99 84.64 86.18 86.41 86.14 82.26 85.77 83.03 85.77
ResNet-50 80.53 80.54 80.12 85.93 85.69 85.60 85.57 85.58 85.57 82.34 80.53 86.91 80.49 85.27 80.52 83.63 79.96
ResNet-101 84.18 84.20 83.57 85.96 85.71 85.38 85.56 85.34 85.53 82.38 84.18 87.09 84.18 82.48 84.11 81.16 83.80
EffNet-B7 84.92 84.84 84.10 86.61 86.34 85.18 85.51 85.18 85.52 81.91 84.92 87.14 84.87 81.57 84.94 80.38 84.26
EffNetV2-S 85.77 85.87 85.29 87.02 86.86 85.30 85.67 85.28 85.68 82.55 85.77 87.42 85.72 82.44 85.75 80.86 84.80
EffNetV2-M 82.36 82.36 81.58 85.26 84.92 83.66 84.19 83.64 84.23 80.51 82.36 86.51 82.32 81.24 82.23 79.45 81.71
EffNetV2-L 84.63 84.58 83.96 86.33 86.05 85.77 85.94 85.75 85.87 82.27 84.63 86.70 84.55 81.78 84.56 80.56 84.08
ConvNeXt-T 82.35 82.31 81.84 85.47 85.18 85.60 85.57 85.59 85.59 81.93 82.35 86.97 82.29 82.58 82.30 81.44 81.88
ConvNeXt-S 82.29 82.36 81.87 85.27 84.88 84.81 85.01 84.81 85.01 81.22 82.29 86.98 82.26 81.29 82.20 79.78 81.86
ConvNeXt-B 82.27 82.27 81.70 85.13 84.75 84.40 84.88 84.40 84.90 80.87 82.27 87.01 82.22 81.79 82.25 79.89 81.69
ConvNeXt-L 82.35 82.35 81.42 84.81 84.38 84.04 84.58 84.04 84.54 80.24 82.35 86.79 82.32 80.49 82.23 79.15 81.75
ViT-B/32 85.57 85.60 85.10 86.31 86.13 85.95 85.98 85.93 85.98 83.56 85.57 87.16 85.54 83.39 85.55 82.69 85.11
ViT-B/16 85.52 85.55 84.92 86.32 86.12 85.36 85.53 85.34 85.56 81.82 85.52 87.19 85.50 81.56 85.39 81.21 85.09
ViT-L/32 85.42 85.45 84.78 85.93 85.73 85.19 85.29 85.20 85.30 82.07 85.42 87.25 85.41 81.51 85.40 81.42 85.09
ViT-L/16 85.85 85.83 84.63 86.16 86.00 84.33 84.65 84.32 84.64 80.96 85.85 86.97 85.83 79.76 85.66 80.08 84.85
ViT-H/14 87.28 87.24 86.60 87.53 87.34 86.74 86.71 86.77 86.78 82.15 87.28 86.65 87.22 79.33 86.54 80.08 85.32
Swin-T 85.68 85.71 85.04 86.50 86.34 85.79 85.86 85.80 85.86 83.14 85.68 87.10 85.66 82.15 85.64 81.39 85.16
Swin-S 85.37 85.36 84.75 85.99 85.78 84.99 85.20 85.00 85.20 80.92 85.37 86.92 85.35 80.25 85.32 80.05 84.80
Swin-B 84.11 84.26 83.38 85.26 84.91 83.93 84.18 83.92 84.20 79.78 84.11 86.55 84.19 78.94 84.24 79.09 83.09
SwinV2-T 85.80 85.79 85.10 86.74 86.56 85.82 86.04 85.80 86.02 83.06 85.80 87.29 85.78 82.58 85.76 81.47 85.26
SwinV2-S 85.75 85.75 85.03 86.61 86.39 85.19 85.51 85.19 85.50 81.77 85.75 87.18 85.74 80.54 85.75 80.41 84.73
SwinV2-B 85.15 85.13 84.19 86.07 85.82 84.43 84.70 84.40 84.65 80.31 85.15 86.99 85.16 79.57 84.98 79.42 83.86
CLIP (ViT-B/32) 80.56 80.56 80.24 80.59 80.57 81.73 83.21 77.72 77.92 81.14 80.56 81.43 80.52 81.85 80.53 82.14 80.18
CLIP (ViT-B/16) 81.12 81.08 80.96 81.16 81.15 82.28 83.64 78.10 84.57 81.52 81.12 82.17 81.10 82.33 81.07 82.42 80.76
CLIP (ViT-L/14) 82.98 82.95 82.50 82.90 82.86 83.66 85.07 80.09 79.86 82.75 82.98 83.29 82.93 82.85 82.80 82.87 82.36

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 68.79 err. err. 67.80 65.89 80.00 81.00 61.24 51.94 err. 68.79 79.62 68.77 err. 68.77 90.86 68.40
ViT-B/16 72.99 err. err. 74.36 73.17 79.78 81.42 76.29 78.92 err. 72.99 79.66 73.10 err. 73.20 90.27 71.95

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 85.04 84.99 84.32 85.11 85.11 87.84 87.99 88.09 88.02 87.46 85.04 87.03 85.04 85.53 83.47 80.53 79.41
T5-large 81.33 81.34 80.52 80.75 80.74 85.84 87.94 87.47 87.80 87.27 81.33 85.15 81.38 83.35 78.27 77.53 74.25
RoBERTa 83.52 83.50 80.50 83.34 83.34 84.96 86.75 86.44 86.56 86.27 83.51 83.93 83.51 81.62 75.17 75.80 73.35
RoBERTa-large 87.88 87.67 82.18 87.99 87.99 88.04 88.25 88.70 88.33 88.40 87.88 87.34 87.88 81.52 74.92 75.63 75.30

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 78.01 77.80 77.51 78.12 78.12 78.11 78.34 78.31 78.31 78.20 78.01 78.57 77.91 76.88 76.81 74.14 76.04
T5-large 77.61 77.69 76.63 77.81 77.81 77.82 79.18 78.87 79.35 78.83 77.61 79.20 77.61 74.72 74.34 69.26 73.32
RoBERTa 75.16 75.15 72.77 75.30 75.30 75.23 75.47 75.60 76.05 75.31 75.16 76.10 75.06 64.47 66.97 59.47 68.49
RoBERTa-large 76.18 75.83 72.80 76.34 76.34 76.25 76.52 76.05 76.12 75.67 76.18 76.13 76.06 61.33 66.46 59.53 68.27

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 84.44 84.39 83.31 84.51 84.51 84.55 85.01 85.07 85.15 84.59 84.44 84.89 84.37 79.85 80.50 70.97 78.39
T5-large 82.01 81.83 79.68 82.10 82.10 82.08 81.99 82.26 82.30 82.14 82.01 82.11 81.92 66.48 69.68 59.63 72.69
RoBERTa 82.36 82.33 79.46 82.50 82.50 82.48 82.83 82.82 82.89 82.78 82.36 82.99 82.32 67.99 72.67 60.25 73.19
RoBERTa-large 83.58 83.49 79.43 83.63 83.63 83.58 83.78 83.63 83.75 83.49 83.58 83.58 83.50 68.68 72.21 61.39 74.25

(h) Yahoo Anwsers
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 81.60 81.53 81.10 81.61 81.61 81.64 81.65 81.63 81.65 81.59 81.60 81.70 81.53 80.46 80.81 78.99 80.03
T5-large 81.09 81.00 80.45 81.08 81.07 81.16 81.17 81.22 81.29 81.07 81.09 81.15 81.05 79.24 79.89 77.41 79.06
RoBERTa 78.63 78.59 76.52 78.80 78.80 78.73 78.70 78.90 79.07 78.68 78.63 78.86 78.57 74.45 73.17 73.20 67.91
RoBERTa-large 79.13 79.08 76.92 79.41 79.41 79.30 79.46 79.37 79.81 79.34 79.13 79.35 79.04 75.00 72.69 73.67 72.96
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H Additional results

Table 5: ECE in % (lower is better, best in bold) – full results for image classification datasets.
Averages on 5 seeds. Mean relative improvements from TvA are shown (negative values for reductions
of ECE). Methods in purple impact the model prediction, potentially degrading accuracy; methods in
teal do not. Values are averaged over five random seeds.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 1.80 0.77 0.68 1.07 1.09 0.91 0.90 0.91 0.89 2.16 1.50 1.13 0.74 1.27 0.94 1.02 0.53
ResNet-110 2.57 0.53 0.54 1.32 1.36 1.35 1.33 1.35 1.34 2.97 1.40 1.20 0.56 1.45 0.67 1.42 0.37
WRN 1.21 0.78 0.64 1.10 0.92 1.19 0.97 1.19 0.97 1.75 1.46 1.16 0.82 0.88 0.78 0.79 0.52
DenseNet 1.52 0.60 0.59 1.32 1.61 1.21 1.47 1.19 1.47 2.04 2.05 0.98 0.58 1.07 0.71 1.00 0.30

Mean improvement ConvNets 3% 0% 1% -25% -39% -31% -57%

CLIP (ViT-B/32) 4.77 1.39 1.35 1.02 1.02 2.79 1.88 2.82 1.90 1.64 1.46 1.21 1.16 1.79 1.05 2.32 0.98
CLIP (ViT-B/16) 5.39 1.04 0.95 0.64 0.57 2.91 1.91 2.92 1.89 1.15 1.83 1.29 0.79 1.58 0.91 2.14 0.75
CLIP (ViT-L/14) 4.93 0.65 0.52 0.68 0.60 1.98 1.76 1.94 1.74 0.96 0.77 0.65 0.62 0.81 0.62 1.01 0.46

Mean improvement CLIP -8% -26% -26% 9% -16% -36% -59%

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 6.56 1.37 1.35 4.93 2.97 5.23 2.24 5.22 2.24 5.59 3.39 5.70 1.40 10.07 1.47 9.62 1.17
ResNet-110 7.95 1.40 1.31 5.05 4.04 5.32 2.65 5.30 2.70 6.10 4.74 6.59 1.34 8.53 1.44 10.04 1.23
WRN 4.41 1.24 0.95 4.42 2.70 4.57 2.28 4.55 2.27 4.50 2.75 4.42 1.41 10.02 1.26 8.45 0.94
DenseNet 5.23 1.20 0.97 4.19 2.12 4.53 2.23 4.51 2.20 4.99 2.84 4.61 1.35 9.91 1.24 10.12 0.76

