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Abstract

We consider the classic problem of online convex optimisation. Whereas the notion
of static regret is relevant for stationary problems, the notion of switching regret is
more appropriate for non-stationary problems. A switching regret is defined relative
to any segmentation of the trial sequence, and is equal to the sum of the static
regrets of each segment. In this paper we show that, perhaps surprisingly, we can
achieve the asymptotically optimal switching regret on every possible segmentation
simultaneously. Our algorithm for doing so is very efficient: having a space and
per-trial time complexity that is logarithmic in the time-horizon. Our algorithm
also obtains novel bounds on its dynamic regret: being adaptive to variations in the
rate of change of the comparator sequence.

1 Introduction

We consider the classic problem of online convex optimisation: a problem with numerous real-world
applications. In this problem we have an action set which is a bounded convex subset of some
euclidean space. On each trial we select an action from this set and then receive a convex function of
bounded gradient, which associates the action with a loss. The aim is to minimise the cumulative loss.
The static regret is defined as the cumulative loss of the algorithm minus that of the best constant
action in retrospect. It has been shown that the minimax static regret is Θ(

√
T ) where T is the time

horizon, and that it is achieved by the classic mirror descent family of algorithms [2]. However,
in dynamic environments a more sensible notion of regret is the switching regret, which is defined
relative to any segmentation of the trial sequence and is equal to the sum of the static regrets over
all segments. Clearly, if the segmentation is known a-priori then the minimax switching regret is
Θ(
∑

k

√
Λk) where Λk is the length of the k-th segment, and it is obtained by running mirror descent

independently on each segment. Tracking algorithms, instead, attempt to bound the switching regret
on every possible segmentation of the trial sequence simultaneously. However, as far as we are aware,
the best such bound until now was O(

∑
k

√
Λk ln(T )) which is a factor of O(

√
ln(T )) higher than

the optimal if we knew the segmentation a-priori. In this paper we (quite remarkably) get rid of
this factor: hence obtaining the asymptotically optimal switching regret of O(

∑
k

√
Λk) for every

possible segmentation simultaneously. Not only is our algorithm optimal, but it is also parameter-free
and efficient: having both a space and per-trial time complexity of O(ln(T )).
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In fact, our algorithm RESET is a meta-algorithm which utilises any base algorithm for the online
convex optimisation problem at hand. Using online gradient descent [11] as our base algorithm gives
us the above O(

∑
k

√
Λk) switching regret bound. However, the constant under the O is dependent

on the action set and the possible gradients. By choosing a more appropriate base algorithm that is
tailored to the specific problem we can achieve lower constant factors. In particular, when faced with
the classic problem of prediction with expert advice with N experts, using Hedge [5] as our base
algorithm yields the asymptotically optimal O(

∑
k min(Λk ,

√
ln(N)Λk)) switching regret (a novel

result in itself).

We note that although, like strongly adaptive algorithms [4], we are adaptive to heterogeneous
segment lengths, we are not necessarily strongly adaptive: in that we do not bound the static regret
on any particular segment.

Whilst switching regret models discrete changes in the environment, a continuously changing envi-
ronment is better modeled by the notion of dynamic regret, which is the difference between the loss
of the algorithm and that of any comparator sequence of actions. It is known that algorithms exist
which bound the dynamic regret by O(

√
(1 + P )T ) where P is the path length of the comparator

sequence. However, this bound is not adaptive to variations in the rate that the comparator sequence
is changing. RESET, with online gradient descent as the base algorithm, rectifies this: improving
the dynamic regret to O(

∑
k

√
(1 + Pk)Λk) for any segmentation in which the path length in the

k-th segment is Pk. We note that this implies the O(
∑

k

√
Λk) bound on switching regret. However,

since we are forced to use online gradient descent as our base algorithm here, this result is not strictly
more general than our switching regret result.

Related works: Mirror descent was introduced in [2] to find minimisers of convex functions in
convex sets. The same algorithm, however, can also be applied to online convex optimisation: the
Hedge algorithm of [5] implementing a special case when the convex set is a simplex and the convex
functions are linear (the so-called experts problem). The O(

√
T ) static regret of Mirror descent

was shown to be optimal in [1]. The work [6] studied the non-stationary case in the experts setting:
modifying Hedge to give an algorithm Fixed share which takes a parameter Φ and has a switching
regret of O(

√
ΦT ln(T/Φ)) for any segmentation with Φ segments. One issue with Fixed share,

however, is that it does not adapt to heterogeneous segment lengths. In order to remedy this, [4]
gave a strongly adaptive algorithm which achieved a static regret of O(ln(T )

√
Λ) on any segment of

length Λ. This was improved to O(
√

ln(T )Λ) in [8]. The work [9] took parameters a, b ∈ N and
achieved a static regret of O(

√
(1 + ln(b/a))Λ) for any segment of length Λ ∈ [a, b]. However, this

still leads to a switching regret of O(
∑

k

√
Λk ln(T )) for general segmentations. Our work finally

achieves the optimal O(
∑

k

√
Λk). The work [11] showed that gradient descent achieves a dynamic

regret of O((1 + P )
√
T ), which was improved to O(

√
(1 + P )T ) in [10]. However, prior to both

these works, the work [7] obtained theO(
√

(1 + P )T ) bound subject to an optimal parameter tuning.
Our work dramatically improves on this bound by being adaptive to variations in the rate of change
of the comparator sequence.

