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Abstract

While traditional federated learning (FL) typically focuses on a star topology where
clients are directly connected to a central server, real-world distributed systems
often exhibit hierarchical architectures. Hierarchical FL. (HFL) has emerged as a
promising solution to bridge this gap, leveraging aggregation points at multiple
levels of the system. However, existing algorithms for HFL encounter challenges
in dealing with multi-timescale model drift, i.e., model drift occurring across
hierarchical levels of data heterogeneity. In this paper, we propose a multi-timescale
gradient correction (MTGC) methodology to resolve this issue. Our key idea is
to introduce distinct control variables to (i) correct the client gradient towards the
group gradient, i.e., to reduce client model drift caused by local updates based on
individual datasets, and (ii) correct the group gradient towards the global gradient,
i.e., to reduce group model drift caused by FL over clients within the group.
We analytically characterize the convergence behavior of MTGC under general
non-convex settings, overcoming challenges associated with couplings between
correction terms. We show that our convergence bound is immune to the extent
of data heterogeneity, confirming the stability of the proposed algorithm against
multi-level non-i.i.d. data. Through extensive experiments on various datasets and
models, we validate the effectiveness of MTGC in diverse HFL settings. The code
for this project is available at jhttps://github.com/wenzhifang/MTGC.

1 Introduction

In the past several years, federated learning (FL) has emerged as a prevalent approach for distributed
training 17 22, |11} [52| 24]. Conventional FL has typically considered a star topology training
architecture, where clients directly communicate with a central server for model synchronization
[35. 26]. Scaling this architecture to large numbers of clients becomes problematic, however, given
the heterogeneity in FL resource availability and dataset statistics manifesting over large geographies
[14} 17, [10]. In practice, such communication networks are often comprised of a hierarchical
architecture from clients to the main server, as observed in edge/fog computing [25} 38]] and software-
defined networks (SDN) [20], where devices are supported by intermediate edge servers that are in
turn connected to the cloud.

To bridge this gap, researchers have proposed hierarchical federated learning (HFL) which integrates
group aggregations into FL frameworks 30151 47, [15]. In HFL (see Fig. [T, clients are segmented into
multiple groups, and the training within each group is coordinated by a group aggregator node (e.g.,
an edge server coordinating a cell). Meanwhile, the central server orchestrates the training globally
by periodically aggregating models across all client groups, facilitated by the group aggregators.
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Fundamental challenges. One of the key objectives in FL is to reduce communication overhead
while maintaining model performance. Research in conventional FL has established how the global
aggregation period, i.e., the number of local iterations during two consecutive communications
between clients and the server, impacts FL performance according to the degree of non-i.i.d. (non-
independent or non-identically distributed) across client datasets: when local datasets are more
heterogeneous, longer aggregation periods cause client models to drift further apart. In HFL,
the situation becomes more complex, and is not yet well studied. There are multiple levels of
aggregations within/across client groups, and the frequency of these aggregations diminishes further
up the hierarchy (since the communication costs become progressively more expensive). As a
result, model drift occurs across multiple levels of non-i.i.d., at different timescales. In the canonical
two-level case from Fig. |1} we have (i) intra-group non-i.i.d., similar to conventional FL, and (ii)
inter-group non-i.i.d., arising from data heterogeneity across different groups. This introduces (i)
client model drift caused by local updates on individual datasets, usually at a shorter timescale, as
well as (i) group model drift caused by FL over clients within the group, usually at a longer timescale.

In conventional star-topology FL, algorithms like ProxSkip [36], SCAFFOLD [18]], and FedDyn
[L] have shown promise for correcting client model drift through local regularization and gradient
tracking/correction. However, these approaches are not easily extendable to the HFL scenario due to
its multi-timescale communication architecture. Specifically, when integrating these methods into
HFL, control variables introduced to handle data heterogeneity, such as gradient tracking or dynamic
regularization, need to be carefully injected at each level of the hierarchy, taking into account their
coupled effects in taming non-i.i.d. Convergence analysis elucidating the impact of different updating
frequencies for such control variables remains an unsolved challenge. Existing works on HFL have
also not aimed to directly correct for multi-timescale model drift. This can be seen by the fact that the
convergence bounds in existing HFL methods [30, 1547, [13]] become worse as the extent of non-i.i.d.
in the system increases (e.g., gradient divergence between hierarchy levels in [47]). Some works have
proposed adaptive control of the aggregation period in HFL [13|131]], but they require frequent model
aggregations to prevent excessive drift. We thus pose the following question:

How can we tame multi-timescale model drift in non-i.i.d. hierarchical federated learning to prov-
ably enhance model convergence performance while not introducing frequent model aggregations?

1.1 Contributions

Global aggregation — performed after every £ group aggregations
Group aggregation — performed after every H local iterations

In this paper, we propose multi-timescale gradient /
correction (MTGC), a methodology which can ef- e o)
fectively address multi-level model drift over the

topology of HFL with a theoretical guarantee. As
depicted in Fig. |1} our key idea is to introduce Group aggregator
coupled gradient correction terms — client-group
correctlon. and grogp-global correction — to (1).cor— cten @ @ Labels s
rect the client gradient towards the group gradient, cach client ~ =~
i.e., to reduce client model drift caused by local \ Labels : {1,2,3,4) Labels : {4.5. 6*”j
updates based on their individual datasets, and (ii) Figure 1: Illustration of multi-timescale gradient cor-
correct the group gradient towards the global gra- rection (MTGC) for multi-level non-i.i.d. in HFL.
dient, i.e., to reduce group model drift caused by

FL across clients within the group, respectively. MTGC thus assists each client model to evolve
towards improvements in global performance during HFL. We propose a strategy for updating these
gradient correction terms after every group aggregation and global aggregation, respectively, and
analyze the convergence behavior of MTGC. Due to the coupling of correction terms and their updates
being performed at different timescales, additional challenges arise for theoretical analysis compared
to prior work. We thoroughly investigate this problem and make the following contributions:

Group-global
correction
Group model drift

Client-group
correction

* We develop the multi-timescale gradient correction (MTGC) algorithm for taming leveled model
drift in HFL. MTGC incorporates coupled control variables for correcting client gradients and
group gradients, effectively tackling model biases arising from various levels of non-i.i.d. data at
different timescales. The estimation and update procedures for these control variables rely solely on
the model updates, ensuring that no significant additional communication overhead is introduced.

* We characterize the convergence rate for MTGC under the non-convex setup. This rate is immune
to the extent of intra and inter-group data heterogeneity, confirming the stability of our approach
against multi-level non-i.i.d. statistics. Our theoretical result also demonstrates that MTGC achieves
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linear speedup in the number of local iterations, group aggregations, and clients. Also, we show
that the convergence rate of MTGC recovers that of SCAFFOLD, i.e., the non-hierarchical case,
when the number of groups and group aggregation period reduces to one.

* We conduct extensive experiments using various datasets and models across different parameter
settings, which demonstrate the superiority of MTGC in diverse non-i.i.d. HFL environments.

1.2 Related Works

Algorithms for conventional FL. The seminal work [35]] developed the FedAvg algorithm, incor-
porating multiple local updates into distributed SGD [58]] to relieve communication bottlenecks
within conventional star-topology FL. However, FedAvg convergence analysis makes assumptions
such as bounded gradients [28 156, 41] or bounded gradient dissimilarity [45] [12]], showing it is
not resistant to non-i.i.d. data. To tackle this issue, numerous techniques have been proposed in
the literature, including incorporating static/dynamic regularizers [27, |1} 57, [16], adaptive control
variables [29, 18| 51} 50], and/or gradient tracking methods [[18}32]. Despite these efforts, existing
FL algorithms are not easily extendable to HFL due to the timescale mismatch of multi-level model
aggregations induced by the hierarchical system topology. Optimizing these algorithms and ensuring
their theoretical convergence in the presence of hierarchical model drift remains unsolved. Our paper
addresses these issues through a principled multi-timescale gradient correction method.

Hierarchical FL. The authors of [5, 30, [13| 149} 55| 47] explored a new FL branch, HFL, tailored
for hierarchical systems consisting of a central server, group aggregators, and clients. To tackle the
issue of limited communication resources, the authors of [3]] developed a FedAvg-like algorithm
called hierarchical FedAvg tailored to HFL, and analyzed its convergence behavior. However, their
algorithm is built upon an assumption of i.i.d. data. Another work [47] investigated the convergence
behavior of hierarchical FedAvg under the non-i.i.d. setup. However, the convergence bound becomes
worse as the extent of data heterogeneity increases, making the algorithm vulnerable to non-i.i.d.
data characteristics. In [34], ProxSkip-HUB is introduced, but requires clients to compute full batch
gradients and upload them to group aggregators after every iteration, which is impractical especially
when training large-scale models. Overall, there is still a lack of an algorithm that fully addresses the
unique challenge of HFL, i.e., the multi-timescale model drift problem, with theoretical guarantees.
We fill this gap by introducing multi-timescale gradient correction and providing theoretical insights.

Gradient tracking/correction. Both gradient tracking and gradient correction aim to fix the local
updating directions of clients to mitigate the impact of model drift caused by data heterogeneity. The
gradient tracking concept was originally proposed and analyzed in [9] and then extended to consider
various factors like time-vary graphs and asynchronous updates [37, 40, |42, |54]]. Subsequently,
SCAFFOLD [18] applied gradient tracking in FL to mitigate the impact of data heterogeneity across
clients, ensuring convergence and stability in non-i.i.d. settings. More recently, in [32, 2], the authors
demonstrate the effectiveness of gradient tracking in fully decentralized FL, where clients conduct
model aggregations through local client-to-client communications. In [6} 43]], gradient tracking is
further studied in a semi-decentralized FL setup. Compared to all prior research, our work is the
earliest attempt to design an algorithm specifically tailored to multi-timescale model drift in HFL
and its training process with periodic local/global aggregations. This presents new challenges in
our algorithm design and convergence analysis due to the coupling of our correction terms through
their updates at different timescales. In Section[5} we empirically validate the effectiveness of our
approach over the prior gradient correction method.

2 Background and Motivation

2.1 Problem Setup: Hierarchical FL

We consider the hierarchical system depicted in Fig. [I} The central server is connected to N
group aggregators, each linked to the clients within its region, defined as a group. Each group
j€{1,2,..., N} consists of a set of n; non-overlapping clients, denoted C;, resulting in a total of
Z;y:1 n; clients within the system. Each client ¢ has its own local data distribution D;. The goal
of HFL is to construct an optimal global model * considering the data distributions of all clients
in the system. The role of each group aggregator j involves coordinating the training for the n;
clients within its region, while the central server orchestrates the training across all N groups through
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Figure 2: Visualization of the local update process using multi-timescale gradient correction (MTGC) with 4
clients and 2 groups. (a) Without any gradient correction (e.g., hierarchical FedAvg), each client model moves
towards its respective optimal point, denoted by @;. (b) When only client-group correction term z; is applied,
the model of client ¢ € C; moves towards the group optimum Z;. (¢) In MTGC, the gradient of client ¢ € C; is
adjusted by both the client-group correction term z; and the group-global correction variable y;, assisting each
client model to converge towards the global optimum a* during local iterations.

interaction with the group aggregators. We can formally state the HFL learning objective as follows:
ming f(x) = Z?’:l fi(z), where f;(z) := 71, Yice, Fi(x) and Fi(z) := E¢,p, [Fi(2,&)]. (1)

Here, f : R? — R denotes the global loss function, fi: R? — R is the loss specific to group j, and
F; : R? — R represents the local loss for client 4. In addition, &; is the data point sampled from
distribution D;. Note that our analysis can be easily extended to a weighted average form of (I) by
incorporating positive coefficients for each f;(x) or F;(x). For simplicity, these coefficients are
assumed to be included in F;(x) as in previous works [[18] 48].