Mean improvement ConvNets -37% -52% -52% -36% -73% -86% -89%

CLIP (ViT-B/32) 9.51 2.22 1.80 2.22 2.12 8.74 3.49 7.97 1.98 6.52 2.71 2.35 1.47 8.11 1.21 8.13 1.23
CLIP (ViT-B/16) 10.63 3.33 3.04 2.71 2.74 8.64 3.04 8.14 1.80 7.09 2.53 2.78 1.74 7.41 1.76 7.09 1.48
CLIP (ViT-L/14) 10.96 3.15 2.86 2.68 2.66 5.96 2.06 6.54 1.74 6.44 1.99 2.46 1.62 6.93 1.47 6.46 1.46

Mean improvement CLIP -1% -63% -75% -64% -36% -80% -80%

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 2.71 1.01 0.57 1.87 1.86 1.73 2.12 3.43 3.44 4.39 1.44 3.87 0.94 9.68 0.91 9.54 0.57
ResNet-34 3.63 0.84 0.56 1.77 1.80 1.87 2.02 3.46 2.98 4.97 1.11 4.08 0.83 9.17 0.85 8.42 0.60
ResNet-50 41.15 2.56 2.59 3.25 1.66 3.26 0.90 3.27 0.94 11.30 2.20 1.23 0.68 8.44 0.66 5.80 0.50
ResNet-101 13.56 0.82 0.58 3.72 2.22 4.22 1.62 4.20 1.58 9.21 1.87 3.01 0.71 6.35 0.61 6.18 0.52

Mean improvement ResNet -22% -26% -37% -76% -69% -91% -92%

EffNet-B7 12.61 0.61 0.40 3.71 2.96 3.84 1.41 3.82 1.35 9.32 2.27 2.93 0.65 6.93 0.58 4.89 0.40
EffNetV2-S 16.92 0.68 0.44 3.60 3.34 3.91 1.43 3.90 1.45 8.03 2.57 2.97 0.67 7.66 0.68 5.33 0.47
EffNetV2-M 24.88 0.80 0.70 3.77 2.71 3.84 1.16 3.82 1.14 8.32 1.79 2.89 0.75 6.55 0.75 4.36 0.49
EffNetV2-L 8.48 0.63 0.39 2.86 1.34 3.08 1.05 3.06 0.98 9.45 0.99 2.51 0.64 5.06 0.54 2.99 0.37

Mean improvement EffNet -27% -66% -66% -78% -76% -90% -90%

ConvNeXt-T 16.95 1.11 0.84 3.08 1.52 3.49 1.18 3.48 1.15 8.95 1.66 2.55 0.87 7.34 0.70 5.63 0.61
ConvNeXt-S 17.60 0.75 0.59 3.76 2.29 4.19 1.32 4.18 1.31 8.77 1.73 3.06 0.70 7.46 0.68 5.32 0.48
ConvNeXt-B 18.78 0.74 0.41 3.83 2.51 4.10 1.33 4.09 1.31 9.44 1.84 3.03 0.77 7.72 0.70 5.02 0.52
ConvNeXt-L 12.52 0.66 0.47 4.02 2.69 4.42 1.64 4.42 1.63 7.97 1.37 3.26 0.67 7.12 0.62 4.55 0.46

Mean improvement ConvNeXt -39% -66% -67% -81% -74% -91% -90%

ViT-B/32 6.37 0.77 0.60 4.02 2.17 4.67 1.82 4.66 1.77 6.58 1.68 3.58 0.84 9.51 0.73 7.76 0.53
ViT-B/16 5.61 0.86 0.54 3.80 3.25 4.29 1.93 4.27 1.92 7.36 2.29 3.39 0.79 5.88 0.71 6.79 0.51
ViT-L/32 4.27 0.83 0.75 5.00 3.89 5.37 2.53 5.37 2.49 6.33 2.57 4.43 0.76 9.31 0.79 7.39 0.61
ViT-L/16 5.17 0.99 0.77 5.77 4.63 5.29 2.62 5.27 2.58 7.44 3.05 4.10 0.85 6.83 0.78 7.38 0.54
ViT-H/14 0.60 0.60 0.40 1.84 0.88 1.95 1.22 2.00 1.17 7.84 0.75 2.48 0.62 1.67 0.63 3.62 0.42

Mean improvement ViT -31% -51% -53% -70% -78% -85% -92%

Swin-T 6.82 0.76 0.45 3.08 1.85 3.45 1.38 3.44 1.37 7.72 1.61 2.94 0.72 6.72 0.67 6.31 0.43
Swin-S 3.65 0.78 0.54 3.63 2.95 4.17 1.77 4.17 1.76 7.91 2.31 3.29 0.77 7.20 0.80 5.72 0.44
Swin-B 4.77 0.72 0.45 3.88 3.43 4.22 1.98 4.21 1.95 7.98 2.27 3.33 0.75 6.83 0.68 4.70 0.52
SwinV2-T 8.31 0.80 0.46 3.61 2.25 3.92 1.51 3.91 1.49 8.68 1.76 3.08 0.81 7.81 0.79 6.20 0.52
SwinV2-S 6.07 0.75 0.46 3.79 3.32 4.24 1.74 4.23 1.71 8.51 2.26 3.16 0.74 7.18 0.67 5.02 0.41
SwinV2-B 5.50 0.69 0.59 3.82 3.68 4.25 1.80 4.22 1.73 7.53 2.68 3.34 0.67 6.78 0.63 4.42 0.55

Mean improvement Swin -21% -58% -59% -73% -77% -90% -91%

CLIP (ViT-B/32) 1.50 0.96 0.75 1.70 1.58 1.38 0.92 36.01 70.52 3.57 0.82 2.22 0.84 8.12 0.88 6.63 0.82
CLIP (ViT-B/16) 1.80 1.31 0.75 1.92 1.89 1.61 0.87 34.02 66.04 4.53 1.08 2.35 1.01 8.48 0.91 6.98 0.74
CLIP (ViT-L/14) 2.57 0.97 0.67 2.04 1.99 1.89 1.36 26.06 66.40 5.95 1.35 2.49 0.92 8.33 1.01 7.86 0.84

Mean improvement CLIP -4% -36% 115% -77% -61% -89% -89%

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 12.34 err. err. 8.69 4.39 2.52 2.40 58.84 81.16 err. 1.02 2.00 0.21 err. 0.20 5.50 0.17
ViT-B/16 6.27 err. err. 8.92 6.55 2.38 1.54 8.22 3.20 err. 3.72 2.14 0.22 err. 0.24 7.89 0.12

Mean improvement -38% -20% -12% err. -90% err. -98%
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Table 6: ECE in % (lower is better, best in bold) – full results for text classification datasets. Averages
on 5 seeds. Mean relative improvements from TvA are shown (negative values for reductions of
ECE). Methods in purple impact the model prediction, potentially degrading accuracy; methods in
teal do not. Values are averaged over five random seeds.

(a) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 5.18 0.28 0.25 1.24 1.26 1.34 1.34 0.99 1.28 5.44 0.80 0.41 0.28 0.38 0.30 2.45 0.21
T5-large 5.76 0.26 0.26 0.97 1.04 1.70 1.49 1.36 1.34 5.71 1.63 0.33 0.26 0.40 0.26 3.29 0.14

Mean improvement T5 4% -6% 14% -78% -26% -28% -94%

RoBERTa 7.90 0.28 0.30 2.27 2.21 1.37 1.93 1.51 1.78 7.48 4.30 0.31 0.28 1.11 0.37 4.07 0.24
RoBERTa-large 6.83 0.32 0.25 2.52 2.44 1.45 1.78 1.24 1.57 6.36 4.45 0.72 0.26 0.38 0.34 3.96 0.16

Mean improvement RoBERTa -3% 32% 22% -36% -37% -39% -95%

(b) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 7.99 1.48 1.40 1.18 1.16 4.88 1.97 4.66 2.04 10.95 2.81 1.44 1.66 1.32 1.53 1.99 1.32
T5-large 9.73 1.30 1.36 3.20 3.19 7.38 2.03 7.15 2.00 11.81 4.72 1.56 1.45 1.44 1.62 1.80 0.92

Mean improvement T5 -1% -66% -64% -67% 4% 14% -41%

RoBERTa 17.37 1.67 1.59 13.20 13.20 15.84 7.83 15.02 6.40 18.36 10.48 1.68 1.64 1.76 1.19 1.26 1.06
RoBERTa-large 14.88 1.46 1.42 10.94 10.94 13.49 5.77 12.78 4.73 15.69 9.30 1.74 1.43 1.52 1.08 0.85 0.75

Mean improvement RoBERTa 0% -54% -60% -42% -10% -31% -14%

(c) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.48 0.71 0.67 1.17 1.15 3.25 1.88 3.21 2.01 7.74 2.12 0.84 0.73 0.98 0.80 1.91 0.47
T5-large 7.59 0.74 0.72 4.46 4.45 5.66 1.71 5.41 1.64 8.20 4.43 0.77 0.76 1.78 0.57 2.28 0.40

Mean improvement T5 -1% -56% -54% -59% -7% -43% -79%

RoBERTa 10.26 0.90 0.81 6.52 6.52 7.83 2.03 7.38 2.12 11.06 6.16 0.87 0.94 1.25 0.93 1.20 0.60
RoBERTa-large 8.18 0.87 0.61 4.93 4.92 6.15 1.80 5.81 1.85 8.80 5.39 1.12 0.90 2.09 0.75 0.84 0.60

Mean improvement RoBERTa -0% -72% -70% -42% -6% -45% -39%

(d) Yahoo Anwsers
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.64 0.74 0.90 0.67 0.97 2.70 1.01 2.66 0.94 7.70 1.64 1.57 0.79 2.61 0.95 4.15 0.71
T5-large 9.04 0.87 0.72 1.47 1.73 4.70 1.31 4.84 1.36 10.34 2.39 1.90 0.85 3.01 0.98 3.15 0.67

Mean improvement T5 31% -67% -68% -78% -52% -66% -81%

RoBERTa 19.53 1.03 0.72 12.02 12.00 16.26 2.29 15.85 1.73 20.13 9.41 1.96 1.05 5.05 0.72 3.56 0.60
RoBERTa-large 19.65 0.90 0.86 12.77 12.75 16.67 2.75 16.30 2.70 20.18 10.19 1.87 0.94 4.96 0.78 3.26 0.57