Notation: Let N be the set of natural numbers excluding 0. Given A ∈ N we define [A] := {a ∈
N | a ≤ A}, we define ∆A := {a ∈ [0, 1]A |

∑
i∈[A] ai = 1} , and we define AN to be the set of

natural numbers that are multiples of A. Given a predicate p we define JpK := 0 if p is false and
define JpK := 1 if p is true. Given q, s ∈ N with s ≥ q let ⟨q, s⟩ := {a ∈ N | q ≤ a ≤ s}.

2 Problem and Results

In this section we introduce the online convex optimisation problem and state the results of this paper.
In particular we define and compare the notions of switching and dynamic regret, giving the bounds
obtained by our meta-algorithm RESET. Another common notion of regret, not necessarily bounded
by RESET, is strongly adaptive regret which we discuss in Section 3.3.

2.1 Online Convex Optimisation

Here we describe the classic problem of online convex optimisation, which our meta-algorithm
RESET solves. In this problem we have known bounded convex subsets X ,G of some euclidean

2
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space. We define L to be the set of all convex functions that map X into R and whose sub-gradients
lie in G. The problem proceeds in T trials. On each trial t ∈ [T ] the following happens:

1. We choose some action xt ∈ X .
2. We receive some loss function ℓt ∈ L.

Our aim is to minimise the cumulative loss:∑
t∈[T ]

ℓt(xt) .

Without loss of generality we shall assume that for all t ∈ [T ] and all x ∈ X we have ℓt(x) ∈ [0, 1].
This is without loss of generality as both X and the sub-gradients of ℓt are bounded and our algorithm
RESET, when using mirror descent as the base algorithm, is invariant to any constant addition to any
loss function. Also, without loss of generality, assume that T is an integer power of two.

An example of online convex optimisation is prediction with expert advice. Here we have some
N ∈ N and a set of N experts: where on each trial each expert is associated with a loss in [0, 1]. On
each trial we must select an expert (incurring the loss associated with that expert) and then observe
the vector of losses for that trial. For this problem we choose X := ∆N and G := [0, 1]N . On each
trial t we draw our expert from the probability vector xt and define the loss function ℓt to be the
linear function such that for all i ∈ [N ] we have that ℓt(ei) (that is, the loss of the i-th basis element
of RN ) is the loss associated with expert i on trial t. Note that ℓt(xt) is our expected loss on trial t.

2.2 Switching Regret

We now define the notion of switching regret. A segment is any set of the form ⟨q, s⟩ for q, s ∈ [T ]
with s ≥ q. The static regret with respect to such a segment I is defined as:

R(I) := max
x∗∈X

∑
t∈I

(ℓt(xt)− ℓt(x∗))

which is the total loss incurred on the segment minus that which would have been obtained by always
choosing the best constant action in retrospect. A segmentation S is defined as any partition of [T ]
into segments. The switching regret with respect to such a segmentation S is defined as:

R†(S) :=
∑
I∈S

R(I)

which is the sum of the static regrets on each segment of S. Note that R†(S) is the total loss of
the algorithm minus that which would have been obtained by the best sequence of actions which is
constant over each segment of S . The following theorem establishes a lower bound on the switching
regret with respect to any fixed segmentation, even in the special case in which all the loss functions
are linear:
Theorem 2.1. For any segmentation S and any algorithm for the online convex optimisation problem,
there exists (except in trivial cases) a sequence:

⟨ℓt | t ∈ [T ]⟩ ⊆ L
of linear functions, in which:

R†(S) ∈ Ω

(∑
I∈S

√
|I|

)
where the constant under the Ω is dependent only on X and G.

Proof. Apply the static regret lower bound of [1] to each segment independently.

In this paper we develop an algorithm RESET which has an upper-bound that matches this lower
bound for every possible segmentation S simultaneously. RESET utilises any algorithm (called the
base algorithm) for the online convex optimisation problem at hand. The base algorithm must take a
parameter Λ ∈ [T ] and guarantee that R([Λ]) ∈ O(

√
Λ) if it were used directly. We note that online

gradient descent [11] is always one such possibility. Computationally, to use online gradient descent,
we must be able to compute subgradients of the loss functions and euclidean projections into the set
X . The following theorem bounds the switching regret of RESET.

3
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Theorem 2.2. Suppose γ ∈ R is such that for all Λ ∈ [T ], when the base algorithm is run with
parameter Λ, it is guaranteed that:

R([Λ]) ≤ γ
√
Λ .

Then, for any segmentation S , RESET achieves a switching regret of:

R†(S) ≤ (cγ + d)
∑
I∈S

√
|I|

where:
c :=

√
2/(
√
2− 1) ; d :=

√
8 ln(2)/(3− 2

√
2) .

Proof. See Section 4.

Clearly, theorems 2.1 and 2.2 show that, for any fixed pair (X ,G), RESET has the asymptotically
optimal switching regret for every segmentation simultaneously. However, our result is stronger.
For example, take the problem of prediction with expert advice defined above. Here the HEDGE
algorithm attains:

R([Λ]) ∈ O
(
min

(
Λ,
√
ln(N)Λ

))
which is shown to be optimal via (the proofs of) theorems 3.6 and 3.7 of [3] and by noting that we can
always force O(Λ) regret if Λ ≤ ln(N). Although there is a slight technicality here when segments
have length less than ln(N), the proof of Theorem 2.2 still works in exactly the same way to show
that (by applying RESET to HEDGE) we have the asymptotically optimal switching regret for every
value of N and every segmentation simultaneously.