2.2 Limitation of Existing Works

In HFL algorithms, group aggregations are conducted after every H local client updates, while
global aggregations are performed after every E group aggregations, introducing different timescales.
Moreover, different forms of data heterogeneity exist in HFL: (i) intra-group non-i.i.d., due to
data heterogeneity across different clients ¢ € C;, and (ii) inter-group non-i.i.d., arising from data
heterogeneity across different groups Cy, ..., C. These lead to client model drift and group model
drift, respectively. The model drifts induced by multi-level data heterogeneity at different timescales
hinder hierarchical FedAvg from converging. In Fig. 2(a), we see that during local training, each
local model gradually converges towards the optimal point of its respective client’s objective function.
Hence, to guarantee theoretical convergence, existing HFL works either assume an i.i.d. setup [5] or
rely on a bounded gradient dissimilarity assumption similar to the following [47, [15]:

¥ L IVfi@) = V@) < 6% Va and LYo IVE(@) - V;(@)]? < 83, Ve, Y). ()

The first inequality is employed to limit the group drift, i.e., the deviation of group gradients from the
global gradient, while the second one bounds the client drift, i.e., the divergence of client gradients
from their group gradient. As a result, the convergence bounds of algorithms in these works become
worse as data heterogeneity increases (i.e., as 61 or d, increase) [[19]. Our approach, developed next,
does not require these assumptions and remains stable regardless of the extent of data heterogeneity.

3 Algorithm

3.1 Intuition: Gradient Correction in Hierarchical FL

When relying on multiple local SGD iterations as in hierarchical FedAvg, the model update process is
not stable even when the model has reached the optimal =* satisfying V f(*) = 0. Specifically, with
« as the learning rate, we have ™ # ™ — vV F;(z"), as the global optimum «* may not necessarily
be optimal for each client’s local loss due to data heterogeneity, i.e., VF;(x*) # 0 [39]. Correctin

the client gradient VF;(x™) to the global gradient V f(x*) is thus necessary to stabilize the processﬁ

Motivation and idea. In HFL, however, due to multi-level aggregations occurring at different
timescales, it is infeasible to directly correct the client gradient to the global gradient. In particular,

'We motivate our approach here using full batch gradients, though our subsequent algorithm and analysis
will support stochastic gradients.
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Algorithm 1: HFL with Multi-Timescale Gradient Correction (MTGC)

Input: Initial model £°, global aggregation period E group aggregation period H, learning rate vy, and
group-global correction yé?:f 1 2160 VF( by 0, )+ 27 17 ZZEC VF( i 0, Rg)),Vj
1 each globalround t =0, 1, .. —1do

2 Group model initialization: 33;‘0 =z Vj
3 Client group correction initialization:
__VF( 107 )+nJZZGCVF( 107 ) VLGCJ’VJ

4 each group communlcatlon rounde =0,1,..., E —1do

5 Local model initialization: wf”g ::E;-’e, Vz’,j

6 each local iteration h = 0,1,..., H — 1 do

7 L xy i =zb i (VFZ( Z;, Zh)—l—z +y]) ,\VieC;,Vj o Clients do in parallel
8 Group aggregation: ;" = nlj Yiee, x;

9 Client-group corr. update: zt et zi ‘+ r%, (mif{ —i;’eﬂ) ,Vi€C;,Vj o Clients do in parallel
10 Global aggregation: & =% Z] 1T b E
11 Group-global corr. update: yj :yj = E’Y (aE;E —:i:”l) , Vg ¢ Group aggregators in parallel

clients are not able to communicate with the central server directly, and there are multiple group
aggregation steps before the group aggregators communicate with the main server. Our idea is thus to
inject two gradient correction terms: client-group correction and group-global correction. Specifically,
the desired iteration to obtain the updated model ., at the optimal point * can be written as

Lnew = ¥ — V{VFZ’(SC*) + (ij(zc*) - VFZ(JJ*)) + (Vf(w*) - ij(x*)) }’ (3)

client-group correction group-global correction

where Vf;(x*) — VF;(«*) and V f(z*) — V f;(z*) represent client-group and group-global correction
terms, respectively. Since V f(x*) = 0, the two correction terms will enable the model to remain at
the optimal point. Given this intuition, the ideal local iteration at client ¢ € C; can be written as

@i = obh — VR + (V@) - VEED)) + (V@) - V&) |o@

where t, e, and h represent global communication rounds, group communication rounds, and client
local iterations, respectlvely, z, = % Ziec a:’?“,j is the averaged model within group j, and

z,)° =+ ZJ 1 nj iec; o’} is the averaged model across the system. Based on (@), we expect to
bring each client model closer to the global optima during local updates, as illustrated in Fig. 2[c).

Challenge encountered in HFL. However, it is important to note that the update process in (@)
still cannot be directly used in HFL. This is because client-group communication and group-global
communication do not occur at every iteration of HFL training; instead, they happen at different
timescales, and clients are not able to obtain the current group information V fj(séfzi) and global
information V f (9—7:,’2) at every local iteration. We next propose a strategy that mimics the gradient
correction described above while ensuring theoretical convergence.

3.2 Multi-Timescale Gradient Correction MTGC)

Tackling multi-timescale model drifts. To approximate @) during HFL training, we introduce
two control variables z and y that track/approximate V f; — VF; and V f — V f;, respectively. The
variables z and y are then employed to correct the local gradients to prevent model drifts. The
challenge here is to keep updating z and y appropriately in the multi-timescale communication
scenario, given that communications between the clients and group aggregator, and between the
group aggregators and global aggregator, are not always feasible. We propose a strategy to update
z after every H local iterations, i.e., whenever each client is able to communicate with the group
aggregator, allowing the group information to be updated and shared among the clients within the
same group. Similarly, we propose a strategy to update y after every I/ group aggregations, i.e.,
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whenever the group aggregators are able to communicate with the global aggregator, enabling the
global information to be refreshed and shared across all clients in the system. We name our strategy
multi-timescale gradient correction (MTGC) due to the updates of z and y occurring in different
timescales, to tackle the issue of multi-level model drift coupled across the hierarchy in HFL.

In Fig. [2(c), we illustrate MTGC during client-side model updates. In particular, at each local
iteration h of group round e of global round ¢, each client 7 € C; updates its local model as follows:

T = E = (VFi(m;?;,i, T+ y§) : )

(i) Client-group correction term. In (3), zf’e is responsible for correcting the gradient of client
i € C; towards the gradient of group j at the e-th group aggregation of global round ¢. After every
group aggregation e at global round ¢, this term is updated at each client ¢ as follows:

tetl 1 H-1 1 (abhe gthe (be gthe
Zi T H 2.h=0 ((nj Ziecj VFl(mi,ha i,h)> - VFZ(:cM, i,h)>' (©6)

(ii) Group-global correction term. y’ in (3) aims to correct the gradient of group j towards the
global gradient. At the end of global round ¢, this term is updated at group aggregator j as follows:

E—1-~H-1 N , e , ,
y;'H = ﬁ D=0 2ah=0 ((% ijl rTl] 1€C; VFZ(mffﬁffh)) B % ZiECj VFl(misz;)) O

Key remarks. The updating policies for zf “ and y§ follow similar patterns to the ideal corrections
outlined in @]) Here, we observe that Ziecj zf’ﬁ = 0, Vj and Z;\; ) yjt = 0, indicating that the
correction terms do not have an impact on the per-iteration model averages. Instead, the introduction
of zf ° and y? eliminates model drifts of clients and groups, respectively, during local iterations.
Intuitively, as the iteration approaches the global optimal point, we expect z/¢ — V f;(z*) — VF;(z*)
and y5 — Vf(x*) — Vf;(x*) so that the update in (3] stabilizes at the global optimal point. We also
see that zf ¢ and y§ are coupled @), i.e., the update of one of the terms affects  which in turn affects
the other one, raising challenges for theoretical analysis. In Section[d] we will guarantee convergence
of MTGC in general non-convex settings without relying on bounded data heterogeneity assumptions.

MTGC algorithm. The overall procedure of our training strategy is summarized in Algorithm [T}
where we rewrite the updates of zf “ and y§ in a different but equivalent manner to facilitate practical
implementation of MTGC. Compared to hierarchical FedAvg, which does not consider any correction
terms, we see that no additional communication is required for MTGC within each group round e.
Additional communication is introduced only after F group aggregations for initializing zf ¥ (Line
4 and broadcasting y;H (obtained in Line 14) to the clients in C;. We will see in Section [5|that
these marginal additional costs lead to significant performance enhancements for HFL settings.

Generalization to arbitrary number of levels. The proposed MTGC algorithm can be extended to
an HFL system architecture with an arbitrary number of levels. Further discussions and experimental
results for a three-level case are provided in Appendix

3.3 Connection with SCAFFOLD

When the number of groups reduces to N = 1 with E = 1, we have y¢ = 0 (no group-global
correction), and thus MTGC reduces to SCAFFOLD [18]]. In SCAFFOLD, at each round t, clients
perform local updates according to @ ;,,, = @}, — v (VFi(x},,,& ) —ci+¢'),h=0,1,... H-1,
where ¢f™ = ¢! — ' + ﬁ% (&' — x} &), and the server aggregates local models and controlling

variables as ™ = L SNz, and ™ = L >N | ¢! We can show that ¢! — ¢’ in SCAFFOLD
plays the same role as zf *“ in MTGC. However, the additional term yj introduced in MTGC for the
multi-level setting makes the convergence guarantee more challenging, as y§ is coupled with zf’e
and both are updated at different time scales. These aspects will be thoroughly examined next.

4 Convergence Analysis

In this section, we establish a convergence guarantee for the proposed MTGC algorithm. Our
theoretical analysis relies on the following standard assumptions commonly used in the literature on
stochastic optimization and FL under non-convex settings [18 44/ 4].

>This is only required for theoretical analysis. In the experiments, we initialize zf 0= 0,Vi.
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Assumption 1. Each local loss function F; is differentiable and L-smooth, i.e., there exists a positive
constant L such that for any x and y, |V F;(x) — VF;(y)|| < L||ly — z||, Vi.

