
LAMBDA: Learning Matchable Prior For Entity
Alignment with Unlabeled Dangling Cases

Hang Yin, Liyao Xiang∗
Shanghai Jiao Tong University

Shanghai, China
{yinhang_SJTU, xiangliyao08}@sjtu.edu.cn

Dong Ding
Shanghai Jiao Tong University

Shanghai, China
18916162516@sjtu.edu.cn

Yuheng He, Yihan Wu, Pengzhi Chu, Xinbing Wang
Shanghai Jiao Tong University

Shanghai, China
{heyuheng, caracalla, pzchu, xwang8}@sjtu.edu.cn

Chenghu Zhou
Chinese Academy of Sciences

Beijing, China
zhouchsjtu@gmail.com

Abstract

We investigate the entity alignment (EA) problem with unlabeled dangling cases,
meaning that partial entities have no counterparts in the other knowledge graph
(KG), yet these entities are unlabeled. The problem arises when the source and tar-
get graphs are of different scales, and it is much cheaper to label the matchable pairs
than the dangling entities. To address this challenge, we propose the framework
Lambda for dangling detection and entity alignment. Lambda features a GNN-
based encoder called KEESA with a spectral contrastive learning loss for EA and a
positive-unlabeled learning algorithm called iPULE for dangling detection. Our
dangling detection module offers theoretical guarantees of unbiasedness, uniform
deviation bounds, and convergence. Experimental results demonstrate that each
component contributes to overall performances that are superior to baselines, even
when baselines additionally exploit 30% of dangling entities labeled for training.

1 Introduction

Entity alignment is a problem that seeks entities referring to the same real-world identity across
different knowledge graphs (KGs), and is widely deployed in fields such as knowledge fusion,
question-answering, web mining, etc. To address the issue, embedding-based methods have been
proposed to capture entity similarity in the embedding space through translation-based [24, 42, 20]
or graph neural network (GNN)-based [41, 37, 27, 26, 35] models. Particularly, if the entities do not
have counterparts on another KG, the entities are referred to as dangling entities, as shown in Fig. 1.

In many real-world scenarios, the labels for the dangling entities on KGs are often missing, as those
labels are much harder to acquire. For example, in KG plagiarism detection, it is relatively easy to
align entity pairs that both exist in KGs, but one would have to traverse all possible pairs to conclude
an entity is not paired. Hence EA with unlabeled dangling entities is a hard but realistic problem.
The problem even worsens in EA on KGs of different scales where the dangling entities take a large
proportion of all nodes.

Despite that many works have been investigating the EA problem with dangling entities, few have
focused on EA with unlabeled dangling cases. We list closely related works in Table 1. The work of
[33] extends the conventional EA methods MTransE [5] and AliNet [37] to the case with dangling
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entities, and thus require a portion of labeled dangling entities for training. Based on their works,
MHP [19] has improved performance with additional knowledge, i.e., the high-order proximities
information for alignment. Both UED [24] and SoTead [23] are unsupervised schemes that rely on
side information such as entity name/attribute as global alignment information. Different from prior
works, we consider a stricter case where neither side information nor any labeled dangling entities
are known, as side information often leads to name-bias [21, 44] while labels for dangling entities are
hard to obtain.

dangling entity in 
source KG

dangling entity in 
target KG

matchable entity in target KG

Figure 1: Examples of dangling entities.

Method Side Info Dangling Labels
[33] w/ MTransE 7 4
[33] w/ AliNet 7 4
UED [24] 4 7
SoTead [23] 4 7
MHP [19] 7 4 + high-order info
Our Work 7 7

Table 1: Different EA models with dangling cases.

The EA with unlabeled dangling entities faces unique challenges: first, the unlabeled dangling entities
would cause erroneous information to propagate through neighborhood aggregation if applying
conventional GNN-based embedding methods, negatively affecting the dangling detection and
alignment of matchable entities. Second, the absence of labeled dangling entities makes its feature
distribution non-observable, requiring the model to distinguish potential dangling entities while
learning the representation of matchable entities. Hence the EA problem has to be solved with mere
positive (matchable entities with labels) and unlabeled samples, yet without any prior knowledge of
the distribution of the nodes.

We tackle the first challenge by proposing a novel GNN-based EA framework. To eliminate the
‘pollution’ of dangling entities, the adaptive dangling indicator has been applied globally for selective
aggregation. Relation projection attention is designed to combine both entity and relation information
for a more comprehensive representation. The designed spectral contrastive learning loss disentangles
the matchable entities from dangling ones while portraying a unified embedding space for entity
alignment.

As to the second challenge, we first derive an unbiased risk estimator and a tighter uniform deviation
bound for the positive-unlabeled (PU) learning loss. However, such an estimator still requires prior
knowledge of the proportion of positive entities among all nodes. Thus we develop an iterative
strategy to estimate such prior knowledge while training the classifier with a PU learning loss. The
prior estimation could also be seen as dangling entity detection; if too few entities are determined to
be matchable, one can stop all subsequent procedures and decide the two KGs cannot be aligned.

Our framework Lambda is provided in Fig. 2 where there are two phases corresponding to two
trained models — dangling detection and entity alignment. Both phases share one GNN-based
encoder and the spectral contrastive learning loss. The dangling detection additionally uses a positive-
unlabeled learning loss. The GNN-based encoder contains both the intra-graph and the cross-graph
representation learning modules. After the dangling detection, the estimated proportion of matchable
entities is figured for judging whether two KGs could be aligned. Only aligned KGs are sent for EA
model training, and then only first-phase predicted matchable entity embeddings are obtained from
the EA model for inference. Finally, we select pairs of entities that are mutually nearest by their
embeddings as aligned pairs.

Highlights of our contributions are as follows: we raise the challenging problem of EA with unlabeled
dangling entities for the first time. To resolve the issue, we propose the framework Lambda featured
by a GNN-based encoder called KEESA with spectral contrastive learning for EA and a positive-
unlabeled learning algorithm for dangling detection called iPULE. We provide a theoretical analysis
of PU learning on the unbiasedness, uniform deviation bound, and convergence. Experiments on a
variety of real-world datasets have demonstrated our alignment performance is superior to baselines,
even the baselines with 30% labeled dangling entities. Our code is available on github2.

2https://github.com/Handon112358/NeurIPS_2024_Learning-Matchable-Prior-For-Entity-Alignment-with-
Unlabeled-Dangling-Cases
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Figure 2: The illustration of our framework.

2 Preliminaries and Related Work

2.1 Entity Alignment

Embedding-based entity alignment methods have evolved rapidly and are gradually becoming the
mainstream approach of EA in recent years due to their flexibility and effectiveness [17], which aim
to encode KGs into low-dimensional embedding space to capture the similarities of entities [18, 10].
It could be divided into translation-based [24, 42, 20] and GNN-based [41, 37, 27, 26, 35].

Previous EA methods mostly assume a one-to-one correspondence between two KGs, but such an
assumption does not always hold and thus leads to a performance drop in real-world cases [38].
Notably, Sun et al. [33] as a pioneering work modeled it upon a supervised setting, i.e., a small set
of aligned entities and labeled dangling entities. On this basis, MHP [19] employed more dangling
information concerning high-order proximities in both training and inference. UED [24] and SoTead
[22] propose an unsupervised translation-based method for joint entity alignment and dangling entity
detection without labeled dangling entities, while the practical problem of matching cost is ignored.

2.2 Positive-Unlabled Learning

Let X ∈ Rd, d ∈ N, and Y ∈ {±1} be the input and output random variables. We also define
p(x, y) to be the joint probability density of (X,Y ), pp(x) = p(x | y = +1), pn(x) = p(x | y = −1)
to be the P (Positive) and N (Negative) marginals (a.k.a., class-conditional densities), and pu(x) be
the U (Unlabeled) marginal. The class-prior probability is expressed as πp = p(y = +1), which is
assumed to be known throughout the paper, and can be estimated from known datasets [13].

The PU learning problem setting is as follows: the positive and unlabeled data are sampled inde-
pendently from pp(x) and pu(x) as Xp = {xpi }

np

i=1 ∼ pp(x) and Xu = {xui }
nu
i=1 ∼ pu(x), and a

classifier is trained from Xp and Xu, in contrast to learning a classifier telling negative samples apart
from positive ones. The general assumption of the previous work is to let the unlabeled distribution
be equal to the overall data distribution, i.e., pu(x) = p(x) since pu(x) cannot be obtained, but the
assumption hardly holds in many real-world scenarios, for example transductive learning, making
methods in [13, 30] infeasible.

3 Selective Aggregation with Spectral Contrastive Learning

Notation: Source and target KG Gs = (Es, Rs, Ts), Gt = (Et, Rt, Tt) stored in triples <entity,
relation, entity>: entitiesE, relationsR, and triples T ⊆ E×R×E, Es = Ds∪Ms, Et = Dt∪Mt,

3
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where D denotes dangling and M denotes matchable. A set of pre-aligned anchor node pairs are
S = {(u, v)|u ∈Ms, v ∈Mt, u ≡ v}. (see appendix A for more details).