RESET is also very efficient, as shown in the following theorem.
Theorem 2.3. Given that the base algorithm runs in a time of ξ per trial and requires a space of ξ′,
RESET has a per-trial time complexity of O(ξ ln(T )) and space complexity of O(ξ′ ln(T )).

Proof. Immediate from the RESET algorithm.

2.3 Dynamic Regret

Switching regret measures the performance of the algorithm against the best comparator sequence of
actions that is constant in each segment. Dynamic regret, on the other hand, measures the performance
of the algorithm against any comparator sequence. Specifically, given any sequence of actions:

E = ⟨ϵt | t ∈ [T + 1]⟩ ⊆ X
then the dynamic regret with respect to E is defined as:

R∗(E) :=
∑
t∈[T ]

(ℓt(xt)− ℓt(ϵt)) .

To bound the dynamic regret of RESET we introduce the following notion of path length. Specifically,
given the above sequence E and a segment I, the path length of E in the segment I is defined as:

P (E , I) :=
∑
t∈I
∥ϵt+1 − ϵt∥2 .

The current state of the art for dynamic regret is the algorithm ADER [10] which achieves a dynamic
regret of:

R∗(E) ∈ O
(√

(1 + P (E , [T ]))T
)
.

In this paper we significantly improve on this result, as shown in the following theorem.
Theorem 2.4. When using online gradient descent [11] as the base algorithm, RESET achieves, for
any comparator sequence E and any segmentation S, a dynamic regret of:

R∗(E) ∈ O

(∑
I∈S

√
(1 + P (E , I))|I|

)
where the constant under the O is dependent only on X and G.

4
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Proof. See Section 4

Note that, for any segmentation, the dynamic regret bound of RESET is asymptotically equal to that
of running ADER on each segment independently. To achieve this with ADER one would need to
know the specific segmentation a-priori. As for the switching regret, RESET achieves this for every
segmentation simultaneously. We note that our bound is a significant improvement on that of ADER
since it is adaptive to variation in the rate of change of the comparator sequence.

We note that, given a segmentation S , the switching regret R†(S) is equal to the maximum dynamic
regretR∗(E) across all sequences E that are constant in each segment of S . For all I ∈ S , the fact that
such an E is constant on I implies that the path length P (E , I) is in O(1). This means that Theorem
2.4 implies the switching regret bound of Theorem 2.2 up to a constant factor (dependent on γ,X
and G). However, to obtain Theorem 2.4 we must use online gradient descent as our base algorithm.
For prediction with expert advice, for example, online gradient descent is not asymptotically optimal
for every value of N simultaneously. Hence, when considering switching regret only, Theorem 2.2 is
a stronger result.

3 The Algorithm

In this section we describe our meta-algorithm RESET (Recursion over Segment Tree). We first
introduce the notation that we will use to describe the base algorithm.

3.1 The Base Algorithm

We now define the notation that we use to describe our base algorithm. The base algorithm utilises a
data-structure D (which contains the parameter) and is composed of the following three subrountines:

• Given Λ ∈ [T ], the subroutine INITIALISE(Λ) returns the initial data-structure with parame-
ter Λ.

• At the start of a trial, given the current data-structure D, the subroutine QUERY(D) returns
the output action of the base algorithm for that trial.

• At the end of a trial t, given the current data-structure D and the loss function ℓt, the
subroutine UPDATE(D, ℓt) returns the updated data-structure (ready for the next trial).

The assumption in Theorem 2.2 implies the following. Suppose we have trials q, s ∈ [T ] with s ≥ q,
and on each trial t ∈ ⟨s, q⟩ we do the following:

1. If t = s then Dt ← INITIALISE(q − s+ 1) .
2. wt ← QUERY(Dt) .
3. Dt+1 ← UPDATE(Dt, ℓt) .

Then we have:

max
x∗∈X

s∑
t=q

(ℓt(wt)− ℓt(x∗)) ≤ γ
√
q − s+ 1 . (1)

3.2 RESET

We now introduce our meta-algorithm RESET. First let τ := log2(T ) and define the function
ψ : R× R× R× N→ R by:

ψ(ρ, a, b,Λ) :=
ρ exp

(
−a
√
2 ln(2)/Λ

)
ρ exp

(
−a
√
2 ln(2)/Λ

)
+ (1− ρ) exp

(
−b
√
2 ln(2)/Λ

) .
The pseudocode of RESET is given in Algorithm 1.

We now describe RESET. We have a set of τ + 1 levels, where each level i ∈ [τ ] ∪ {0} hosts an
instance of the base algorithm with parameter 2i and which will reset every 2i trials. On each trial t,

5
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Algorithm 1 RESET
for i ∈ [τ ] ∪ {0} do

µi
1 ← 1/2
Di

1 ← INITIALISE(2i)
end for
for t ∈ [T ] do

for i ∈ [τ ] ∪ {0} do
wi

t ← QUERY(Di
t)

end for
z0
t ← w0

t
for i ∈ [τ ] do

zi
t ← µi

tw
i
t + (1− µi

t)z
i−1
t

end for
xt ← zτ

t
for i ∈ [τ ] ∪ {0} do

if t ∈ 2iN then
µi
t+1 ← 1/2

Di
t+1 ← INITIALISE(2i)

else
µi
t+1 ← ψ(µi

t , ℓt(w
i
t) , ℓt(z

i−1
t ) , 2i )

Di
t+1 ← UPDATE(Di

t , ℓt )
end if

end for
end for

we denote the data-structure of the base algorithm associated with level i by Di
t. Each level also has

an associated number in [0, 1] called the mixing weight. On each trial t, we denote the mixing weight
associated with level i by µi

t. We note that the mixing weight µ0
t is not necessary.