Assumption 2. The stochastic gradient VF;(x,§;) is an unbiased estimate of the true gradient,
i.e, E¢,p,[VFi(x,&)] = VF;(x),Yx and the variance of the stochastic gradient VF;(x,&;) is
uniformly bounded as B¢, .p,|VF;(x,&;) — VEF;i(x)||? < 02, Va.

Note that (i) global aggregation, (ii) the update of upper-level correction variable y and local
aggregation, and (iii) the update of lower-level correction variable z are performed at different
timescales in MTGC. If we directly consider {V f(Z*)} as in SCAFFOLD, it is difficult to capture
the effects of group aggregation and correction variable z. Moreover, it is hard to establish a
tight connection between V f(Z') and wfz, Vi, h, T since there is a large lag between :cf,i and
x!. To tackle this, we introduce a new metric, which is the gradient V f (@t’e) at virtual sequence

{a&te =L Z;v:l :?:;’e}, to characterize the convergence of MTGC.

We next state our main theoretical results. All the proofs are provided in Appendix [F}
Theorem 4.1. Suppose Assumptionsand hold and the learning rate satisfies v < m. Then
the iterates {4} obtained by the MTGC algorithm satisfy

SRS 2 _o (@) —f
_ E(V ~t.e =0 =L <1 ay 2 2E2H2L2 2 8
7 2 L BNV (Lo + %20+ 2),®
- . -1

where N = (ﬁzy:l%) , and f* is the lower bound of f(x), i.e., f(x) > f*.

There are two key steps in our proof. The first is the characterization of the evolution of
|20+ VE; (%)~ V1, (22°)|" and ||y +V f; (84°) —Vf (&) ||*. By bounding these values that
capture the error between each control variable and the ideal correction, we are able to establish
a connection between the local updating direction and the global gradient without relying on the
bounded gradient dissimilarity assumption, laying the foundation for the whole proof. The second is
that we extracted a recursive relationship for the accumulation of group-level and client-level model
drifts, and designed a novel Lyapunov function to mitigate the interplay impact between these drifts.
Further details are provided in the appendix.

Applying an appropriate learning rate  to Algorithm|[I]yields the following corollary:
Corollary 4.1. Under the assumptions of Theorem let Fo = f(x°)— f*. Then there exists a

learning rate v < m such that the iterates {2} satisfy
T—1E-1 2
1 . 2 FoLo? FoLo\® LF,
— E <o = . 9
72 L EIV S| < Ve (T57) 5 ©)

Discussions. Corollary [ 1| provides the convergence upper bound of the MTGC algorithm. It shows
that the error approaches zero as T' — oo. If o # 0, the upper bound is dominated by the first term in
the right-hand side of (9), which characterizes the speed of convergence of MTGC to a stationary
point in the stochastic case. This reveals MTGC achieves linear speedup in the number of group
aggregations E and local updates H. In other words, we can attain the same level of performance
with less global communication rounds, i.e., a smaller value of 7', by increasing the number of local
iterations, i.e., H, and group aggregations, i.e., E. When considering the special case nj = n, Vj’ €
{1,2,..., N} with uniform client numbers, the rate becomes O(v/FoLo?/v/ NnTEH). This implies
that MTGC attains linear speedup in the number of clients as well.

Moreover, we also see that our convergence rate recovers the results of SCAFFOLD when the
number of groups reduces to N = 1 and the number of group aggregations reduces to £ = 1 (see
Appendix (G| for more discussions). We also highlight that, different from prior works on HFL where
the convergence bound becomes worse as the extent of data heterogeneity increases, our bound is
stable against multi-level non-i.i.d. data due to the multi-timescale gradient correction approach.

5 Experimental Results
5.1 Setup

Dataset, model, hyperparameters, and compute setting. In our experiments, we consider four
widely used datasets: EMNIST-Letters (EMNIST-L) [7]], Fashion-MNIST [53]], CIFAR-10 [23], and
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Figure 3: Comparison with FL baselines. In this experiment, popular FL algorithms are extended to the HFL
setup for comparison with MTGC. We consider four datasets in the group non-i.i.d. & client non-i.i.d. setting.
Experiments are conducted over 3 random trials. We see that MTGC obtains the best testing accuracy in each
case, validating our multi-level approach for correcting multi-timescale model drifts.
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Figure 4: Comparison with gradient correction baselines. Three different data distribution scenarios are
considered. We see that the local correction method is effective for handling client non-i.i.d. within each group
(top row), while the group correction method is effective for handling non-i.i.d. across groups (middle row).
MTGC obtains the most stable performance (all rows) by combining multiple correction levels.

CIFAR-100 [23]. The former two are processed through a multi-layer perceptron (MLP) model,
featuring two hidden layers, each comprising 200 neurons, and ending with a softmax layer. For
the CIFAR-10 classification task, we employ a convolutional neural network (CNN) following the
architecture outlined in seminal work [33]]. For CIFAR-100, we adopt a ResNet-18 model with batch
normalization layers substituted by group normalization layers. Across all algorithms considered, we
maintain a consistent learning rate 7 = 0.1 and batch size 50. We conduct the experiments based on
a cluster of 3 NVIDIA A100 GPUs with 40 GB memory. Our code is based on the framework of [T]].

FL data distribution. We set the total number of clients as 100, evenly distributed over N = 10
groups. We also study the effect of N in Appendix [B] We consider three different data distribution
settings: (i) group i.i.d. & client non-i.i.d., (ii) group non-i.i.d. & client i.i.d., and (iii) group non-i.i.d.
& client non-i.i.d. scenarios. First, in the group i.i.d. & client non-i.i.d. case, the training dataset is
initially divided uniformly and randomly into N segments corresponding to N groups. Subsequently,
each segment is further divided into 100/N partitions for the clients using a Dirichlet distribution [T]].
Second, in the group non-i.i.d. & client i.i.d. case, the dataset is first segmented into N partitions for
the groups using a Dirichlet distribution, followed by a uniform random distribution of each segment
to 100/N clients. Finally, when both groups and clients are non-i.i.d., the dataset is split into N
segments for the groups using a Dirichlet distribution, and then, each group’s segment is distributed
among 100/N clients through a Dirichlet distribution. The Dirichlet parameter is set to 0.1.
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Table 5.1: The number of global rounds required by different algorithms to attain the testing accuracy of 80%
for CIFAR-10 under different settings. Taking HFedAvg as the benchmark, we show the speedup achieved by
MTGC and other baselines as we vary aggregation periods £ and H. MTGC consistently outperforms baselines,

and the speedup gets more significant as £/ and H increase. Standard deviation is based on 3 random trials.

Data distribution Params (E, H) HFedAvg Local Correction Group Correction MTGC
(10, 20) 144.3£3.4 (1x) 57.0+0.8 (2.5%) 72.0+1.6 (2.0x) 45.7+0.9 (3.2x)
(10, 30) 169.0+2.4 (1 %) 51.0+1.4 (3.3%) 81.3+1.2 (2.1x) 37.3+£1.9¢( 4\><)
Group i.i.d. & (10, 40) 214.0+£5.9 (1x) 45.3+1.2 (4.7x) 85.7+1.2 (2.5%) 32.0+0.8 (6.7x)
client non-i.i.d. (10, 20) 144.3£3.4 (1x) 57.0+0.8 (2.5%) 72.0+1.6 (2.0x) 45.7+0.9 (3.2x)
(20, 20) 105.0+4.1 (1 %) 34.0+0.8 (3.0x) 53.04+0.8 (2.0x) 22.3+0.9 (4.7x)
(30, 20) 82.7+2.1 (1% 25.740.9 (3.2x) 44.7£0.5 (1.8%) 16.3+1.2(5.1x)
(10, 20) 246.0+£3.7 (1x) 92.3+1.7 (2.7%) 53.7+1.2 (4.6x) 37.7+£0.5 (6.5%)
(10, 30) 302.7£4.9 (1x) 88.04+1.6 (3.4x) 44.3+1.2 (6.8 %) 27.3+1.2(11.1x)
Group non-i.i.d. & (10, 40) 320.0+£2.4 (1x) 94.74+1.2 (3.5%) 43.0+1.6 (7.2%) 21.3+1.2(154x%)
client i.i.d. (10, 20) 246.0+£3.7 (1x) 92.3+1.7 (2.7%) 53.7+1.2 (4.6%) 37.7+0.5 (6.5%)
(20, 20) 308.7£3.3 (1x) 74.3£1.7 (4.2x) 31.0+0.8 (10.0x) 18.7+1.7(16.5%)
(30, 20) 344.7+£4.6 (1) 85.74+2.1 (4.0x) 25.7+£1.7 (13.4x) 13.04+0.8 (26.5%)
(10, 20) 363.0+£7.3 (1x 141.74£2.9 (2.6 %) 83.7+1.2 (4.3x) 52.7+1.2 (6.7x)
(10, 30) >500 (1x) 127.742.9 (>3.9%)  79.7+1.7(>63x) 38.7+0.9(>12.9x)
Group non-i.i.d. & (10, 40) >500 (1) 169.74+5.2 (>2.9x) 106.3£1.9 (>4.7x) 31.7+0.5(>15.8x)
client non-i.i.d. (10, 20) 363.0+£7.3(1x) 141.74£2.9(2.6%) 83.7+1.2 (4.3x%) 52.7+1.2 (6.7x)
(20, 20) >500 (1) 113.3+3.4 (>4.4x) 453+1.2(>11.0x) 25.0+£1.6 (>20.0x)
(30, 20) >500 (1x) 86.7+2.4 (>5.8%) 50.7+2.4 (>99x)  19.6+0.5 (>25.5%)

5.2 Results and Discussion

Comparison with conventional FL algorithms. For comparison, we first apply the well-known
FL methods, FedProx [27]], SCAFFOLD [18], and FedDyn [1]], to HFL, by running their training
algorithms within each group of the hierarchical system. We also consider HFedAvg [47] as a
baseline. Fig. 3]compares MTGC with these baselines in the group non-i.i.d. & client non-i.i.d. case.
We observe that MTGC outperforms all the considered conventional algorithms, achieving the highest
testing accuracy, especially for the complicated CIFAR-100 dataset. FedDyn achieves the lowest
performance, demonstrating significant variance and instability. The significant performance gap
between MTGC and FedDyn, in particular, can be attributed to the hierarchical setup disrupting the
special structure of FedDyn. This result reveals that some algorithms designed for the conventional
star-topology FL may be non-trivial to be extended to hierarchical setups. The overall results confirm
the effectiveness of our approach that effectively tackles the multi-timescale drift problem in HFL.