Mean improvement RoBERTa -0% -85% -86% -51% -48% -85% -83%
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Table 7: Standard deviations of ECE in % for 5 seeds.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 0.16 0.15 0.15 0.14 0.26 0.25 0.18 0.24 0.16 0.29 0.29 0.19 0.14 0.39 0.12 0.37 0.09
ResNet-110 0.10 0.22 0.08 0.12 0.10 0.14 0.16 0.12 0.15 0.14 0.21 0.22 0.18 0.24 0.20 0.17 0.19
WRN 0.09 0.17 0.21 0.29 0.21 0.25 0.07 0.25 0.08 0.09 0.57 0.23 0.20 0.19 0.22 0.26 0.24
DenseNet 0.11 0.08 0.16 0.12 0.18 0.09 0.09 0.09 0.08 0.13 0.78 0.14 0.05 0.15 0.08 0.19 0.10
CLIP (ViT-B/32) 0.12 0.49 0.35 0.17 0.13 0.31 0.37 0.30 0.32 0.29 0.32 0.13 0.44 0.48 0.41 0.39 0.32
CLIP (ViT-B/16) 0.17 0.36 0.33 0.19 0.10 0.22 0.15 0.22 0.13 0.13 0.91 0.18 0.27 0.09 0.26 0.11 0.29
CLIP (ViT-L/14) 0.05 0.22 0.21 0.11 0.09 0.11 0.15 0.10 0.16 0.22 0.15 0.19 0.18 0.21 0.11 0.18 0.09

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 0.22 0.50 0.60 0.53 0.47 0.52 0.46 0.50 0.44 0.47 0.48 0.32 0.50 0.37 0.33 0.49 0.25
ResNet-110 0.28 0.23 0.25 0.38 0.39 0.35 0.31 0.33 0.31 0.33 0.59 0.28 0.34 0.60 0.21 0.56 0.11
WRN 0.19 0.24 0.38 0.27 0.14 0.25 0.30 0.24 0.33 0.16 0.28 0.23 0.46 0.71 0.57 0.33 0.32
DenseNet 0.10 0.24 0.17 0.26 0.13 0.30 0.20 0.35 0.22 0.60 0.79 0.24 0.45 0.68 0.28 0.31 0.22
CLIP (ViT-B/32) 0.14 0.25 0.20 0.05 0.14 0.13 0.27 0.48 0.45 0.32 1.17 0.26 0.25 0.49 0.23 0.40 0.46
CLIP (ViT-B/16) 0.21 0.35 0.42 0.30 0.37 0.40 0.37 0.42 0.48 0.74 1.00 0.50 0.42 0.54 0.42 0.37 0.51
CLIP (ViT-L/14) 0.17 0.33 0.53 0.16 0.19 0.23 0.24 0.19 0.32 0.34 1.14 0.25 0.24 0.39 0.30 0.27 0.09

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 0.14 0.12 0.14 0.11 0.11 0.13 0.13 0.15 0.14 0.38 0.19 0.03 0.17 0.23 0.24 0.22 0.17
ResNet-34 0.12 0.16 0.24 0.12 0.10 0.14 0.20 0.13 0.17 0.54 0.10 0.24 0.17 0.19 0.21 0.06 0.13
ResNet-50 0.21 0.20 0.18 0.26 0.34 0.32 0.15 0.31 0.15 1.71 0.18 0.22 0.16 0.15 0.26 0.21 0.09
ResNet-101 0.15 0.11 0.22 0.11 0.18 0.18 0.25 0.17 0.25 1.02 0.08 0.19 0.11 0.23 0.16 0.25 0.14
EffNet-B7 0.07 0.13 0.11 0.10 0.12 0.15 0.18 0.14 0.22 1.91 0.17 0.13 0.10 0.16 0.16 0.11 0.06
EffNetV2-S 0.15 0.19 0.08 0.17 0.19 0.22 0.21 0.22 0.17 1.10 0.24 0.26 0.15 0.32 0.15 0.20 0.24
EffNetV2-M 0.18 0.12 0.13 0.17 0.15 0.16 0.26 0.18 0.22 1.10 0.47 0.13 0.10 0.24 0.15 0.26 0.06
EffNetV2-L 0.11 0.07 0.12 0.15 0.12 0.21 0.17 0.18 0.19 1.64 0.23 0.25 0.07 0.33 0.17 0.41 0.13
ConvNeXt-T 0.16 0.08 0.12 0.25 0.28 0.29 0.30 0.28 0.33 1.57 0.42 0.31 0.12 0.22 0.21 0.15 0.10
ConvNeXt-S 0.14 0.26 0.18 0.23 0.17 0.24 0.27 0.23 0.28 1.17 0.21 0.15 0.12 0.14 0.14 0.29 0.08
ConvNeXt-B 0.20 0.09 0.16 0.30 0.26 0.36 0.33 0.36 0.32 2.12 0.36 0.33 0.10 0.11 0.06 0.40 0.12
ConvNeXt-L 0.16 0.10 0.09 0.26 0.17 0.21 0.27 0.20 0.28 1.33 0.12 0.28 0.14 0.26 0.19 0.33 0.13
ViT-B/32 0.20 0.17 0.19 0.29 0.17 0.34 0.34 0.37 0.30 0.99 0.12 0.31 0.15 0.21 0.16 0.28 0.14
ViT-B/16 0.15 0.07 0.13 0.26 0.17 0.35 0.36 0.35 0.34 0.54 0.24 0.28 0.08 0.23 0.11 0.23 0.10
ViT-L/32 0.10 0.15 0.11 0.19 0.10 0.28 0.22 0.28 0.22 0.31 0.17 0.29 0.11 0.20 0.16 0.23 0.14
ViT-L/16 0.22 0.24 0.39 0.19 0.15 0.35 0.36 0.35 0.37 0.81 0.12 0.30 0.28 0.31 0.23 0.21 0.32
ViT-H/14 0.15 0.18 0.09 0.21 0.28 0.19 0.20 0.20 0.22 0.75 0.15 0.20 0.19 0.34 0.16 0.29 0.18
Swin-T 0.17 0.13 0.19 0.19 0.12 0.20 0.16 0.20 0.16 0.70 0.10 0.23 0.15 0.34 0.20 0.12 0.17
Swin-S 0.10 0.18 0.18 0.19 0.19 0.21 0.25 0.22 0.20 0.48 0.27 0.24 0.16 0.22 0.27 0.30 0.14
Swin-B 0.07 0.14 0.16 0.21 0.25 0.24 0.30 0.21 0.32 0.80 0.11 0.28 0.21 0.24 0.15 0.34 0.13
SwinV2-T 0.10 0.09 0.14 0.15 0.10 0.22 0.20 0.20 0.20 1.63 0.07 0.29 0.13 0.32 0.22 0.11 0.16
SwinV2-S 0.14 0.06 0.17 0.18 0.16 0.26 0.21 0.25 0.27 1.29 0.08 0.31 0.09 0.29 0.14 0.19 0.21
SwinV2-B 0.10 0.10 0.18 0.14 0.13 0.24 0.17 0.24 0.20 0.57 0.09 0.16 0.13 0.11 0.11 0.21 0.04
CLIP (ViT-B/32) 0.20 0.33 0.34 0.25 0.20 0.18 0.17 0.73 1.83 0.51 0.18 0.36 0.35 0.23 0.24 0.17 0.37
CLIP (ViT-B/16) 0.11 0.27 0.12 0.12 0.10 0.17 0.10 1.08 3.69 0.71 0.62 0.18 0.17 0.22 0.13 0.10 0.15
CLIP (ViT-L/14) 0.16 0.10 0.11 0.07 0.16 0.10 0.05 0.96 18.76 1.01 0.45 0.15 0.15 0.23 0.15 0.29 0.21

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 0.04 err. err. 0.10 0.07 0.07 0.08 7.34 17.87 err. 0.23 0.08 0.06 err. 0.04 0.04 0.05
ViT-B/16 0.08 err. err. 0.09 0.16 0.08 0.04 0.23 0.18 err. 0.29 0.10 0.06 err. 0.06 0.05 0.05

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.09 0.06 0.10 0.05 0.05 0.07 0.15 0.08 0.14 0.08 0.09 0.11 0.06 0.06 0.04 0.14 0.06
T5-large 0.09 0.06 0.07 0.06 0.05 0.02 0.18 0.07 0.23 0.09 0.28 0.07 0.05 0.05 0.07 0.13 0.05
RoBERTa 0.12 0.08 0.06 0.14 0.14 0.07 0.05 0.06 0.12 0.15 0.04 0.07 0.07 0.06 0.09 0.12 0.08
RoBERTa-large 0.10 0.11 0.06 0.09 0.10 0.05 0.16 0.09 0.26 0.13 0.07 0.08 0.04 0.07 0.13 0.12 0.05

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.51 0.21 0.39 0.35 0.28 0.60 0.54 0.52 0.47 0.69 0.55 0.22 0.20 0.42 0.33 0.49 0.54
T5-large 0.28 0.32 0.31 0.20 0.20 0.28 0.20 0.38 0.33 0.60 0.48 0.21 0.35 0.31 0.58 0.32 0.47
RoBERTa 0.67 0.41 0.58 0.65 0.65 0.63 0.49 0.60 0.63 0.54 0.28 0.57 0.45 0.33 0.30 0.16 0.17
RoBERTa-large 0.48 0.25 0.44 0.43 0.43 0.45 0.42 0.45 0.35 0.40 0.69 0.48 0.31 0.94 0.25 0.34 0.34

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.17 0.19 0.20 0.23 0.22 0.20 0.21 0.23 0.18 0.18 0.35 0.23 0.18 0.37 0.24 0.17 0.15
T5-large 0.27 0.16 0.13 0.35 0.34 0.30 0.40 0.34 0.38 0.21 0.21 0.21 0.14 0.12 0.23 0.23 0.26
RoBERTa 0.41 0.33 0.23 0.36 0.36 0.37 0.38 0.36 0.40 0.34 0.20 0.17 0.34 0.18 0.27 0.45 0.21
RoBERTa-large 0.13 0.13 0.18 0.12 0.12 0.13 0.16 0.13 0.17 0.19 0.21 0.28 0.16 0.19 0.26 0.27 0.16

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 0.04 0.20 0.36 0.07 0.24 0.18 0.25 0.17 0.29 0.22 0.74 0.18 0.23 0.22 0.31 0.76 0.23
T5-large 0.07 0.12 0.13 0.10 0.20 0.15 0.08 0.18 0.09 0.33 0.23 0.15 0.13 0.25 0.28 0.22 0.09
RoBERTa 0.09 0.19 0.26 0.09 0.09 0.09 0.25 0.11 0.29 0.11 0.44 0.21 0.11 0.30 0.26 0.36 0.30
RoBERTa-large 0.06 0.15 0.18 0.06 0.06 0.07 0.29 0.10 0.32 0.10 0.20 0.17 0.13 1.25 0.24 0.26 0.18
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Table 8: Average confidence in %. Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Overconfidence (average confidence > accuracy) is
shown in violet and underconfidence (average confidence < accuracy) in brown.