We now describe the creation of the action xt on trial t. Note first that each level i ∈ [τ ]∪ {0} has an
associated action wi

t which is defined as the output of QUERY(Di
t), so is the action selected by the

base algorithm for level i on trial t. We call these actions the base actions. The action xt is created
by the following recursive process. For each level i in order we construct an action zi

t called the
propagating action. This action is constructed by a convex combination of the preceding propagating
action zi−1

t and the base action wi
t. Specifically, we start by setting:

z0
t ← w0

t

and then, for all levels i ∈ [τ ], once zi−1
t has been constructed we set:

zi
t ← µi

tw
i
t + (1− µi

t)z
i−1
t .

Finally, we output:
xt ← zτ

t .
We now turn to the update at the end of trial t. For all levels i ∈ [τ ] ∪ {0} we have the following two
cases.

If t ∈ 2iN then we set:
µi
t+1 ← 1/2 ; Di

t+1 ← INITIALISE( 2i )

so that the mixing weight and instance of the base algorithm hosted by level i are reset. Note that the
parameter of the base algorithm is 2i. This is since it is reset every 2i trials.

On the other hand, if t /∈ 2iN then we set:
µi
t+1 ← ψ(µi

t , ℓt(w
i
t) , ℓt(z

i−1
t ) , 2i ) ; Di

t+1 ← UPDATE(Di
t , ℓt ) .

Note that the update of the mixing weight is based on the losses of wi
t and zi−1

t . If zi−1
t has a higher

loss than wi
t , in that the base action performs better than the lower-level propagating action, then the

mixing weight increases. This means that the weight of the base action, in the convex combination
forming the propagating action of level i, increases. If wi

t has a higher loss than zi−1
t then the

opposite happens.

Figure 1 illustrates RESET.

6
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Figure 1: RESET with 8 trials.
Left: The generation of the base actions and mixing weights. Purple numbers denote levels and black
numbers denote trials. Each segment (rectangle) in the figure runs an instance of the base algorithm
(generating the base actions). The mixing weights for each level reset at the start of each segment.
Mixing weight updates are dependent on the segment length.
Right: The computation of the action xt on trial t. Purple numbers denote levels. Blue balls denote
base actions, red balls denote mixing weights, and black balls denote propagating actions. The final
black arrow is the output xt.

3.3 Comparison to Strongly Adaptive Online Learner

RESET has some similarities to the SAOL algorithm of [4]. Unlike RESET, SAOL is strongly
adaptive, in that it bounds the static regret on any segment. Specifically, for any segment I , SAOL
achieves:

R(I) ∈ O
(
ln(T )

√
|I|
)
.

This, however, leads to a switching regret bound that is a factor O(ln(T )) off the optimal. This
additional factor was improved to O(

√
ln(T )) by [8].

Like RESET, SAOL has τ + 1 levels and utilises a base algorithm which constructs, for every trial t
and level i, a base action wi

t in exactly the same way as RESET. It then generates, for each trial t, the
final action xt as a convex combination of the base actions. We note that in RESET, the action xt is
also a convex combination of the base actions, where for each level i ∈ [τ ], the coefficient of wi

t is
equal to:

µi
t

τ∏
j=i+1

(1− µj
t ) .

The crucial difference between SAOL and RESET is that, whilst SAOL updates each coefficient in
the convex combination directly, the coefficients in RESET are updated by updating each mixing
weight directly. It is due to this, and the particular way that the mixing weights are updated, that
RESET attains, unlike SAOL, the optimal switching regret.

4 Analysis

Here we prove Theorem 2.2. We will show how to modify this proof in order to prove Theorem 2.4
at the end of this section. All lemmas stated in this section are proved in Appendix A.

Choose any segmentation S. Let Φ := |S| and for all k ∈ [Φ + 1] define σk such that the k-th
segment in S is ⟨σk, σk+1 − 1⟩. We define a comparator sequence ⟨ϵt | t ∈ [T ]⟩ as follows. For all
k ∈ [Φ] define the action:

ϵ̃k := argminx∗∈X

σk+1−1∑
t=σk

ℓt(x
∗)

and then, for all t ∈ ⟨σk, σk+1 − 1⟩, define ϵt := ϵ̃k. Note that:

R†(S) =
∑
t∈[T ]

(ℓt(xt)− ℓt(ϵt)) . (2)

In addition let α := 2
√
ln(2)/(

√
2− 1). With these definitions in hand we now begin the analysis.