Comparison with gradient correction baselines. In Fig. f] we compare MTGC with the gradient
correction baselines. Specifically, we apply local correction (zf’e) to HFedAvg, and group correction
(yg) to HFedAvg. These baselines can be viewed as schemes applying SCAFFOLD [18]] within each
group and across groups, respectively. We also report the results of the original HFedAvg to see the
effects of gradient correction clearly. We make the following key observations. First, the testing
accuracy achieved by HFedAvg decreases as the extent of data heterogeneity increases, e.g., from
the first or second row to the third row in Fig. 4] This shows that data heterogeneity hinders the
convergence of HFedAvg. Second, with the assistance of local or group correction, the algorithm
attains a higher accuracy. In the case of group i.i.d. & client non-i.i.d., HFedAvg augmented with
client local correction performs better than the variant with group correction. Conversely, in the
scenario where groups are non-i.i.d. and clients are i.i.d., the opposite holds. This can be explained by
the dominance of data heterogeneity in each case. In the former scenario, because the heterogeneity
is primarily at the client-level, local client correction becomes more beneficial. On the other hand, in
the latter scenario, where the heterogeneity shifts to the group level, group correction becomes more
advantageous. Finally, we see that MTGC consistently outperforms baselines under all settings, where
the performance gains brought by the multi-timescale gradient correction become more significant
when it comes to the group non-i.i.d.& client non-i.i.d. case.

Speedup in H and E. In Table[5.1] we investigate the effects H and E, which determine the periods
of group aggregation and global aggregation in HFL. We report the number of global rounds required
to attain the desired testing accuracy of 80% for CIFAR-10 under different settings. We have the
following observations: As E or H increases, the required number of global rounds of MTGC for
achieving the desired accuracy decreases. This demonstrates the speedup of the proposed algorithm
in the number of local iterations and group aggregations, which fits well with our theory discussed in
Section 4] In addition, the speedup achieved by MTGC compared to HFedAvg gets more significant
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as I or H increases. For instance, in the group i.i.d. & client non-i.i.d. case, MTGC attains 3.3 x
speedup when E = 10 , H = 20, which increases to 4.7x when E/ = 10 , H = 40. This reveals that
MTGC utilizes local iterations better compared with the baselines.

Impact of data heterogeneity. Consistent with the results in Fig. @] we see from Table [5.1] that
the required number of global rounds of HFedAvg increases as data heterogeneity increases, while
MTGC is more stable against non-i.i.d. data. The gain of MTGC over HFedAvg becomes evident as
data heterogeneity increases, confirming the effectiveness of our multi-timescale gradient correction
approach for addressing the unique challenges of HFL.

Further experiments. Additional experimental results including the impacts of hierarchical system
parameters and the performance in 3-level HFL are provided in Appendices [B]and [E]

6 Conclusion and Limitation

We have proposed MTGC, a multi-timescale gradient correction approach for HFL. Embedded with
control variables updated in different timescales, MTGC effectively corrects gradient biases and
alleviates both client model drift and group model drift in hierarchical setups. We established the
convergence bound of MTGC in the non-convex setup and showed its stability against multi-level
data heterogeneity. Finally, we confirmed the advantage of our MTGC through extensive experiments
in different non-i.i.d. HFL settings. A limitation of our work is that despite providing experiments for
HFL systems with more than two levels (in Appendix [E), our convergence analysis focused on the
two-level case, which provides an interesting future direction of investigation.
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A Connection Between HFL and Cluster FL

Our work focuses on HFL, employing a multi-layered structure consisting of local nodes, local
aggregators, and a central server. Both clustered FL and HFL aim to improve FL learning efficiency
by leveraging structured client groupings. The difference between them lies in the grouping criteria.
HFL focuses on collaborative training over a given network topology, where clients are generally
grouped based on their geographical location or network connection status, and aims to build a
single global model under this setting. CFL groups clients to optimize model training, with different
global models constructed depending on the group. [33] demonstrates how dynamic clustering based
on data distributions can enhance model performance. [3]] explores alleviating negative transfer
from collaboration by clustering clients into non-overlapping coalitions based on their distribution
distances and data quantities.

B Additional Experiments on CIFAR-10
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Figure 5: Comparison of testing accuracy versus global communication round across different system
parameters under both group non-i.i.d. and client non-i.i.d. setup. E and H are set to 30 and 20,
respectively.

The impact of system parameters. Fig. [5shows how the performance of MTGC changes with
different numbers of groups and clients in each group. From this figure, we observe that as the
number of clients in each group, i.e., n; increases, client correction becomes more important. On the
other hand, as the number of groups increases, the algorithm with group correction performs better
than that with client correction.

Cell i.i.d. & client non-i.i.d. Cell non-i.i.d. & client i.i.d. Both Cell non-i.i.d. & client non-i.i.d.
0.85 0.85 0.85
0.80 4 0.80 4 0.80
2 4 z
£ - g .
20754 £ 0.75 4 £ 0.75 4
g 3 g
< < <
o — E=10,H=20 o — E=10,H=20 o — E=10,H=20
£ 0.70 ; £0.70 4 £0.70 4 )
% E=10,H = 30 g E=10,H =30 % E=10,H =30
& — F=10,H =40 & — F=10,H =40 & — F=10,H =40
0659 — H=20,E=20 065 1 — H=20,E=20 0.65 1 —— H=20,E=20
— H=20,E =30 —— H=20,E =30 —— H=20,E =30
0.60 T T : T 1 0.60 T T : : T 0.60 T T : : .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Global Communication Rounds Global Communication Rounds Global Communication Rounds

Figure 6: Performance of MTGC under a different number of local iterations, i.e., H, and a different
number of group aggregations, i.e., . The number of groups and clients in each group is set to
N =10 and n; = 10, respectively.

The impact of local iteration and group aggregation: Fig. [6]depicts the performance of MTGC
under a different number of local iterations, i.e., [, and a different number of group aggregations, i.e.,
E. 1t’s clear that MTGC achieves speedup in the number of local iterations and group aggregations.

Communication cost comparison. Compared to HFedAvg, MTGC requires initializing the correc-
tion variables at the start of each global round, which adds additionaly communication overhead.
Specifically, for every E steps of group aggregation, MTGC incurs an additional communication
cost equivalent to one transmission of th§+nllodel parameters. In other words, the per-aggregation

communication complexity of MTGC is =7~ times that of HFedAvg. To show this impact, we have

added experiments comparing the communication cost and testing accuracy at the client side. This
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Figure 7: Comparison of communication cost (a); and running time for attaining 75% testing accuracy
and finishing 100 global rounds on CIFAR-10 (b)

experiment was conducted on CIFAR-10 dataset with £ = 30 and H = 20 under both client and
group non-i.i.d. setup. The model and other parameters are the same as in the original manuscript.
The results are shown in Fig. [7a] The results demonstrate that MTGC achieves higher testing accuracy
for a given communication cost, highlighting the efficiency and effectiveness of our approach.

Running time comparison. We compared the computation time of our MTGC algorithm with the
baselines. Using NVIDIA A100 GPUs with 40 GB memory, we conducted experiments on the
CIFAR-10 dataset with ' = 30 and H = 20 under both client and group non-i.i.d. setup. The model
and other parameters are the same as in the original manuscript. We report the required time for
attaining a preset accuracy of 75% and for running 100 global rounds in Fig. of the attached pdf.
The speedup in the convergence makes up for the introduced computation cost per iteration due to
the extra operation induced by the correction variables. Actually, the computation cost incurred by
the correction variable is relatively small compared to computing gradients in a neural network using
backpropagation.

C Experiments on Distribution Shift Datasets
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(a) Performance comparisons under label shift on (b) Performance comparisons under feature shift on
Fashion-MNIST Fashion-MNIST

Figure 8: Performance comparisons on Fashion-MNIST under label shift and Fashion-MNIST under
feature shift

To further show the robustness, we studied the performance of MTGC under another two different
non-i.i.d. scenarios: label shift and feature shift, as referenced in [3,[33]]. These experiments were
performed using the Fashion-MNIST dataset.

For label shift [3] [33], we randomly assign 3 classes out of 10 classes to each group with a relatively
balanced number of instances per class, and then assign 2 classes to each client. As discussed in
[31], label shift adds more heterogeneity to this system. According to the results shown in Fig. it
is clear that the proposed algorithm is more robust against data heterogeneity. Specifically, there is
less oscillation in MTGC compared with HFedAvg and the attained accuracy of MTGC in the given
communication round is higher than all baselines.
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Figure 9: Performance evaluation on Shakespeare and CINIC-10

For feature shift [3]], we first partition data following the group non-i.i.d. & client non-i.i.d. case as
in our original manuscript, and then let clients at different groups rotate images for different angles.
Concretely, for the clients at the i-th group, the angle is —50 + 10 X . Note that this rotation is only
applied to the training set. The feature shift increases the diversity between the training set and the
testing set, which thus adds difficulty to this classification task. In Fig. [8b] we see that MTGC attains
the best performance among these baselines.

D Additional Experiments on CINIC-10 and Shakespear Datasets

We conducted additional experiments on the larger Shakespeare and CINIC-10 datasets. For the
Shakespeare dataset, we randomly pick 100 characters (people) in Shakespeare’s plays. We let each
client have 1,500 samples, where each sample is a sequence of 80 characters (words). Considering
that there are 100 clients in the system, there are 150,000 train samples in total. This means that the
number of samples is 3 times that of CIFAR-10 (or CIFAR-100), which has 50,000 train samples.
The performance comparison is presented in Fig. [Dal where we use the LSTM model, the same as [,
and set the learning rate 0.5, H = 75, and E = 30. It is seen that MTGC consistently outperforms
the baseline methods in larger datasets.

The CINIC-10 dataset contains 90,000 training images, 90,000 validation images, and 90,000 test
images, significantly larger than CIFAR-10 and CIFAR-100 with 60,000 images. It includes images
from both CIFAR-10 and ImageNet, enhancing diversity. We believe that the larger size and diversity
of CINIC-10 further confirm the validity of our experiments. The model and hyperparameters used for
the CINIC-10 dataset are the same as those of the CIFAR-10 task shown in the original manuscript. As
illustrated in Fig. [9b] MTGC maintains its superior performance on the CINIC-10 dataset, consistent
with its performance on other tasks.

E Extension to the HFL System with Arbitrary Number of Levels

We extend MTGC for the HFL system with M levels in this subsection. For presentation ease, we
adopt different notations than those used in the main text. Specifically, we denote the number of
total iterations at clients as r. The aggregation periods for level m are denoted as P,,. This means
that the m-th level aggregator aggregates the model from the clients within its coverage after every
P, local iterations. The global server is treated as the first level aggregator. Note that P,, > P, 11

and Pp,+1 | P, Ym =1,..., M — 1. We denote the model maintained at the nodes connected to
the m-th level aggregator (k1, ko, ..., km—1) as xy, 1. where kn, € {1,..., N, }. The gradient
correction term between nodes (k1, k2, ..., km—1) and (k1, k2, . . ., k) is denoted as Vi Koo ke

The overall procedures are summarized in Algorithm 2]
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Algorithm 2: MTGC for the HFL System with Arbitrary Number of Levels

Imput: v, {P; : i € {1,2,...,M}}

e on DU i
1 Initialize: vy , v gy oo Vi k. kpy o VR B2, kM
2 r=0,1,...,R—1do
3 each client (k1,...,ky) € V in parallel do
. e
4 Cor+nlpute stochastic gradient: g, .. ,,
T T _ r r r r
5 L Thy,kng — Lhy,okar ’Y(le ----- keag TV Tk g T o Vhy s, kM)
6 level: = M,...,1do
7 if P; | r + 1 then
8 i-th level model aggregate:
r+1 _ 1 N; Ng r+1 .
Lhi,k; — N;Npy Zkilzl co ZkM=1 wki7“-7kM7Vkl7 oo ki
9 i-th level correction term update:
r41 _r 1 r41 ot
Vi kg yeki = Vhika,oik; T 55 (wklk, wklkl)
. : CORRN ot | r4+1
10 Model dissemination: @[ , =~ <« :cklw,ki,Vkl, vy km
s ” i
11 Initialize Vg, g, koo -0 Viykoy.ookars VRL K250 kg
12 else
r+1 _ . r T ., r+1 ., X
13 Vit = Vi Vil hy = Vi koo o0V kayks = Ve ka,.okgs VR K2y oo K
14 break
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Figure 10: HFL system with 3-level topology
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of MTGC for three-level HFL with data non-i.i.d. across each level.