We start by introducing the KEESA (KG Entity Encoder with Selective Aggregation).

3.1 KG Entity Encoder with Selective Aggregation

Adaptive Dangling Indicator & Relation Projection Attention. Real-world EA tasks often involve
graphs with dangling distortion [39, 3]. Conventional GNN aggregation will ‘pollute’ matchable
entities’ embeddings with dangling. However, a hard dangling indicator for the entity is over-
confident as only approximate results can be obtained without labels. Incorrect indicators may lead
to inappropriate aggregation and thus destruction of the KG structure. Instead, we apply a learnable
scalar weight rej for each ei’s neighboring message:

hl+1
ei = σ

 ∑
ej∈Nei

∪{ei}

tanh(rej )︸ ︷︷ ︸
adaptive dangling indicator

αi,jW
l+1hlej

 , (1)

where tanh serves to normalize rej to the range of [−1, 1]. The initialization of rej is critical, please
see the implementation details for more.

As compressed feature of ej — rej is a plain scalar, we link relation rk’s embedding hrk to the
associated entity ej by h→ejrk for capturing more comprehensive attention. A matrix Wr ∈ Rd×d
with an orthogonal regularizer Lo is applied to hrk to perform projection while preserving its norm
for better convergence:

h→ejrk
= rejWrhrk and Lo =

∥∥W>r Wr − Id×d
∥∥2
2
.

The attention coefficient is obtained by the following equation, where v> is the attention vector:

αlijk =
exp(v>h

→ej
rk )∑

em∈Nei
,<ei,rn,em>∈Ts∪Tt

exp(v>h→emrn )
(2)

Intra- & Cross-Graph Representation Learning. Based on the above, we can express the embed-
ding of ei at the (l+ 1)-th layer hl+1

ei as Eq. 1, where W l+1 is specified as W l+1 = Id×d− 2hrkh
>
rk

by the triplet < ei, rk, ej > inclusive relation embedding hrk . We adopt the tanh(·) as the activation
function. The Householder transformation W l+1 is applied on the last layer embedding hlei to restore
the useful relative positions of KG entities at each layer recursively.

Overall, the intra-graph representation hei of ei is obtained by concatenating embeddings from all
layers. Its cross-graph representation hproxyei can be described by hei and proxy qj , where the latter
is generated by Proxy Matching Attention Layer [25] to align the embeddings across two graphs.
With Sp representing the set of proxy vectors, and sim(·) denoting the cosine similarity, we have:

hei = [h0
ei‖h

1
ei‖...‖h

l
ei ] and hproxyei =

∑
qj∈Sp

exp(sim(hei , qj))∑
qk∈Sp

exp(sim(hei , qk))
(hei − qj).

Finally, we employ a gating mechanism [31] to integrate both intra-graph representation hei and
cross-graph representation hproxyei into hfei :

θei = sigmoid(Wgh
proxy
ei + b), hfei = [(θei · hei + (1− θei) · hproxyei )‖rei ],

whereWg and b are the gate weight and gate bias, respectively. The learnable weight of ei is also
attached to the embedding. It is worth noticing that for each entity on either Gs or Gt, they are
encoded by one shared KEESA with below spectral contrastive learning for a unified representation
space.

3.2 Spectral Contrastive Learning

In this part, we propose the spectral contrastive learning loss Linfo with high-quality negative
sample mining, which serves both tasks (entity alignment and dangling detection) at the same time.

4
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Specifically, given a pre-aligned matchable entity ei ∈ Xp, let there be a paired positive sample entity
ei+ ∈ Xp, such that (ei, e

i
+) ∈ S, and N sampled entity {eij}N as negative samples (ei, e

i
j) /∈ S. The

spectral contrastive learning loss is one specific form of alignment loss H(·):

Linfo =
∑
ei∈Xp

log

1 +

N∑
j

exp(λ H(ei, e
i
+, e

i
j))

 . (3)

Unified Representation for Entity Alignment. We expect a unified feature space where the distance
between aligned anchor node pairs is as close as possible, while the unaligned is on the contrary. To
satisfy this intuition, we introduce an alignment loss:

H(ei, e
i
+, e

i
j) = [sim(ei, e

i
j)− sim(ei, e

i
+) + γ]+, (4)

where [x]+ represents max(0, x) and sim(·) indicates L2-norm distance between the embeddings. A
soft margin γ is involved to discourage trivial solutions, e.g., sim(ei, e

i
j) = sim(ei, e

i
+) = 0.

Discrimination for Dangling Detection. For our proposed dangling detection, the vital task is
to discriminate the dangling from the matchable ones with unlabeled dangling entities. Hence
unsupervised method of spectral clustering is exploited to separate two types of entities. We design
the loss function according to Lemma 1 to achieve its equivalent effect.
Lemma 1. Given one positive sample p+ for q, andN negative samples {p−j }N (node set: {q, p+}∪
{p−j }N ), employing the following loss function is equivalent to conducting spectral clustering on
similarity graph π with the temperature hyper-parameter λ:

infoNCE(q, p+, {p−}N ) = − log
exp(λ sim(q, p+))

exp(λ sim(q, p+)) +
∑N
j exp(λ sim(q, p−j ))

. (5)

The equivalence has been discussed in previous studies [40, 1, 6, 32]. Regarding our proposed
problem, the positive samples are the corresponding pairs whereas the negative samples are those
sampled unaligned pairs. The equivalence is derived as follows:

infoNCE(q, p+, {p−}N ) = log
exp(λsim(q, p+)) +

∑N
j exp(λsim(q, p−j ))

exp(λ sim(q, p+))

= log[1 +

∑N
j exp(λ sim(q, p−j ))

exp(λ sim(q, p+))
]

= log

1 +

N∑
j

exp(λ sim(q, p−j )− λ sim(q, p+))

 .
The spectral contrastive learning loss could be obtained by replacing the exponent term with Eq. 4.

Remark. In the alignment loss function, we observe that dangling entities are only in the negative
samples, and the entities in the positive samples are all matchable. Such a stark asymmetry provides
an advantage in distinguishing between dangling and matchable entities.

We also prove that Linfo (Eq. 3) can promote model learning by Lemma 2 (see appendix B for proof).
Lemma 2. The loss Linfo can mine high-quality negative samples, which we show has an equivalent
effect to truncated uniform negative sampling (TUNS) in [35].

Minimizing the spectral contrastive loss of Eq. (3) maps matchable and dangling entities into a unified
but distinguishable feature space for improved entity alignment while facilitating dangling detection.
In practice, we adopt the loss normalization trick [8] on H(·) to speed up training.

4 Iterative Positive-Unlabeled Learning for Dangling Detection

We expect to avoid any additional computational overhead for EA if few entities are matchable for the
source and target KG. Thus, we address a more challenging problem in EA: given partial pre-aligned

5
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matchable entities as positive samples (i.e., Xp), how to jointly predict the proportion of matchable
entities in the unlabeled nodes (i.e., πu

p) and identify those entities? If πu
p could be predicted, it could

serve as an indicator whether we should proceed to EA. We propose to address the problem by PU
learning.

Unbiased Risk Estimator. First, we propose a new unbiased estimation for PU learning without any
constraint (i.e., pu(x) = p(x) in [13, 30]) on unlabeled samples distribution pu(x) concerning the
overall distribution p(x). Assuming that πp and πu

p are known (estimation strategy would be given
later), we have:

Theorem 1. Suppose that g ∈ G : Rd → R is a binary classifier, and ` : R× {±1} → R is the loss
function by which `(t, y) means the loss incurred by predicting an output t when the ground truth is
y. R̂pu(g) is the unbiased risk estimator of R(g):

R̂pu(g) = πpR̂
+
p (g) +

πn
πu
n

·
[
R̂−u (g)− πu

pR̂
−
p (g)

]
, (6)

where πn = p(y = −1) and πu
n = pu(y = −1) are estimable class priors given πp and πu

p , R+
p (g) =

EX∼pp(x)[`(g(X),+1)] and R−n (g) = EX∼pn(x)[`(g(X),−1)] (see appendix C for proof).

By our proof, R̂pu(g) is an unbiased risk bound for the PU learning. More importantly, the bound
provided by Thm. 2 is a tighter uniform deviation bound than the classic Non-negative Risk Estimator
[13]:

Theorem 2. Let Var(R) denote the uniform deviation bound of risk estimator R, and Non-negative
Risk Estimator be R̂′pu(g), then:Var(R̂pu(g)) < Var(R̂′pu(g))(see appendix D for proof).