7
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4.1 Hedge

The updates for our mixing weights follow the classic algorithm HEDGE [5]. In particular, for each
level i ∈ [τ ] we maintain an instance of HEDGE (which restarts every 2i trials) with two experts. On
each trial t, the weight of the first expert is µi

t and the weight of the second is 1− µi
t. The loss of the

first expert is ℓt(wi
t) and the loss of the second is ℓt(zi−1

t ). The purpose of the function ψ is then to
update the weights according to the HEDGE algorithm. The following lemma is a classic result about
HEDGE.
Lemma 4.1. Given trials q, s ∈ [T ] with q ≤ s , and a sequence ⟨(at, bt) | t ∈ ⟨q, s⟩⟩ such that for
all t ∈ ⟨q, s⟩ we have at, bt ∈ [0, 1], and a sequence ⟨ρt | t ∈ ⟨q, s⟩⟩ defined recursively such that for
all t ∈ ⟨q, s− 1⟩ we have:

ρq := 1/2 ; ρt+1 := ψ(ρt , at , bt , s− q + 1)

then we have:
s∑

t=q

(ρtat + (1− ρt)bt) ≤ min

{
s∑

t=q

at ,

s∑
t=q

bt

}
+
√

2 ln(2)(s− q + 1) .

4.2 The Segment Tree

In this subsection we define the segment tree, which is the geometrical structure that our analysis
is based on. The segment tree is a full, balanced, binary tree B whose leaves are the elements of
[T ] in order from left to right. Given any internal vertex v ∈ B, let ◁(v) and ▷(v) be its left and
right child respectively. Given any vertex v ∈ B, let ◀(v) and ▶(v) be its left-most and right-most
descendent respectively (noting that these are both elements of [T ]). Let r be the root of B. Given a
vertex v ∈ B \ {r}, let ↑(v) be the parent of v. Given a vertex v ∈ B, let h(v) be equal to the height
of v (that is, the height of the tree B minus the depth of v, so that leaves have height 0).

Each vertex v ∈ B represents the segment ⟨◀(v),▶(v)⟩. i.e. Each vertex represents a segment in the
left hand side of Figure 1 (when t = 8). We call a vertex v ∈ B stationary iff there exists k ∈ [Φ]
with σk ≤ ◀(v) and ▶(v) < σk+1. LetH be the set of all stationary vertices. We call a vertex v ∈ B
fundamental iff both:

• v ∈ H .
• v = r or ↑(v) /∈ H .

Let F be the set of all fundamental vertices. We call a vertex v ∈ B relevant iff it is an ancestor of
a fundamental vertex. Let A be the set of all relevant vertices. For all relevant vertices v ∈ A we
define Q(v) to be the set of descendants of v that are contained in F .

We have, from the algorithm, the following lemma about the vertices of the segment tree:
Lemma 4.2. Given any vertex v ∈ B we have:

▶(v)−◀(v) + 1 = 2h(v)

and:
µ
h(v)
◀(v) = 1/2 ; Dh(v)

◀(v) = INITIALISE( 2h(v) )

and for all t ∈ [◀(v),▶(v)− 1] we have:

µ
h(v)
t+1 = ψ

(
µ
h(v)
t , ℓt

(
w

h(v)
t

)
, ℓt

(
z
h(v)−1
t

)
, 2h(v)

)
; Dh(v)

t+1 = UPDATE
(
Dh(v)

t , ℓt

)
.

Note that this lemma shows that for all v ∈ B we run a single instance of both the base algorithm and
HEDGE over the segment ⟨◀(v),▶(v)⟩, as illustrated in Figure 1.

4.3 The Recursive Equations

We now derive the recursive equations that our analysis is based on. First note that for all v ∈ F
there exists u ∈ X such that ϵt = u for all t ∈ ⟨◀(v),▶(v)⟩. Hence, Lemma 4.2 and Equation (1),
and the fact that wh(v)

t is the output of QUERY(Dh(v)
t ) , lead to the following lemma.

8
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Lemma 4.3. For all v ∈ F we have:
▶(v)∑

t=◀(v)

ℓt

(
w

h(v)
t

)
≤

▶(v)∑
t=◀(v)

ℓt(ϵt) + γ
√

2h(v) .

Note that, from the algorithm and the convexity of the loss functions, we have, for all t ∈ [T ] and all
v ∈ B with h(v) ̸= 0, that:

ℓt

(
z
h(v)
t

)
≤ µh(v)

t ℓt

(
w

h(v)
t

)
+
(
1− µh(v)

t

)
ℓt

(
z
h(v)−1
t

)
.

So, by lemmas 4.2 and 4.1, we have the following lemma.
Lemma 4.4. For all vertices v ∈ B with h(v) ̸= 0 we have:

▶(v)∑
t=◀(v)

ℓt

(
z
h(v)
t

)
≤ min


▶(v)∑

t=◀(v)

ℓt

(
w

h(v)
t

)
,

▶(v)∑
t=◀(v)

ℓt

(
z
h(v)−1
t

)+
√
2 ln(2)2h(v) .