(a) CIFAR-10
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 94.9 96.6 94.9 94.8 95.6 95.2 95.6 95.5 95.6 95.5 96.8 95.1 95.3 94.9 94.9 94.9 94.9 95.0
ResNet-110 94.6 97.1 94.9 94.8 95.7 95.3 95.7 95.7 95.7 95.7 97.5 95.0 95.4 94.8 94.8 94.8 94.8 94.8
WRN 95.8 95.9 96.1 96.0 96.8 96.5 96.8 96.3 96.8 96.3 97.4 96.0 96.5 96.0 96.2 96.0 96.2 96.0
DenseNet 95.0 95.7 95.0 94.9 95.9 95.6 96.0 95.6 95.9 95.6 96.9 95.2 95.5 95.0 95.1 95.0 95.1 94.9
CLIP (ViT-B/32) 88.2 83.4 87.5 87.3 87.7 87.8 87.5 88.5 87.6 88.5 89.8 88.4 89.7 87.9 89.2 87.9 88.8 87.9
CLIP (ViT-B/16) 90.2 84.8 89.8 89.5 89.8 90.1 89.4 90.4 89.5 90.5 91.7 90.9 91.9 90.2 91.3 90.2 90.8 90.2
CLIP (ViT-L/14) 95.3 90.4 95.0 88.7 94.9 95.0 94.5 94.8 94.6 94.8 95.7 96.0 96.2 95.2 95.9 95.2 95.7 95.2

(b) CIFAR-100
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 76.7 82.9 77.2 77.0 80.9 76.9 81.4 77.5 81.4 77.4 80.3 78.0 81.5 76.9 74.0 76.9 75.6 76.8
ResNet-110 75.0 82.8 75.5 75.3 79.6 75.5 80.0 76.2 80.0 76.2 79.3 76.9 80.6 75.2 71.4 75.2 73.0 75.3
WRN 79.6 83.0 79.5 79.3 83.0 79.3 83.4 79.7 83.3 79.7 81.1 79.6 83.2 79.3 75.5 79.3 77.3 79.3
DenseNet 76.3 81.0 76.2 76.0 79.6 76.0 80.1 76.6 80.1 76.6 78.7 75.6 79.9 75.8 72.6 75.8 74.0 76.0
CLIP (ViT-B/32) 62.3 52.8 60.7 60.1 63.3 62.3 59.0 63.9 58.3 63.5 60.7 62.9 65.2 62.3 57.0 62.3 57.8 62.3
CLIP (ViT-B/16) 66.7 56.0 64.5 63.9 66.9 67.1 62.7 68.4 62.0 67.9 64.0 66.5 68.5 66.9 61.0 66.9 62.1 67.0
CLIP (ViT-L/14) 76.0 65.0 73.9 73.4 76.1 76.0 74.1 78.6 73.4 78.4 73.5 74.6 78.5 76.0 72.8 76.0 73.4 75.9

(c) ImageNet
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 69.8 72.0 69.6 69.2 69.4 69.7 70.3 70.8 71.4 70.7 65.5 69.4 73.1 69.8 65.3 69.8 67.8 69.8
ResNet-34 73.2 76.8 73.4 72.9 73.5 73.1 74.4 74.3 75.2 74.2 68.3 73.2 76.8 73.3 70.3 73.3 72.4 73.3
ResNet-50 80.8 39.7 78.5 77.9 84.0 82.2 84.2 80.2 84.2 80.2 69.3 81.2 81.6 80.9 71.1 80.9 74.7 80.9
ResNet-101 81.9 68.3 81.7 81.4 85.5 83.4 86.0 83.1 86.0 83.1 72.5 82.2 84.5 82.0 78.2 82.0 80.6 82.1
EffNet-B7 84.2 71.6 84.2 84.0 87.8 85.7 88.3 85.5 88.3 85.5 75.0 84.2 87.0 84.0 82.2 84.1 84.0 84.1
EffNetV2-S 84.3 67.3 84.2 84.0 87.9 85.6 88.2 85.3 88.2 85.2 76.3 84.7 86.8 84.2 81.2 84.2 83.5 84.2
EffNetV2-M 85.1 60.2 84.9 84.7 88.8 86.6 89.1 85.9 89.1 85.8 76.8 84.9 87.7 85.1 81.8 85.2 84.4 85.1
EffNetV2-L 85.8 77.3 85.7 85.4 88.6 86.9 88.9 86.7 88.9 86.6 76.4 85.8 88.1 85.6 84.2 85.6 85.9 85.7
ConvNeXt-T 82.5 65.6 82.0 81.7 85.6 84.0 85.9 83.3 85.9 83.2 73.5 81.9 84.7 82.5 78.9 82.5 81.2 82.5
ConvNeXt-S 83.6 66.0 83.5 83.2 87.4 85.3 87.8 84.7 87.8 84.7 74.9 83.1 86.3 83.6 80.7 83.6 82.9 83.6
ConvNeXt-B 84.0 65.3 83.9 83.7 87.8 85.6 88.2 85.0 88.2 85.0 74.6 84.0 86.7 84.0 81.2 84.1 83.4 84.1
ConvNeXt-L 84.4 71.9 84.5 84.3 88.4 86.2 88.8 85.8 88.8 85.8 76.6 84.5 87.4 84.5 82.6 84.5 84.3 84.5
ViT-B/32 75.9 69.6 75.9 75.6 79.9 77.3 80.5 77.4 80.4 77.3 69.3 75.7 78.9 75.9 71.0 75.9 73.7 76.0
ViT-B/16 81.0 75.5 81.2 81.0 84.8 82.6 85.3 82.8 85.3 82.7 73.8 81.2 84.0 81.0 78.8 81.0 80.5 81.1
ViT-L/32 77.0 74.2 77.3 77.2 81.6 78.8 82.2 79.0 82.2 79.0 71.7 77.0 80.8 76.9 73.9 76.9 76.0 76.9
ViT-L/16 79.6 78.8 80.1 80.0 84.5 81.7 85.1 82.1 85.1 82.1 72.9 80.1 83.6 79.7 78.3 79.7 79.8 79.7
ViT-H/14 88.6 89.0 88.6 88.4 90.4 89.3 90.5 89.5 90.5 89.5 80.8 88.4 90.8 88.6 88.7 88.6 89.3 88.7
Swin-T 81.5 74.7 81.3 81.1 84.5 82.6 85.0 82.7 85.0 82.6 73.7 81.3 84.0 81.5 78.8 81.5 80.9 81.4
Swin-S 83.2 79.9 83.3 83.1 86.8 84.6 87.3 84.7 87.3 84.7 75.3 83.7 86.1 83.1 81.7 83.1 83.1 83.2
Swin-B 83.6 79.7 83.8 83.6 87.5 85.4 88.0 85.6 88.0 85.5 75.8 83.6 86.7 83.5 82.8 83.5 84.0 83.5
SwinV2-T 82.0 73.7 82.1 81.9 85.6 83.4 86.0 83.4 86.0 83.4 73.4 82.2 84.7 82.2 79.4 82.2 81.5 82.2
SwinV2-S 83.7 77.7 83.8 83.7 87.5 85.2 88.0 85.4 88.0 85.3 75.3 84.1 86.7 83.7 82.3 83.7 83.8 83.7
SwinV2-B 84.1 78.9 84.3 84.1 87.9 85.7 88.4 85.8 88.4 85.8 76.7 84.5 87.1 84.2 83.1 84.1 84.3 84.2
CLIP (ViT-B/32) 57.3 57.3 57.1 56.7 57.9 57.5 59.3 60.1 67.1 70.7 55.4 57.1 61.8 57.2 52.7 57.2 55.0 57.2
CLIP (ViT-B/16) 62.9 62.6 62.5 62.1 63.4 63.2 64.6 65.6 69.9 66.2 60.2 62.5 67.4 63.0 59.4 63.0 61.4 63.0
CLIP (ViT-L/14) 70.1 72.1 70.0 69.8 70.9 70.3 73.0 72.8 76.9 66.6 65.7 70.5 74.6 70.1 67.3 70.1 69.2 69.9

(d) ImageNet-21K
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 15.4 27.7 err. err. 24.0 17.4 35.5 33.3 71.9 81.2 err. 15.1 35.1 15.3 err. 15.3 15.7 15.3
ViT-B/16 19.2 21.4 err. err. 25.5 21.9 43.4 41.3 48.7 41.5 err. 19.3 42.8 19.2 err. 19.1 20.6 19.2

(e) Amazon Fine Foods
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 89.8 95.0 89.8 89.8 90.2 90.3 90.8 91.5 90.7 91.6 96.0 89.5 90.5 89.8 90.4 89.8 90.2 89.8
T5-large 91.6 97.3 91.6 91.6 92.0 91.9 92.3 93.3 92.3 93.3 97.8 91.6 92.1 91.6 92.1 91.6 91.9 91.6
RoBERTa 90.0 97.8 90.0 90.0 92.2 92.2 90.6 91.7 90.7 91.7 98.0 90.0 90.5 90.0 90.4 90.0 90.2 90.0
RoBERTa-large 91.4 98.2 91.5 91.5 93.9 93.9 92.3 93.3 92.3 93.3 98.3 91.5 92.1 91.5 91.9 91.5 91.7 91.4