Positive Unlabeled Loss Function. Since it is evident that all negative samples exist in unlabeled
data, we have πn

πu
n
< 1 and thus we apply a hyper-parameter α =

πu
n

πn
to scale πpR̂+

p (g) equivalently
and max(·) to restrict the estimated πnR−n (g) ≥ 0. The PU learning loss function is formulated as:

Lpu = απpR̂
+
p (g) + max{0, R̂−u (g)− πu

pR̂
−
p (g)},

We specify the corresponding risk function using cross-entropy losses as below:

R̂+
p (g) =

1

|Xp|
∑
ei∈Xp

log ŷi(+1), R̂−u (g) =
1

|Xu|
∑
ei∈Xu

log ŷi(−1), R̂−p (g) =
1

|Xp|
∑
ei∈Xp

log ŷi(−1)

where the output logit for ei ∈ Es ∪ Et, being labeled as a state u ∈ {+1,−1}, is ŷi(u) =
softmax(MLP(hfei)), based on KEESA output hfei . Hence each term in the final loss can be
calculated or estimated without the negative labels.

Iterative PU Learning with Prior Estimator How could we estimate prior πp and πu
p? Inspired

by [11], we introduce a hidden variable in the model as well as an iterative approach. We adopt a
variational approximation strategy and a warm-up phase to tackle the cold start problem, as shown
in Alg. 1. First, we estimate and fix the class prior πp and πu

p by the ratio of the anchor points
in the training set. Linfo is optimized together with Lpu for a discriminative embedding space in
the warm-up phase. Finally, we minimize Lpu to update the class prior and the model parameters
alternately till convergence.

The convergence guarantee is provided in Thm. 3, which mostly follows the convergence of EM
algorithm. We collect the proof in appendix E.

Theorem 3. Given the assumptions of marginalization in Eq. 16 and Eq. 17, the objective function
of −Lpu is the same as the expectation function Q of Eq. 13 where the loss function is the cross en-
tropy function CE(ȳi, ŷi) = −ȳi(+1) log ŷi(+1)− ȳi(−1) log ŷi(−1) on the preference condition:∑
j∈U

1
|U| log

ŷj(+1)
ŷj(−1) ≈

∑
i∈P

1
|P| log ŷi(+1)

ŷi(−1) .

The iterative process of our method is a special case of the EM algorithm. We hold the same
assumptions as the EM algorithm and we further assume the training of f is able to find the globally
optimal θ. Although the assumptions seem to be too strict, the algorithm typically converges in
practice as we verified in the experimental section.

6
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Algorithm 1 iPULE (iterative PU Learning with Prior Estimator)

Require: Gs and Gt are treated as one input graph G = (V, E), positive-node set P = Xp,
unlabeled-node set U = Xu, classifier f with initial parameters θ0, KEESA Enc(G,ψ) with
initial parameters ψ0 and warm-up epoch N . L represents training loss.

Ensure: Model parameters θ, ψ and estimated prior π̂p and π̂u
p

1: l←∞, π̂u
p ← π̂p ← |P|

|P|+|U| , i← 0, β = β0; //Initial value
2: L ← β · Linfo + (1− β) · Lpu; //Loss of warm-up
3: repeat
4: X← Enc(G,ψ); //Entity embedding matrix X
5: θ, ψ ← arg minθ,ψ L(θ;X,y,P,U); //Optimize Enc(·) and f jointly
6: l← L(θ;X,y,P,U);
7: until N epochs is over //Warm-up phase to solve cold start
8: L ← Lpu;
9: repeat

10: X← Enc(G,ψ), ŷi ← f(X, i; θ) for all i ∈ V;

11: π̂u
p ← |U|−1

∑
i∈U I[ŷi(+1) > 0.5], π̂p ←

|P|+|U|·π̂u
p

|P|+|U| ; //E step
12: l′ ← l, l← L(θ;X,y,P,U);
13: θ, ψ ← arg maxθ,ψ −L(θ;X,y,P,U); //M step
14: until |l′ − l| converge OR π̂p converge
15: return

5 Experiments

Our method is evaluated on datasets GA16K, DBP2.0, and GA-DBP15K. DBP2.0 and GA-DBP15K
are used for the verification of iPULE. To address incomparability caused by inconsistent metrics,
we adopt the GA16K dataset to enable compromised comparison of the Dangling-Entities-Unaware
EA method. We further compare our method with dangling aware baselines on DBP2.0. Statistics of
experimental dataset in appendix F, and additional experiment in appendix G.

Datasets. The training/test sets for each dataset are generated using a fixed random seed. For entity
alignment, 30% of matchable entity pairs constitute the training set, while the remaining form the test
set. For dangling entity detection, we did not utilize any labeled dangling entity data, in contrast to
prior work which labels an extra 30% of the dangling entities for training [33, 19].

Baselines. Since our work does not take advantage of any side information, we emphasize its
comparison with the previous methods purely depending on graph structures. These works majorly
incorporate two types:

Dangling-Entities-Unaware. We include advanced entity alignment methods in recent years: GCN-
Align [41], RSNs [9], MuGNN [4], KECG [16]. Methods with bootstrapping to generate semi-
supervised structure data are also adopted: BootEA [35], TransEdge [36], MRAEA [26], AliNet [37],
and Dual-AMN [25].

Dangling-Entities-Aware. To the best of our knowledge, the method of [33] is the most fairly
comparable baseline which is based on MTransE [5] and AliNet [37]. Because MHP [19] over-
emphasized more use of labeled dangling data like high-order similarity information which is
also based on the above two methods, while SoTead [22] and UED [24] utilize additional side-
information. SoTead [22] and UED [24] can only execute the degraded version on DBP2.0 cause
no side-information is available on that. We exclude them from baselines for our methods. [33]
introduces three techniques to address the dangling entity issue: nearest neighbor (NN) classification,
marginal ranking (MR), and background ranking (BR).

Implementation Detail. We use the Keras framework for developing our approach. Our experiments
are conducted on a workstation with an NVIDIA Tesla A100 GPU, and 80GB memory.

By default, the embedding dimension is set to 128 with the depth of GNN set to 2 and a dropout rate
of 0.3. A total of 64 proxy vectors are used and margin γ = 1. RMSprop optimizer is adopted with a
learning rate of 0.005 and batch size of 5120. λ is set to be 30. β is set as 1e-3 for all datasets. CSLS
[14] is adopted as the distance metric for alignment. As we found, the tanh function changes rapidly
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in the region close to 0 but stays stable in the region beyond [−3, 3]. Hence we initialize the rej to 1
to prevent gradients oscillation or near-zero gradients.

5.1 Experiments of iPULE Convergence and Class Prior Estimation

DBP2.0 πp between 20%-50% contains more entities to be aligned, trained by pre-aligned 9%-15%
nodes then judged by iPULE as aligned KGs. GA-DBP15K πp between 10%-25% are treated as
unaligned KGs ignoring the pre-aligned part, trained by all pre-aligned 10%-25% nodes. We get
accurate estimation and convergence results as shown in Fig. 3. As iPULE progresses, the estimated
class prior gradually approaches the true value as the first row for GA-DBP15K and the second for
DBP2.0. πu

p = 0 for GA-DBP15K while DBP2.0’s are given by red dotted line respectively. The πp
for GA-DBP15K is stably consistent as pre-aligned proportion due to accurate estimation of its πu

p .
As common in PU learning [43], iPULE treats more nodes as positive when πp ≈ 50% in FR-EN.
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Figure 3: Prior estimation GA-DBP15K and DBP2.0. (loss convergence in appendix F).

5.2 Experiments Unaware of Dangling Entities

We show the experiments on baselines without considering dangling entities in this section.

Dangling-Entities-Unaware Baselines Comparison. The direct comparison between our method
and the dangling-entities-unaware baselines is unavailable due to inconsistent metrics used. Hence,
we adopt the GA16K dataset as a compromise and do not remove any detected dangling entities
for entity alignment. Thus the ranking list S in Hits@K only contains (matchable) entities in the
source graph since GA16K only contains dangling entities in the target KG. In Tab. 2, Dual-AMN
demonstrates a competitive performance but is inferior to ours at Hits@1. MRAEA performs similarly
to Dual-AMN since the latter is built on the former. TransEdge performs poorly since the method
adopts semi-supervised bootstrapping to mine anchor entities iteratively. The presence of dangling
entities could lead to false anchors and spread of error. Meanwhile, it is also a relation-centric
approach that suffers from insufficient relation information on GA16K. Other baselines exhibit
up-to-par performance but our method delivers consistently superior or state-of-the-art Hits@Ks.

5.3 Experiments Aware of Dangling Entities

We provide a comparison of dangling detection and entity alignment with baselines aware of dangling.

Dangling Entities Detection Performance. We test our method’s dangling detection performance
compared with baselines aware of dangling entities. The results on DBP2.0 in the consolidated
setting are reported in Tab. 12. Note that the comparison is unfair as we don’t use 30% of the labeled
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a b

c d

Figure 4: Visualization of entity representations
learned by our method on GA16K dataset.