Noting that z0
t = w0

t for all t ∈ [T ], lemmas 4.3 and 4.4 immediately imply the following recursive
equations. For all v ∈ F we have:

▶(v)∑
t=◀(v)

ℓt

(
z
h(v)
t

)
≤

▶(v)∑
t=◀(v)

ℓt(ϵt) +
(
γ +

√
2 ln(2)

)√
2h(v) (3)

and for all v ∈ A \ F we have:
▶(v)∑

t=◀(v)

ℓt

(
z
h(v)
t

)
≤

▶(v)∑
t=◀(v)

ℓt

(
z
h(v)−1
t

)
+
√
2 ln(2)2h(v) . (4)

4.4 Performing the Recursion

We now utilise equations (3) and (4) to perform the recursion. Specifically, we have the following
inductive hypothesis for vertices in A, which is proved by induction up the tree B from the vertices
in F to the root. The reason it holds for vertices in F comes direct from Equation (3). For a vertex in
A \ F , once the inductive hypothesis has been shown to hold for both its children, it is then shown to
hold for the vertex itself by Equation (4). The inductive hypothesis is given in the following lemma.
Lemma 4.5. For all v ∈ A we have:

▶(v)∑
t=◀(v)

ℓt(z
h(v)
t ) ≤

▶(v)∑
t=◀(v)

ℓt(ϵt) +
∑

q∈Q(v)

γ +
√
2 ln(2)

h(v)−h(q)∑
k=0

√
2−k

√2h(q) .

In particular, this inductive hypothesis holds for v = r. By Equation (2) this gives us the following.
Lemma 4.6. We have:

R†(S) ≤ (γ + α)
∑
q∈F

√
2h(q) .

We now have a bound on the switching regret. It is, however, not yet written in terms of the
segment lengths. To write it in terms of the segment lengths we partition F into a sequence of sets
⟨Fk | k ∈ [Φ]⟩ such that, for all k ∈ [Φ], we define Fk to be equal to the set of all v ∈ F such that
σk ≤ ◀(v) and ▶(v) < σk+1. We now have the following lemma.
Lemma 4.7. For all k ∈ [Φ] we have:∑

v∈Fk

√
2h(v) ≤ c

√
σk+1 − σk .

Combining lemmas 4.6 and 4.7 gives us:

R†(S) ≤ (γ + α)
∑
v∈F

√
2h(v) = (γ + α)

∑
k∈[Φ]

∑
v∈Fk

√
2h(v) = c(γ + α)

∑
k∈[Φ]

√
σk+1 − σk

as required. This completes the proof of Theorem 2.2.
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4.5 Dynamic Regret Analysis

We now prove Theorem 2.4. Let the base algorithm be online gradient descent as in [11]. Take any
segmentation S∗ and any comparator sequence E . Let Ψ = |S∗| and for all j ∈ [Ψ] let Ij be the j-th
segment in S∗. For all j ∈ [Ψ], note that we can choose a natural number:

Nj ≤ 1 + P (E , Ij)
and a partition S ′j of Ij into Nj segments such that for all I ∈ S ′j we have:

P (E , I) ∈ O(1) (5)
Now define the segmentation:

S :=
⋃

j∈[Ψ]

S ′j

Note that Equation (5) implies that for all I ∈ S we have:
P (E , I) ∈ O(1) . (6)

We now modify the analysis of the switching regret as follows. In the analysis of the switching regret
we defined a comparator sequence ⟨ϵt | t ∈ [T ]⟩. In this analysis we instead define this comparator
sequence as equal to E . Using the segmentation S, construct the segment tree and the sets A and F
as in the analysis of the switching regret. Since our base algorithm is gradient descent we have, direct
from [11], the following lemma.
Lemma 4.8. Suppose we have trials q, s ∈ [T ] with s ≥ q, and on each trial t ∈ ⟨s, q⟩ we do the
following:

1. If t = s then Dt ← INITIALISE(q − s+ 1) .

2. wt ← QUERY(Dt) .

3. Dt+1 ← UPDATE(Dt, ℓt) .

Then we have:
s∑

t=q

(ℓt(wt)− ℓt(ϵt)) ∈ O
(
(1 + P (E , ⟨q, s⟩))

√
q − s+ 1

)
.

This lemma, along with Lemma 4.2 and Equation (6), gives us the following.
Lemma 4.9. For all v ∈ F we have:

▶(v)∑
t=◀(v)

ℓt

(
w

h(v)
t

)
≤

▶(v)∑
t=◀(v)

ℓt(ϵt) +O
(√

2h(v)
)
.

This lemma is essentially identical to, and will be used instead of, Lemma 4.3. Following the rest of
the analysis of the switching regret gives us:

R∗(E) ∈ O

(∑
I∈S

√
|I|

)
= O

∑
j∈[Ψ]

∑
I∈S′

j

√
|I|

 .

Note that for all j ∈ [Ψ] we have |S ′j | = Nj and hence:∑
I∈S′

j

√
|I| ≤

√
Nj

∑
I∈S′

j

|I| =
√
Nj |Ij | ≤

√
(1 + P (E , Ij))|Ij |

so we have proved Theorem 2.4.
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A Proofs

Here we prove, in order, all the lemmas in the analysis.

A.1 Lemma 4.1

Direct from [5] using only two experts, were, on each trial t, we have that:

• The loss of the first expert is at and the loss of the second is bt.

• The weight of the first expert is ρt and the weight of the second is 1− ρt.

A.2 Lemma 4.2

The equality:
▶(v)−◀(v) + 1 = 2h(v)

comes directly from the definition of h(v). We also have that:

◀(v)− 1 ∈ 2h(v)N

and for all t ∈ [◀(v),▶(v)− 1] we have:

t /∈ 2h(v)N .