(f) DynaSent
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 78.8 86.8 78.5 78.5 78.9 78.8 83.6 80.5 83.4 80.6 89.7 78.5 78.9 78.3 78.7 78.3 78.4 78.2
T5-large 82.2 91.8 81.8 81.7 85.0 85.0 89.5 83.9 89.3 83.9 94.1 82.2 82.2 81.6 82.0 81.6 81.8 81.6
RoBERTa 77.7 95.1 77.9 77.8 90.9 90.9 93.5 85.4 92.7 84.1 96.1 78.3 78.4 77.8 78.0 77.7 78.0 77.8
RoBERTa-large 81.2 96.0 81.2 81.2 92.1 92.1 94.6 86.7 94.0 85.9 96.9 80.5 81.7 81.0 81.4 80.9 81.3 81.0

(g) MNLI
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 88.4 94.8 88.5 88.5 89.4 89.4 91.6 90.2 91.6 90.3 96.1 89.0 88.7 88.5 88.6 88.5 88.4 88.5
T5-large 90.1 97.6 90.0 89.9 94.5 94.5 95.7 91.7 95.5 91.7 98.3 90.2 90.2 89.9 90.1 89.9 90.0 89.9
RoBERTa 86.4 96.7 86.1 86.1 92.9 92.9 94.2 88.4 93.8 88.5 97.5 86.1 86.5 86.1 86.2 86.0 86.1 86.1
RoBERTa-large 88.9 97.1 88.8 88.7 93.8 93.8 95.0 90.6 94.7 90.7 97.7 88.9 89.1 88.7 88.9 88.7 88.8 88.7

(h) Yahoo Answers
Model Acc. Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 75.3 82.0 75.6 75.4 75.1 74.6 78.0 76.1 78.0 76.0 82.9 74.8 76.5 75.4 75.4 75.4 75.0 75.4
T5-large 75.6 84.6 75.8 75.6 75.4 74.8 80.3 76.3 80.5 76.4 85.8 75.9 77.0 75.6 75.8 75.6 75.3 75.6
RoBERTa 72.4 91.9 72.6 72.5 84.4 84.4 88.6 74.6 88.6 74.7 92.8 72.0 74.4 72.3 72.7 72.3 72.4 72.3
RoBERTa-large 72.8 92.5 73.1 73.0 85.6 85.6 89.5 75.6 89.3 76.1 93.2 72.6 74.8 72.9 73.2 72.9 73.0 73.0
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Table 9: Accuracy in % (higher is better). Methods in purple impact the model prediction, potentially
degrading accuracy; methods in teal do not. Because classifiers can be well calibrated when not
accurate (by having low accuracy and low confidence), it is important to monitor the accuracy. It is
even better when the methods preserve the accuracy by design.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 94.89 94.92 94.89 94.89 94.89 94.84 94.83 94.84 94.83 94.84 94.89 94.83 94.89 94.72 94.89 94.70 94.89
ResNet-110 94.55 94.53 94.51 94.55 94.55 94.50 94.52 94.51 94.52 94.55 94.55 94.42 94.55 94.40 94.55 94.32 94.55
WRN 95.79 95.80 95.76 95.79 95.79 95.68 95.73 95.68 95.74 95.80 95.79 95.63 95.79 95.65 95.79 95.59 95.79
DenseNet 94.99 94.98 94.97 94.99 94.99 95.05 95.05 95.05 95.05 94.99 94.99 94.86 94.99 94.74 94.99 94.80 94.99
CLIP (ViT-B/32) 88.17 88.16 87.92 88.17 88.17 90.29 90.28 90.38 90.33 90.18 88.17 90.36 88.17 90.29 88.17 90.18 88.17
CLIP (ViT-B/16) 90.23 90.16 90.01 90.23 90.23 92.33 92.30 92.40 92.33 92.10 90.23 92.21 90.23 92.19 90.23 91.90 90.23
CLIP (ViT-L/14) 95.28 95.22 88.91 95.28 95.28 96.48 96.50 96.49 96.48 96.31 95.28 96.31 95.28 96.39 95.28 96.25 95.28

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 76.71 76.64 76.72 76.71 76.71 76.63 76.50 76.65 76.50 76.67 76.71 76.24 76.71 76.01 76.71 74.89 76.71
ResNet-110 75.00 75.00 74.91 75.00 75.00 75.00 74.94 75.00 74.94 74.96 75.00 74.66 75.00 74.14 75.00 73.12 75.00
WRN 79.57 79.52 79.42 79.57 79.57 79.36 79.34 79.36 79.36 79.51 79.57 79.08 79.57 78.57 79.57 77.35 79.57
DenseNet 76.26 76.31 76.21 76.26 76.26 76.31 76.31 76.33 76.31 76.30 76.26 76.07 76.26 75.48 76.26 74.42 76.26
CLIP (ViT-B/32) 62.33 62.18 61.60 62.33 62.33 67.77 67.33 66.31 63.95 66.40 62.33 66.48 62.33 63.85 62.33 64.06 62.33
CLIP (ViT-B/16) 66.66 66.62 66.10 66.66 66.66 71.35 71.02 70.18 68.48 70.04 66.66 70.21 66.66 67.38 66.66 67.55 66.66
CLIP (ViT-L/14) 75.96 75.87 75.67 75.96 75.96 80.09 79.87 79.96 79.02 79.38 75.96 79.52 75.96 77.29 75.96 77.05 75.96

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 69.77 69.76 69.37 69.77 69.77 69.81 69.21 68.12 67.60 69.72 69.77 69.24 69.77 68.34 69.77 66.65 69.77
ResNet-34 73.23 73.19 72.77 73.23 73.23 73.19 72.70 71.96 71.53 73.10 73.23 72.81 73.23 72.21 73.23 70.46 73.23
ResNet-50 80.85 80.80 80.26 80.85 80.85 80.93 80.81 80.94 80.81 80.60 80.85 80.47 80.85 78.13 80.85 78.49 80.85
ResNet-101 81.86 81.83 81.54 81.86 81.86 81.77 81.65 81.80 81.66 81.74 81.86 81.44 81.86 80.82 81.86 79.80 81.86
EffNet-B7 84.16 84.18 84.06 84.16 84.16 84.45 84.31 84.45 84.30 84.27 84.16 84.09 84.16 83.71 84.16 82.72 84.16
EffNetV2-S 84.27 84.19 83.99 84.27 84.27 84.33 84.23 84.34 84.22 84.26 84.27 83.88 84.27 83.52 84.27 82.55 84.27
EffNetV2-M 85.06 85.05 84.90 85.06 85.06 85.28 85.19 85.28 85.17 85.10 85.06 84.87 85.06 84.19 85.07 83.72 85.06
EffNetV2-L 85.80 85.78 85.60 85.80 85.80 85.88 85.83 85.89 85.87 85.89 85.80 85.58 85.80 85.23 85.80 84.25 85.80
ConvNeXt-T 82.50 82.49 82.18 82.50 82.50 82.44 82.29 82.45 82.28 82.45 82.50 82.10 82.50 81.51 82.50 80.37 82.50
ConvNeXt-S 83.65 83.59 83.36 83.65 83.65 83.63 83.55 83.63 83.55 83.64 83.65 83.28 83.65 82.89 83.65 81.84 83.65
ConvNeXt-B 84.04 84.01 83.78 84.04 84.04 84.09 83.98 84.10 83.96 84.04 84.04 83.68 84.04 83.22 84.04 82.34 84.04
ConvNeXt-L 84.38 84.37 84.23 84.38 84.38 84.41 84.32 84.41 84.34 84.44 84.38 84.12 84.38 83.98 84.38 82.92 84.38
ViT-B/32 75.95 75.91 75.69 75.95 75.95 75.81 75.65 75.83 75.66 75.85 75.95 75.36 75.95 74.59 75.95 73.13 75.95
ViT-B/16 81.04 81.01 80.90 81.04 81.04 81.00 80.88 81.01 80.87 80.96 81.04 80.63 81.04 80.38 81.04 79.06 81.04
ViT-L/32 76.96 76.94 76.84 76.96 76.96 76.79 76.73 76.79 76.72 76.88 76.96 76.37 76.96 76.04 76.96 74.55 76.96
ViT-L/16 79.64 79.64 79.59 79.64 79.64 79.80 79.67 79.81 79.68 79.66 79.64 79.47 79.64 79.20 79.64 77.82 79.64
ViT-H/14 88.62 88.61 88.48 88.62 88.62 88.62 88.50 88.59 88.46 88.63 88.62 88.34 88.62 88.33 88.62 87.24 88.62
Swin-T 81.49 81.45 81.28 81.49 81.49 81.55 81.42 81.55 81.42 81.44 81.49 81.07 81.49 80.77 81.49 79.43 81.49
Swin-S 83.21 83.20 83.04 83.21 83.21 83.13 83.02 83.13 83.03 83.21 83.21 82.79 83.21 82.74 83.21 81.40 83.21
Swin-B 83.60 83.57 83.53 83.60 83.60 83.75 83.61 83.76 83.59 83.63 83.60 83.39 83.60 83.40 83.60 82.16 83.60
SwinV2-T 82.02 82.01 81.83 82.02 82.02 82.12 81.98 82.13 82.00 82.05 82.02 81.66 82.02 81.27 82.02 80.08 82.02
SwinV2-S 83.74 83.73 83.64 83.74 83.74 83.81 83.71 83.80 83.72 83.72 83.74 83.56 83.74 83.34 83.74 82.31 83.74
SwinV2-B 84.10 84.12 84.03 84.10 84.10 84.14 84.06 84.16 84.08 84.16 84.10 83.81 84.10 83.79 84.10 82.53 84.10
CLIP (ViT-B/32) 57.34 57.32 56.94 57.34 57.34 59.80 59.57 31.10 0.18 58.93 57.34 59.54 57.34 57.25 57.34 56.05 57.34
CLIP (ViT-B/16) 62.89 62.91 62.43 62.89 62.89 65.61 65.28 35.86 0.18 64.62 62.89 65.07 62.89 63.24 62.89 62.18 62.89
CLIP (ViT-L/14) 70.15 70.14 69.89 70.15 70.15 72.66 72.25 50.88 0.17 71.57 70.15 72.30 70.15 70.59 70.15 69.36 70.15

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 15.36 err. err. 15.36 15.36 37.26 34.95 13.07 0.02 err. 15.36 35.62 15.36 err. 15.36 21.17 15.36
ViT-B/16 19.18 err. err. 19.18 19.18 45.42 42.70 40.54 40.70 err. 19.18 43.72 19.18 err. 19.18 28.46 19.18