Method GA16K
H@1 H@10 H@50

BootEA 13.95 37.25 49.08
TransEdge 0.03 0.12 0.14
MRAEA 63.97 76.64 81.06
GCN-Align 29.48 45.64 57.15
RSNs 9.40 42.70 46.70
MuGNN 62.17 76.25 80.87
KECG 44.18 57.73 63.41
AliNet 48.53 67.72 74.50
Dual-AMN 64.49 80.55 84.67
Ours 67.59 80.33 84.35

Table 2: Performance comparison with dangling-
entities-unaware baselines on GA16K.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

A
liN

et NNC .676 .419 .517 .738 .558 .634 .597 .482 .534 .761 .120 .207 .466 .365 .409 .545 .162 .250
MR .752 .538 .627 .828 .505 .627 .779 .580 .665 .854 .543 .664 .552 .570 .561 .686 .549 .609
BR .762 .556 .643 .829 .515 .635 .783 .591 .673 .846 .546 .663 .547 .556 .552 .674 .556 .609

M
Tr

an
sE NNC .604 .485 .538 .719 .511 .598 .622 .491 .549 .686 .506 .583 .459 .447 .453 .557 .543 .550

MR .781 .702 .740 .866 .675 .759 .799 .708 .751 .864 .653 .744 .482 .575 .524 .639 .613 .625
BR .811 .728 .767 .892 .700 .785 .816 .733 .772 .888 .731 .801 .539 .686 .604 .692 .735 .713

Ours .763 .925 .836 .844 .909 .875 .807 .836 .821 .880 .809 .843 .615 .772 .685 .732 .749 .740

Table 3: Dangling detection results on DBP2.0 in the consolidated setting.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

A
liN

et NNC .121 .193 .149 .085 .138 .105 .113 .146 .127 .067 .208 .101 .126 .148 .136 .086 .161 .112
MR .207 .299 .245 .159 .320 .213 .231 .321 .269 .178 .340 .234 .195 .190 .193 .160 .200 .178
BR .203 .286 .238 .155 .308 .207 .223 .306 .258 .170 .321 .222 .183 .181 .182 .164 .200 .180

M
Tr

an
sE NNC .164 .215 .186 .118 .207 .150 .180 .238 .205 .101 .167 .125 .185 .189 .187 .135 .140 .138

MR .302 .349 .324 .231 3̇62 .282 .313 .367 .338 .227 .366 .280 .260 .220 .238 .213 .224 .218
BR .312 .362 .335 .241 .376 .294 .314 .363 .336 .251 .358 .295 .265 .208 .233 .231 .213 .222

Ours .279 .447 .344 .219 .489 .303 .324 .409 .362 .234 .460 .310 .234 .320 .271 .192 .363 .251

Table 4: Entity alignment results on DBP2.0 in the consolidated setting.

dangling entities as the baselines. Nevertheless, our approach maintains SOTA performance across
all six datasets, excelling in almost every metric except for a slightly inferior precision.

Dangling-Entities-Aware Baselines Comparison. Tab. 4 reports the entity alignment performance
comparison in the consolidated setting on DBP2.0. The precision, recall, and F1 scores are computed
according to Eq. (19), (20), (21) in Metric part of appendix F, respectively. We test the entity
alignment performance of our method in comparison with baselines that are aware of dangling
entities. Our method still maintains almost state-of-the-art performance, but there is still a slightly
inferior precision problem. It makes us wonder about the reasons behind it.

How does our method work? To understand why our method works and its precision slightly
suffers, we visualized all entity embeddings of GA16K in Fig. 4. As shown above, matchable entities
are denoted as red and green in source and target KG respectively, while dangling as blue. The
distribution of three types of entity in Fig. 4(a) suggests our method maps all nodes into a unified
embedding space where matchable entities exhibit considerable overlap and are appropriately aligned
(shown in Fig. 4(b)). Fig. 4(c)(d) depicts that a part of the dangling entities is intertwined with the
matchable ones, suggesting that this part resides at the decision boundary and easily leads to false
positives which explain the lesser precision of our method.
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5.4 Ablation Studies and Varying Anchor Nodes

We conduct ablation studies to show each module’s impact, and similarly pre-aligned entities’ impact.

Ablation Studies The impact of adaptive dangling indicator and relation projection attention in our
method are investigated. We denote the counterpart removing rei as w/o rei , and replacing h→ejrk
with the original hrk as w/o h→ejrk . Fig. 5 gives the ablation study results on DBP2.0, where ‘Ours’
represents an all-inclusive model. We observe that the h→ejrk has a more substantial impact than rei
to the alignment performance. As to why the rei has a minor impact on the alignment, we consider
it may be attributed to the lower degrees of dangling entities on DBP2.0. The degrees of dangling
entities are generally lower than that of matchable ones, indicating that the dangling is more isolated
in the graph and thus has less impact on matchable nodes in the neighborhood aggregation.
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Figure 5: The ablation study of entity alignment performance in the consolidated setting on DBP2.0.
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Figure 6: The entity alignment performance on varying pre-aligned anchor nodes ratios on DBP2.0.

Varying Anchor Nodes. Pre-aligned entities may be far scarce in reality. The sensitivity of our
method to the proportion variation of anchor nodes is investigated. As the proportion increases, the
alignment performance enhances as provided in Fig. 6.

Notably, even with an anchor ratio as low as 5%, our alignment accuracy still well exceeds 30% on
most datasets except for FR-EN and EN-FR. Cause they contain twice as many entities and triples
as ZH-EN and JA-EN, which introduces intricate dependencies among entities and thus greater
challenges in alignment. Moreover, a larger graph may require a higher dimension of representations
to learn, but the embedding dimension is restricted to merely 96 due to the out-of-memory problem.

6 Conclusion

We found that previous EA methods suffer from great performance decline if dangling entities
are considered. Our goal is to address the EA problem with unlabeled dangling entities. A novel
framework Lambda for detecting dangling entities and then pairing alignment is proposed. The core
idea is to perform selective aggregation with spectral contrastive learning and to adopt theoretically
guaranteed PU learning to relieve the dependence on the labeled dangling entities. Experimental
results on multiple representative datasets demonstrate the effectiveness of our proposed approach.
This work also has important implications for real-world applications, such as EA of different scales,
KG plagiarism detection, etc.
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Appendix

A Notation

A.1 Definitions

Definition 1 (Knowledge graph). Knowledge graph (KG) is a directed graph G = (E,R, T )
comprising three distinct sets: entities E, relations R, and triples T ⊆ E ×R× E. KG is stored in
the form of triples <entity, relation, entity>, with entities denoted by nodes and the relation between
entities defined by edges.
Definition 2 (Entity alignment). Given source KG and target KG, corresponding to Gs =
(Es, Rs, Ts) and Gt = (Et, Rt, Tt) respectively, and A = {(u, v)|u ∈ Es, v ∈ Et, u ≡ v} a set
of pre-aligned anchor node pairs, where ≡ indicates equivalence, the goal of entity alignment is to
identify additional pairs of potentially equivalent entities using information from Gs, Gt, and A. This
task typically assumes a one-to-one correspondence between Es and Et.
Definition 3 (Entity alignment with dangling cases). Let entities in the source and target graphs be
composed of two types of nodes: Es = Ds ∪Ms, Et = Dt ∪Mt, where Ds, Dt denote dangling
sets that contain entities that have no counterparts, and Ms,Mt are matchable sets. A set of pre-
aligned anchor node pairs are S = {(u, v)|u ∈Ms, v ∈Mt, u ≡ v}. The task seeks to discover the
remaining aligned entities given Gs, Gt, and S.

A.2 Transductive Learning:

Transductive learning models are trained from observed, specific (training) cases to specific (test)
cases, employing both training and test information except for test labels. In contrast, the inductive
learning model is reasoning from observed training cases to general rules, which are then applied to
the test cases. Let’s get down to the EA task. As KG structure is accessible through given triples,
which can accurately describe the connections between entities. When we attempt to figure out entity
alignment tasks, the KG structure information of the whole source and target KGs is what we could
exploit, covering potentially (test) equivalent entities’ relative positions. That’s why we confine the
problem field to transductive learning.

A.3 Graph Convolutional Networks

For graph convolutional networks (GCN) [12], the embedding hl+1
ei of node ei at the l+ 1-th layer is

updated iteratively by aggregating node features of the neighboring nodes Nei from the prior layer:

hl+1
ei = σ

 ∑
ej∈Nei

∪{ei}

αi,jW
l+1hlej

 , (7)

where each embedding hlei represents the d-dimensional embedding vector of ei, αi,j denotes the
weight coefficient between ei and ej , W l+1 being the transformation matrix of the (l + 1)-th GNN
layer, and σ being the activation function.

B Proof for Lemma 2

Proof. The Linfo also has a good effect on mining high-quality negative samples, which we show has
an equivalent effect to truncated uniform negative sampling (TUNS) in [35]. TUNS points out that
negative samples obtained by uniform random sampling are highly redundant since only high-quality
negative samples improve the model. Thus TUNS chooses the K-nearest neighbors of the ei as the
negative samples, which are most challenging to distinguish. In the special case of K = 1, the loss
can be written as LTUNS =

∑
ei∈Xp

maxj(H(ei, e
i
+, e

i
j)). If we approximate the max function by

the LogSumExp, the contrastive loss function turns to

LTUNS ≈
∑
ei∈Xp

1

λ
log

 N∑
j

exp(λ H(ei, e
i
+, e

i
j))

 , (8)
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minimizing which is equivalent to minimizing Eq. (3). Hence our contrastive learning loss is actually a
special form of TUNS. For randomly sampled negative samples, Linfo can play a role in preferentially
optimizing high-quality negative samples.