Hence, by the algorithm, the lemma holds.
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A.3 Lemma 4.3

Note first that, since wh(v)
t is the output of QUERY(Dh(v)

t ) , Lemma 4.2 and Equation (1) immediately
give us:

max
x∗∈X

▶(v)∑
t=◀(v)

(
ℓt

(
w

h(v)
t

)
− ℓt(x∗)

)
≤ γ

√
2h(v) . (7)

Since v ∈ F we have that v ∈ H so there exists k ∈ [Φ] with σk ≤ ◀(v) and ▶(v) < σk+1. This
implies that for all t ∈ ⟨◀(v),▶(v)⟩ we have t ∈ ⟨σk, σk+1 − 1⟩ so that ϵt := ϵ̃k. Hence, we have:

min
x∗∈X

▶(v)∑
t=◀(v)

ℓt(x
∗) ≤

▶(v)∑
t=◀(v)

ℓt(ϵ̃k) =

▶(v)∑
t=◀(v)

ℓt(ϵt) .

Substituting into Equation (7) gives us the result.

A.4 Lemma 4.4

Consider Lemma 4.1. In this lemma choose q := ◀(v) and s := ▶(v). For all t ∈ ⟨q, s⟩ choose:

at := ℓt

(
w

h(v)
t

)
; bt := ℓt

(
z
h(v)−1
t

)
.

Then by Lemma 4.2 we have, for all t ∈ [q, s], that:

ρt = µ
h(v)
t

so that, by the algorithm and the convexity of the loss functions we have, for all t ∈ ⟨q, s⟩, that:

ℓt

(
z
h(v)
t

)
≤ µh(v)

t ℓt

(
w

h(v)
t

)
+
(
1− µh(v)

t

)
ℓt

(
z
h(v)−1
t

)
= ρtat + (1− ρt)bt

and hence, by Lemma 4.1, we have:
s∑

t=q

ℓt

(
z
h(v)
t

)
≤ min

{
s∑

t=q

at ,

s∑
t=q

bt

}
+
√

2 ln(2)(s− q + 1) .

The result then follows from the fact that, by Lemma 4.2, we have s− q + 1 = 2h(v).

A.5 Lemma 4.5

For k ∈ N ∪ {0} we define:

λk :=

k∑
i=0

√
2−i

so our inductive hypothesis is that for all v ∈ A we have:
▶(v)∑

t=◀(v)

ℓt

(
z
h(v)
t

)
≤

▶(v)∑
t=◀(v)

ℓt(ϵt) +
∑

q∈Q(v)

(
γ + λh(v)−h(q)

√
2 ln(2)

)√
2h(q) .

If v ∈ F then, by the definition of F , we have Q(v) = {v} so the inductive hypothesis holds by
Equation (3). Now suppose we have some ṽ ∈ A \ F . Note that, by the definition of F , we have
◁(ṽ), ▷(ṽ) ∈ A so all that is left to prove the inductive hypothesis is to prove that, if the inductive
hypothesis holds for both v = ◁(ṽ) and v = ▷(ṽ) , then it also holds for v = ṽ. So suppose that the
inductive hypothesis holds for v = ◁(ṽ) and v = ▷(ṽ). First note that:

▶(ṽ)∑
t=◀(ṽ)

ℓt

(
z
h(ṽ)−1
t

)
=

▶(◁(ṽ))∑
t=◀(◁(ṽ))

ℓt

(
z
h(◁(ṽ))
t

)
+

▶(▷(ṽ))∑
t=◀(▷(ṽ))

ℓt

(
z
h(▷(ṽ))
t

)
(8)

and, by the definition of F (and a simple induction up the tree B from the vertices in F), we have:∑
q∈Q(ṽ)

2h(q) = 2h(ṽ)
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so that: ∑
q∈Q(ṽ)

√
2h(q)

√
2h(q)−h(ṽ) =

√
2−h(ṽ)

∑
q∈Q(ṽ)

2h(q) = 2h(ṽ)
√
2−h(ṽ) =

√
2h(ṽ) . (9)

Equations (4), (8) and (9), imply:

▶(ṽ)∑
t=◀(ṽ)

ℓt

(
z
h(ṽ)
t

)
≤

▶(◁(ṽ))∑
t=◀(◁(ṽ))

ℓt

(
z
h(◁(ṽ))
t

)
+

▶(▷(ṽ))∑
t=◀(▷(ṽ))

ℓt

(
z
h(▷(ṽ))
t

)
+
√
2 ln(2)

∑
q∈Q(ṽ)

√
2h(q)

√
2h(q)−h(ṽ) .

Applying the inductive hypothesis to the terms:

▶(◁(ṽ))∑
t=◀(◁(ṽ))

ℓt

(
z
h(◁(ṽ))
t

)
:

▶(▷(ṽ))∑
t=◀(▷(ṽ))

ℓt

(
z
h(▷(ṽ))
t

)
and noting that Q(ṽ) = Q(◁(ṽ)) ∪Q(▷(ṽ)) and for all q ∈ Q(ṽ) we have:

λh(ṽ)−h(q) = λh(◁(ṽ))−h(q) +
√
2h(q)−h(ṽ) = λh(▷(ṽ))−h(q) +

√
2h(q)−h(ṽ)

shows the inductive hypothesis holds for v = ṽ. We have hence proved that the inductive hypothesis
holds for all v ∈ A.

A.6 Lemma 4.6

For all q ∈ Q(r) we have:

h(r)−h(q)∑
k=0

√
2−k ≤

∞∑
k=0

√
2−k =

√
2/(
√
2− 1) = α/

√
2 ln(2)

so, since r ∈ A and Q(r) = F , Lemma 4.5 gives us:

▶(r)∑
t=◀(r)

ℓt

(
z
h(r)
t

)
≤

▶(r)∑
t=◀(r)

ℓt(ϵt) + (γ + α)
∑
q∈F

√
2h(q) .