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 89.81 89.83 89.83 89.81 89.81 90.04 90.18 90.31 90.34 90.59 89.81 90.60 89.81 90.58 89.81 90.64 89.81
T5-large 91.57 91.58 91.61 91.57 91.57 91.67 91.82 92.04 91.98 92.10 91.57 92.14 91.57 92.14 91.57 92.11 91.57
RoBERTa 89.95 89.95 89.98 89.95 89.95 89.99 90.15 90.29 90.21 90.56 89.95 90.59 89.95 90.59 89.95 90.54 89.95
RoBERTa-large 91.42 91.50 91.48 91.42 91.42 91.42 91.64 91.74 91.69 91.94 91.42 91.95 91.42 91.90 91.39 91.91 91.42

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 78.83 78.88 78.82 78.83 78.83 78.84 78.83 78.82 78.86 78.81 78.83 78.70 78.83 78.71 78.83 78.73 78.83
T5-large 82.20 82.16 82.19 82.20 82.20 82.20 82.23 82.32 82.25 82.35 82.20 82.31 82.20 82.19 82.20 82.29 82.20
RoBERTa 77.72 77.67 77.71 77.72 77.72 77.72 77.74 77.76 77.70 77.77 77.72 77.75 77.72 77.86 77.72 77.97 77.72
RoBERTa-large 81.19 81.29 81.33 81.19 81.19 81.19 81.19 81.24 81.44 81.28 81.19 81.50 81.19 81.51 81.19 81.66 81.19

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 88.35 88.35 88.38 88.35 88.35 88.36 88.39 88.39 88.39 88.41 88.35 88.34 88.35 88.28 88.35 88.37 88.35
T5-large 90.07 90.10 90.14 90.07 90.07 90.07 90.15 90.20 90.21 90.07 90.07 90.15 90.07 90.06 90.07 90.16 90.07
RoBERTa 86.41 86.40 86.43 86.41 86.41 86.41 86.42 86.45 86.48 86.44 86.41 86.37 86.41 86.41 86.41 86.38 86.41
RoBERTa-large 88.89 88.90 88.92 88.89 88.89 88.90 88.96 88.98 89.02 88.90 88.89 88.95 88.89 88.86 88.89 88.92 88.89

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 75.35 75.35 75.26 75.35 75.35 75.34 75.34 75.36 75.35 75.24 75.35 75.30 75.35 75.22 75.35 75.25 75.35
T5-large 75.57 75.60 75.56 75.57 75.57 75.59 75.55 75.69 75.66 75.53 75.57 75.70 75.57 75.62 75.57 75.67 75.57
RoBERTa 72.38 72.37 72.35 72.38 72.38 72.39 72.43 72.74 73.05 72.72 72.38 73.00 72.38 72.87 72.38 72.91 72.38
RoBERTa-large 72.84 72.83 72.81 72.84 72.84 72.83 72.88 73.01 73.40 72.98 72.84 73.48 72.84 73.29 72.84 73.38 72.84
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Table 10: ECE with 15 equal mass bins in % (lower is better). Methods in purple impact the model
prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 1.81 0.71 0.62 1.33 1.24 1.28 1.29 1.28 1.29 2.03 1.55 0.93 0.70 2.45 0.47 2.33 0.46
ResNet-110 2.58 0.48 0.51 1.78 1.72 1.74 1.74 1.72 1.75 2.91 1.56 0.99 0.43 2.59 0.34 2.71 0.23
WRN 1.80 0.58 0.51 1.74 1.75 1.48 1.52 1.49 1.52 1.74 2.09 0.98 0.62 2.07 0.54 2.15 0.46
DenseNet 2.04 0.56 0.46 2.00 2.07 1.48 1.70 1.47 1.70 2.03 2.45 0.78 0.56 2.71 0.69 2.75 0.29
CLIP (ViT-B/32) 4.73 1.33 1.30 0.93 0.91 2.76 1.79 2.80 1.80 1.66 1.34 1.06 1.05 2.15 1.47 2.47 0.90
CLIP (ViT-B/16) 5.38 1.12 1.01 0.59 0.48 2.91 1.91 2.87 1.87 1.21 1.80 1.05 0.87 1.63 0.91 2.41 0.63
CLIP (ViT-L/14) 4.90 0.54 0.50 0.56 0.48 1.98 1.74 1.93 1.72 0.96 0.94 0.55 0.46 0.98 0.51 0.96 0.37

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 6.53 1.55 1.26 5.00 3.54 5.15 2.31 5.14 2.30 5.54 3.90 5.60 1.44 10.10 2.08 10.97 1.19
ResNet-110 7.83 1.27 1.18 5.31 4.24 5.11 2.86 5.07 2.90 5.97 4.95 6.49 1.30 9.72 2.11 10.89 1.13
WRN 4.33 1.07 0.95 4.36 2.79 4.46 2.38 4.45 2.37 4.40 2.85 4.28 1.22 10.29 0.94 9.99 0.83
DenseNet 5.16 1.12 0.86 4.25 2.30 4.47 2.26 4.48 2.25 4.83 2.94 4.50 1.37 10.46 1.27 10.60 1.07
CLIP (ViT-B/32) 9.51 2.10 1.74 1.86 1.78 8.72 3.49 7.97 1.99 6.51 2.75 2.32 1.25 7.95 2.13 7.99 1.35
CLIP (ViT-B/16) 10.64 3.35 3.04 2.66 2.72 8.68 3.15 8.20 1.72 7.03 2.55 2.68 1.77 7.14 2.12 7.13 1.52
CLIP (ViT-L/14) 10.96 3.14 2.94 2.47 2.53 6.01 2.05 6.57 1.74 6.52 1.93 2.39 1.64 6.65 1.66 6.48 1.44

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 2.59 0.78 0.55 1.86 1.82 1.71 2.07 3.36 3.35 4.36 1.39 3.85 0.75 9.84 0.65 9.45 0.56
ResNet-34 3.61 0.74 0.52 1.75 1.75 1.81 2.02 3.40 2.91 4.86 1.11 4.04 0.71 9.17 0.68 9.29 0.64
ResNet-50 41.15 2.75 2.60 3.19 1.76 3.23 1.10 3.22 1.13 11.30 2.22 1.29 0.76 8.24 0.98 5.45 0.52
ResNet-101 13.55 0.79 0.56 3.69 2.34 4.21 1.60 4.18 1.56 9.21 2.10 3.01 0.63 7.84 1.00 6.68 0.46
EffNet-B7 12.60 0.51 0.48 3.84 2.94 3.82 1.58 3.81 1.56 9.31 2.32 2.93 0.56 6.91 0.71 6.06 0.39
EffNetV2-S 16.92 0.63 0.40 4.04 3.32 3.91 1.69 3.89 1.67 7.98 2.52 2.96 0.65 7.58 0.92 6.50 0.58
EffNetV2-M 24.88 0.90 0.67 3.78 2.66 3.83 1.35 3.82 1.34 8.31 1.83 2.88 0.73 6.68 1.08 5.38 0.54
EffNetV2-L 8.48 0.60 0.44 2.84 1.49 3.06 0.94 3.05 0.90 9.45 1.18 2.51 0.62 6.03 0.78 5.30 0.37
ConvNeXt-T 16.95 1.17 0.87 3.08 1.67 3.47 1.21 3.46 1.17 8.95 1.83 2.55 0.82 7.64 0.99 6.01 0.67
ConvNeXt-S 17.60 0.76 0.56 3.80 2.56 4.19 1.44 4.18 1.41 8.77 2.02 3.06 0.71 7.36 0.79 6.07 0.51
ConvNeXt-B 18.77 0.68 0.44 3.81 2.67 4.09 1.44 4.07 1.44 9.44 2.18 3.03 0.73 7.48 1.04 6.04 0.58
ConvNeXt-L 12.51 0.65 0.43 4.02 2.90 4.42 1.82 4.41 1.77 7.89 1.59 3.26 0.63 7.05 0.78 6.27 0.41
ViT-B/32 6.37 0.71 0.61 4.10 2.49 4.64 1.90 4.62 1.84 6.53 1.75 3.58 0.71 9.24 0.74 8.30 0.58
ViT-B/16 5.56 0.75 0.53 4.19 3.18 4.27 2.09 4.25 2.07 7.24 2.39 3.38 0.70 7.68 0.93 7.12 0.57
ViT-L/32 4.13 0.85 0.75 5.30 4.20 5.37 2.67 5.37 2.64 6.19 2.80 4.42 0.72 9.18 1.03 8.64 0.63
ViT-L/16 5.17 1.02 0.59 5.92 5.20 5.28 2.74 5.26 2.69 7.36 3.59 4.10 0.76 7.82 1.29 8.32 0.60
ViT-H/14 0.61 0.56 0.35 1.75 0.83 1.88 1.08 1.92 1.05 8.06 0.70 2.46 0.60 3.96 0.53 4.64 0.41
Swin-T 6.82 0.77 0.49 3.10 1.82 3.43 1.33 3.43 1.27 7.70 1.67 2.94 0.71 7.52 0.90 6.87 0.48
Swin-S 3.57 0.59 0.52 3.92 2.98 4.17 1.84 4.17 1.82 7.88 2.33 3.29 0.59 6.78 0.83 6.97 0.50
Swin-B 4.65 0.60 0.35 4.36 3.71 4.22 2.04 4.21 2.04 7.89 2.81 3.33 0.63 6.50 0.78 6.64 0.41
SwinV2-T 8.31 0.72 0.46 3.62 2.21 3.92 1.60 3.90 1.59 8.66 1.83 3.07 0.71 7.97 0.67 6.84 0.52
SwinV2-S 6.06 0.64 0.45 4.18 3.32 4.24 1.88 4.23 1.83 8.46 2.34 3.15 0.56 7.04 0.79 6.75 0.50
SwinV2-B 5.27 0.61 0.46 4.42 3.68 4.25 1.95 4.22 1.88 7.47 2.74 3.33 0.57 6.56 0.75 6.53 0.42
CLIP (ViT-B/32) 1.51 1.00 0.73 1.62 1.56 1.42 0.81 36.01 70.52 3.59 0.84 2.25 0.98 7.88 1.04 6.66 0.79
CLIP (ViT-B/16) 1.78 1.25 0.74 1.90 1.88 1.60 0.80 34.02 66.04 4.51 1.07 2.31 0.95 8.17 0.83 6.96 0.71
CLIP (ViT-L/14) 2.54 1.17 0.64 2.03 2.04 1.79 1.32 26.06 66.39 5.93 1.50 2.39 1.10 9.03 0.88 7.87 0.84