Parameters are setto Ny =4, No =5, N3 =5, P =500, P, =100, P; = 10.

We numerically validate the performance of MTGC by conducting experiments in the three-level
case as shown in Fig. [I0] The results are shown in Fig. [TI] The total number of clients is set

to be 100 while N7 = 4,

Py =500, P, = 100, P;

https://doi.org/10.52202/079017-2504

Ny = 5, N3 = 5. Additionally, the aggregation periods are set to be
= 10. The data is non-i.i.d. distributed across each level.

78880



F Proof of the Main Results

F.1 Preliminaries

Before proceeding to the proof of the main theorem. We introduce some basic inequalities in this
subsection that will be frequently used in our proof.

2
Lemma F.1.1. For any set of K vectors {pk}szl, H% Z,IlepkH < %Zszl pk|?

2
K
ftn] <

s

2
, and

1 & 1 &
?Z Pk—gzpk
k=1 k=1

Lemma F.1.2. For any two vectors p,

2 | K | K 2
_ 2
_EZHPKH - EZW
k=1 k=1
< (L+a)llpl?+ (1 +3) lall
Lemma F.1.3. Suppose a sequence of random vectors {pk}le satisfy E[py] = 0,Vk. Then,

1 E P 1 &
_ 2
Kkz_lp’“ K2 kz_lE”p’“H '

Lemma F.1.4. [46, Lemma 2] Suppose a sequence of random vectors {pk}szl satisfy
E[pk | Pr-1,Pk-2,- - - 1] =0, Vk. Then,
K

Zpk

k=1

2
E

>k e

Lemma F.1.5. [21, Lemma 17] For any ag > 0,b > 0,¢c > 0,d > 0, there exist a constant n < é
such that

1 2
ap 2 aob 2 ;(a0>§ dao
— +b <2(—= 205 (— —. (10)
Tn+n+c77_ <T> + 2¢3 T +T

F.2 Proofs of Theorem[d.1I|and Corollary[4.1|

For the convenience of presentation we introduce the following notations

IR SRS WL ERA LU RPN

e= zGC_
B-1, N B-1, N )
te t ~t, ~t,
oY e*ZﬁZE |vj + V£ (87) = Vf (@)
e= J:l e=0 j=1
B-1, N )
D=y &> gty a
e=0 j=1
SRS IS IED DI T
NH n;
e=0 j=1 i€C; h=0
-1, N B-1, N 9
t,e _te+1 _t.e
FOILAEDDED B L i
e=0 j=1 e=0 j=1
where Zt’e and Yf’e characterize the biases between client-group correction term zf’e and

VEF; (&) ) Vf; (2}°) and between group-global correction term y! and V f; (2°) =V f (&%),

respectlvely, D, and Qt denote the group model drift and client model drift, respectively, and @3-’6
represents model progress for group j.

To prove the convergence of MTGC, we start with characterizing the evolution of the global loss, i.e.,
f (@) through the following lemma.
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Lemma F.2.1. Suppose that Assumptions and E| hold and v < ﬁ, then the iterates generated by
Algorithm ]| satisfy
RN

E—-1
Ef(z™) g]Ef(a‘:t)f%Z]EHVf(fat’e)HszLzH(Qt+Dt)+w2LEHN2 —a”. (12)
e=0 j=1"

Lemma (F2.T)) implies that we need further to study the evolution of Q; and D;. In particular, we
establish upper bounds for Q; and D, in Lemmas [F.2.2]and [F.2.3] respectively.

Lemma F.2.2. Suppose that Assumptions|l|and E| hold and v < ﬁ, then the client model drift Qy,
defined in @), can be bounded as

E—-1 N E—-1 N

1 e 1 e

Q¢ <24v*H?L?D, + 12+°H? § N § Zh¢ +129°H? § NE :th,
e=0 Jj=1 e=0 Jj=1

13)
E—-1

+249°H? S E|| VS (&°)|]° + 3EHA 0.
e=0

Lemma F.2.3. Suppose that Assumptionsand hold and v < ﬁ. Then the group model drift
Dy, defined in (1)), can be bounded as

i N-o1<.1
2 2 272 2 2 2 t,e 2 3 - 2
Dy < 247’ E*H?L2Q. + 124°E°H EE_ON;_lY; +3 B H = ;_ln—ja. (14)

The results shown in Lemmas|F.2.2 and suggest that Z;-’e and th’e are crucial for understanding
the dynamics of MTGC. Hence, we derive upper bounds for th.’e and th’e, which are presented in

Lemmas [F24]and [F.2.3] respectively.

Lemma F.2.4. Suppose that Assumptions[Ijand[2|hold. Then the bias between client-group correction
term zf’e and V F; (:E;e) -Vf; (:E;’e), ie., Z;’e can be bounded as

E—1 1 N E—1 1 N E
> ¥ 720 <ALPQ+4L7 ) v y e+ 2E02 + 0. (15)
e=0 j=1 e=0 j=1

Lemma F.2.5. Suppose that Assumptions [I] and [2] hold. Then the bias between group-global
correction term y; and V f; (&4¢) =V f (&"°), i.e., th’e defined in (1)), t > 1, can be bounded as

E—1 N

1
> Nzyf’e < (8L*+48y*L*E*H?) (Q1 + Di1) +487°L*E*H? (Q:+Dy)
e=0 " j=1

E—1
+48° B2 Y (B Vi@ )| +E (V@ )||) (16)

=0
N N
1 1 2 1 1
32V LPEPH— Y =62+ 2N =52
32y NQ;anJFHN;njU

Additionally, when t = 0, on’e can be bounded as

E—-1 1 N 1 N 1 E—-1 5
0,e 2 2 .0, =0
e=0 Jj=1 Jj=1 e=0

In addition, the upper bound of @3-’6 is presented in the following lemma.

Lemma F.2.6. Suppose that Assumptionsand hold. Then the group model progress at the (t, e)-th
round, i.e., @;fe, defined in (T1)), can be bounded as

E—-1 N E—-1 N

Z %Z 6;,6 <8VPHPL2Q: 4872 H?L? Dy 4872 H Z %Zy}t,e
e=0" j=1 e=0 " j=1 (18)
E—1 1 N 1
+8y° 1 Y E|VS ()| + B Y ot
e=0 j=1""
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Recalling Lemma (F2.T), we can see that what we actually need is the evolution of Q; + D;. With
Lemmas[F.2.2}[F.2.6] we can characterize this evolution which is formalized in Lemma[F.2.7}

Lemma F.2.7. Suppose that Assumptions |l| and 2| hold and v <
'y = Q¢ + Dy satisfies

1 .o
BERT the model deviation

E-1
I, %Ft 1+ (1152 H' L+ 72 E* H?) Z(]EHVf(aA:t*“)HQJrIEHVf(ﬁct’T)H2) +2947*E°Ho?,
7=0

E-1
Lo < (6487 H'L? +427° B2 H?) S E||Vf (&7°)|” +1467° E* B0,

e=0

The proofs of Lemmas are provided in Appendix [F.3] With these lemmas, we are ready to
prove Theorem 4.1}

F.2.1 Proof of Theoremd.1]
Starting with Lemma[F2.1] i.e.,

N

Ef(z™) — vL*HT; <Ef(z' 7HZ]EHW 2)||” + LEH]\; 1] o, (19)
e=0
where I'; = Q, + D;. Adding 2vL?HT'; on both sides of the above inequality and utilizing Lemma
we have
E 1 N 1
Ef(2™") +yL*HT; < Ef(2") +~L HFt_lf—Z]EHVf &) H +72LEH — 0
o
e=0 =1 J

E—-1
+2L7 H x 2049° B> Ho +(23049° HL* +1445° B H°12) 3 (E||V 1 @' 1) | +E [V £(@"7)[*)
=0

For notatlon ease, we denote ®;,1 = Ef(z) — f*+~yL2HT;, ®; > 0, V¢t > 0. As long as
7<3 L in Theorem | 2304~° H° L* < 363 E2H?L?, we thus have

E-1 E-1
ber <0 =TS BV 180y’ B LY (B]V @) 45 vt )

e=0 7=0 (20)
+2vL*H x 294y*E*Ho® 4 LEH Z—
When v < 45 E 7 » We have 'Y — 360y E?H3L? > 7H . Telescoping the above inequality from
t=1toT" — 1, we have
T 1E-1 E—-1 )
o <01 S S B e 1807 B LS 0760
t=1 e=0 T=0
N 2D
2 2 3 2 2 1 2
+29(T — 1)L*H x 294y* E*Ho” ++*(T — 1)LEHmZn—JJ .
According to Lemma[F2.1] when ¢ = 0,
'yHEi1 2 1.1
_1 _0 ~0,e 2 2 2
Ef(@') <Ef(@ )—7;EHW@ )| +vL?HT o+~ LEHF;H—],U , 22)
it follows that
HY 21
Ef(@')+yL*HTo <Ef(z°)— 1 Z]EHVf 50 || +27L HF0+72LEHN2 — . (23)
n;

e=0
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Combining (23)) with (2T)) and plugging the upper bound of Ty, established in Lemma[F.2.7] into the
inequality, we have

N
®p <Ef(2°)— [*+2yL2H x 1467>E* H20> 4 2¢TL2H x 292w2E3H02+72TLEH$Zi02
Lp,

E—
(Vf 1807’ E*HL? —2yL*H x (648y" H*L*+427*E*H”) )ZEHW(@O’E)HQ

TlEl

S S vt

t=1 e=0

The setup of +y presented in Theoremis enough to guarantee 22X — 180> E2 H3L? —2yL2H x
(648y*H*L?+427*E%H?) > L. Therefore, combining the last terms and taking some basic
algebra operation, we have
== Ef(z°)—f 1168
t e 2 27202772 2 272712 2
TEZZ]EHW < W—M L—Z Y L*E*H?0%+2352¢° L’ E*Ho”.

t=0 e=0

The above bound can be further simplified to

T-1E-1 0 * 2
e - Lo
TE§ S E||VrE)| < f(;E)Hf +4”N +35207° B2 H? L%, 24)

t=0 e=0

This completes the proof of Theorem 1]

F.2.2 Proof of Corollary[d.1]
Rewriting the bound in 24| as

T—-1E—1 Ef(2°)—f ) AL
E B°)||* ( - EH L3202 (vEH)? 25
TE;; va T(’YEH) +NEH(’7 )+3520 o (’Y ) ) ( )

and recalling Lemma|F.1.5| one can claim that there exists a learning rate (yEH) < % such that

o ey (Ef(@°)— f*)Lo> (EBf(@)—f)Lo\ 7 dES@)—f)
TE;;)]EI Vi \/ NTEH +96( T ) i T

2
2 3
~O Folo® | (]:OLJ) Lo
NTEH T T
(26)

Given that we need v < 5mt E -7 for Theorem L we can set d = 40L. We thus can find a step size

in the range of (YEH) < 40L,le v < 40EHL such that
T—-1E—-1 2
te FoLo? FoLo\3 LFo
~ . 27
TE;;EHW - ( NTEH+( T ) " T> @n

This completes the proof of Corollary .1}

F.3 Proofs of Lemmas[E2.THE2.7]
F.3.1 Proof of Lemmal[E2.1]

Under the framework of MTGC, the virtual global model obeys the following iteration:

ahetl — ghe _,YZ ZZ VE; ( ’fowg) 20+ ).