Since ◀(r) = 1 , ▶(r) = T and, by the algorithm, zh(r)
t = zτ

t = xt for all t ∈ [T ], we then have,
by Equation (2), that:

R†(S) ≤ (γ + α)
∑
q∈F

√
2h(q)

as required.

A.7 Lemma 4.7

First let:
ξ := 1/(

√
2− 1) .

We take the inductive hypothesis that for all non-empty finite sets Z ⊆ N ∪ {0} we have:∑
k∈Z

√
2k ≤ ξ

√∑
k∈Z

2k (10)

and we prove by induction on |Z|. In the case that |Z| = 1 we have Z = {i} for some i ∈ N ∪ {0}
and hence: ∑

k∈Z

√
2k =

√
2i < ξ

√
2i = ξ

√∑
k∈Z

2k
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so the inductive hypothesis holds for |Z| = 1. Now suppose we have some j ∈ N and that the
inductive hypothesis holds for |Z| = j. We now show that it holds for |Z| = j + 1 which will prove
that the inductive hypothesis holds always. Specifically, let i := maxZ , let Z ′ := Z \ {i} and let
i′ := maxZ ′. Define:

y := 2−i
∑
k∈Z′

2k .

Note that: ∑
k∈Z′

2k ≤
i′∑

k=0

2k < 2i
′+1 ≤ 2i

so that y < 1 and hence:√
1 + y −√y ≥

√
1 + 1−

√
1 =
√
2− 1 = 1/ξ

since the term on the left is monotonic decreasing with y. This implies that:√∑
k∈Z

2k =

√
2i +

∑
k∈Z′

2k =
√
2i
√
1 + y ≥

√
2i
(
√
y +

1

ξ

)
=

√∑
k∈Z′

2k +

√
2i

ξ

so that, by the inductive hypothesis (applied to the set Z ′), we have:√∑
k∈Z

2k ≥ 1

ξ

∑
k∈Z′

√
2k +

√
2i

ξ
=

1

ξ

∑
k∈Z

√
2k

so the inductive hypothesis holds for |Z| = j+1. We have hence proved that the inductive hypothesis
holds always.

Now note that, by the definition of F , we have that the set {⟨◀(v),▶(v)⟩ | v ∈ Fk} is a partition of
⟨σk, σk+1 − 1⟩ so that, by Lemma 4.2, we have:∑

v∈Fk

2h(v) = σk+1 − σk . (11)

Assume, for contradiction, that there exists three distinct vertices v, v′, v′′ ∈ Fk with h(v) = h(v′) =
h(v′′). Without loss of generality assume that v and v′′ are the leftmost and rightmost of the three
vertices respectively. Also without loss of generality assume that v′ is the right child of its parent
↑(v′). Then v must either be equal to or lie to the left of the left child of ↑(v′) and hence:

◀(↑(v′)) ≥ ◀(v) ≥ σk
and

▶(↑(v′)) = ▶(v′) < σk+1

so that ↑(v′) ∈ H. But this contradicts the fact that v′ ∈ F .

We have hence shown that for any i ∈ [τ ] ∪ {0} there are at most two distinct vertices v, v′ ∈ Fk

with h(v) = h(v′) = i. This means that we can partition Fk into two disjoint sets Uk and Vk such
that for all i ∈ [τ ] ∪ {0} there exists at most one element v of Uk with h(v) = i and at most one
element v′ of Vk with h(v′) = i. By Equation (10) we then have:∑

v∈Uk

√
2h(v) ≤ ξ

√∑
v∈Uk

2h(v) ;
∑
v∈Vk

√
2h(v) ≤ ξ

√∑
v∈Vk

2h(v)

so that: ∑
v∈Fk

√
2h(v) ≤ ξ

√∑
v∈Uk

2h(v) + ξ

√∑
v∈Vk

2h(v) .

Noting that for all y, y′ > 0 we have
√
y +
√
y′ ≤

√
2
√
y + y′ and c = ξ

√
2 , the above inequality,

along with Equation (11), gives us:∑
v∈Fk

√
2h(v) ≤ c

√∑
v∈Fk

2h(v) = c
√
σk+1 − σk

as required.
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A.8 Lemma 4.8

Direct from [11].

A.9 Lemma 4.9

By lemmas 4.2 and 4.8 we immediately have that:

▶(v)∑
t=◀(v)

(
ℓt

(
w

h(v)
t

)
− ℓt(ϵt)

)
∈ O

(
(1 + P (E , ⟨◀(v),▶(v)⟩))

√
2h(v)

)
. (12)

Since v ∈ F we have that there exists k ∈ [Φ] such that ◀(v) ≥ σk and ▶(v) < σk+1. Hence, by
Equation (6) , we have that:

P (E , ⟨◀(v),▶(v)⟩) ≤ P (E , ⟨σk, σk+1 − 1⟩) ∈ O(1) .

Substituting into Equation (12) gives us the result.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
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and (when using the doubling trick) is parameter free.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: All theorems are either referenced or proved.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is theoretical in nature and we cannot foresee any societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work is theoretical in nature and we cannot foresee any risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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