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 12.34 err. err. 8.69 4.43 2.51 2.38 58.84 81.16 err. 1.14 1.93 0.28 err. 0.31 5.53 0.19
ViT-B/16 6.54 err. err. 9.03 6.86 2.34 1.55 8.18 3.20 err. 3.72 2.14 0.21 err. 0.43 7.90 0.17

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 5.17 0.28 0.22 1.35 1.36 1.35 1.43 0.99 1.30 5.44 0.87 0.47 0.29 1.14 0.21 2.51 0.21
T5-large 5.76 0.27 0.22 1.82 1.84 1.71 1.67 1.37 1.35 5.71 1.81 0.75 0.26 1.97 0.17 3.18 0.17
RoBERTa 7.89 0.33 0.23 2.27 2.21 1.46 2.11 1.60 1.90 7.47 4.29 0.45 0.32 2.73 0.22 3.76 0.21
RoBERTa-large 6.82 0.34 0.18 2.53 2.45 1.47 2.13 1.29 1.93 6.35 4.21 0.56 0.28 2.81 0.24 3.68 0.16

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 7.92 1.76 1.33 1.60 1.60 4.78 2.12 4.58 2.20 10.85 2.83 1.46 1.89 2.00 1.51 1.58 1.21
T5-large 9.62 1.56 1.02 3.34 3.33 7.26 2.00 6.98 2.07 11.71 4.67 1.79 1.64 1.50 1.36 1.75 1.09
RoBERTa 17.34 2.38 1.59 13.14 13.14 15.80 7.68 14.96 6.35 18.34 10.36 1.69 2.36 2.45 1.27 2.15 1.08
RoBERTa-large 14.80 1.51 1.14 10.88 10.87 13.43 5.53 12.71 4.53 15.63 9.09 1.93 1.41 2.78 1.09 2.90 0.61

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.46 0.90 0.64 1.22 1.20 3.21 1.91 3.20 1.98 7.73 2.11 0.86 0.90 1.55 0.58 1.83 0.45
T5-large 7.58 0.77 0.51 4.40 4.39 5.63 1.74 5.31 1.69 8.20 4.43 1.11 0.79 1.77 0.40 2.18 0.35
RoBERTa 10.25 0.98 0.76 6.47 6.47 7.80 2.34 7.33 2.40 11.02 6.07 1.00 1.02 2.56 0.77 3.07 0.64
RoBERTa-large 8.17 1.00 0.56 4.91 4.90 6.13 1.85 5.74 1.84 8.80 5.26 1.24 0.95 2.02 0.48 2.50 0.49

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 6.64 0.83 0.90 0.71 0.98 2.66 0.92 2.64 0.88 7.68 1.68 1.47 0.86 3.52 0.86 4.78 0.72
T5-large 9.04 0.88 0.68 1.46 1.71 4.67 1.26 4.82 1.27 10.32 2.36 1.81 0.86 3.72 0.89 4.89 0.65
RoBERTa 19.53 1.06 0.79 12.02 12.00 16.26 2.18 15.85 1.70 20.13 9.36 1.94 0.99 5.15 0.72 6.48 0.62
RoBERTa-large 19.65 1.00 0.92 12.76 12.75 16.67 2.74 16.29 2.68 20.18 10.11 1.87 0.94 6.53 0.74 6.70 0.60
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Table 11: Brier score of the predicted class in 10−2 (lower is better). Methods in purple impact the
model prediction, potentially degrading accuracy; methods in teal do not.

(a) CIFAR-10
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 3.75 3.64 3.64 3.67 3.66 3.67 3.65 3.66 3.65 3.82 3.69 3.67 3.63 4.05 3.76 4.00 3.78
ResNet-110 3.95 3.64 3.65 3.75 3.72 3.72 3.73 3.73 3.73 4.02 3.73 3.62 3.64 4.21 3.76 4.25 3.80
WRN 3.06 3.02 3.02 3.11 3.08 3.11 3.07 3.11 3.07 3.17 3.10 3.02 3.03 3.37 3.09 3.43 3.13
DenseNet 3.68 3.54 3.56 3.69 3.67 3.65 3.62 3.65 3.62 3.78 3.70 3.56 3.53 4.01 3.58 4.01 3.67
CLIP (ViT-B/32) 7.63 7.37 7.33 7.27 7.26 6.31 6.19 6.24 6.16 6.43 7.33 6.35 7.35 6.42 7.37 6.62 7.36
CLIP (ViT-B/16) 6.48 6.08 6.07 6.02 6.01 5.15 5.05 5.12 5.03 5.21 6.15 5.20 6.09 5.24 6.08 5.39 6.13
CLIP (ViT-L/14) 3.62 3.20 3.22 3.15 3.15 2.65 2.61 2.63 2.61 2.74 3.20 2.64 3.19 2.76 3.18 2.74 3.19

(b) CIFAR-100
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-50 12.75 11.96 12.02 12.44 12.14 12.39 11.93 12.39 11.92 12.50 12.16 12.08 11.99 14.26 12.12 13.65 12.01
ResNet-110 13.86 12.69 12.74 13.29 12.94 13.27 12.82 13.26 12.82 13.37 13.11 13.07 12.70 14.88 12.80 14.24 12.75
WRN 11.05 10.72 10.74 11.05 10.85 11.03 10.71 11.03 10.72 11.08 10.82 10.77 10.75 12.65 10.82 12.07 10.86
DenseNet 12.49 12.09 12.10 12.33 12.16 12.30 12.04 12.30 12.04 12.47 12.16 12.11 12.07 14.06 12.13 13.41 12.11
CLIP (ViT-B/32) 17.25 16.20 16.12 15.88 15.90 15.98 14.72 16.03 15.09 15.92 16.28 14.97 16.23 15.55 16.31 15.36 16.25
CLIP (ViT-B/16) 17.21 16.01 15.94 15.42 15.41 15.37 13.98 15.44 14.06 15.49 15.87 14.39 15.85 14.69 15.92 14.52 15.88
CLIP (ViT-L/14) 14.78 13.33 13.27 12.70 12.71 11.53 10.67 11.69 10.90 12.59 13.17 11.00 13.16 11.56 13.18 11.38 13.15

(c) ImageNet
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

ResNet-18 13.93 13.86 13.85 13.94 13.93 13.92 13.92 14.48 14.53 14.50 13.87 13.89 13.87 15.56 13.90 15.02 13.93
ResNet-34 13.15 12.97 12.99 13.04 13.05 12.99 13.05 13.54 13.53 13.70 12.99 13.13 12.99 14.92 13.01 14.43 13.08
ResNet-50 29.79 12.25 12.33 10.95 10.88 10.98 10.92 10.98 10.92 13.14 12.07 10.71 12.02 11.90 12.08 11.08 12.12
ResNet-101 12.65 10.72 10.79 10.65 10.51 10.70 10.51 10.70 10.51 11.97 10.77 10.35 10.71 11.72 10.74 11.40 10.75
EffNet-B7 11.28 9.59 9.69 9.71 9.55 9.72 9.51 9.72 9.50 11.02 9.70 9.41 9.60 10.71 9.62 10.35 9.65
EffNetV2-S 12.39 9.40 9.45 9.66 9.48 9.71 9.50 9.71 9.50 10.61 9.55 9.37 9.43 10.64 9.46 10.37 9.50
EffNetV2-M 16.05 9.72 9.83 9.59 9.44 9.55 9.32 9.54 9.31 10.64 9.78 9.18 9.72 10.40 9.76 10.02 9.78
EffNetV2-L 9.80 8.99 9.08 8.90 8.82 8.93 8.83 8.93 8.84 10.28 9.01 8.81 9.00 9.96 9.01 9.70 9.03
ConvNeXt-T 14.02 10.87 10.96 10.39 10.33 10.40 10.33 10.40 10.32 11.79 10.89 10.13 10.87 11.61 10.90 11.14 10.91
ConvNeXt-S 13.62 10.30 10.35 10.16 10.02 10.16 9.95 10.15 9.95 11.32 10.36 9.78 10.32 11.27 10.35 10.83 10.37
ConvNeXt-B 13.86 10.14 10.20 10.05 9.89 10.01 9.79 10.01 9.79 11.36 10.20 9.60 10.14 11.11 10.18 10.63 10.19
ConvNeXt-L 11.58 9.88 9.99 9.92 9.76 9.99 9.70 9.99 9.71 10.97 9.92 9.46 9.88 10.96 9.90 10.46 9.94
ViT-B/32 12.68 12.22 12.26 12.35 12.17 12.53 12.33 12.54 12.32 13.28 12.26 12.11 12.24 13.72 12.26 13.40 12.30
ViT-B/16 11.02 10.65 10.71 10.89 10.72 11.01 10.84 11.01 10.83 11.98 10.73 10.59 10.66 12.09 10.67 11.84 10.72
ViT-L/32 12.15 11.92 12.02 12.35 12.11 12.49 12.21 12.49 12.21 13.20 12.02 11.92 11.93 13.87 11.96 13.45 12.04
ViT-L/16 11.39 11.13 11.22 11.73 11.46 11.88 11.57 11.88 11.57 12.82 11.28 11.13 11.11 13.21 11.15 12.71 11.22
ViT-H/14 7.46 7.47 7.51 7.49 7.46 7.57 7.59 7.57 7.59 8.79 7.46 7.58 7.47 8.60 7.48 8.46 7.52
Swin-T 11.09 10.59 10.64 10.64 10.53 10.71 10.64 10.71 10.63 11.68 10.64 10.51 10.61 11.89 10.63 11.66 10.66
Swin-S 10.14 9.98 10.04 10.23 10.06 10.32 10.12 10.32 10.13 11.40 10.06 9.95 9.98 11.48 10.00 11.14 10.06
Swin-B 10.18 9.90 10.00 10.21 10.05 10.22 10.10 10.23 10.10 11.42 10.01 9.82 9.91 11.46 9.93 11.06 10.00
SwinV2-T 11.06 10.33 10.39 10.45 10.29 10.54 10.38 10.54 10.38 11.65 10.38 10.25 10.34 11.69 10.36 11.43 10.37
SwinV2-S 10.05 9.61 9.67 9.91 9.72 10.01 9.78 10.01 9.77 11.13 9.70 9.57 9.62 11.13 9.64 10.70 9.69
SwinV2-B 10.00 9.64 9.70 9.97 9.79 10.04 9.82 10.03 9.83 11.05 9.76 9.59 9.64 11.21 9.66 10.78 9.73
CLIP (ViT-B/32) 17.76 17.75 17.72 17.75 17.76 17.05 16.37 31.17 50.78 17.52 17.74 17.24 17.76 18.05 17.79 17.38 17.81
CLIP (ViT-B/16) 16.99 16.99 16.89 16.98 16.98 16.12 15.54 30.53 44.73 16.74 16.97 16.22 16.98 17.14 16.99 16.54 17.03
CLIP (ViT-L/14) 14.96 14.91 14.93 14.97 14.99 14.17 13.67 26.10 47.35 14.95 14.91 14.32 14.92 15.39 14.93 14.87 14.99