JzEChO
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Asy .o ¢ Zf,e = 0 and Z;v: 1 y§ = 0, the the virtual global model iteration reduces to

:i:t,e+1 ﬁ: -7 Z Z Z VF : }617 éf:z) ) (28)

j=1 7,€Ch0

With Assumption[T] we have
L 2
F(y) < F@)+ < Vi@)y 2>+ oy - a )

Plugging (28) into (29), we have

ste+1 ~t.e ~t,e 1 al 1
Ef(@"") SEf(&") B V@), 5 > o

T
2 (30)
1 1 N 1 H-1 .
2 e
+7L§]E NZEZ VFi (z5h,600)
j=1 i€Cj h=0
T2

Utilizing B[40, L5 ce SV (205,605 ) = 45000 Ve, DI VA(L7)] = 0. we
rewrite T} as follows

j=1 el i€C; h=0
2
N N H-1
vH. Lte 1 _te 1 1 e vH Lten||2
=G BNI@)F 52 VE@) -5 Do D D VRE)| — G E[VE)]
j=1 j=1 i€Cj h=0
2
N H—-1
vH_ || 1 1 te
j=1 i€Cj h=0
1 X 2 1 A H-1 2
SYHE|Vf(2") = 5 D V@) | +vHE( = > V() = D VFi(z;7})
j=1 j=1 i=1 ™ iec; h=o
2
7 20 | B R B e
- —E|Vf )| - WZ:TTJ ZvFl(wzh)
j=1 i€Cj h=0
N 1 H-1 5
<yH—- Y E|Vf;(2") - V(@ 2| o H S an E||VFi(2;°) - VFi(z;})||
j=1 j=1 7iec; h=0
2
N H-1
t.e 2 ’YH 1 1 te
E|VI@™ )| - S E WZTTJ VFi(z;})
j=1 i€Cj h=0
1 I L1’ >
2 ~te —te 2 —t,e t,e
<YHL?— ZE 1 +yHL ﬁ;ah:Oiec E|zi—a!; |
J
2
N H-1
. ~vH |1 1 1 .
- Wz ||vsat)” S E ﬁznj__ VE (@)
j=1 7 iec; " h=0

H
where the last inequality comes from Assumption|[T}
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On the other hand, we can bound 75 as follows

2

18 H-1 13 H-1
Ty <E|\=Y >3 (VFE: ()5.£0) - VFi(a}})) || +E NZF VFi(xls)
j=1 "7iec; h=0 j=1 "7 iec; h=0
A H— H-1 2 1 & H-1 2
t,e
S LSS Y vae)| 5| LY L Y vre)
j=1 "7 iec; h=0 h=0 j=1"" iec; h=0
2
Ho? <N 1 1L 1 = .
< — +E|—= — Fi(x )|
="N2 an+ NZnJ VFi(z;),)
7j=1 j=1 i€C;j h=0

where second inequality comes from Lemma[F.I.3]and the last inequality follows Assumption 2]and

LemmalET.4]

Plugging the derived upper bounds of 77 and 75 into|30|and utilized v < we obtain

_1_
2HL>

~tet1 ~te vH ~ten |2 2 2 &
Ef(@!) <Bf(3") - TIE Vi@ )| + 2L 5 Y0 —

N H-1

+7HL2NHZZ ZEH-” Al

=1h=0 Jzec

:Et’EHQ
J

1
27
+~vHL
Jj=1

Telescoping the above inequality from e = 0 to H —1 gives rise to Lemma

F.3.2 Proofs of Lemmas [F.2.2| and [E.2.6)

2
,q§:§ = 0. For 0<h < H-—2, we have

Part I (Lemma|F.2.2): Let q;Z = Diec, E Ha‘sze —zbr
: ; :

505
:ZEHw::Z_’Y(VFz( ffuﬁzh)-ﬁ-y]—i—z ) j§,e||2
1€C;

< (14 g7 ) Elleti-at P41 Bl (V5 (ki) by 22 [ nin%o°
i€Cy

1 _te € ¢
<1+ﬁ>E”mzh_wt H +’72H§EHVF1' :h):FVF( ; ):vaj( z )
]
FV (3°) F VF (@) +y) + 20| + nin’o?
(1+%+4v HL2> DB |l -2l |yt Bl VE (25) -V (259
i€Cj 1€C;
+472Hn]EHyf+va( ) Vf te H +8'72HL271]EH-’BtE*:ﬁt’CH
+ 8y Hn,E ||V f (&) " + nyr’e?,

where the first inequality comes from Lemma [F.1.2]and Assumption 2] and the second inequality
follows Lemma [F.1.1} Let p; = (1 + 75+ 472HL2). Asy < g7, we have pft < pi'™!

H-1
(1 + ﬁ + m) <e} 1% < 3 and Zh 701 p’f < 3H, where eq denotes Euler’s number. We
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thus have

”j‘1§15+1
h

<(27) ("‘”QHZE”’*”W )= @) + 8L E et - 5]
=0 i€C;

B, + O, (2) - 91 @) + 85 [0 @)+ nro?)
SO Y B[ TR (57) <1, (a4) [ E 0, (5) <95 ()
i€Cj

F2492H2 L E || %" —&¢||+- 249 H?n,E ||V f (2°) " +3Hn 770",
where the last inequality follows Assumption 1]

Plugging the derived upper bound of n; qu Linto @ =YL ( S q; Z) gives
rise to Lemma [F.2.2]
Part II (LemmaF2.6): First, 2! = & + 9 10 L 5o (VH; (2,600 ) +20"+ut).
AS Y iec, 2)° = 0, we can rewrite G)j’
2
s N 1 Z LS (E (e )

zEC

Next, we establish an upper bound for @tie as follows

2 2
H- H—
0} <29° Z ST (VR () ) | +20E z — Z (@05, 60) =V (05))
h=o " iec, h=o " iec,
2
H-1 H—
<2°HY E Z VE (245) + ! 7 Z (@i &n) =V Fi (277))
h=0 i i€C; "5 ic C; h=0
H-1 ’ Ho?
<2’H Y E|— ZVF (i5) F V6 (@) F VS (@) F V(@) +y5 | +29° =
h=0 ZEC 7

<ot S LS wely gl g+ 01 (6) - 91 ()
ZEC

2172712 _t,e Ate 2772 te 2HU2
+ 8y H?L’E |2} — &"°|| + 8y* H’E ||V f (&"°)||” + 2y —

J
where the second inequality holds due to Lemmas [FT.T]and [F.1.3] the second third inequality comes
from Lemmas [F.1.4)and Assumption 2} and the last inequaliti follows Assumption[I} Plugging this

upper bound into Zf;ol %Zj\]:l @é’e gives rise to Lemma

F.3.3 Proof of Lemma [F.2.3

2
To bound D; = ZeE " + EeHwt - :i:t’eH we first rewrite IE’ gt t’eHH as follows
Bl a1
1 H-1
=K@ = — > > v (VF (x5,60) +v) +27)
7 iec; h=0
2
o1 H-1 .
' +NZTT v (VFi (@5, 600) + 5+ 20°%)
j=1 "7 iec; h=0
1 H-1 A H-1 2
=E||&} — 2" — — v (5 + VFi (x5, 607)) + N Z — YVE; (5,600
nj i€C; h=0 j=1 " i€Cj h=0
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_ . 2
where we utilize + 37", y§ = 0 and ;- Ziec 2 = 0. Next, we bound E||2°*! — & || as follows
J

Bla+t - 2t

5 H-1 H-1 1
—t,e ~t,e 2 e
(l—l—ﬁ)EHm; —&"||" ++*EE y;+zn7 (VF: (z;7,.607))
h=0 h=0 7 ieC;
H-1 1 H-1 1 N 1 H-1 1 N 1 2
DD LCIED IS DI DA CHASIED DS D Dp DAL CHA)
h=0 i€C; h=0 Jj=1 i€C; h=0 Jj=1 i€Cy
1 _ Lte|2
< (1+ 57 ) Elley - o
H-1 H-1 H-1 1 N 1 2
+29°BE|| > ) + n; 2 VI (=h) = 2~ Z n; 2 VI (=)
h=0 h=0 i€C; h=0 Jj=1 i€C;
H-1 1 H-1 1
+27*EE — N VE; (i, €7) — > VEi (z})
h=0 "V iec; h=o 'V iec,
H-1 1 N 1 H-1 1 N 1 2
t,e t,e
_ NZE VF, (25, &07) + NZE VF ()]
h=0 Jj=1 i€C; h=0 7j=1 i€Cy

where the first inequality comes from Lemma[F.1.2] We thus have

1 N
Sl - st

j=1
N
1 1 _te  atell2
(14 507) w ol el
j=1
1oL 1« 1 -1 ’
+2°BH S ]Ey§+—ZVFZ(mfZ)—NZ; VF, (z)
j=1"" h=0 7 iec; j=1 "7 iec;
N1 - Ho1 2 (31)
+ 27" E—; > E Z ZVF (zi,€07) — VF; (z!5)
j=1 |[h=0 "7 iec; h=0 7 icc;
N
<(1+557) ¥ ZEHmte o+ 2rEn S Lo
j=1
J ARG iy 1.1 i
+ 2 EH? Y D Byt — Y VE(2i5) - > — > VE ()|
j=1 h=0 7 iecy j=1"" iec;
T3
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where the first equality comes from Lemmas[F.T.T]and the second inequality follows Lemmas [F.1.3|
and[F.1.4] Additionally, we bound 75 as