C Proof for Theorem 1

Proof. The risk of g is R(g) = E(X,Y )∼p(x,y)[`(g(X), Y )] = πpR
+
p (g) + πnR

−
n (g) in posi-

tive negative learning problems. In positive-unlabeled learning where Xn is unavailable, we
can only approximate R(g) by positive samples and unlabeled samples. We represent the un-
labeled distribution as pu(x) = πu

npn(x) + πu
ppp(x), so that the negative distribution can be

written as πnpn(x) = πn

πu
n
·
[
pu(x)− πuppp(x)

]
. Provided R−p (g) = EX∼pp(x)[`(g(X),−1)] and

R−u (g) = EX∼pu(x)[`(g(X),−1)], we obtain that

πnR
−
n (g) =

πn
πu
n

·
[
R−u (g)− πu

pR
−
p (g)

]
, (9)

and

R̂pu(g) = πpR̂
+
p (g) +

πn
πu
n

·
[
R̂−u (g)− πu

pR̂
−
p (g)

]
. (10)

Specifically, πn = 1− πp, πu
n = 1− πu

p could be derived as class-prior probability given πp and πu
p .

In particular, the ratio of labeled positive samples could be precisely figured out as πtrp in transductive

learning, given which πu
p =

πp−πtr
p

1−πtr
p

, πu
n = 1− πu

p could be derived as class-prior probability.

D Proof for Theorem 2

Proof. Rn,q is defined as the Rademacher complexity of the class of classifiers G for the sampling of
size n from distribution q(x). From [30] we have that with probability at least 1− δ/2, the uniform
deviation bounds below hold separately:

sup
g∈G
|R̂+(g)−R+(g)| ≤ 2L`Rn+,pp(G) +

√
ln(4/δ)

2n+

,M+ > 0,

sup
g∈G
|R̂u,−(g)−Ru,−(g)| ≤ 2L`Rnu,pu(G) +

√
ln(4/δ)

2nu

,M− > 0,

where L` is the Lipschitz constant of loss ` in its first parameter and n+ is the number of positive
samples while nu is that of unlabeled. Following the symmetric condition assumption in [30], it is
obviously holds that:

Var(R̂′
pu(g)) = 2πpM+ +M−,while

Var(R̂pu(g)) = (πp +
πn · πu

p

πu
n

)M+ +
πn
πu
n

M−

holds in our setting. Then it is evident that πn

πp
<

πu
n

πu
p

, i.e.,
πn·πu

p

πu
n

< πp and πn

πu
n
< 1.

Consequently, comparing the coefficients of M+ and M− leads to the conclusion that R̂pu(g) could
possess tighter uniform deviation bound than that of Non-negative Risk Estimator [13].
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E Convergence Proof

The expectation–maximization (EM) algorithm is an iterative approach to maximize the likelihood
p(y|X; θ) of target variables y over input variables X and parameters θ. The EM algorithm works
iteratively, and each iteration consists of an expectation (E) step and a maximization (M) step. The E
step computes the expectation of the log-likelihood concerning the conditional distribution of the
latent variable z given the current parameters θ(t) at the t-th iteration:

Q(θ | θ(t)) = Ez∼p(z|X,y,θ(t))[log p(y, z | X, θ)]. (11)

Then, the M step finds a set of parameters that maximizes the computed expectation:

θ(t+1) = arg max
θ
Q(θ | θ(t)). (12)

Due to the maximization step, we get the following inequality naturally:

Q(θ(t+1) | θ(t))−Q(θ(t) | θ(t)) ≥ 0. (13)

Lemma 3 (Convergence of EM algorithm [29]). It is guaranteed that the EM algorithm always im-
proves log p(y | X, θ) by increasing the value of Q(θ | θ(t)). Since log p(y | X, θ) is monotonically
bounded, the EM must converge.

Proof. The following equation holds for any z:

log p(y | X, θ) = log p(y, z | X, θ)− log p(z | X,y, θ).

We take the expectation over p(z | X,y, θ(t)) for both sides as follows:

Ep(z|X,y,θ(t))[log p(y | X, θ)]
= Ep(z|X,y,θ(t))[log p(y, z | X, θ)]− Ep(z|X,y,θ(t))[log p(z | X,y, θ)]

= Q(θ | θ(t)) +H(p(z | X,y, θ) | p(z | X,y, θ(t)))
, Q(θ | θ(t)) +H(pθ | pθ(t))

where H stands for the entropy. If we substitute θ(t) for θ, we get the following:

log p(y | X, θ(t)) = Q(θ(t) | θ(t)) +H(pθ(t) | pθ(t)). (14)

Gibbs’ inequality states that H(q | p) − H(p | p) ≥ 0 always holds for any distribution p and q.
Hence we have:

log p(y | X, θ(t+1))− log p(y | X, θ(t))
= Q(θ(t+1) | θ(t)) +H(pθ(t+1) | pθ(t))−Q(θ(t) | θ(t))−H(pθ(t) | pθ(t))
= Q(θ(t+1) | θ(t))−Q(θ(t) | θ(t)) +H(pθ(t+1) | pθ(t))−H(pθ(t) | pθ(t))
≥ Q(θ(t+1) | θ(t))−Q(θ(t) | θ(t)) = Q(θ(t+1) | θ(t))−Q(θ(t)) ≥ 0.

Now we provide the proof for Theorem 3.

Proof. According to Lemma 3, we have that the EM algorithm converges. Next, we model our
problem and give the approximate equivalence between our algorithm and the EM algorithm to prove
our algorithm converges.

The latent variables z represent the true label distribution of unlabeled samples, where ŷi(u) =
f(X, i; θ) is the probability of node i being labeled as u ∈ {+1,−1} by the current classifier f .
Given πu

p , the label distribution of all unlabeled samples is:

p(zi) =

{
π̂u
p if zi = +1,

1− π̂u
p if zi = −1.

(15)
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First, the conditional distribution p(z | X,y, θ(t)) of latent variables given the current parameters
θ(t) is approximated by:

p(z | X,y, θ(t)) ≈
∏
i∈U

p(zi). (16)

Second, the joint distribution p(y, z | X, θ) of labeled and unlabeled nodes with new parameters θ is
approximated by the classifier f , which is also considered as a marginalization function that gives the
label distribution of each node based on all given information:

p(y, z | X, θ) ≈
∏
i∈P

ŷi(+1)
∏
j∈U

ŷj(zj) (17)

We propose to use the average log-likelihood differences to measure the classification preference
of the model. It can be transformed into the following form by ∆U and ∆P , representing that on
domain U and P:

∆U =
1

|U|
∑
j∈U

log ŷj(+1)− log ŷj(−1)

∆P =
1

|P|
∑
i∈P

log ŷi(+1)− log ŷi(−1)

If the mean value is positive, it means that the logarithmic probability of positive classes is higher
than that of negative classes in the given domain, and vice versa. When we ignore the preference of
the classification model, this actually describes the category feature bias in certain domains.

Let’s rethink the meaning of preference condition. If the model has a similar classification preference
in domain U and P , we can express as ∆U ≈ ∆P . This condition can be arranged as the mathematical
expression of the condition given by Theorem 3 through the properties of the log function.

∆U ≈ ∆P ≡
∑
j∈U

1

|U|
log

ŷj(+1)

ŷj(−1)
≈
∑
i∈P

1

|P|
log

ŷi(+1)

ŷi(−1)

We derive −Lpu from Eq.( 7), since the goal of training is to minimize the objective function:

1

N
Ez∼p(z|X,y,θ(t))[log p(y, z | X, θ)]

=
1

N

∑
z

p(z | X,y, θ(t)) log p(y, z | X, θ)

≈ 1

N

∑
z

p(z | X,y, θ(t))(
∑
i∈P

log ŷi(+1) +
∑
j∈U

log ŷj(zj))

=
1

N

∑
i∈P

log ŷi(+1) +
1

N

∑
j∈U

∑
zj∈±1

p(zj) log ŷj(zj)

=
|P|
N
· 1

|P|
∑
i∈P

log ŷi(+1) +
|U|
N
· 1

|U|
∑
j∈U

(
π̂u
p log ŷj(+1) + (1− π̂u

p) log ŷj(−1)
)

=
|P|
N
· 1

|P|
∑
i∈P

log ŷi(+1) +
|U|
N
· 1

|U|
∑
j∈U

log ŷj(−1) +
π̂u
p |U|
N

∆U

We replaced ∆U with ∆P , and this process is completed by the above preference condition.