(d) ImageNet-21K
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

MN3 14.08 err. err. 13.35 12.71 17.17 16.26 49.94 69.66 err. 11.95 17.06 11.93 err. 11.93 10.70 11.95
ViT-B/16 13.51 err. err. 13.54 13.49 18.14 17.11 20.10 18.22 err. 12.96 18.12 12.76 err. 12.77 12.91 12.96

(e) Amazon Fine Foods
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 7.78 7.27 7.30 7.27 7.27 6.93 6.85 6.73 6.75 7.32 7.30 6.69 7.28 6.77 7.29 7.19 7.33
T5-large 7.02 6.34 6.36 6.40 6.40 6.11 5.94 5.76 5.82 6.57 6.46 5.80 6.34 5.92 6.38 6.42 6.41
RoBERTa 8.66 7.30 7.35 7.42 7.42 7.22 7.02 6.87 6.99 8.12 7.85 6.86 7.30 7.11 7.48 7.70 7.37
RoBERTa-large 7.43 6.15 6.23 6.30 6.29 6.18 6.01 5.89 6.00 6.96 6.85 5.86 6.14 6.21 6.49 6.74 6.22

(f) DynaSent
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 14.68 13.96 13.96 13.89 13.89 14.15 13.88 14.09 13.87 15.40 14.02 13.84 13.98 14.00 14.05 14.21 13.96
T5-large 13.67 12.48 12.52 12.52 12.52 13.08 12.21 12.82 12.16 14.16 12.80 12.14 12.50 12.43 12.62 12.78 12.54
RoBERTa 18.98 14.96 15.09 17.03 17.03 18.16 15.53 17.66 15.15 19.39 16.62 14.67 14.97 15.60 15.64 15.96 15.01
RoBERTa-large 16.14 13.21 13.35 14.65 14.65 15.54 13.51 15.29 13.37 16.66 14.70 13.09 13.20 13.91 13.83 14.20 13.25

(g) MNLI
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 8.95 8.21 8.25 8.21 8.21 8.35 8.19 8.29 8.17 9.33 8.28 8.14 8.22 8.28 8.29 8.65 8.24
T5-large 8.56 7.49 7.52 7.76 7.76 7.98 7.46 7.88 7.41 8.80 7.98 7.40 7.49 7.80 7.78 8.07 7.54
RoBERTa 11.50 9.60 9.67 10.24 10.23 10.57 9.57 10.36 9.54 11.80 10.48 9.44 9.60 10.06 10.03 10.48 9.60
RoBERTa-large 9.30 8.04 8.12 8.40 8.40 8.65 8.04 8.56 8.03 9.57 8.72 7.98 8.05 8.40 8.39 8.71 8.12

(h) Yahoo Answers
Model Uncal. IRM I-Max TS TSTvA VS VSreg_TvA DC DCreg_TvA Beta BetaTvA Iso IsoTvA BBQ BBQTvA HB HBTvA

T5 14.70 14.18 14.21 14.14 14.15 14.22 14.14 14.21 14.13 14.98 14.20 14.14 14.18 14.41 14.24 14.75 14.24
T5-large 15.23 14.25 14.29 14.23 14.25 14.44 14.21 14.41 14.12 15.66 14.28 14.18 14.24 14.49 14.33 14.83 14.29
RoBERTa 20.95 15.94 16.12 17.57 17.56 19.20 15.92 18.84 15.54 21.23 17.15 15.64 15.94 16.75 16.55 17.20 15.99
RoBERTa-large 20.94 15.68 15.86 17.57 17.57 19.23 15.59 18.96 15.30 21.21 17.14 15.38 15.68 16.71 16.42 17.15 15.72
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Table 12: Calibration methods applied to in-context learning of LLMs. Accuracy and ECE are in %.
Dataset TREC SST-5 DBpedia

Acc. (↑) ECE (↓) Acc. (↑) ECE (↓) Acc. (↑) ECE (↓)
Model Shots Method

GPT-J 6B

0

Uncalibrated 24.7 29.7 33.7 22.5 19.7 27.4
ConC 40.0 14.0 40.7 10.3 47.7 24.6
LinC 58.9 26.4 46.3 11.0 62.2 12.8
LinC+HBTvA 58.9 6.5 46.3 7.0 62.2 5.7

1

Uncalibrated 43.7 12.1 36.3 30.9 58.7 14.2
ConC 41.7 13.6 50.7 14.2 82.7 6.9
LinC 59.9 9.1 50.1 12.3 84.4 6.6
LinC+HBTvA 59.9 3.9 50.1 7.3 84.4 5.1

4

Uncalibrated 26.0 41.6 51.3 28.2 89.0 15.7
ConC 40.3 14.4 54.3 8.8 94.0 6.9
LinC 57.9 9.7 53.6 10.6 94.3 5.7
LinC+HBTvA 57.9 5.2 53.6 7.1 94.3 4.8

8

Uncalibrated 36.0 26.0 48.3 9.7 92.3 9.2
ConC 46.7 15.5 43.7 11.7 92.0 6.8
LinC 60.7 6.3 51.7 9.5 93.9 5.8
LinC+HBTvA 60.7 6.6 51.7 7.6 93.9 2.6

Llama-2 13B

0

Uncalibrated 48.7 21.4 34.0 17.6 54.3 19.7
ConC 71.7 18.7 33.3 17.2 75.3 17.2
LinC 73.3 11.4 47.6 11.3 84.4 16.2
LinC+HBTvA 73.3 9.3 47.6 6.7 84.4 4.1

1

Uncalibrated 63.0 8.6 41.3 29.4 90.7 11.4
ConC 76.0 5.9 41.0 12.6 92.3 5.2
LinC 79.7 6.3 48.7 12.1 93.1 4.4
LinC+HBTvA 79.7 6.0 48.7 9.6 93.1 3.0

4

Uncalibrated 60.0 12.0 50.7 37.6 94.0 9.9
ConC 71.3 6.9 51.3 18.6 95.3 3.8
LinC 75.6 8.0 52.9 15.1 95.3 3.8
LinC+HBTvA 75.6 4.0 52.9 7.6 95.3 2.2

8

Uncalibrated 70.0 5.2 55.0 7.0 94.7 5.9
ConC 73.7 12.6 44.0 22.8 94.3 3.9
LinC 73.5 9.4 50.2 14.4 95.3 3.9
LinC+HBTvA 73.5 7.0 50.2 4.2 95.3 2.1

Large Language Models (LLMs) exhibit an in-context learning (ICL) capability, meaning they can
learn from just a few examples in the context. It works by constructing a prompt that includes
input-output pairs demonstrating the considered task, followed by a query for a new input. See [8] for
a survey. Recent works develop calibration methods whose main goal is to improve the performance
of ICL for LLMs, without requiring a complicated model fine-tuning. [77] uses a customized variant
of Platt scaling (more specifically, Vector Scaling). Their method infers good values of the vector
scaling parameters in a data-free procedure. The idea is that for a "content-free" input, e.g., "N/A",
the calibrated probability has a 50% chance (for a binary classification task) of removing a bias
toward the positive or negative class. In our paper, we denote this method as ConC. [1] builds on top
of this work but uses a calibration set to learn the scaling parameters by minimizing the cross-entropy
loss. This can be considered as Matrix Scaling. We denote this method as LinC. [78] proposes a
per-class normalization of the probabilities on a given batch. [25] estimates the in-context model
label marginal p(y) from limited data and uses it to calibrate the model probabilities. Paper [20] uses
a Gaussian mixture model.

In our experiments, we have tested a two-step calibration. First, we use the state-of-the-art method
LinC to maximize the accuracy by learning scaling parameters on a calibration set. Then, we apply
HBTvA to scale the confidences to lower the calibration error ECE, while preserving the accuracy gains.
We use the same calibration set for the two methods. LinC performance depends on hyperparameter
values, but to keep the experiments simple, we fixed the following values: 100 epochs, a learning rate
of 0.001, and 300 calibration samples. It means that the reported performance of LinC is suboptimal
and could be enhanced even more. We used the same experimental setting as [1]. We used the models
GPT-J with 6B parameters [62] and Llama-2 with 13B parameters [59]. The text classification datasets
are TREC [61] for question classification with 6 classes, SST-5 [55] for sentiment analysis with 5
classes, and DBpedia [74] for topic classification with 14 classes. The 0-shot, 1-shot, 4-shot, and
8-shot learning settings were tested. Five different sets of 300 test samples were randomly selected,
and results are averaged over 5 seeds. We evaluated the accuracy and ECE for each configuration.
Please see Table 12 for the results. In most cases, LinC+HBTvA achieves the best accuracy and ECE.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 is a separate "Limitations" section in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: No strong theoretical result, but mathematical calculations are in Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use publicly available models and data and experiments details are provided
in Section 5 and Appendix F. Our provided code can be used to reproduce our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available models and data and provide a clean code imple-
mentation aiming for easy reuse and reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in Section 5, Appendix F; and in the provided code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our tables show values averaged over five random seeds that generate
different calibration and test datasets, as mentioned in Section 5. Standard deviations are
reported in Table 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Table 3 in the Appendix provides computing times and the GPU model used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper does conform with the NeurIPS Code of
Ethics and we preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix B discusses the broader impacts of the work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that improved confidence calibration does not have a high risk of
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The papers producing the used datasets are cited. The code implementations
used are cited and the URLs are provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our provided code is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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