H— N
. . 1 1 .
ZNZE%;VL t)ﬂFVf(t)+*ZVF )TN 2 2L VE (=)
h=0 ' j=1 7 ieC; =1 i€C;
N 1= 1S |1
<203 Byl + V5 () - 91 @)|P -2 S0 & DU ST VR (ab) - v (@)
j=1 h=0 " j=1 7 iec;
N 2
Z > VE (ap5) - V(")
j=1 " i€Cj
1Y 1= Ien || 1 2
QLY +VS () -V @) 2 X 5 3E| o 3 VA (alh) - Vs ()
j=1 h=o ¥ =1 ||™ i€C;
1 1 < 2
SR Y S g S Eleti el ar Sl |
=1 i€C; Jj=1

1 ‘)
+2NZEHy§+ij( DR ZACA]
i=1
where the second inequality follows Lemma[F-1.T]and the last inequality follows Assumption[I]

Plugging the derived upper bound of T3 into (BT) gives rise to

NZEHmte+1 Ate+1H <(1+E1 +8y 22 ) ZEHmte AteH 42y
Jj=1 j=1

N
No1<h1 ,
NZ;;

Jj=1

N
+472EH2% > E|yi+VS (&) -V (:&t’e)||2+8fyzEH2L2 ! Z Z Z E||z}5—a)e||
j=1

J 1 ]zec
Let po = 1+ E%ﬁ + 8v?EH?L?. As v < 1gpgp. we have py < Pt <
1 13
(1 + E 7+ 120 E T2(E-T) < ej* < 3, where ¢ denotes Euler’s number. Therefore, we have

EH —t,e+1 At,e+1”2
~ Z

N
<Z"2>27 B N D HAmax{ ) B > LS Byt + V5, (6) - 1 (&)
v=0 j=1 v=0 j=1
+ 8 max{ps }vy EHQLQZ z z ZE| _t”
v=0 j=1 ZEC
<6y*(e + 1)E Zﬁf 112y EH2Z EEHyJ—i-Vf] —- V@)

+ 24y EH2L2Z Zmz ZEH:E @l

v=0 = i€C; h=0

E—1 2 (32)
Hence, for Dy =Y. J{, Ee||mt - .’it’eH we have
N E—1 N
D <3v°E°H P EHR Y S LS By + VS, (8) - 9 f ()]

e=0 Jj=1

(33)
+24+*E*H?? Z Z — Z Z E|z};, — 25|
J

e=0 = i€C; h=0

This completes the proof of Lemmam
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F.3.4 Proof of Lemmal[E2.4

Fore:O,zf’O:—VF< z;0, >+ DI VF( x, )where 8 *to , we have
2

70 = Z E

-V (25°,600) +—ZVF (25°,600)+VF: (27°) -V 15 (25°)

ZEC ZGC (34)
< LS B|R @) - VR @) <
ZEC

where the first inequality follows Lemma|F.I.T]and the second inequality holds due to Assumption 2]

In addition, when e > 0, zf’e obeys the following iteration

tetl _ _t,e 1 t,e t,e 1 t,e t,e
Z; =z, + H~ (mi,H — L0 — (wi,H - wi,O)

n
7 iec;

H—-1

=z; 7 ((VE( ii,flh)er]Jrz )7iZ(VFZ( §Z7£zh)+yj+z ))

n
h=0 Jiec;

te _
As Y iec, 7 =0, we thus have

:M—Hz( SR ) VEM%%O-
1EC

To establish an upper bound for 37! e jV: L2t

t,e+1
Z = L3 E

, we start with bounding th-’e as follows

2

H-1
HZ( > VE (xp, &) — VE; (m;f;‘;,ff;;)) +VE; (&5 =V (@)

ZGC ZGC
1 H-1 2
—t,e+1 e s e 1 e
*—ZE V(&) = 2V (@05 €0 =V (@) + o Z( ZVF (i €0) )
zEC h=0 i€C
H-1 2
<—ZIE VF; (z;°7) - ZVF (zi5.60%)
’LGC
He 2
= Z E Z &) = VFi (a05,€05) F VE (215))
1€C h:
H— 1 = 2
<2 LS80S (vr ) v (o) oLy e L8R et R )
i iec; h=0 nj iec; h=0
H—1 2
<27 E|(VE (") =V E; ( 127
ZCJ Z I NI +2%
H-1
<L —Z ZEH 2y e —al +2ﬁ
'LGC h 0
2 1 = —te 2 te+1 —te
<4L®— Z Z]EHa: be||* 4 4L%E || 2% be? +2ﬁ
1EC
(35)
where the first inequality comes from Lemmam the third inequality follows Lemma and
Assumption@ and the fourth inequality follows Assumptionm Combining this bound with , We
thus obtain Lemmam ie.,
E—-1
Z ZZ”<4L2Q +4L22 Z@te+2 (36)
e=0 j=1 Jj=
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F.3.5 Proof of Lemma |F.2.5

PartI (¢t > 1): As ZlGC z = 0, the updating rule of y ! can be simplified as

B I R
EH 4= £ N~ n; R EH -~

=17 iec; =0

H-1
D 2 VE (=€)
heo ' i€C;

YtJrl,e

‘We next bound g as follows

Y]H—le_NZEH t+1+vf t+le) Vf( t+1e)H2

E—1H-1 E—1H-1
NZ EHZZNZ ;2 VI D - FEL D ;2 ()

’ 2

+Vf]( t+1e) Vf( t—‘rle)‘

<J;§6 vf(tﬂey_gLfklng;E: VE; (a7, 607) FVE (27))
=N gt J EH it n; = i,h? ? i,h
9 XN | BmiEol 2

SNZJEVﬁ@Mﬂ*Eﬁ__ o VE; (77)

=1 7=0 h=0 i€Cj

9 N E—1H-1 . . 2
NEQHQZTﬂ ZE - (VF( :mg ) VE; (w?h))
j=1 J i€Cy 7=0 h=0

9 E—-1H-1 N 1 2 ) . N .
t 1,e 9
7=0 h=0 j=1 ieCy =
2 E—-1H-1 N 1 ) ) N .
~tHl,e 9
SN > SENVE @) - VE @)+ gy e
7=0 h=0 j=1 i€C; =
2L2 E—-1H-1 N 1 . ) . N .
SNBH D= > Elap; -t I” + 55 an 2
=0 h=0 j=1 i€C; =

(37

(3%

where the first inequality holds due to Lemma[FT.1] the second inequality follows Lemmas[F.I.T]and
[F13] the third inequality follows Lemmas [F.1.1]and [F.1.4]and Assumption 2] the fourth inequality

follows Lemma[F.I.T} and the final one comes from Assumption|[T}

Given the above inequality, it follows that

Z Zyt+1e<2LQZNEH

T

-1

HML

>
Il

0j=1 "7 iec, j=1 "7

Additionally,

B ot~ 87|* <B ol 7 2" 7 87 £ 2 ot
< o - @7 4 o - 5
&7 — :Et“” +4E ||z - :%”MHQ7

which implies that we need further to bound E || 2" — z*™ H2 and E ||zt — e H2

+ 4E

Under the framework of MTGC, the virtual global model obeys the following iteration:

e—1H-1

aA:t+1,e:a—: _,_yz ZZ Z VF t+l7’ §t+1 T) +zf+1,f+y;+l)-

JzECTOhO

78891 https://doi.org/10.52202/079017-2504

N N
1 T gt 2, 21 1 5
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(40)



As Yice, 2T — g and Y ;=19 = 0, the the virtual global model iteration reduces to

1H-
Lttle _ ot @ltLT gl
gt =2 WZ ZZZ Fi (w3760

J=1 ZECTO:

For E H:f:“l - ﬁ:t‘H’eHz, we have

EHjH—l _:i,t+1,e”2
1 N 1 e—1 H—1 1 1 e—1 H-—1 2
=7’E NZn > VE@D &) F g 2o 2o > 2 VREDT)
J iec; 7=0 h=0 j=1 "7 iec; 7=0 h=0
1 N 1 e—1 H—1 1 1 e—1 H—-1 2
SQ'-Y L Z . Z VFI t+1 T t+1,7‘) _ Z - Z VFZ(:I::-!—;,T)
N]:l " jec, 7=0 h=0 Nj:l " jec, 7=0 h=o0 ’
J J
1 N 1 e—1 H—1 2
R S ES 3 DS R
=1 i€C; T=0 h=0
TR e—1 H—1 e—1 H—1 2
=255 5 ) E VE(a " 65T =Y Y VE@RT)
j=1 7 i€C; 7=0 h=0 7=0 h=0
e—1H-1 2
+29°E NZ >0 > VAR
il i€Cj T=0 h=0
e—1H—1 1 X 2 o) AN
S S B S LSRG F S IAE R e R L
7=0h=0 =1""7iec; j=1 j=1""
2
e—1 H—1 o) A 1
sy S 43R L S VRGN - vaE)| 0 RS L
=0 h=0 j=1 7 iec; nJ
e—1H—1 L X 2 e—1 H—1 "
+67%eH )y > BT VL@ - V@) +6r'eHY Y E[VIET)
=0 h=0 j=1 7=0 h=0
E—1H—

1H—1
<6y L2EHZZ Z ZE” t+17 7t_+1,7'||2+6fy2L2EH2Z ZE” —tH,T At+1,7||2

TOhO _71 ZEC =

E—-1 N
+6°BH Y E[VI@ )|+ 29" 55 Y ot
=0 j=1""

(41

where the second equality holds due to Lemma [F.1.3] the second inequality follows Lemma[F.1.4] and
Assumption 2] the third inequality comes from Lemma[F.1.1] the last inequality follows Lemma [F1.1]

and Assumption [T}

- A o
Similarly, we can bound E ||;c” e || as

E :ﬁt,‘ri:iﬂ»lHQ

== 4 7|2 272 t, v’ t,7" ]2
<6’L°EHY ZNZ Z H—n gt | 6L E T gt

7/=0 h=0 T ie 42)

2 2 N JUSNIE o EH 1,
+6y2EH Z_:OEHVf(w )H +2° 270.
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Given (@T) and @2), it follows that

E

~t 41|12 —tH Lt e |2
et -z + B2 -2
—0

E—1
<6y’ L*EH?*Qu + 67> L*EH?Dyy1 + 6> EH? Z E HVf(ﬁctH’T)HQ +2v 2 BH Z L

= NZ oy (43)
E—-1 EH N 1
+6y* L EH*Qr + 6y° L EH*D, + 69°BH Y E|[Vi@")|" +2v* 55 Y o™
=0 =1
Combining (39) and (@0), we can obtain
E—-1 1 N
1,
DIE-D IR i
e= j=1
E-1 1 E—-1H-1 N 1 5 21 N 1
2 t,r atH, 2
<2L ZiNEH > ZZR—JZEHmM—er “l +ENZTL70
e=0 7=0 h=0 j=1 1€C; J=1
| EiHo1 N . R ) (44)
,T —t, T 2 —t, T ~t,T
SVESES 353D D) DI EUSPIL (NRVELS 3w AmP
7=0 h=0 j=1 i€C; 7=0 j=1

E—-1 E—-1 2 1 N 1
P82 B[ - at | sr TR fa -y 2SS Lot

T=0 e=0 Jj=1 T

Plugging @3) into (@4), we have

gy 1 1 21 .1
t+1 e 2 27122 2 2
Z >y, <8LQt+8LDt+327LEHN22nj ﬁﬁzfj
e=0 Jj=1 Jj=1 Jj=1
+ 48y’ L'E*H*Q: + 48y’ L E*H* D, + 48+’ L’ E* H* Z E|vf@)*
7=0
E—1 9
+48y° L' B H?Qua +48+° L' B H* Doy +48y° L B H* > "E||Vf (2™ 7).