≈ |P|
N
· 1

|P|
∑
i∈P

log ŷi(+1) +
|U|
N
· 1

|U|
∑
j∈U

log ŷj(−1) +
|U|π̂u

p

N
· 1

|P|
∑
i∈P

log ŷi(+1)− log ŷi(−1)

= −
|P|+ |U| · π̂u

p

|P|+ |U|
∑
i∈P

1

|P|
log ŷi(+1)−

|N |
|P|+|U|
|N|
|U|

∑
j∈U

1

|U|
log ŷj(−1) −π̂u

p

∑
i∈P

1

|P|
log ŷi(−1)

)
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Datasets # Entities # Rel. # Triples # Dang # Align

DBP2.0ZH−EN
Chinese 84,996 3,706 286,067 51,813 33,183English 118,996 3,402 586,868 85,813

DBP2.0JA−EN
Japanese 100,860 3,243 347,204 61,090 39,770English 139,304 3,396 668,341 99,534

DBP2.0FR−EN
French 221,327 2,841 802,678 97,375 123,952English 278,411 4,598 1,287,231 154,459

DBP15KZH−EN
Chinese 19,388 1,701 70,414 4,388 15,000English 19,572 1,323 95,142 4,572

DBP15KJA−EN
Japanese 19,814 1,299 77,214 4,814 15,000English 19,780 1,153 93,484 4,780

DBP15KFR−EN
French 19,661 903 105,998 4,661 15,000English 19,993 1,208 115,722 4,993

GA16K None 6,208 8 68,534 0 6,208None 16,363 12 151,662 10,155

Table 5: Statistics of DBP2.0, DBP15K and GA16K.

Datasets # Entities # Rel. # Triples # Dang # Align

DBP2.0ZH−ENPlus
Chinese 69,386 3,455 241,588 36,302 33,084English 94,026 3,131 470,284 60,942

DBP2.0JA−ENPlus
Japanese 82,192 3,011 291,406 42,588 39,604English 110,362 3,054 532,988 70,758

DBP2.0ZH−ENMinus
Chinese 72,252 3,351 200,400 54,594 17,658English 107,853 3,140 421,597 90,195

DBP2.0JA−ENMinus
Japanese 86,241 3,014 236,546 64,841 21,400English 126,558 3,166 485,133 105,158

Table 6: Statistics of DBP2.0-Plus and DBP2.0-Minus

Denote πp =
|P|+|U|·π̂u

p

|P|+|U| , πn = |N |
|P|+|U| and πu

n = |N |
|U| . The above formula is equivalent to:

arg max
θ

1

N
Ez∼p(z|X,y,θ(t))[log p(y, z | X, θ)]

= arg max
θ
−πpR̂+

p (g)− πn
πu
n

·
[
R̂−u (g)− πu

pR̂
−
p (g)

]
︸ ︷︷ ︸

−R̂pu(g)

= arg min
θ
R̂pu(g) = arg max

θ
−Lpu

(18)

F Statistics of Experimental Dataset and Baselines

Datasets. The training/test sets for each dataset are generated using a fixed random seed. For entity
alignment, 30% of matchable entity pairs constitute the training set, while the remaining form the test
set. For dangling entity detection, we did not utilize any labeled dangling entity data, in contrast to
prior work which labels 30% of the dangling entities and matchable pairs respectively for training
[33]. Hence our method imposes minimal restrictions on annotated data. All datasets are briefly
introduced in the following and some statistics are provided in Tab. 7.

In addition to the existing datasets, we also constructed DBP2.0-minus & -plus as supplementary
to DBP2.0, GA16K enabling comparison between Dangling-Entities-Unaware baselines, and GA-
DBP15K for evaluation of iPULE.

DBP15K3 [34]: DBP15K consists of three cross-lingual subsets constructed from DBpedia: English-
French(DBPFR−EN), English-Chinese (DBPZH−EN), English-Japanese(DBPJA−EN). Each subset

3https://paperswithcode.com/dataset/dbp15k
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GA-DBP15K Entities Dang Align

GA− EN GA 16,363 16,363 - Align 16,363∗c%EN-share 19,388 + Align 19,388
GA− ZH GA 16,363 16,363 - Align 16,363∗c%ZH-share 19,572 + Align 19,572
GA− JA GA 16,363 16,363 - Align 16,363∗c%JA-share 19,814 + Align 19,814
GA− FR GA 19,388 16,363 - Align 16,363∗c%FR-share 19,661 + Align 19,661

Table 7: Statistics of GA-DBP15K. c = [25%,20%,15%,10%].

contains 15,000 pre-aligned entity pairs. This dataset includes a small proportion of dangling entity
samples which is yet mostly ignored in previous entity alignment tasks.

DBP2.04 [33]: DBP2.0 is an entity alignment dataset with a considerable proportion of dangling
entities, constructed from the multilingual Infobox Data of DBpedia [2]. The dataset contains three
pairs of crosslingual KGs, ZH-EN (Chinese to English), JA-EN (Japanese to English), and FR-EN
(French to English). Since there are dangling nodes in both the source and target graphs, we separately
test source-to-target and target-to-source alignment, consistent with the established approach. A
representative feature of the dataset is that the matchable and dangling entities exhibit similar degree
distributions which are hard to distinguish, displaying a real-world challenge in aligning knowledge
graphs. Based on DBP2.0, we extend the following -minus & -plus datasets for verification of iPULE
on different positive proportions between 20%-50%.

DBP2.0-plus: In the construction of the plus dataset, our goal is to construct the dataset that has a
higher πp, and we realize this by reducing a few existing dangling entities on ZH-EN and JA-EN.
We randomly delete dangling entities from both source and target KG equally and remove triples
containing them. The constructed DBP2.0-plus are reindexed and thus obtain a higher πp value than
the original dataset.

DBP2.0-minus: In contrast, to lower the πp value. Given the constraint of preventing new dangling
entities that could introduce false information to the KG, we can only reduce the number of matchable
entities. Given source and target KG, removing one entity from a pair makes the remaining entity
dangling. We randomly delete matchable entities from one side of the pair on both source and target
KG uniformly. The constructed DBP2.0-minus are reindexed and thus obtain a lower πp value than
the original dataset.

GA16K: This dataset constructed by us exclusively contains dangling nodes in the target graph,
facilitating a comparison between our work and baselines that neglect dangling entities. GA16K is
extracted from GAKG5 [7], a Geoscience Academic Knowledge Graph. We first order each type of
entity in GAKG according to their degrees and select the entities with a large degree into the entity
set. A total of 16,363(16K) separate entities and their relations were extracted to compose the target
graph. Then we extract 6,208 entities from the target graph to comprise the source graph. Hence there
are 6,208 ground-truth matchable pairs between the source and the target. The remaining 10,155
entities in the target graph are regarded as dangling entities.

GA-DBP15K: The GA-DBP15K dataset is derived from a subset of entities within GA16K, along
with their associated triples, which are then concatenated with the DBP15K dataset, such as EN,
resulting in a new dataset pair that shares a proportion of common entities. To achieve the goal, we
first extract a certain proportion of triples from GA16K. We then reindex all the entities from the
extricated GA16K and DBP15K datasets. Finally, we update the entity and relation indices in the
triples, replacing them with the newly assigned indices.

Baselines. Since our work does not take advantage of any side information, we emphasize its
comparison with the previous methods purely depending on graph structures. These works majorly
incorporate two types:

Dangling-Entities-Unaware. We include advanced entity alignment methods in recent years: GCN-
Align [41], RSNs [9], MuGNN [4], KECG [16]. Methods with bootstrapping to generate semi-

4https://github.com/nju-websoft/OpenEA/tree/master/dbp2.0
5https://github.com/davendw49/gakg
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supervised structure data are also adopted: BootEA [35], TransEdge [36], MRAEA [26], AliNet [37],
and Dual-AMN [25].

Dangling-Entities-Aware. To the best of our knowledge, the method of [33] is the most fairly
comparable baseline which is based on MTransE [5] and AliNet [37]. Because MHP [19] over-
emphasized more use of labeled dangling data like high-order similarity information which is
also based on the above two methods, while SoTead [22] and UED [24] utilize additional side-
information. SoTead [22] and UED [24] can only execute the degraded version on DBP2.0 cause
no side-information is available on that. We exclude them from baselines for our methods. [33]
introduces three techniques to address the dangling entity issue: nearest neighbor (NN) classification,
marginal ranking (MR), and background ranking (BR).

Metrics are set for the dangling entity detection task and the entity alignment task separately. For
the entity detection, we evaluate the detection performance by the standard precision, recall, and F1
score. To align the previous dangling detection baselines, we detect dangling entities as ‘positive’
samples and align matchable entities for entity alignment.

For the entity alignment, the metrics slightly differ in the dangling-entities-unaware and dangling-
entities-aware settings. We evaluate the baselines unaware of the dangling entities by following their
assumptions and using their metric Hits@K (K= 1, 10, 50, H@K for short) on the ranking list S.
This setting is referred to as relaxed setting when S is composed of all ground-truth entities without
the dangling ones:

Hits@K =
1

|S|

|S|∑
k=1

1(ranki ≤ k).