T7=0

Part II (¢ = 0): On the other hand, when ¢ = 0, we have

PORD I
e=0 J=1
E—1 1 2
ZNZE —*ZVF NZ LSRG, + Y, (#9) - VF (@)
e=0 j=1 ’LGC 'LEC
E—1 1 N 2
SZﬁZ ——ZVF ©&0) + V15 (@) NZ ZVF °.&0) — Vf (2°)
e=0 J=1 ZEC J=1 ZGC
E—
ZEHVfg ~Vf; (@°) - Vf (@) + V(@)
1 N 2
gEN; +L2 ©—a°|”.
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Similar to (#IJ), we have

~0e =02
-2

E—-1
E:IE z
B E—-1H-1
<6 2L2E2HZZ Z ZEH@U —z07|” +67LE2HQZ Z]EH T ||

‘rOhO jl IEC

E-1
0,7 (|2
+6y’E*H? Y E| V@) +2v
=0 j=1
Combining the above two inequalities gives rise to

N N E—-1
1 . 1 1 NPT
2 N L SEy 2 et + O LB (Qoot Do) £ 6 LB ) B[V A

e=0

2
+opp 2l Hzigz
=1

To this end, we complete the proof of Lemma[F2.3]

F.3.6 Proof of Lemmal[E2.7]

Part I (¢ > 1): Replacing 37 ' + 57 =1 ©7° in (T3) with an upper bound established in Lemma
[F2.6](i.e., (I8)), and then plugging it into @ we have
E—1 N

1
Q¢ §2472H2L2Dt+1272H2{4L2Qz+4L2 (872H2L2Qt+872H2L2Dt+872H2 > NZYJ.“

e=0"" j=1
S S By @)+ 2tEr kY Lot) salot o
prd el H
N
+1272H22 ZY”+2472H2ZIEHV]‘ 2"°)||* + 3EHA?0” s)
e=0 j=1
= (48y*H’L*+384y"H*L") Qt+ (2472H2L2+38474H4L4) Dy
E-1 N
+ (3847 H'L*+24~°H?) Z]EHVf 2"°)||*+ (3847 H'L* +12¢°H 0>~ ! > ovphe
e=0 e=0 j:l

N
+9674EH3L2i > ia2+2772EH02+1272H202.
N =1 nj
Summing (@3] with the inequality established in Lemma [F2.3] and utilizing the upper bound of
Zf;ol %Zjvzlet’e established in Lemma , we have

Qi+Dy < (48y*H?L*+3847 H' L' +24v* E* H* L*) Q1+ (24+* H? L*+ 3847 H' L") D,
E-1
+ (3849  H'L? +247° H?) Y E||Vf (&)

e=0
+ (384 H'L* +127°H? +127° E*H?) { (8L*+48v’L*E*H?) (Qi1 + Dia)

E—-1
+487° L' E*H” (Qu+ D) +48v° L’ E*H* Y (B[ V(@ )|*+E||V £(2"7)|*)

7=0

1 <1 21 L1

N2I2E2H 1 o 21 1

82y N2jzlnjU+HNZna
N

N
1 1 N-1¢-1
+96V4EH3L2N§ ;02+2772EH02+1272H202+372E3H 2,
j=1 7

—0
N2 n;

j=1
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Reorganizing the above inequality gives rise to

Qi+ Dy
< (48’ H?L? 4384y H'L* +247* E* H* L* + (384y" H'L? +127* H* + 127’ E* H?) x 48+ L' E* H?)

x (Qe+Dy) + (3847 H'L* +12¢° H* +127° E*H?) (8L*+487°L*E*H?) (Q¢1 + Dy1)
+ (384 H*L? +247° H? + (3847 H* L* +12¢° H* +124° E° H”) x 48y’ L*E*H")

E—-1
x> (B[vs@ )P +E |V £@)]”)

=0

N

N
417412 27172 212 172 2 2 1 1 12
+(3847HL+127H+127EH){32 LEHW - Z;

=1 n;j

ﬁ
- spap N=1gn 1
+967*EH?L Z—a +279’EHo® +129° H?0? 437y’ B H——-> " —0o”.
n; N i

When v < we have 48v2L2E?H? < 1 and

7EHL’

(1 - (60y°H?L?+768y* H'L*+367°E*H?L?)) (Q:+Dx)
< (38407 H*L* +120y° H* L’ +120y° E* H* L*) (Qe-1 + Di1)
E—-1
+ (7687 H L +367° H? +124° B*H?) Y (]E|}Vf(:tt_l’7)”2+]E ||Vf(5;“)||2)
31 -1 o
417412 2 2 22 172 2
+ (384 H*L* +127° H? +127° B> H?) o > —o

+967*EHL? = L Z 0?4277y’ EHo* +127* H?*6* + 37> E* H

Asy < gzpg7. we have 1 — (6092 H2L? +768v* H*L* 43672 E*H?L?) > £ and 3840y*H*L*+
120/2H?L?+120v*E? H?L? < +. Hence, (@) can be simplified as
Qu+Dy <= (Qua + D)+ (11527 H* L* +72¢* E* H?)

E-1

< 3 (BT SR VI + oty

N

where

N N
1 1
¢(v,0%) = (17287 H* L* +216+° E° H?) ENE —J 21144~ EH3L2N § —o o’

j=1 7

+42v*EHo® +18v> H?* 6% +5+° BPHE Z—a .

71]

Further, we establish an upper bound for ¢(v, 02) as follows,

E*H

+5

3
b(v, %) :172874H3L2%02+14474%EH3L202+7202 { E H}

§172874EH3L2§02 +14474§EH3L202+281%E3H02
n n
<2947 E*Ho?,

where the last inequality holds due to 1 = < ZN —<landvy < 1‘51 - < smT-
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Part IT (¢t = 0): Summing (@3) with the inequality established in Lemma [F.2.3] and utilizing the
upper bound of 7! %ZleYf’e established in Lemma , we have
E-1
To < (4892 H*L* 4384y H' L' + 247 B> H*L*) T + (3847" H'L* +244°H?) Y E||V f (") ||”
e=0

N
+ (384" H*L* +12°H* +124° E° H?) {E;] > i_JQ +6y°L*E*H’T",

— "

E-1 2 E*H 1
2122772 -0,e 212 —o®
+6+°L°E*H E E V(@) +2v°L N2 ana }

e=0 Jj=1

+9674EH3L2% ia +27v’EHo® +127°H?*6* +3y°E* H

N
N-1 1 5
N2 Z;"

j=1"

Reorganizing the above inequality gives rise to
E—1

Lo < (5092H?L* 432y H' L +267*E*H?L*) To + (267 H> +432y" H' L+ 2* E*H*) S E[|V £ (3°)|”

e=0
1 a1 E2H <A 1
384 H*L?+12v*H?* +127*E*H*) { E— 2PN 5
st st el B B S et et S
1.1
4 312 2 2 3
FH L — — 2 FH 1292 H E —o”.
+96y N]Elnjcr—F?*y o’ + Y U—|—3’y N]EI ]cr
Following the same derivation as in Part I, we obtain
E—1
< (6487*H*L? +4292E*H?) S E||Vf (&%) || + v (7, 0?).
e=0
where
1L 1 1 a1
2 4 4 2 2 2 2 2 4 3712 2
= (1044 "H L°+72v"E“H E—g— 144" FH°L° — —
¥(v,07) ( v ey ) N njU + K N JU

+424°EHo” +18y° H?0* +57*E* H — Z—

71J

Utilizing 2 = + Zj 15 Slandy < fé;IL < sz We can further bound (v, 0?) as

417412 2 2 2 4 3 21 1 2
Y(v,0°) = (10447 H' L* +724°E* H?) sza +144~yEHLNZ—a

n:
1 ]1]

2 2 2 2 2 2 13 1 1
+42+°EHo” +18y’ H?0* +57°E HNZ—

3 2
=1044v*EH*L? la +144+*L 2ppsl —o 24y {7 Ll +42EH+18H +5E H}
<146~v*E*H?0.

To this end, we complete the proof of Lemma

G Recovering SCAFFOLD’s Results

By comparing the communication complexity 7" required to achieve a e-stationary solution, we can
see that our result recovers that of SCAFFOLD when N = 1 and E' = 1. Specifically, for our MTGC
algorithm, to achieve an € error bound, according to Corollary 4.1} we can find a 7 to satisfy

Folo> _e¢ (Folo §<5 LFy _ e
NTEH — 3’ T -3 T 3
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Equivalently, T' > 1522;“2 , T > L“—J;-O and T' > LFo In other words, the MTGC algorithm will
€ € 2 €

have an expected error smaller than € if 7" satisfies

T—0 ( %10'2]:0 Lo‘];—() L.Fo) )
NEHEe (e)2 €

According to Theorem II of [18]], to achieve the € error bound, the number of global communication
rounds SCAFFOLD needs to take can be expressed as

Lo? L
T:O( 7 %o, R),
n;He €

where we have converted the notation from [[18]] to our notation.

We see that the dominating term of the MTGC, O ( 162211;:2 ), recovers that of SCAFFOLD when

N =1(e, N = n;) and E = 1, which corresponds to the case of a single group with a single
(global) aggregator.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the con-
tributions made in the paper. Additionally, the claims made in the abstract and introduction
are supported by the theoretical analysis (see Sec. [)) and experiments (see Sec. [3).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation are included in Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the theorems, formulas, and proofs in the paper are numbered and cross-
referenced. All assumptions are clearly stated in Sec. [4] and referenced in the statement
of our theorem, i.e., Theorem[@.1} The proofs are provided in the supplemental material.
Theorems and Lemmas that our proof relies upon are properly referenced.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper discloses all necessary information to reproduce the main experi-
mental results in Sec.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

78899 https://doi.org/10.52202/079017-2504



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets used in this work are open-sourced while the information
about the models and parameters are clearly reported in Sec. [5] For the convenience of
reproducibility, the code is attached to our submission.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details about the setting of our experiments are reported in Sec. [}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviations which are computed based on 3 random
trials (see Sec. ).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information of the computer resources used for this work
including the GPU type and memory information.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

78901 https://doi.org/10.52202/079017-2504


https://neurips.cc/public/EthicsGuidelines

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the framework that our work is based on in Sec.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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