In contrast, we refer to a consolidated setting for baselines aware of dangling entities. In this setting,
the ranking list S also contains all dangling entities. We use H@K in the consolidated setting to
evaluate the performance of baselines aware of but not removing dangling entities in the alignment.
For baselines where dangling entities are detected and removed before alignment, the direct use of
H@K to evaluate entity alignment may not be precise, since errors are introduced in the detection
phase. Thus we follow the convention of [33] to apply a set of metrics for evaluating the accuracy of
entity alignment in the consolidated setting. Each of them is derived and introduced as follows.

The standard precision and recall is given as

precision =
TP

TP + FP
, recall =

TP

TP + FN

for dangling entity detection. We denote the dangling entities as 0 and matchable ones as 1. The
subscript t1y suggests that an entity with ground truth y is classified as matchable. Likewise, ty1
represents a matchable entity that is classified as y by the detection classifier. If a source entity
is dangling but not identified by the detection module, its alignment result is always considered
incorrect, i.e., H@Kt10 = 0. Hence we have the precision for entity alignment as

H@1t1y = precision ·H@1t11 + (1− precision) ·H@1t10

= precision ·H@1t11 .
(19)

Similarly, if a matchable entity is falsely excluded by the dangling detection module, this test case
is also regarded as incorrect H@Kt01 = 0 since the alignment model has no chance to search for
alignment. Hence we have the recall for entity alignment as

H@1ty1
= recall ·H@1t11 + (1− recall) ·H@1t01

= recall ·H@1t11 .
(20)

For the methods that are aware of dangling entities, we use H@1t1y and H@1ty1 to denote the
precision and recall of the entity alignment task. Similarly, we define the F1 score of the entity
alignment as the harmonic average of precision and recall:

F1 =
2 ·H@1t1y ·H@1ty1

H@1t1y +H@1ty1

. (21)

Later, H@1t1y and H@1ty1
are referred to as Prec. and Rec. in reporting alignment performance.
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G Additional Experiment

RQ1: How do current network alignment methods perform in unlabeled dangling cases? (see
appendix G.1)

RQ2: Loss convergence on GA-DBP15K and DBP2.0. (see appendix G.2)

RQ3: How do we select the embedding dimensions? (see appendix G.3)

RQ4: What is the actual efficiency of our approach? (see appendix G.4)

RQ5: Baseline comparison under different pre-aligned seeds? (see appendix G.5)

RQ6: Additional experiments involved LightEA as a strong baseline? (see appendix G.6)

G.1 The Non-Negligibility of dangling Problem (RQ1).

We investigated the performance degradation of various existing EA methods in the face of the
dangling problem, which shows that this problem is worth considering.

Method DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

H@1 H@10 H@50 H@1 H@10 H@50 H@1 H@10 H@50
BootEA 31.30↓ 20.96 59.70↓ 16.18 71.51↓ 12.91 33.77↓ 15.27 62.66↓ 11.64 73.09↓ 10.29 23.11↓ 26.72 58.39↓ 18.77 71.54↓ 14.00
TransEdge 49.91↓ 15.21 76.62↓ 9.79 83.44↓ 7.16 54.07↓ 13.42 78.01↓ 8.25 84.00↓ 6.21 48.23↓ 17.34 79.32↓ 9.70 86.69↓ 6.24
MRAEA 59.45↓ 5.62 83.04↓ 2.53 88.68↓ 1.56 61.60↓ 4.45 83.48↓ 2.21 88.65↓ 1.50 61.55↓ 6.62 85.85↓ 2.61 90.79↓ 1.69
GCN-Align 31.99↓ 10.70 62.21↓ 6.45 71.93↓ 4.31 32.08↓ 10.08 61.04↓ 5.86 70.34↓ 3.52 30.71↓ 10.50 61.64↓ 7.07 72.45↓ 5.55
RSNs 43.00↓ 8.50 62.90↓ 8.00 69.70↓ 7.00 20.60↓ 31.60 44.60↓ 26.60 53.20↓ 23.60 36.30↓ 15.30 63.30↓ 10.10 71.70↓ 7.80
MuGNN 34.66↓ 14.75 68.48↓ 9.32 80.53↓ 5.69 32.93↓ 14.68 66.68↓ 8.82 78.63↓ 5.67 34.93↓ 14.02 68.88↓ 9.69 81.67↓ 5.32
KECG 35.92↓ 12.87 65.70↓ 10.35 76.44↓ 8.06 32.31↓ 15.48 63.19↓ 11.96 74.42↓ 9.29 32.84↓ 15.47 64.78↓ 11.98 76.70↓ 8.35
AliNet 53.84↓ 0.66 73.73↓ 3.16 80.30↓ 1.59 52.69↓ 1.30 74.01↓ 2.60 80.91↓ 1.90 54.01↓ 0.58 76.19↓ 2.74 83.25↓ 1.40
Dual-AMN 60.72↓ 12.20 83.93↓ 5.22 89.45↓ 3.54 62.29↓ 10.62 83.38↓ 5.35 88.80↓ 3.21 65.33↓ 10.48 87.76↓ 4.17 92.47↓ 2.24

Table 8: Network alignment performance on DBP15K in the consolidated setting. The blue numbers
suggest the drop from the relaxed setting (as with their original implementation).

We reproduce the baselines unaware of dangling entities on DBP15K in the relaxed setting. On the
same dataset, we rerun their methods but in a consolidated setting that takes the dangling entities into
account. Even though DBP15K only comprises a small percentage of dangling entities, the drop in
the consolidated setting is significant, as shown in Tab. 8.

The reason behind such a performance drop is mainly because most previous works remove dangling
entities from the ground truth in measuring their alignment performance. In particular, Dual-AMN
takes advantage of the bootstrapping module by incorporating labeled pairs in training. In the relaxed
setting, such labeled pairs are ground-truth aligned pairs, but in the consolidated setting, the dangling
entities could bring in erroneous alignment which contaminates the alignment of other pairs.

G.2 Class Prior Estimation Supplementary Experiment (RQ2).

We hope further to verify the estimation and convergence results of iPULE of loss convergence.
We list the corresponding loss convergence results in Fig. 7. The losses under different pre-aligned
proportions (0.25, 0.2, 0.15, 0.1) on the GA-DBP15K constitute a group of statistical data, and the
corresponding loss mean and standard deviation of this set of statistical data are displayed.

On the other hand, the loss difference is a direct indication of convergence in iPULE’s implementation.
Thus, we plot the histogram figure of the DBP2.0 (w/ -minus & -plus) of the corresponding loss
difference for more comprehensive. With the progress of the algorithm, and the statistical number of
the difference of the smaller loss function occupied the maximum. This shows the convergence of
iPULE in this data set from another aspect.

It is worth noticing that, there are performance fluctuations during the constitution of an ideal
embedding space during the cold start stage. The figure plotted covers only the cold start subsequent
procedure.

G.3 Embedding Dimension Selection (RQ3).

Although a higher embedding dimension may encode richer information, an overly high dimension
leads to performance decline. We select the GNN dimension according to the principle of [22]. Let
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Figure 7: Visualization of loss convergence on DBP2.0 and GA-DBP15K.

the dimension of embedding be d and the number of entities is N . According to the feature entropy in
[22], it holds that d > 8.33 logN by the Johnson-Lindenstrauss lemma [15] that the vector dimension
is at O(logN) order. In most of our settings, N is approximately 105, and thus d is set to 128.

Dimension ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

O
ur

s 64 .278 .446 .342 .224 .501 .310 .325 .410 .362 .239 .470 .317 .164 .224 .189 .135 .257 .178
96 .281 .451 .346 .226 .505 .312 .329 .415 .367 .241 .474 .320 .172 .235 .199 .143 .271 .187
128 .280 .448 .344 .225 .502 .311 .330 .416 .368 .243 .477 .322 .177 .242 .204 .151 .287 .198

Table 9: The entity alignment performance over different embedding dimensions on DBP2.0.

As shown in Tab. 9, due to the varying number of entities in datasets, the embedding dimension at the
optimal performance varies. For example, the top performance is achieved on ZH-EN and EN-ZH
when the embedding dimension is 96 but is obtained on JA-EN, EN-JA, FR-EN, and EN-FR with an
embedding dimension of 128. As a compromise, we simplify the embedding representation of edges
to enable FR-EN and EN-FR to run with an embedding dimension of 128 with limited memory (For
more details, please check our open source code). A higher alignment performance can be achieved
if no compromise is made. As we observe, the optimal performance is typically achieved at the
theoretically chosen d. This also indicates our approach has a memory cost at the order of O(logN).

G.4 Efficiency (RQ4)

The previous works concerning the dangling problem have not analyzed its efficiency in their
experiments. Thus we only report the efficiency of our methods without baseline comparison. We
evaluate the efficiency of our work on Tab. 10 including alignment search time as ‘Inference Time’,
KEESA average training time as ‘Average Training Time’, and GPU memory cost on three different
datasets of DBP2.0. Data obtained from these three datasets with the top three node numbers is a
robust indicator of the efficiency of our method.

We gathered the mean value of 5 inference time costs for each dataset with the corresponding CPU
and GPU memory consumption. Meanwhile, the average training time for each period from early
to late is calculated. We enumerate the average training time of epochs 1-20, 21-25, 26-30, 31-35,
36-40, and 41-45.

Cause GPU is employed for not only model training but also inference, as shown on Tab. 10, the
inference speed is still very impressive. Specifically, we split the large similarity matrix into multiple
independent row blocks to perform the nearest searches within each block, which are well suited for
GPU parallel processing.

It’s noteworthy that the average training time correspondingly increases as training progresses from
early to late stages. More quasi-supervised information incorporated by us accounts for that. To
be specific, as the training deepens, we repeatedly conduct preliminary alignment tests while we
gather more and more entity pairs mutually closest under a given metric. The entity pairs serve as the
pre-aligned anchor nodes, i.e., the quasi-supervisory information mentioned above.

Besides, we list the CPU and GPU memory consumption required for our work. Memory consumption
is influenced by various factors such as complex allocation algorithms, model parameter scales, and
hyperparameters. In this problem, we put more attention on triples which characterize one KG,
revealing an approximate proportionality between the number of triples and memory consumption.
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Datasets Triples Inference Time Average Training Time (from 1 to 45 training epochs) CPU Memory GPU Memory
1-20 21-25 26-30 31-35 36-40 41-45

DBP2.0ZH−EN 872,935 48.78s 11.21s/it 21.16s/it 25.67s/it 28.17s/it 29.21s/it 30.14s/it 10.8GB 32.5GB
DBP2.0JA−EN 1,015,545 120.76s 28.14s/it 53.99s/it 63.43s/it 68.27s/it 70.61s/it 72.80s/it 11.9GB 32.6GB
DBP2.0FR−EN 2,089,909 382.48s 90.18s/it 158.18s/it 190.65s/it - - - 27.7GB 60.2GB

Table 10: Efficiency performance of our work on DBP2.0. The measurement of average training time
is ‘s/it’, which indicates seconds per iteration. One iteration here represents one training epoch. ‘-’
indicates the absence of data due to training termination.

G.5 Baseline Comparison Under Different Ratios of Pre-aligned Seeds (RQ5).

Comparing the proposed method with strong baseline models under different ratios of pre-aligned
seeds would better demonstrate Lambda’s superiority. The experimental baseline includes MtransE
w/ BR the SOTA method in previous works, which is also the only open-source method. The results
are shown in the Table. 11.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR
Ratios Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MtransE w/ BR
10% .161 .141 .148 .105 .127 .114 .102 .102 .128 .102 .128 .113 .133 .085 .102 .096 .072 .083
20% .264 .267 .265 .186 .251 .213 .179 .180 .251 .180 .251 .210 .215 .151 .179 .167 .138 .150
30% .312 .362 .335 .241 .376 .294 .314 .363 .336 .251 .358 .295 .265 .208 .233 .231 .213 .222

Lambda
10% .236 .346 .280 .197 .385 .261 .262 .315 .286 .206 .360 .262 .179 .230 .201 .153 .260 .193
20% .262 .399 .316 .215 .446 .290 .300 .368 .330 .226 .417 .293 .217 .286 .247 .182 .324 .233
30% .279 .447 .344 .219 .489 .303 .324 .409 .362 .234 .460 .310 .234 .320 .271 .192 .363 .251

Table 11: Performance of Lambda and MtransE w/ BR under different ratios of pre-aligned of 10%,
20%, and 30%. Bold indicates optimal performance.

G.6 LightEA as Strong Baseline for Comparison (RQ6).

LightEA [28] is recommended as a strong baseline for Lambda. We fixed LightEA’s code to include
dangling entities into the alignment candidates and evaluated its performance on DBP2.0. Hits@1
and Hits@10 are evaluated in a similar way to the dangling-unaware methods in our paper, as listed
below. In comparison, Lambda still outperforms LightEA.

Methods ZH-EN JA-EN FR-EN
H@1 H@10 H@1 H@10 H@1 H@10

LightEA 60.5% 82.9% 61.4% 84.1% - -
Lambda 62.6% 84.7% 62.1% 84.0% 44.1% 69.3%

Table 12: Comparison of Lambda and LightEA under relaxed setting. ‘-’ indicates the absence of
data due to out of time.

H Discussion

H.1 Alignment Direction

As we found, the alignment problem with dangling cases has a deeper issue concerning the classifica-
tion of imbalanced datasets. It originated from the observation that the alignment performance from
the source to the target is different from the other direction. The work of [33] has observed that on
DBP2.0, choosing the alignment direction from a less populated KG (e.g., ZH, JA, FR) to a more
populated KG (e.g., EN) enjoys a higher alignment accuracy but the other way around would lead to
a noticeable performance drop. Meanwhile, the dangling entity detection on EN-XX has a higher F1
score than XX-EN, as shown in Tab. 13.

By analysis, we think it may be attributed to an improper indication of the dangling entity detection
power on imbalanced datasets. This error in removing the predicted dangling entity would accumulate
hurting the alignment task. To verify the point, we introduce a trivial classifier that makes a simple
choice to classify all entities as dangling (positive) ones, and the detection results are reported in
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Datasets
Dangling Detection Entity Alignment

Our Work Trivial Our Work
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

ZH-EN .763 .925 .836 .583 1 .736 .279 .447 .344
EN-ZH .844 .909 .875 .609 1 .756 .219 .489 .303
JA-EN .807 .836 .821 .580 1 .734 .324 .409 .362
EN-JA .880 .809 .843 .605 1 .753 .234 .320 .271
FR-EN .615 .772 .685 .439 1 .610 .234 .320 .271
EN-FR .732 .749 .740 .554 1 .715 .192 .363 .251

Table 13: Dangling entities detection by our classifier v.s. a trivial one on DBP2.0.

Tab. 13. As all unlabeled entities are trivially classified as dangling ones, the detection metrics of
the trivial classifier are all falsely high. The more populated source KG usually has more dangling
entities (positives) and thus yields a higher precision in detection. Meanwhile, since the detection
classifier actually is not working, more dangling entities participate in the alignment phase, resulting
in poor alignment performance. This has explained why EN-XX has a higher dangling detection
performance but a lower alignment accuracy compared to the other direction.

The root of this issue is that matchable and dangling entities comprise imbalanced categories in
the classification task, but the corresponding metric is inappropriate. Hence boosting the detection
performance does not necessarily improve the alignment performance. We believe more practical
indicators of imbalanced datasets should be introduced to the alignment problem.

H.2 The Similarity between Dual-AMN and Lambda

The differences between the proposed GNN and Dual-AMN include:

Aggregation:

1. The adaptive dangling indicator rej is included in Lambda for eliminating dangling pollution.

2. The indicator rej is concatenated as a part of the entity feature.

Attention:

1. The attention is scaled by rej to filter dangling information.

2. Relation rk’s embedding hrk is linked to the adaptive dangling indicator of the associated entity
rej , and thus the attention in Eq. (2) models the relationship between the relation and the entity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: see Abstract and Introduction. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explained the trade-off of our method in How does our method work? 5.3
for a slightly inferior precision reported in Tab. 12 and Tab. 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: According to the order of appearance, we sort out and give the specific proof
in the appendix.

• The problem setting about PU learning as sec. 2.2
• Proof for Lemma 3.
• Proof for Theorem 1.
• Proof for Theorem 2.
• Proof for Theorem 3.
• Proof for Lemma 2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce the method proposed in this paper in detail in two sections,
Selective Aggregation with Spectral Contrastive Learning 3 and Iterative Positive-
Unlabeled Learning for Dangling Detection 4, and use the Alg. 1 to describe the latter in
pseudocode. Meanwhile, we gave implementation details at the beginning of the Experiment
5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code and data in supplemental material which is described in a
documented readme.md file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We gave the main implementation details at the beginning of the Experiment 5.
Statistics of the experimental dataset and baselines in appendix F and additional experiment
in appendix G also cover that including dataset construction details and hyperparameter
selection criteria.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the corresponding mean and standard deviation curves in Fig. 7
by calculating the loss function of different alignment ratios 0.25, 0.2, 0.15, 0.1, and the
corresponding mean and standard deviation are drawn. Other experimental data have also
been measured many times to take the mean value.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We gave GPU and CPU resources needed for the experiment in Implementa-
tion Detail part at the beginning of the Experiment 5. Additionally, time of execution such
as training & inference time is provided in Efficiency. G.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The dataset construction and usage do not contain any information that
endangers personal privacy, and it is licensed.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In this paper, we give all the sufficient reference materials. We provide the
code and data in the supplemental material and describe them in a documented readme.md
file, where more required information is clarified.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the dataset GA16K, GA-DBP15K and DBP2.0-minus & -plus
in detail in the appendix F. We provide the code and data in the supplemental material and
describe them in a documented readme.md file, where more required information is clarified.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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